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“Empirically [knowledge capital] is too broad a concept: it aspires to and contains too much. We can, 
however, focus on the contribution of identified investments in advancing the state of knowledge in a 
particular (or related) area(s).  The contribution of ‘science’ in general to a particular industry is probably 
not measurable since there is no way of knowing how much ‘science’ is actually used in one industry 
versus another.” 

 
—Zvi Griliches, “Issues in Addressing the Contribution of R&D to Productivity,” Bell Journal of 
Economics 10 (1979)  
 

I. Introduction   
Against the odds, and despite the verdict of a master, this paper sets out to show that 

the contribution of science to firms and industries is to some degree measurable.  In this 

article our main interest is in the early stages of innovation and in the role that science 

inside and outside the firm plays in scientific discoveries.  We assume that science is 

productive and contributes to expected profits.   This is a persuasive reason as to why 

firms pursue science and we adopt it as our working hypothesis1. 

The analysis builds on a simple precept from the economics of search, that industrial 

science replenishes technological opportunities in firms and industries (Evenson and 

Kislev, 1976)2.  Proceeding on this basis, we examine how opportunities are replenished 

and how the firm’s science resources interact with stocks of knowledge to produce 

industrial science.  Thus our concern is with industrial science, not with patents, products, 

and stock market values3.   

We would first like to be clear about what we do not claim.  We do not claim that 

only industrial science replenishes technological opportunity, just that it is a factor.  Nor 

do we assert that only academic science matters, for clearly we assume that industrial 

science is an essential piece of the puzzle.  Instead we merely claim that the return to  

R&D rises in part because of science regardless of sector. 

                                                 
1 But see Stern (2004), who argues that letting researchers do science also yields a wage savings. 
2 Adams (1990) draws on the insights of Evenson and Kislev (1975, 1976). 
3 Adams and Clemmons (2007) consider the role of science in patent production functions. 
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To answer this question we pursue a flexible approach.   We allow the firm’s past 

scientific research, its stock of basic research, and the past scientific research of 

universities as well as other firms to influence the rate of scientific discovery of a firm.  

Knowledge is allowed to flow from any science and from any university or firm to any 

particular firm and field4.  In the case of universities we provide for collaboration as well 

as citation channels of influence5. 

We are motivated by a desire to understand the sources that firms draw on while 

doing their own science.  Thus we are interested in the “origins” question, of the 

comparative contributions of universities and other firms, as well as the firm itself, to its 

scientific discoveries. 

The data give us the freedom to explore these dimensions. They are based on 

scientific papers, citations, and collaborations during 1981-1999 collected by Thomson 

Scientific in Philadelphia, Pennsylvania. The papers are written by scientists in the top 

200 U.S. R&D firms and the top 110 U.S. universities.  These institutions account for 

most of the scientific research carried out in the U.S. during this period. 

The data include 230 thousand papers written by the top 200 firms and 2.4 million 

papers written by the top 110 universities. They report roughly one million citations of 

top 200 firms to papers of the top 110 universities, about 40 thousand collaborations 

between firms and universities, and over 600 thousand citations to firms.  From these data 

we extract a panel consisting of science outputs and inputs at the three-dimensional level 

of firms, fields, and years.           

                                                 
4 Adams and Clemmons (2008, forthcoming) describe the data and characterize dimensions of the 
knowledge flows in terms of firms and industries, universities, and science fields. 
5 Firms write some of their papers with collaborating institutions which are almost entirely universities. 
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This paper draws on studies of knowledge production functions in microeconomics 

(Griliches, 1979, 1992) and in growth theory (Romer, 1990; Jones, 1995; Aghion and 

Howitt, 1998). We explore a particular implication of the growth side of this literature, 

that knowledge is more important at the industry level than firm level. 

Given our emphasis on science inside and outside the firm, we draw on studies of the 

limits of the firm in R&D, especially Cohen and Levinthal (1989), Mowery (1995), and 

Adams (2006).  Our results concur with findings from the management literature on open 

innovation (Chesbrough, 2003) and innovation communities (Von Hippel, 2005).  

Consistent with this, we find that reliance on outside knowledge has increased over time.   

The historical record (Nelson, 1962; Hoddeson, 1980, 1981; Hounshell and Smith, 

1988) provides examples of firms for which science is essential to strategy.  The 

empirical literature on knowledge flows (Jaffe, 1989; Trajtenberg, 1990; Jaffe and 

Trajtenberg, 1999; Harhoff, Narin, Scherer, and Vopel, 1999; Cohen, Nelson, and Walsh, 

2002) has proven essential to our research.   In this same vein, Narin, Hamilton and 

Olivastro (1997) and Branstetter and Ogura (2005) find that patent citations to science 

have increased over time, consistent with similar findings of our own. 

We assume that sampling behavior from knowledge stocks inside and outside the firm 

is a necessary part of knowledge flows.  Thus work on search, technical progress, and 

growth has influenced us, especially microeconomic studies by Evenson and Kislev 

(1976), Nelson (1982), and Klette and Griliches (1998), but also studies of growth by 

Kortum (1997), Aghion and Howitt (1998), and Klette and Kortum (2004).  Consistent 

with our results, these writings stress the role of knowledge in counteracting diminishing 

returns from search. 
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Less directly, our findings can be viewed as consistent with the literature on growth 

and convergence, since they suggest that productivity in research as well as goods and 

services is deliberately created and is probably easier for followers that are inside the 

technology frontier.  Examples are Barro and Sala-i-Martin (2004, Ch. 8, 12), Howitt 

(2000), and Griffith, Redding, and Van Reenan (2004), where productivity growth 

compared with leaders depends on R&D and technology transfer6.             

This paper seeks to make several contributions. To our knowledge we estimate the 

first science production functions at the firm level.  Second, we bring several knowledge 

flows to bear on the problem of explaining scientific output in firms and we confront 

these measures both with each other and with a simple alternative, the firm’s basic 

research stock (the new measures add considerably).  Third, instead of assuming the 

importance of knowledge flows from outside science, we test these against flows of 

science inside the firm (outside flows do matter).  Fourth, we compare university science 

flows with those from other firms (university flows are more important).  Fifth, rather 

than assume that only citations matter, we explore the alternative of collaboration-based 

university flows.  Consistent with Adams, Black, Clemmons, and Stephan (2005), 

collaboration also contributes.  Finally, we confirm the importance of knowledge flows 

after controlling for a range of individual effects and specifications, and we uncover 

evidence that knowledge flows are more important at higher levels of aggregation, 

especially university knowledge flows, as some growth theories suggest.            

                                                 
6 Geography and technology can restrict knowledge flows.  These frictions lie outside the scope of this 
paper.  For agriculture, Evenson and Kislev (1975) discuss limits on knowledge flows due to geography.  
Keller (2002) and Peri (2005) find that distance, country, and language constrain knowledge flows.  Adams 
and Jaffe (1996), Adams (2002), and Adams, Clemmons and Stephan (forthcoming) discuss limits imposed 
by field and technology. Frictions imposed by industry are less clear.  Scherer (1982a, b) and Klevorick, 
Levin, Nelson, and Winter (1995) suggest that inter-industry flows of technology are large. Adams and 
Clemmons (2008, forthcoming) find weak effects of industry in impeding knowledge flows from science. 



 

 5

The rest of the paper contains five sections.  Section II presents the knowledge 

production function for industrial science.  Besides firm R&D, this includes knowledge 

flows from universities as well as knowledge flows from the firm’s past research and that 

of other firms.  In this section we define the variables.  Section III discusses the data.  

Section IV presents time series graphs of knowledge flows from universities and firms by 

industry group and science field.   Section V reports our findings on industrial scientific 

discoveries. Section VI concludes. 

II. Science Production Function  
We assume that production of new scientific ideas in firms depends partly on search 

effort.  We measure effort by citations and collaborations.  These require time spent 

perusing scientific literature, as well as time and resources spent in joint research, all of it 

rendered productive by scientific training.  This input of labor is reflected in our data in 

counts of citations to scientific papers and collaborations on jointly written papers.  

Underlying the extent of search are stocks of advanced human capital, as well as an 

equilibration of the marginal benefits and costs from search. 

Then, in what follows, we examine the amount of knowledge that arrives at the firm.  

This turns out to depend on citation or collaboration counts divided by the number of 

papers potentially cited or collaborated.  This gives us a rate of search.  To simplify the 

discussion we shall refer to citation rates or collaboration rates simply as sampling rates 

when the context is clear. 

The sampling rate is multiplied by the knowledge stock from which it draws, to 

indicate the knowledge flow from a given institution.  This is summed to arrive at the 

total knowledge flow.  Some knowledge flows are spillovers, in the sense that they 
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represent outside knowledge that is nonrivalrous and non-excludable (Romer, 1990).  But 

some of the flows could represent technology transfer that is excludable.  We therefore 

refrain from calling knowledge flows spillovers.   

For the purpose of scientific discovery we identify stocks of knowledge in firms with 

their basic research stocks, and we replace stocks of knowledge in universities with 

stocks of R&D.  We prefer R&D stocks as proxies for knowledge because they stand for 

research effort in the long run, regardless of whether it is patented, published, or even 

observed.  In addition, R&D is associated with a larger number of products, which can be 

thought of as the firm’s know-how or stock of knowledge (Klette and Kortum, 2004). 

A. Analysis at the Firm and Science Field Level 
In most of the empirical work we employ a three-dimensional panel in which a 

knowledge production function for science i in firm j at time t takes center stage.  The 

panel treats scientific output as heterogeneous within the firm, so that knowledge arrives 

at different rates at different branches of the firm’s knowledge production function for 

science.  For example, the firm can have a biomedical branch, a chemistry branch, an 

engineering branch, and so forth, and the knowledge inputs that enter into each branch 

differ from other branches.  Our approach takes this into account. 

We postulate the following production function for scientific discoveries: 

(1)   ( )ijt
V

v tijvtjDijt uSRZAn svR exp)exp(
1 1 ,1 , ∏ = −−′= ηηδ  

In (1) ijtn is the number of papers (or citation weighted papers), A is productivity not 

elsewhere accounted for, and DZ ′  is a vector of firm, field, and time dummies with 

coefficientsδ .  Thus total factor productivity in scientific research is )exp( δDijt ZAA ′≡ .   

Note that firm dummies control for hard-to-observe effects of firm size, efficiency, and 
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diversification, field dummies control for differences among fields, and time dummies 

control for time effects7.  In addition, the firm’s stock of basic research 1 , −tjR controls for 

effects of the firm’s knowledge that are not measured by knowledge flows8. 1 , −tijvS  

includes lagged knowledge flows from past research in universities and other firms.  

These are flows of outside knowledge.  1 , −tijvS also includes flows from the firm’s past 

science research—this is the flow of inside knowledge. Notice that the lagged flows 

specifically pertain to science i and firm j  at time t .  Also, ijtu is the error term and the iη  

exponents are output elasticities.  The composition of the error term is given by 

(2)  ijttjiijt evvvu +++=  

In (2), tji vvv ,, are variance-components for field, firm, and time, whose effects are 

absorbed by the dummy variables DZ ′ .  ijte is the “innovation” in the error term. 

Taking logarithms of (1) and substituting (2) into the result we reach: 

(3)   ijttjitijvv
V

vtjRDijt evvvSRZn ++++++′+= −=− ∑ )ln()ln()ln( 1 ,11 , ηηδβ  

in whichβ  equals the logarithm of A .  For identification ijte must be orthogonal to the 

right-hand side variables.  In addition to using lagged variables as instruments we address 

this by including all available lags as instruments using panel GMM.   

 In (3) the firm’s stock of basic research is 

(4)  τ
ττ

)1(1
5

111 drbR jttjt −= −−=−− ∑  

                                                 
7 The dummies also absorb knowledge flows not controlled by researchers in a firm and field.  These 
become endogenous at higher levels of aggregation.  See Romer (1990), Griliches (1992), and Jones 
(1995). 
8We also used stocks of basic plus applied research in place of basic research throughout, including the 
knowledge flows, but this made little difference to our results. 
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Here 1−tb is the share of basic research in the primary industry of firm j from NSF (various 

years), τ−−1jtr is the lagged flow of firm R&D over the previous five years from Standard 

and Poor’s Compustat, and 15.0=d  is the depreciation rate assumed for R&D9.          

There is an important issue concerning the knowledge flows 1 , −tijvS .  Since these 

draw on several sciences they are really two-level production functions.  Barring fixed 

proportions, concavity is needed to uniquely determine inputs from each science.  But for 

tractability we replace the nonlinear functions with linear approximations10. 

 The knowledge flows use sampling rates jij nc / as weights that measure the 

intensity with which researchers search various knowledge stocks.  The numerator ijc is a 

count of citations or collaborations from group i  to group j .  This is divided by jn , the 

number of scientific papers in group j  that could have been referenced.  For a group of 

papers in  the rate jij nc /  is more meaningful than probability jiij nnc / .  The probability is 

appropriate for a single paper because it captures the average proportion of knowledge 

flowing from j  to i  (Adams, Clemmons, and Stephan, forthcoming).  But if in  papers 

cite jn  papers in j then the probability jiij nnc /  reduces to the sampling rate jij nc / .   We 

now consider the knowledge flows in detail. 

We begin with flows of outside knowledge into firms. The citation flow from 

universities takes the form: 

                                                 
9 Firm R&D flows are expressed in millions of 1992 dollars. We chose a five year measure of the R&D 
stock because of the short length of many firm R&D histories. And since we do not have firms’ basic 
research, we adjust the total stock of R&D by the industry ratio of basic research to total R&D.  
10 Since we include six sciences and four knowledge flow variables, estimating a nonlinear regression with 
a two-level production function for the R&D variables is not promising.  The linear knowledge flows are 
simple and almost surely, are highly correlated with the ideal two-level production functions.  
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(5)   ττ
τ

τ FkFk
Fk
ijt

tN

k

M

F
CU
ijt nS )R/(CU 1

111 ∑∑∑ −

===
=  

HereCU refers to citations to university science.  Subscripts stand for the citing 

(receiving) side of knowledge flows, and superscripts stand for the cited (sending) side.  

Subscripts and superscripts consistently follow the ordering: field of science, institution 

(university or firm), and time.  Thus, in the case of (5) subscript ijt refers to citing 

field i in firm j at time t and superscript τFk refers to cited field F , university k , and prior 

yearτ .   The citation rate in parentheses is field-specific because university R&D stocks 

are field-specific. τFk
ijtCU is the number of citations from papers in a field, firm, and year 

to papers in a university, field, and year.  It is inherently a six-dimensional object.  The 

number of papers in university k in field F at timeτ is τkFn . Thus the sampling rate equals 

τ
τ

Fk
Fk
ijt nCU / .  The university citation flow is just the sum of the sampling rates times 

cited R&D stocks over cited sciences F , universities k , and yearsτ .  This explains the 

triple summation in (5), which reduces the knowledge flow to the three-dimensional level 

of citing field, firm, and year, representing in a simple way all that has been learned.  In 

(5) the definition of the stock of university R&D τkFR is 

(6)   ∑ = − −=
8

1
)1(

z
z

zkFkF drR ττ  

It is the sum of depreciated R&D flows zkFr −τ  over the previous eight years, where the 

depreciation rate is 15.0=d . R&D f lows are taken from the NSF CASPAR database.  

University R&D stocks have three advantages over firm R&D: they are consistently 

available over a longer period, they exist by field, and they are expenditures on science11.  

                                                 
11 Field and university R&D stocks are expressed in millions of 1992 dollars.  
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One disadvantage is that they could contain considerable respondent error.  To reduce 

simultaneity bias we lag (5) in production function (3). 

The collaboration knowledge flow from universities is simpler than (5).  This is 

because joint research takes place within field—the field of the journal where it is 

published.  Collaboration occurs in the same year—the year of publication12.  Since 

collaboration occurs within field in the same year, the knowledge flow is a single sum 

over collaboration rates times collaborated university R&D stocks: 

(7)   11
)/(JU −=∑= iktikt

ikt
ijt

N

kijt
JU RnS ,   

The term ikt
ijtJU stands for counts of joint research in field i between firm j and 

university k .  The flow of knowledge is the sum of the sampling rate in parentheses times 

the R&D stocks defined in (6). Since it is within-field (7) is restricted to field i .  Again 

we lag (7) in production function (3).  

 Next consider knowledge flows within a firm.  The firm’s basic research stock, 

which enters this calculation at various points in time, depends on total R&D 

expenditures in Compustat, since stocks of firm basic research do not exist, either by field 

of science or in total.  Because of this, we estimate the firm’s stock of basic research 

across fields using 1−tb —the ratio of basic research to total R&D in the firm’s  

primary industry—times τiR , which is the stock of total R&D13.   

The knowledge flow from the firm’s past research is the product of the firm’s 

basic research stock at various times by citation-sampling rates to its earlier papers: 

                                                 
12 Tracing collaboration over time is beyond the research frontier at this time. 
13 The firm R&D stock is the deflated stock of R&D in millions of 1992 $ over the previous five years, 
depreciated at 15 percent per year. We have these stocks going back as far as 1977 depending on the year 
that the firm is first listed in Compustat. The industry ratios of basic research to total R&D are taken from 
National Science Foundation (various years).  
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(8)   
ττ

τ
τ

ττ
τ

τ

jt-
M

F Fj
Fj
ijt

M

F

t

jt-
M

F Fj
Fj
ijt

tM

F
CS
ijt

bnCS

bnCSS

R  )/(       

R  )/( 

111

1

1

11

1

11

∑∑∑
∑∑∑

==

−

=

=

−

==

=

=
 

The termCS represents citations to papers written by the same firm.  Following our 

notation τFj
ijtCS citations are made by a firm’s papers in field i , firm j and time t to the 

firm’s previous papers τFjn in field F in yearτ .  Since firm j stays the same, (8) is a 

double sum over fields and years cited. In the second line we use the citing field’s 

weighted average citation rate.  This is the number of citations from field i  in year t  to all 

fields in yearτ , divided by the number of papers in yearτ  across all fields. Unlike (5) 

and (7) we use a weighted average because for firms, we lack R&D by field of science.  

The citation knowledge flow from other firms is similar to (8) except that cited 

firms differ from citing.  This requires a third sum over cited firms:  

(9)  
ττ

τ
τ

ττ
τ

τ

kt
M

F Fk
Fk
ijt

M

F

tN

ik
k

kt
M

F Fk
Fk
ijt

tN

ik
k

M

F
CI
ijt

bn

bnS

R  )/CI (       

R  )/(CI 

111

1

1
1

11

1

1
1

1

−==

−

=≠
=

−=

−

=≠
=

=

∑∑∑∑

∑∑∑∑
=

=
 

We use CI for citations to other firms.  Scientific papers written in field i , firm j , and 

time t make τFk
ijtCI citations to papers τFkn  in field F , other firms k , and yearτ .  As in (8) 

the ratio in parentheses on line two is the weighted average citation rate.  We lag (8) and 

(9) by one year in (3) to reduce issues of endogeneity. 

B. Aggregation to Higher Levels  
Besides the firm and field level we explore the production of science at the firm and 

industry and field levels.   Firm level analysis aggregates over fields within a firm.  

Industry and field level analysis aggregates over firms, but leaves field intact.  
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A firm level analysis checks for factors that are external to science fields but internal 

to the firm.  Such “quasi-external” effects might differ by source of knowledge.  Another 

reason for a firm level analysis is that we are better able to apply panel GMM at this 

level, because a longer time series of data exists.  One drawback, though, is that errors in 

variables and in aggregation could weaken the fit of the equation. 

The knowledge production function for firm j  is, to a first approximation, 

(10)   jttjjvtv
V

vjtRDjt evvSRZn +++++′+= −=− ∑ )ln()ln()ln( 111 ηηδβ  

The notation resembles (3) except that knowledge flows are aggregated over fields. 

 We also aggregate the data across firms in the same industry to undertake analysis 

of the industry.  The idea is to uncover knowledge effects that are external to firms but 

internal to fields.  The logic derives from Romer (1990), Griliches (1992), Jones (1995), 

and Aghion and Howitt (1998): returns to knowledge could increase in passing from the 

firm to the industry level, despite duplicative and business-stealing R&D. 

Knowledge production in field i and industry I is 

(11)   iIttIivtiIv
V

vItRDtiI evvvSRZn ++++++′+= −=− ∑ )ln()ln()ln( 1 11 ηηδβ       

The notation is similar to (3) but the interpretation differs, because knowledge flows 

include external effects that are held constant at the firm level14.  

III. Database 
The underlying data consist of 230 thousand papers of the top 200 U.S. R&D firms 

and 2.43 million papers of the top 110 U.S. universities that were published during 1981-

1999.  The data source is Thomson-Scientific in Philadelphia, Pennsylvania.   The papers 

                                                 
14 See Griliches (1992) for a proof.  His discussion of aggregation from firms to industries uses common 
prices for inputs and common production functions. 
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appear in 7,137 scientific journals. Each journal (and the papers in it) is assigned to a 

single science field.  The main alternative to this method is the assignment of papers 

according to authors’ fields.  But this information is all too often incomplete15.  

Top 200 firms make one million citations to papers of top 110 universities and 600 

thousand citations to Top 200 papers including their own.  We have seen that outside 

knowledge flows involve citations to universities and other firms, and are “non-self” 

citations.  Conversely self-citations are evidence of inside knowledge flows from a firm’s 

past research to its current research.  Because firms very rarely collaborate in science, in 

this paper collaboration consists of joint research between firms and universities16.  

Indeed, university-firm collaborations cover 20 percent of firms’ scientific papers. 

In (5) and (7)-(9) we showed how to exploit citation and collaboration rates to 

construct knowledge flows needed for production functions (3), (10), and (11).  In 

building the flows, we use data on R&D in universities by field from the NSF CASPAR 

database; data on total R&D in firms from Compustat; and data on the ratio of basic to 

total R&D by industry from National Science Foundation (various years).    

To undertake the empirical analysis we construct a panel of firms, fields, and years.  

Firms are the top 200. Fields are biology, chemistry, computer science, engineering, 

medicine, and physics: these cover 95 percent of all scientific papers in industry.   

Although the data go back to 1981, we want to allow for histories of citation and 

collaboration, so the time period that we use is 1988 to 1999.  Fifteen firms drop out 

                                                 
15 We attempted to assign all papers of Harvard University to science fields using address information.  
About a third of the papers could not be assigned so we abandoned this method.    
16 Firm papers are 1/10 as many as university papers so collaborations between firms would be 1/10 as 
many as university and firm collaborations.  This assumes that collaboration propensities are the same.  But 
firm-firm collaborations are less common than this. 
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because R&D histories are missing.  In addition data on fields do not exist in each year.  

After missing values are removed the panel consists of up to six sciences, 185 firms with 

adequate R&D histories, and up to 12 years of data over the period 1988-1999. 

Dependent variables are scientific papers as well as papers weighted by citations 

during the first five years since, and including, publication.   Independent variables 

include field, firm, and time fixed effects.  Also included are logarithms of the firm’s 

basic research stock and the various knowledge flows defined in Section II.  After 

missing values are removed, the panel consists of 4,268 observations on papers and 2,495 

observations on citation-weighted papers17.  

Tables 1 and 2 provide descriptive statistics.   Table 1 shows means and standard 

deviations of the principal variables. The mean number of papers is 28.4.  Papers are 

fractionally assigned, they are continuous, and they are not censored.  And so we use 

OLS to estimate production functions for papers rather than a count model (Hausman, 

Hall and Griliches (1984))18.  The mean of fractional citation-weighted papers is 71.9, but 

a fourth of the observations are left-censored.  We use Tobit analysis for this variable19. 

The rest of Table 1 presents means and standard deviations of basic research and the 

knowledge flow variables (in millions of 1992 dollars), as well as their sampling rates.  

The mean of the firm’s basic research stock—see (6)—is 145.5 million, reflecting the 

amount of R&D in Top 200 firms. 

                                                 
17 Since citations received cover the first five years after publication (including publication year) and since 
the data end in 1999, citation-weighted papers end in 1995, leading to the drop in the observations.   
18 In the underlying calculations an institution gets half a paper or citation-weighted paper if it collaborates 
with one other institution, a third of a paper if it collaborates with two others, and so on. This procedure 
avoids multiple counting of papers across collaborating institutions. 
19 At the industry and field level none of the citation-weighted papers are zero so we use OLS at this level 
of analysis. 



 

 15

The mean university-firm citation rate is 0.006.  The mean knowledge flow (5) is 

41.0 million.  The mean university-firm collaboration rate is 0.010; the mean knowledge 

flow (7) is 2.9 million.  The collaboration flow is smaller than the citation flow because 

collaboration occurs much less frequently. 

Self-citation and firm-firm knowledge flows conclude Table 1.  The mean self-

citation rate is 0.014, while the mean self-citation flow (8) is 41.8 million. The mean 

firm-firm citation rate is 0.005, slightly less than the firm-university rate.  But the mean 

knowledge flow among firms (9) is 24.5 million, less than the university-firm flow, again 

because firm-firm citation occurs less frequently.  

Table 2 presents total knowledge flows in columns and receiving fields and industry 

groups in rows.  The top panel shows flows by field.  As one would expect, biology and 

medicine account for more than half of university citation flows.  Their share in 

collaboration is less.  Biology and medicine are less common in industry hence their 

collaboration share is smaller.  For the same reason, collaboration flows in computer 

science and engineering exceed their share in citation flows. 

For related reasons citation flows within and between firms are distributed differently 

than flows from universities.  Compared with universities chemistry and physics are more 

important in industry; biology and medicine are less important; and computer science and 

engineering are again more important. 

Table 2’s bottom panel shows total knowledge flows by industry.  One observes a 

spike in drugs and biotechnology, with lesser spikes occur in petrochemicals, electrical 

equipment, and software and distinct drop-offs that occur in metals, machinery, and 

miscellaneous.  These patterns follow the volume of science in an industry.   
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IV. Trends in Flows of Scientific Knowledge   
We now turn to trends in knowledge flows.  The area graphs of Figure 1 display 

shares in the total flow of scientific knowledge by type for each industry group.  This 

total is the sum over the four knowledge flows used in this study.  Following equations 

(5) and (7)-(9) they are:  flows from citations to university papers; flows from 

collaborations on university papers; flows from citations to papers of the same firm; and 

flows from citations to papers of other firms.  Use of shares allows us to see changes in 

relative contributions over time and to compare these across industries and sciences.   

The six panels of Figure 1 represent: petrochemicals; drugs and biotechnology; 

metals, machinery, and miscellaneous; computers, communications, and software; 

electrical equipment and instruments; and transportation equipment.  The share of 

knowledge from university collaborations is larger in early years of the sample and is 

shown by a downward pointing cusp.  It results from the immediacy of collaboration 

compared with the gradual build-up of citation.  The share of knowledge flows from 

university citations grows over time, as does the share of citation flows from other firms.  

Over time, knowledge flows within the firm steadily lose share to outside flows. 

The university share (collaboration plus citation) grows fastest in drugs and 

biotechnology; electrical equipment and instruments; and transportation equipment.  The 

share of other firms grows fastest in petrochemicals; drugs and biotechnology; and 

electrical equipment and instruments. These differences follow variations in the use of 

different sciences by industries as well as varying growth of R&D across sciences and 

sectors.  But Figure 1 as a whole clearly shows that firms draw an increasing share of 

knowledge from external sources at the end of the 20th century. This agrees with the  
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literature on open innovation, for example, Chesbrough (2003) and Von Hippel (2005).    

Figure 2 reports shares of knowledge flows by field.  Decline in the within-firm 

share is clear.  It is smallest in chemistry and physics, where university research stocks 

have grown more slowly, yet even here it occurs.   The fact that chemistry and physics 

are dominant sciences in petrochemicals; in metals, machinery, and miscellaneous; and in 

computers, communications, and software (Adams and Clemmons, 2008, forthcoming) 

helps to explain why the within-firm share drops less in these industries. 

The university share (citations plus collaborations) grows most in biology and 

medicine, where university R&D has grown the fastest , and the same is true of computer 

science.  Across fields, collaboration flows again start off large, because collaboration 

flows unfold more rapidly than citation flows.  In addition, collaboration is more 

important in computer science and engineering than elsewhere.   

The share of knowledge flows from other firms grows fastest in biology, 

medicine, and computer science. But it occurs in all fields, where between-firm flows 

grow relative to within-firm.  This implies that knowledge sharing in industry has become 

more important over time. 

V. Findings    

A. Firm and Field Level Estimates 
Tables 3 and 4 are a basic set of estimates of the knowledge production function for 

industrial science.    Recall that this is 

(3)   ijttjiijvtv
V

vjtRDijt evvvSRZn ++++++′+= −=− ∑ )ln()ln()ln( 111 ηηδβ  

The logarithm of papers or citation-weighted papers is on the left.  On the right are field, 

firm, and year fixed effects DZ ′  and the logarithm of the firm’s basic research stock.  
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Under the summation sign are logarithms of citation and collaboration knowledge flows 

from universities, the self-citation flow from the firm’s past research, and the citation 

flow from other firms.  The iη coefficients are elasticities, and the error components 

complete the specification. 

Since knowledge flows sometimes equal zero we handle this by adding 0.001 to the 

flows before taking logarithms.  Given this adjustment, the elasticities are really averages 

over zero and positive observations20. 

Table 3 reports regression findings with the logarithm of scientific papers as the 

dependent variable.  All equations use robust, clustered standard errors where firm and 

science field are the clustering variable. Firm, field and year fixed effects are also 

included.  These are jointly significant at the 0.1 percent level.  

Equation 3.1 includes the firm’s basic research stock, whose elasticity is 0.124 and 

significant.  Equation 3.2 adds the self-citation knowledge flow.  This cuts the basic 

research elasticity to 0.061, while the self-citation elasticity is 0.195 and significant.    

Equation 3.3 adds the logarithm of citation flows from universities and other firms to 

3.2.  The basic R&D elasticity falls to 0.027 and becomes insignificant. While the self-

citation elasticity falls to 0.094, it remains significant.  The university citation elasticity is 

0.170 while the firm citation elasticity is 0.102 and both are significant.  Accounting for 

outside knowledge clearly detracts from the role of knowledge inside the firm. 

                                                 
20 Another approach is to include a dummy indicator equal to 1 if the knowledge flow equals zero, and to 
interact the dummy with the logarithm of each knowledge flow variable. When the interaction is included 
along with the knowledge flow, the two terms together absorb the effect of a zero flow while the main term 
by itself captures the effect of a positive flow.   This is similar to a spline or polynomial regression across 
zero and positive values, except that it does not force facets of the polynomial to join at corners.  For this 
approach see Adams and Clemmons (2008, forthcoming).  For a brief introduction to splines see Greene 
(2008), pages 111-112.      
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Equation 3.4 adds university collaboration flows to 3.3.  The basic research, self-

citation, and firm citation elasticities do not change.  But the university citation elasticity 

drops from 0.170 to 0.126, probably because collaboration substitutes for citation.  All 

knowledge flow elasticities are positive and significant, but the largest effect comes from 

universities and other firms.  Their combined elasticity is 0.343 whereas self-citation 

contributes 0.084.  Estimated returns to scale are given by the sum of the elasticities, or 

0.427, suggesting diminishing returns21.  And yet papers are not weighted by quality or 

importance in Table 3.   

Table 4 gets at this by using citation-weighted scientific papers as the dependent 

variable.  To capture industrial relevance of a scientific paper the citations are forward 

citations from other firms over the first five years of a paper’s existence22.  The time 

period is 1988-1995.  The number of observations is 2,495 of which 586 are left-censored 

at zero.  We adopt random effects Tobit as the estimation method because the fixed 

effects estimator is biased and inconsistent.  This is because fixed effects cannot be 

factored out of the Tobit likelihood, leading to an incidental parameters problem23.   

Elasticities in Table 4 tend to exceed those in Table 3.  This is partly due to 

differences in statistical method.  In Table 3 the OLS expected marginal effect is the 

elasticity.  But in Table 4 it is the elasticity times the probability that the dependent 

variable is not censored (Greene, 2008, pages 872-873).   

But the difference in marginal effects is not the main reason for the difference in 

elasticities.  In 4.1 the elasticity of the firm’s basic research stock is 0.562 but in 3.1 it is 

                                                 
21 Differentiate equation (3) with respect to all variables X subject to the restriction that cXdX =/ .  
22 Notice that citations received by the firm’s papers from other firms in the future are completely separate 
from the citations that the firm makes to papers in the past.  This is an important point, because it says that 
citation-weighted papers are not subject to a hidden dependency. 
23 See for example, Cameron and Trivedi (2005), pages 800-801. 
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0.124. The difference in elasticities is 0.438.  The probability that citation-weighted 

papers are not censored is 0.765 ((2495-586)/2495) so the expected marginal effect in 4.1 

is 0.765×0.562=0.430.  The remaining difference is 0.306 (0.430-0.124), which accounts 

for most of the raw difference, 0.438.  The jump in the expected marginal effect is real; 

some of this may be due to the use of random effects rather fixed effects.     

Equation 4.2 adds self-citation knowledge flows to 4.1. This cuts the basic research 

elasticity from 0.562 to 0.474, while the self-citation elasticity is 0.180.  Both are 

significant.  Equation 4.3 adds university and firm citation spillovers to 4.2.  The 

university and firm elasticities are 0.336 and 0.205.  Including them reduces the basic 

research and self-citation elasticities, though these remain significant. 

Equation 4.4 adds university collaboration.  Its elasticity is 0.114 and it is significant.  

Collaboration draws some effect away from the other variables, especially university 

citation, though all elasticities remain positive and significant.   As before, the sum of the 

elasticities is an estimate of the returns to scale in production.  This equals 1.04, 

indicating constant returns and suggesting that part of the payoff to basic research partly 

consists of higher quality science.  But internal returns to scale are 0.43, indicating 

diminishing returns when outside knowledge is held constant.         

Table 5 reports formal tests of equations 3.4 and 4.4.  Equality of the university and 

firm citation elasticities is rejected (line one) in favor of the alternative, that the 

university elasticity is greater.  The hypothesis that the university citation elasticity 

equals the collaboration elasticity is also rejected (line two). The combined university 

elasticity usually exceeds the firm citation elasticity (line three).  At times (line four), the 

combined university elasticity exceeds the total firm elasticity.   
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B. Robustness Checks   
Table 6 explores sensitivity of the elasticities to changes in sample and specification. 

The method resembles that of Donohue and Levitt (2001).  We use 3.4 as the baseline for 

Panel A, which deals with papers; and 4.4 as the baseline for Panel B, which deals with 

citation-weighted papers.  For comparison the estimates from 3.4 and 4.4 form the top 

lines of each panel.  Columns are elasticities—standard errors are in parentheses.  Rows 

summarize the different experiments.  

Equation 6.1 allows for interactions between firm and field, while 6.2 allows for 

interactions between firm and year.  The elasticities fall slightly, yet all remain positive 

and significant.  In 6.3-6.5 science-intensive industries (drugs and biotechnology; 

software and communications; or both) are dropped from the sample.  Omitting these 

could diminish the elasticities, but we find little effect.  At the other extreme omitting 

metals, machinery, and miscellaneous in 6.6 could increase the elasticities, but again 

there is little effect. The estimates are stable across industries. 

Equation 6.7 tests the specification of the variables. Recall that the university citation 

and collaboration flows (5) and (7) use field-specific R&D stocks for universities, while 

the self-citation and firm-firm citation flows (8) and (9) use basic research stocks.  Data 

do not exist on firm basic research by field.  In 6.7 we treat R&D stocks for universities 

exactly like those for firms.  But we find that this makes little difference.  The estimates 

in 6.7 are similar to the original estimates (Panel A, top).  Apparently the decline in errors 

in R&D cancels the specification error caused by summing over fields.       

   The final line (6.8) replaces the knowledge flows with naïve mean sampling rates.  

The results are significant, indicating that search effort plays a role in knowledge 
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transmission.  While this is consistent with the search hypothesis, observe the drop in R-

squared from 0.74 on the top line to 0.69 in equation 6.8. This implies that R&D stocks 

play a role in addition to search effort. 

Panel B applies similar checks to citation-weighted papers with similar results24.   

Dropping science-intensive sectors or dropping sectors that use little science (6.9-6.12) 

matters little.  Using the sum of university R&D over fields (6.13) has little effect on the 

estimates.  Using mean sampling rates in 6.14 yields significant elasticities, though the 

drop in the log likelihood suggests that R&D stocks are important in addition to search. 

C. Firm Level Estimates  
We now expand the investigation to higher levels of aggregation.  Recall that the firm 

level equation is (10).  Table 7 reports OLS estimates of (10) for papers in 7.1, and Tobit 

estimates for citation-weighted papers in 7.2. 

All elasticities are positive and significant.  The sum of the elasticities declines to 

0.193 in 7.1, compared with 0.427 in the corresponding firm and field equation, 3.4.  But 

in 7.2 the reverse is true: the sum of the elasticities rises to 0.925 compared with 0.782 in 

4.4.  The firm’s basic research is significant in 7.1 while it is insignificant in 7.2.  The 

instability of basic research suggests that collinearity is present, probably with the self-

citation knowledge flow (8).  And yet the self-citation elasticity is stable.  Because of this 

we emphasize self-citation and other knowledge flows in the remaining discussion.    

While it is hard to compare the firm level estimates with those at the firm and field  

level, the relative contribution of university knowledge does increase at the firm level.  

To see this note that in 7.1 the share of university citation and collaboration in all 

                                                 
24 Since firm fixed effects produce inconsistent and biased estimates in Tobit analysis it is not worthwhile 
to create interactions with field and year effects in Panel B, as was done in Panel A, in equations 6.1-6.2. 



 

 23

knowledge flows is 642.0)043.0026.0046.0078.0/()046.0078.0( =++++ .   But at the 

firm and field level, in 3.4, the share of university citation and collaboration 

is 546.0)088.0084.0096.0126.0/()096.0126.0( =++++ . 

In 7.2 this share is 597.0)198.0175.0111.0441.0/()111.0441.0( =++++ .  But it 

is 532.0)199.0167.0114.0302.0/()114.0302.0( =++++ at the firm and field level in 

4.4.  We conclude that university knowledge flows are more important at the firm level.  

 In Table 8 we undertake dynamic panel estimation of the production function 

using panel GMM25.  We include the logarithm of lagged scientific papers )ln( 1−jtn as a 

factor of production representing the persistence of discovery.  The model is 

(12) jttjtjvv
V

vtjRtjnDjt evvSRnZn ++++++′+= −=−− ∑ )ln()ln()ln()ln( 1 ,11 ,1 , ηηηδβ  

The error term jte is serially uncorrelated.  Differencing (12) to eliminate the fixed 

effect jv  introduces first order serial correlation in the transformed error 1−− jtjt ee , as well 

as correlation with lagged papers )ln( 1, −tjn 26.  Therefore, instruments for lagged papers are 

provided by lags of 2−t years and earlier.  Instruments for differenced knowledge and 

R&D variables in year t  are levels of these variables dated 1−t  and earlier.  More 

instruments become available moving forward in time (Arellano and Bond 1991).  

Moment conditions for products of the instruments with the errors are then combined in a 

quadratic criterion and estimated using Generalized Method of Moments (GMM).   

Because the data are differenced this method is known as Difference GMM. 
                                                 
25 It is not clear how one would do GMM estimation of citation-weighted papers, for which 11 percent of 
the observations are left censored at zero.  Hence we omit GMM estimates for this variable. 
26 Blundell and Bond (1998, 2000) make a different assumption.  The equation contains lagged papers as a 
result of the correction for serially correlated errors in the original equation. The correction for this 
introduces lagged dependent and exogenous variables. But in this article, lagged papers belong in the 
original equation and serial correlation is absent until differencing to remove fixed effects introduces it, as 
in Arellano and Bond (1991).  
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One weakness of Difference GMM is that lagged instruments in levels may exhibit 

low correlation with the differenced variables and create a problem of weak instruments.  

Blundell and Bond (1998) show that, given certain initial conditions, additional moments 

become available.  The additional instruments are differences of the knowledge and R&D 

variables in the levels equations.  The additional level conditions are combined with the 

differenced conditions to form a system, so this is known as System GMM.  We estimate 

(12) using Difference and System GMM27.   

Table 8 contains the results.  Equations 8.1 and 8.2 use Difference GMM and assume 

that the knowledge variables are exogenous or predetermined.  The results are similar to 

7.1 except for the inclusion of lagged papers )ln( 1, −tjn , which are insignificant.  The 

System GMM equation 8.3 fits better, consistent with Blundell and Bond (1998, 2000).  

Lagged papers are significant, suggesting that past discovery does contribute to future 

discovery.  In general the knowledge elasticities in 8.3 rise compared with 8.1 and 8.2.  

The Wald chi-Square statistics confirm the joint significance of the variables.  To sum up, 

the firm level results validate the importance of knowledge in scientific discovery.  As 

before, much of the knowledge that drives discovery comes from outside the firm28. 

                                                 
27 We use Stata 10.0’s xtabond and xtdpdsys commands for Difference and System GMM respectively. 
28 We explored firm level estimates using spillovers in the style of Jaffe (1986). Here the equation is  
(A)  jttj

I
jtI

U
jtUjtRDjt eXXRZn ++++++′+= −−− ννγγγδβ 111)ln()ln( . The new terms 

consist of the two lagged variables U
jtX 1− and I

jtX 1− , which are “spillovers” from universities and industry.  

The spillovers are defined as )ln( 11
K
it

K
ijt

N

ji
i

K
jt RPX −

≠
=∑= IUK ,= .  Here K

ijtP is the un-centered 

correlation between vectors of lagged shares of papers by field of science in firms ji, .  Estimates of (A) 
perform poorly. Spillovers are insignificant in three out of four cases and the elasticities are sensitive to the 
inclusion of zero spillovers. 
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C.  Industry and Field Level Estimates     

Table 9 presents estimates of the industry, field, and year level production function 

(11), where aggregation takes place over firms in the same industry.  The regressions 

report robust, clustered standard errors where clustering is by industry and field. 

Equations 9.1 and 9.2 report results for papers and citation-weighted papers.  The 

estimation method is OLS for both equations since at this level no observations are left 

censored.  In 9.1 the sum of the knowledge elasticities—the estimate of the returns to 

scale—rises to 0.675, compared with the firm and field level estimate of 0.394 in 3.4.  In 

addition, the share of university citations and collaborations rises to 0.791 in 9.1 

(0.534/0.675) compared with 0.564 in 3.4 (0.222/0.394).  This is consistent with theories 

which predict that spillover effects rise with aggregation (Romer, 1990; Griliches, 1992; 

Jones, 1995; and Aghion and Howitt, 1998).  This is especially true of university 

knowledge, which may be less excludable than firm knowledge. 

Results for 9.2 are similar.  In the industry and field equation 9.2 the sum of the 

elasticities is 0.919.  This is the expected marginal effect since no censoring occurs.  But 

in the firm and field equation 4.4 the sum of the knowledge flow elasticities is 0.782.  

When multiplied by the probability not censored of 0.835 to yield the expected marginal 

effect (Greene (2008), pages 872-873), the sum is 0.653.   The knowledge elasticities 

increase with aggregation.  University flows assume a more prominent role, suggesting 

larger externalities from university knowledge.    

D. Marginal Products of Knowledge  
So far we have discussed elasticities of knowledge.  These are percentage changes in 

papers or citation-weighted papers per one percent change in knowledge.  Here we would 
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like to compute marginal products of the knowledge variables.  Since knowledge is 

expressed in millions, marginal products are expressed in papers per million. 

They are calculated as follows.  Elasticities are defined as 

(13)   )/) / ()ln(/)ln( Papers(SSPapersSPapers iiii ×∂∂=∂∂=η . 

Here iS is the knowledge flow from source i .  Inverting (13) and evaluating at the mean 

the marginal product is: 

(14)   )/(/ iii SPapersSPapers ×=∂∂ η  

where the bar indicates a mean.  Table 10 reports marginal products computed using (14). 

Consider first the firm and field level (Panel A). The marginal product of university 

collaboration is the largest, marginal products of university and firm citations are less; 

and the self-citation marginal product is the smallest.  This pattern would reflect an 

equilibrium, if collaboration is more costly than citation (because collaboration commits 

sizable resources), and if self-citation is less costly than external citation (because the 

latter requires more search).  At the firm level (Panel B) and the industry and field level 

(Panel C), collaboration marginal products continue to be the largest and self-citation 

marginal products the smallest.  Marginal products of the firm citation spillover vary 

relative to those of universities, suggesting rough equality.  Also, industry and field 

marginal products usually exceed firm and field level marginal products.  This suggests 

that the social product of research exceeds the private product.    

VI. Conclusion    
The evidence in this paper implies that industrial science progresses by drawing on 

past scientific research inside and outside the firm, with most of the influence deriving 

from outside research (Tables 3, 4, 7, and 9).  Moreover, as time goes by, the share of 



 

 27

knowledge flows from outside the firm increases (Figures 1 and 2).   In turn, the 

contribution of outside scientific knowledge that is contributed by universities exceeds 

that of other firms. This is particularly true when citation-weighted papers are the 

dependent variable so that quality of scientific output is included.  These findings survive 

the inclusion of fixed effects for firms, fields, and years as well as variations in sample 

and specification. 

At the firm level we use OLS and Tobit with lagged instruments for knowledge, and 

for papers we use panel GMM to introduce additional lagged instruments.  Both lend 

support to the firm and field estimates but with a few differences, especially the GMM 

equations (Table 8).  The GMM results include lagged papers of the firm, with the goal of 

capturing productive effects of previous discoveries, for which we find some, albeit 

mixed support.  As before knowledge remains positive and significant.  There is evidence 

that the university contribution rises relative to that of firms as aggregation proceeds from 

the firm and field level to the firm level. 

At the level of the industry and field we find that the productive role of knowledge 

again rises.  These results are consistent with spillover effects of knowledge at higher 

levels of aggregation (Romer, 1990; Griliches, 1992; Jones, 1995; Aghion and Howitt, 

1998).  At this level the role of university knowledge increases markedly, suggesting that 

large spillovers from university research take place. 

The next step in this process of detection is to try to understand the role of science in 

invention.  Beyond this the role of science in commercialization of new products would 

be interesting as well as challenging to explore.       
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Table 1 
Principal Variables for a Study of Scientific Discovery in Firms: 

Simple Statistics from a Panel of Firms, Fields, and Years 
 

 
Variable 

 

 
Mean 

 
Standard 
Deviation 

 
   
Papers 28.4 60.0 
Citation-Weighted Papers 71.9 241.4 
   
Basic Research Stock 145.5 242.4 
   
Science Citations, Firms to Universities     
    Probability of Citation a 0.006 0.008 
    Citation Knowledge Flow, Universities b 41.0 101.6 
   
Science Collaborations, Firms and Universities     
    Probability of Collaboration a 0.010 0.024 
    Collaboration Knowledge Flow, Universities b 2.9 6.5 
   
Science Citations, Firms to Themselves   
    Probability of Citation  a 0.014 0.025 
    Citation Knowledge Flow, Same Firm b 41.8 141.5 
   
Science Citations, Firms to Other Firms     
    Probability of Citation a 0.005 0.011 
    Citation Knowledge Flow, Other Firms b 24.5 58.7 
   
Source: Thomson Scientific and authors’ calculations.  a Mean probability is the average 

of the citation or collaboration rate for each cell, denoted ( )_______

/ jiji ncx = .  b Knowledge 
Flow is the citation or collaboration rate times the stock of R&D (in millions of 1992 
dollars) by firm, field, and year, with a lag of one year.  See the text for additional 
discussion. 
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Table 2 
Total Knowledge Flows by Type,  Field, and Industry 

 
 

 
Field or Industry 

 

 
Citation 

Knowledge 
Flow, 

Universities 

 
Collaboration 
Knowledge 

Flow, 
Universities 

 

 
Citation 

Knowledge 
Flow, Same 

Firm 

 
Citation 

Knowledge 
Flow, Other 

Firms 

     
Fields of Science     
     Biology 71,284 2,025 51,897 30,727 
     Chemistry 18,820 810 43,420 25,136 
     Computer Science 8,153 1,759 4,734 3,043 
     Engineering 21,657 4,201 13,545 11,571 
     Medicine 43,429 2,903 27,217 12,123 
     Physics 21,423 1,570 43,358 25,992 
     
     Total Across Fields 184,766 13,267 184,171 108,591 
     
Industries      
     Petrochemicals 18,893 1,226 27,518 15,886 
     Drugs and Biotechnology  102,836 4,018 76,011 43,800 
     Metals 1,446 184 806 1,149 
     Machinery 748 178 333 928 
     Computers 5,025 793 1,999 5,708 
     Electrical Equipment 11,805 1,718 4,809 10,893 
     Transportation Equipment 9,344 1,442 7,547 6,131 
     Instruments   7,057 625 11,956 4,656 
     Communications   11,075 1,161 8,089 10,654 
     Software and Business Services 14,980 1,744 42,314 7,546 
     Misc. Agriculture & Manufacturing 1,556 177 2,789 1,242 
     
     Total Across Industries 184,766 13,267 184,171 108,591 
     

Notes:  Except for rounding error totals equal sums across fields and industries. Total 
knowledge flow is the sum over citing and cited (collaborating and collaborated) cells of 
the citation/collaboration rate, times the cited R&D stock (in millions of 1992 dollars). 
The citation/collaboration rate jij nc /  is the number of citations from citing industry and 
industrial science field i  to the cited academic science field j divided by the number of 
potentially cited papers.  
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Table 3 

Firm and Field Level Science Production Functions, Papers 
 (Robust, Clustered Standard Errors in Parentheses) 

 
 

Dependent Variable: 
Log (Papers) 

 
 

Variable or Statistic 
(Parameter in Italics) 

 
 

3.1 
 

 
3.2 

 

 
3.3 

 

 
3.4 

 
     
Time, Field, & Firm Dummies Included Yes Yes Yes Yes 

Test for Joint Significance of Dummies 206.8+++ 37.7+++ 87.4+++ 156.1+++ 

Log (Basic Research Stock) 
 

0.124** 
(0.027) 

0.061* 
(0.024) 

0.027 
(0.024) 

0.033 
(0.023) 

Log (Citation Knowledge Flow, 
Universities) ( cituniv,β ) 

  0.170** 
(0.015) 

0.126** 
(0.013) 

Log (Collaboration Knowledge Flow, 
Universities) ( colluniv,β ) 

   0.096** 
(0.008) 

Log (Citation Knowledge Flow, Same Firm) 
( selfcitfirm,β ) 

 0.195** 
(0.016) 

0.094** 
(0.008) 

0.084** 
(0.007) 

Log (Citation Spillover, Other Firms) 
( citfirm,β ) 

  0.102** 
(0.008) 

0.088** 
(0.007) 

Root Mean Squared Error (σ ) 1.15 0.96 0.83 0.81 

R2 
 

0.47 0.63 0.72 0.74 

Notes:  Number of observations is N=4,340. Time period is 1988-1999.  Method is OLS.  
Data are a panel of numbers of papers produced in a given firm, science, and year. ** 
Variable is significantly different from zero at the one percent level.  * Variable is 
significantly different from zero at the five percent level.  +++ F-statistic is significant at 
the 0.1 percent level. 
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Table 4 
Firm and Field Level Science Production Functions, 

Citation-Weighted Papers 
 (Standard Errors in Parentheses) 

 
 

Dependent Variable: 
Log (Citation-Weighted Papers) 

 

 
 

Variable or Statistic 
(Parameter in Italics) 

 4.1 
 

4.2 4.3 4.4 

     
Time Dummies Included Yes Yes Yes Yes 

Test for Joint Significance of Dummies 13.3 12.4 31.7+++ 33.5+++ 

Log (Basic Research Stock) 
 

0.562** 
(0.075) 

0.474** 
(0.071) 

0.282** 
(0.065) 

0.258** 
(0.064) 

Log (Citation Knowledge Flow, 
Universities) ( cituniv,β ) 

  0.336** 
(0.039) 

0.302** 
(0.040) 

Log (Collaboration Knowledge Flow, 
Universities) ( colluniv,β ) 

   0.114** 
(0.029) 

Log (Citation Knowledge Flow, Same Firm) 
( selfcitfirm,β ) 

 0.180** 
(0.026) 

0.167** 
(0.027) 

0.167** 
(0.027) 

Log (Citation Knowledge Flow, Other Firms) 
( citfirm,β ) 

  0.205** 
(0.028) 

0.199** 
(0.028) 

uσ  4.20 3.53 2.21 2.09 

eσ  2.65 2.71 2.83 2.84 

Log Likelihood 
 

-6,489.8 -6,465.5 -6,397.7 -6,390.2 

Notes:  Number of observations is N0=2,719.  Number of left censored observations is 
N1=448.  Time period is 1988-1995.  Method is Random Effects Tobit.  Data are a panel 
of citation-weighted numbers of papers produced in a given firm, science field, and year. 
Citation weights are citations received by papers in their first five years.  Papers 
published after 1995 have incomplete five-year histories and are omitted. uσ  is the 
square root of the variance component for firm and science field. eσ  is the square root of 
the variance component for firm, science field, and time. ** Variable is different from 
zero at the one percent level.  * Variable is different from zero at the five percent level.  
+++ F-statistic is significant at the 0.1 percent level.
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Table 5 
Wald Tests of Equality of the Coefficients, 

Firm and Field Level Science Production Functions 
  

 
F-Statistics for 

Papers 

 

 
F-Statistics for 

Citation-
Weighted 

Papers 
 

 
Description of Null 

 Hypothesis 
 

 
Restriction 

(Parameter in Italics) 
 

Eq. 3.4 
 

Eq. 4.4 

      
1. Equality of university and firm 
    citation knowledge flow elasticities 

citfirmcituniv ,, ββ =  8.0++ 4.3+ 

2. Equality of university citation and 
    collaboration knowledge flow 
    elasticities 

collunivcituniv ,, ββ =  4.1+ 12.0++ 

3. Equality of university citation plus 
    collaboration knowledge flow 
    elasticities, with firm citation 
    knowledge flow elasticity  

citfirm

collunivcituniv

,

,,

     β
ββ =+

 
67.3++ 16.4++ 

4. Equality of university citation plus 
    collaboration knowledge flow 
    elasticities with self-citation and 
    firm knowledge flow elasticities 

selfcitfirmcitfirm

collunivcituniv

,,

,,

     ββ
ββ
+

=+ 8.8++ 0.7 

    

Notes: ++ Equality restriction is rejected at the one percent level.  + Equality restriction is 
rejected at the five percent level.
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Table 6 
Sensitivity of the Knowledge Flow Coefficients 

To Alternative Specifications 
(Standard Errors in Parentheses) 

 
 
 

Specification 

 
Log ( Citation 

Knowledge 
Flow, 

Universities) 
 

 
Log 

(Collaboration 
Knowledge 

Flow, 
Universities) 

 

 
Log 

(Citation 
Knowledge 
Flow, Same 

Firm) 
 

 
Log (Citation 
Knowledge 
Flow, Other 

Firms) 

 
R2 

 
Panel A. Dependent Variable: Log (Papers), 
Method: OLS a 
 

    

Baseline Specification (Table 
   3, Eq. 3.4) 

0.126** 
(0.013) 

0.096** 
(0.008) 

0.084** 
(0.007) 

0.088** 
(0.007) 

0.74 

      
6.1 Allow Interactions of 
   Field and Firm Dummies 

0.037** 
(0.010) 

0.027** 
(0.007) 

0.020** 
(0.006) 

0.018** 
(0.007) 

0.89 

6.2 Allow Interactions of 
   Year and Firm Dummies 

0.151** 
(0.020) 

0.106** 
(0.012) 

0.092** 
(0.009) 

0.099** 
(0.010) 

0.83 

6.3 Drop Drug and 
   Biotechnology Firms 

0.099** 
(0.012) 

0.070** 
(0.008) 

0.071** 
(0.007) 

0.074** 
(0.008) 

0.72 

6.4 Drop Software and 
   Communications Firms 

0.131** 
(0.012) 

0.094** 
(0.009) 

0.082** 
(0.007) 

0.085** 
(0.007) 

0.74 

6.5 Drop Drug and 
   Biotechnology, Software 
   and Communications Firms 

0.101** 
(0.011) 

0.068** 
(0.008) 

0.068** 
(0.007) 

0.069** 
(0.007) 

0.70 

6.6 Drop Metals, Machinery, 
   and Misc. Agriculture, 
   Manufacturing Firms  

0.130** 
(0.014) 

0.102** 
(0.009) 

0.087** 
(0.008) 

0.092** 
(0.008) 

0.74 

6.7 Use Averaged University 
   Citation and Collaboration 
   Knowledge Flows 

0.137** 
(0.014) 

0.096** 
(0.008) 

0.084** 
(0.007) 

0.087** 
(0.007) 

0.74 
 

6.8 Use Naïve Citation and 
   Collaboration Probabilities 
   instead of knowledge flows 
 

0.249** 
(0.034) 

0.171** 
(0.023) 

0.379** 
(0.035) 

0.306** 
(0.037) 

0.69 
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Table 6 
Sensitivity of the Knowledge Flow Coefficients 

To Alternative Specifications 
(Standard Errors in Parentheses) 

 
 
 

Specification 

 
Log  

(Citation 
Knowledge 

Flow, 
Universities) 

 
Log 

(Collaboration 
Knowledge 

Flow, 
Universities) 

 

 
Log 

(Citation 
Knowledge 
Flow, Same 

Firm) 
 

 
Log (Citation 
Knowledge 
Flow, Other 

Firms) 

 
Log 

Likelihood 

      
Panel B. Dependent Variable: Log (Citation-Weighted 
Papers), Method: Random Effects Tobit b 

 

   

Baseline Specification (Table 
  4, Eq. 4.4) 

0.302** 
(0.040) 

0.114* 
(0.029) 

0.167** 
(0.027) 

0.199** 
(0.028) 

-6,390.2 

      
6.9  Drop Drug and 
   Biotechnology Firms 

0.269** 
(0.044) 

0.115** 
(0.033) 

0.162** 
(0.030) 

0.202** 
(0.032) 

-5,332.5 

6.10  Drop Software and 
   Communications Firms 

0.338** 
(0.042) 

0.091** 
(0.030) 

0.155** 
(0.028) 

0.195** 
(0.029) 

-5,929.3 

6.11  Drop Drug and 
   Biotechnology, Software and 
   Communications Firms 

0.304** 
(0.047) 

0.087** 
(0.034) 

0.149** 
(0.032) 

0.196** 
(0.034) 

-4,872.1 

6.12  Drop Metals, Machinery, 
   and Misc. Agriculture, 
   Manufacturing Firms 

0.288** 
(0.040) 

0.119** 
(0.030) 

0.138** 
(0.027) 

0.194** 
(0.028) 

-5,738.8 

6.13 Use Averaged University 
   Citation and Collaboration 
   knowledge flows 

0.348** 
(0.041) 

0.138** 
(0.029) 

0.162** 
(0.026) 

0.196** 
(0.028) 

-6,380.2 

6.14  Use Naïve Citation and 
   Collaboration Probabilities 
   instead of knowledge flows 
  

0.353** 
(0.098) 

0.124 
(0.069) 

0.340** 
(0.071) 

0.438** 
(0.087) 

-6,450.1 

Notes: a Robust, clustered standard errors appear in parentheses. All equations include 
fixed effects for firm, field, and year.  b Equations include random effects or variance 
components for firm and field ( uσ ); and for firm, field, and year observations ( eσ ).
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Table 7 

Firm Level Science Production Functions 
(Standard Errors in Parentheses) 

 
 

Dependent Variable: 
 

 
Variable or Statistic 
(Parameter in Italics) 

 
 

Log (Papers) a  
 

7.1 

Log (Citation-
Weighted Papers) b 

7.2 
 

   
Statistical Method Fixed Effects 

OLS 
Random Effects 

Tobit 
Time Period 1988-1999 1988-1995 
Dummies Included Firm, Year Year 
Test for Joint Significance of Dummies 
 

282.5+++ 19.6++ 

Log (Basic Research Stock) 
 

0.100** 
(0.026) 

0.087 
(0.071) 

Log (Citation Knowledge Flow, 
Universities) ( cituniv,β ) 

0.078** 
(0.019) 

0.441** 
(0.060) 

Log (Collaboration Knowledge Flow, 
Universities ( colluniv,β ) 

0.046** 
(0.012) 

0.111** 
(0.043) 

Log (Citation Knowledge Flow, Same 
Firm) ( selfcitfirm,β ) 

0.026** 
(0.009) 

0.175** 
(0.033) 

Log (Citation Knowledge Flow, Other 
Firms) ( citfirm,β ) 

0.043** 
(0.012) 

0.198** 
(0.044) 

Number of Observations 1,486 928 

Left Censored Observations 0 101 

Root Mean Squared Error (σ ) 0.493 -- 

R2 0.93 -- 

uσ  -- 1.32 

eσ  -- 2.27 
Log Likelihood -- -2,058.8 

Notes:  a OLS specification uses robust, clustered standard errors where the clustering 
variable is the firm.  ** Variable is significantly different from zero at the one percent 
level. * Variable is significantly different from zero at the five percent level.  +++ Statistic 
is significant at the 0.1 percent level. ++ Statistic is significant at the one percent level. 
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Table 8 

Dynamic Panel Data Estimates, Firm Level Science Production Functions 
(Standard Errors in Parentheses) 

 
 

Variable or Statistic 
(Parameter in Italics) 

 
Dependent Variable: Log (Papers) 

 8.1 8.2 
 

8.3 

     
Statistical Method 
 

Difference GMM Difference GMM a System GMM b 

Assumption on Knowledge Flows 
 

Exogenous Predetermined Predetermined 

Time Period 1988-1999 1988-1999 1988-1999 
Dummies Included 
 

Year Year Year 

Log (Lagged Scientific Papers) 0.127 
(0.085) 

0.050 
(0.119) 

0.245** 
(0.044) 

Log (Basic Research Stock) 
 

0.045 
(0.040) 

0.198 
(0.217) 

0.212** 
(0.076) 

Log (Citation Knowledge Flow, 
Universities) ( cituniv,β ) 

0.091** 
(0.022) 

0.101** 
(0.031) 

0.126** 
(0.018) 

Log (Collaboration Knowledge Flow, 
Universities)  ( colluniv,β ) 

0.051** 
(0.009) 

0.026 
(0.028) 

0.044** 
(0.015) 

Log (Citation Knowledge Flow , Same 
Firm) ( selfcitfirm,β ) 

0.043** 
(0.011) 

0.043** 
(0.016) 

0.052** 
(0.013) 

Log (Citation Knowledge Flow, Other 
Firms) ( citfirm,β ) 

0.053** 
(0.013) 

0.041* 
(0.019) 

0.063** 
(0.016) 

Number of Observations 1,210 1,210 1,210 

Number of Firms 151 151 151 

Wald 2χ  (degrees of freedom= 15) 264.4+++ 440.7+++ 929.6+++ 

Test for autocorrelation of order 1 -3.88+++ -3.01++ -4.89+++ 

Test for autocorrelation of order 2 1.26 0.75 1.78 
    

Notes:  a Instruments in the differenced equation include lag 2 and greater on papers, and 
lags 1 to 4 on knowledge flows.  b Instruments in the differenced equation are as above.  
Instruments in the level equation are differences in papers and the knowledge flows.  ** 
Variable is significantly different from zero at the one percent level.  * Variable is 
significantly different from zero at the five percent level.  +++ Statistic is significant at the 
0.1 percent level. ++ Statistic is significant at the one percent level.
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Table 9 

Industry, Field, and Year Level Science Production Functions  
(Robust, Clustered Standard Errors in Parentheses) 

 
 

Dependent Variable:  
 

Log (Papers) a Log (Citation-
Weighted Papers) b 

 
 

Variable or Statistic 
(Parameter in Italics) 

 
  

9.1 
 

 
9.2 

   
Statistical Method OLS OLS 
Time Period 1988-1999 1988-1995 
Dummies Included Industry, Field, Year Year 
Test for Joint Significance of Dummies 
 

11.3+++ 17.4++ 

Log (Basic Research Stock) 
 

0.262 
(0.157) 

-0.215 
(0.201) 

Log (Citation Knowledge Flow, Universities)  
( cituniv,β ) 

0.374** 
(0.063) 

0.290** 
(0.116) 

Log (Collaboration Knowledge Flow, 
Universities)  
( colluniv,β ) 

0.160** 
(0.040) 

0.300* 
(0.117) 

Log (Citation Knowledge Flow, Same Firm) 
( selfcitfirm,β ) 

0.054* 
(0.026) 

0.147** 
(0.023) 

Log (Citation Knowledge Flow, Other Firms) 
( citfirm,β ) 

0.087* 
(0.035) 

0.182* 
(0.084) 

   
Number of Observations 728 485 
Root Mean Squared Error (σ ) 0.672 1.416 
R2 0.85 0.75 
   

Notes: Data are a panel of industries, firms, and years. a Time period is 1988-1999. 
Standard Errors are robust and clustered by industry-field.  b Time period is 1988-1995.  
** Variable is different from zero at the one percent level.  * Variable is different from 
zero at the five percent level.  +++ Statistic is significant at the 0.1 percent level. 
++ Statistic is significant at the one percent level.  
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Table 10 

Marginal Products of the Knowledge Flows 
 

 
 
 

Level of the Analysis 
And Statistic 

C
ita

tio
n 

K
no

w
le

dg
e 

Fl
ow

, 
U

ni
ve

rs
iti

es
  

C
ol

la
bo

ra
tio

n 
K

no
w

le
dg

e 
Fl

ow
, 

U
ni

ve
rs

iti
es

 

C
ita

tio
n 

K
no

w
le

dg
e 

Fl
ow

, 
Sa

m
e 

Fi
rm

  

C
ita

tio
n 

K
no

w
le

dg
e 

Fl
ow

, 
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s  

     
Panel A. Firm and Field     
  Table 3, Eq. 3.4: Papers (Mean=28.4)    
     Mean (Mill. $)  41.0 2.9 41.8 24.5 
     Elasticity 0.126 0.096 0.084 0.088 
     Marginal Product (Papers/Mill. $) 0.087 0.940 0.057 0.102 
  Table 4, Eq. 4.4: Cite-Weighted Papers (Mean=71.9)   
     Mean (Mill. $) 35.6 2.7 42.0 22.2 
     Elasticity a 0.302 0.114 0.167 0.199 
     Marginal Product (Papers/Mill. $) 
 

0.509 2.535 0.239 0.538 

Panel B. Firm     
  Table 7, Eq. 7.1: Papers (Mean=86.1)    
     Mean (Mill. $) 124.2 8.9 123.9 73.0 
     Elasticity 0.078 0.046 0.026 0.043 
     Marginal Product (Papers/Mill. $) 0.054 0.445 0.018 0.051 
  Table 7, Eq. 7.2: Cite-Weighted Papers (Mean=218.9)   
     Mean (Mill. $) 106.0 8.1 124.9 65.3 
     Elasticity b 0.441 0.111 0.175 0.198 
     Marginal Product (Papers/Mill. $) 
 

0.911 2.673  0.273 0.591 

Panel C. Industry and Field     
  Table 9, Eq. 9.1: Papers (Mean=177.0)    
     Mean (Mill. $) 106.0 18.3 254.4 150.0 
     Elasticity 0.374 0.160 0.054 0.087 
     Marginal Product (Papers/Mill. $) 0.625 1.548 0.038 0.103 
Table 9, Eq. 9.2: Cite-Weighted Papers (Mean=420.9)   
     Mean (Mill. $) 203.8 15.6 239.9 125.7 
     Elasticity 0.290 0.300 0.147 0.182 

     Marginal Product (Papers/Mill. $) 0.599 8.094 0.258 0.609 
     

Notes: a Elasticity is the Tobit estimate shown in equation 4.4, Table 4, multiplied by 
0.835, the probability that the data are not censored. b Elasticity is the estimate shown in 
equation 7.2, Table 7, multiplied by 0.891, the probability that the data are not censored.  
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