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When recruiters call me up and ask for the three best people, I tell
them, “No! I will give you the names of the six best.”

Professor Robert J. Gordon, Director of Graduate Placement,
Northwestern University, Department of Economics

Harvard wants high schools to give class rank, but high schools do not
want to.

Senior Harvard official

1 Introduction

Labor market institutions often suppress some information about job candidates. For example,
students at the Stanford Graduate School of Business (GSB) are graded on a curve, resulting in
transcripts that very accurately reflect students’ performance. These transcripts, however, are not
revealed to potential employers:

The GSB has no policy on grade disclosure; your grades belong to you and it is your
right to use them as you wish. Stanford’s nondisclosure norm among MBA students,
however, has existed for nearly 40 years.1

Harvard and Chicago Business Schools have similar norms. High profile examples from other ar-
eas include Yale Law School, where first semester grades are Credit/No Credit. Stanford Medical
School conceals from residency programs a part of the student’s record. MIT official undergraduate
transcripts available to graduate schools and potential employers also suppress available informa-
tion: they contain only full letter grades, while internal transcripts distinguish between such grades
as B+ and B-. Nearly 40 percent of high schools do not disclose class rank to colleges, even though
some of them maintain it internally and report it when “absolutely necessary.”2 In fact, more than
90 percent of private non-parochial schools do not disclose class rank (National Association for
College Admission Counseling, 2005).

Concealing information need not require deliberate actions on the part of schools: if revealing
full information is not in the interests of a school, it can add noise to transcripts by tolerating (or
encouraging) grading policies that make grades less informative. Unless the dean clearly communi-
cates expectations about grading standards, professors are likely to have different ideas regarding
the appropriate grade for the average performance. Lack of consistent grading standards adds noise
to transcripts, because luck of the draw determines the grading standard adopted by an instructor.
A school can reduce this sort of noise by reporting an average grade in each class alongside the
grade received by a student or by mandating the use of a forced curve in large classes. Inflated
grades could also reduce informativeness of transcripts, perhaps unintentionally. For instance, after
years of grade inflation, close to 50% of grades in undergraduate classes at Harvard College are A
and A-, often erasing the differences between the good and the great. Figure I suggests that the

1https://www.gsb.stanford.edu/mba/academics/learning methods.html, accessed March 22, 2007.
2“Schools Avoid Class Ranking, Vexing Colleges,” New York Times, March 5, 2006.
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informativeness of grades at Harvard, as measured by their entropy, has declined in recent years as
the percentage of As and A-s has risen.3

All of the practices described above are similar from the employer’s perspective. Refusal to
reveal part of the student record, inconsistent grading among instructors, or coarse transcripts
are all “noise” that reduces the ability of potential employers to correctly judge the ability of
students. The above examples suggest that at least some schools are either indifferent regarding
how much information to reveal or prefer to conceal some information about the ability of their
students: otherwise, they would try to implement policies that minimize the amount of noise in
their transcripts.

There is an alternative channel through which information can be suppressed. Each semester
before graduation a student’s transcript becomes longer and hence more informative. Even if
schools make transcripts as informative as possible, students and employers may choose to contract
significantly before graduation, thus leading to incomplete information disclosure. We say that
unraveling occurs when the timing of contracting reduces the amount of available information in a
dynamic setting. Early Action and Early Decision admission programs at many selective colleges
(Avery, Fairbanks, and Zeckhauser, 2003) are examples of unraveling. These programs allow high
school students to submit their applications in the Fall of their senior year, and admission decisions
are made before Fall semester grades are available (in contrast to the regular admission process,
which takes Fall semester grades into account). The market for law clerks (Avery, Jolls, Posner, and
Roth, 2001) is another dramatic example of uraveling. Avery et al. (2001) report that interviews for
clerkship positions are held at the beginning of the second year of three-year law school programs,
when only a third of the students’ grades are available. Clearly, a lot of information is withheld.
Roth and Xing (1994) describe several other markets in which the timing of transactions has
unraveled.

This paper shows that there is a remarkably close connection between the equilibrium (or
“benchmark”) amount of information revealed by schools in the static environment and the in-
centive for students and employers to unravel in the dynamic environment. If schools disclose the
benchmark amount of information, students and employers will not find it profitable to contract
early; if they disclose more, unraveling will occur.

2 Information Disclosure in a Static Environment

We begin our analysis in the static model. Schools evaluate students and give them transcripts.
Subsequently, these transcripts are used by outsiders (e.g., employers, professional schools, clerkship
positions) in their hiring decisions. We assume that the ability of each student and the distribution
of students among schools are given exogenously.4 We also assume that wages offered by employers

3Some of Harvard’s policies actually encourage grade inflation. An instructor who gives an F or a D is asked to
write a note explaining the reasons for the poor performance of a student. In contrast, instructors who give many As
are not asked to explains their reasons.

4The effects of allowing agents in a matching market to invest in their “quality” are analyzed in Cole, Mailath,
and Postlewaite (1992, 2001), Peters and Siow (2002), Hopkins (2005), and Peters (2005).
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are inflexible, and so the supply of placement slots of a given desirability is exogenously fixed.5

The ability of students is perfectly observed by schools but not by outsiders. Each school decides
how much information to reveal in its transcripts in order to maximize the average desirability of
placement of its alumni. Outsiders use transcripts to infer the expected ability of students and
rank them solely according to their expected ability. The desirability of each position is common
knowledge, and students rank positions based on desirability. Thus, all students have the same
preferences and so do all recruiters.

The key feature of our model is that by introducing noise in students’ transcripts, a school
can change the distribution of desirabilities of positions to which its students are matched in the
job market. Consider, for instance, the competition for admission to medical schools. Introducing
noise into transcripts may enable a college to increase placement into moderately desirable medical
schools at the cost of reducing the number of students placed at top medical schools. The aggregate
distribution of positions in the job market does not depend on the transcripts given out by schools,
and so the total desirability of placements is constant. However, as we will see in the next section,
in a broad range of situations noise is a necessary feature of transcripts given out in equilibrium.6

Consider a population of students. The ability of each student is a real number a in the interval
[aL, aH ]. Each student attends one of I schools. The distribution λi(·) of ability levels at each
school i is continuous, exogenous, and commonly known. Without loss of generality, we assume
that schools observe the true abilities of their students.7 Each school decides how much of this
information to reveal, i.e., how precise to make its transcripts. A school can make transcripts
completely informative, revealing the ability level of each student, or it can make them completely
uninformative, or anything in between.

Formally, a school chooses a transcript structure, which is a mapping from the abilities of
students into expected abilities â ∈ [aL, aH ]. This mapping may be stochastic, i.e., for each ability
a there can be a probability distribution over the set of expected abilities â that a student of ability
a can get. However, this mapping has to be statistically correct, in the following sense: the average
ability of students “labeled” with expected ability â in school i has to equal â.

Definition 1 A transcript structure is a function F (·|·), where F (â|a) is a probability distribution
with which a student of ability a ∈ [aL, aH ] is mapped to expected ability â, such that the average
ability of students labeled with expected ability â is equal to â.8

5One can show that our results remain valid when the wages of some (or all) firms are flexible. Moreover, if the
wages of all firms are flexible, then under full information revelation the wage schedule will be convex in ability (see
Sattinger, 1993, for a survey of the literature on assignment models with flexible wages), and therefore, as we explain
in the discussion following Theorem 1, full information revelation by all schools will be an equilibrium outcome.

6Several recent papers study strategic disclosure of information in a variety of environments (Matthews and
Postlewaite, 1985; Okuno-Fujiwara, Postlewaite, and Suzumura, 1990; Lizzeri, 1999; Chakraborty and Harbaugh,
2005). The distinguishing features of our setup are the general equilibrium approach and the competitive nature of
the market.

7Suppose nobody observes the true ability, but each school observes a signal regarding the true ability of each of
its students. Based on this signal a school can form expectation about a student’s ability. All results in the paper
continue to hold if instead of “true ability” we use “expected ability based on information available to schools.”

8This definition is very similar to the definition of “information structure” in Bergemann and Pesendorfer (2001).
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Essentially, the definition says that schools give out grades and transcripts to students using
some commonly known grading scheme, and then employers can back out each student’s expected
ability based on his or her transcript, the grading scheme, and the distribution of student abilities in
the school. We assume that schools can commit to their transcript structure. This is not a critical
assumption.9 What is critical is that employers know the distribution of transcripts given out by
a school, as well as the distribution of student abilities there. Employers know the distribution of
transcripts if they receive applications from many candidates from a given school. Likewise, the
distribution of student abilities in large schools is known to recruiters fairly well, at least if it does
not change drastically year-to-year. We rule out the possibility that a school can “fool” employers
into thinking that it has better students than it actually does by giving out too many good grades
(as in Chan, Li, and Suen, 2005), and focus solely on information compression.

After schools announce transcript structures and announce expected abilities of their students,
students and positions are matched. On one side of the market there is a population of students.
On the other side there is a set of positions. The desirability of each position, q ∈ [qL, qH ],
is common knowledge. The distribution µ(·) of position desirabilities is continuous, exogenous,
commonly known, and has positive density on [qL, qH ]. The mass of positions is equal to the mass
of students.10 Students rank positions by desirability, and employers rank students by expected
ability.11 The resulting rankings induce a unique (up to permutations of equally desirable positions)
assortative stable matching between students and positions.

Each school selects a transcript structure to maximize the total desirability of positions obtained
by its students. Each school is small relative to the labor market and is a “price taker”—its actions
have no effect on the placement of students of a given expected ability.12

The following series of examples illustrates the model. In these examples, we discuss equilibrium
information disclosure—the concept we formally define in the following section.

Example 1. Student abilities at each school are distributed uniformly on [0, 100] and position
desirabilities are also distributed uniformly on [0, 100]. If all schools fully reveal student abilities
(i.e., set â ≡ a), the resulting mapping Q from expected abilities to position desirabilities is linear

That paper, however, considers information disclosure in a very different environment—a single-seller, single-object
auction, whereas we consider a matching market.

9If schools could not commit to their transcript structures, equilibrium information disclosure that we explore in
the following section would still remain an equilibrium outcome of the resulting cheap-talk game (see Crawford and
Sobel, 1982, for a formal analysis of cheap-talk games). Of course, the cheap-talk game has many other equilibria.

10This is not a restrictive assumption, because unemployment can be viewed as a position of the lowest desirability,
and because if the mass of positions is greater than the total mass of students, the same subset of positions gets
assigned a student under any information disclosure.

11As long as the output of a worker is a function of his ability, we can find a rescaling of ability such that a
particular firm is indifferent between having a worker of ability a0 for sure and a worker of uncertain ability with
expectation a0. However, we do have to assume that this rescaling is the same for all firms.

12This can be reconciled with a finite number of schools by using the standard general equilibrium approach—
assume that there are I school types and an infinite number of schools of each type. Technically, different schools of
the same type could select different transcript structures. However, in any equilibrium where that could happen, the
average transcript structure of schools of a given type would also be an optimal transcript structure for a school of
that type to use, and so there exists another equilibrium with the same aggregate properties, in which all schools of
the same type behave identically.
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(Q(â) = â) and no school can benefit by deviating. Thus, fully informative transcripts form an
equilibrium.

Example 2. Now suppose that at a half of all schools student abilities are distributed uni-
formly on [0, 100], while the other half has a more able population: student abilities are distributed
uniformly on [50, 100]. There is a mass .5 of students at each type of school. There is also a mass 1
of positions, distributed uniformly on [0, 100], as before. If all schools fully reveal student abilities,
the resulting mapping from expected abilities to desirabilities has two linear pieces:

Q(â) =

 â
2 , for â ≤ 50
3â
2 − 50, for â ≥ 50.

For instance, a student with expected ability 50 is in the 25th percentile of the student population,
and hence gets a job of the 25th desirability percentile. Figure II illustrates this desirability mapping
Q. Note that again, no school can benefit by deviating and suppressing some information: if a
“better than average” school mixes some students of different abilities together, it gets exactly the
same payoff as without mixing, while if an “average” school mixes students with abilities above 50
and below 50 together, it gets a strictly lower payoff than without mixing.

Example 3. Finally, suppose that there is an “oversupply” of less able students: at a half
of all schools student abilities are distributed uniformly on [0, 100], while the other half has a less
able population: student abilities are distributed uniformly on [0, 50]. As before, there is a mass
.5 of students at each type of school and a mass 1 of positions, distributed uniformly on [0, 100].
Suppose each school reveals student abilities truthfully. Then the resulting mapping (Figure III) is

Q(â) =

3â
2 , for â ≤ 50
â
2 + 50, for â ≥ 50.

Now, consider a school that contains students of all true abilities from 0 to 100. The average position
desirability obtained by its students is 1

2(75
2 + 175

2 ) = 62.5. Suppose now that the school adopts
a “no grade disclosure” policy—every student gets the same empty transcript, looks the same
to employers, and therefore has the expected ability 50. Then the average position desirability
obtained by the school’s students increases to 75! Therefore, full revelation is not an equilibrium
in this example. What is?

Suppose each “worse than average” school reveals information truthfully, while each “average”
school mixes students in such a way that the distribution of expected abilities there is the one
plotted in Figure IV(b): one third of expected abilities are distributed uniformly on [0, 50] and
the remaining two thirds are distributed uniformly on [50, 75].13 Then the aggregate distribution of
expected abilities in the population is uniform on [0, 75] and the corresponding desirability mapping

13Note that this distribution second-order stochastically dominates the distribution of true abilities at the “average”
school, and therefore there exists a mixing of students generating such distribution of expected abilities.
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Q′ (plotted as the dotted line in Figure III) is linear:

Q′(â) =

4â
3 , for â ≤ 75

100, for â ≥ 75.

This amount of information disclosure is an equilibrium.

3 Equilibrium Information Disclosure

In our setup, the behavior of students and positions is straightforward—they get matched to the
agents of the highest quality available to them on the other side of the market (in the next section
we give them some flexibility by allowing early contracting). Thus, we focus on the actions of
schools and the resulting disclosure of information.

Let ω = (F1, F2, . . . , FI) be a profile of transcript structures and let G be the aggregate distri-
bution of expected abilities generated by ω.

Definition 2 We say that function Q(·) on [aL, aH ] is a desirability mapping corresponding to
profile ω if, given that schools give out grades in accordance with ω, the expected desirability of a
position matched with a student labeled with expected ability â is equal to Q(â).

Thus, Q(aL) = qL, Q(aH) = qH , and Q(â) = µ−1(G(â)) if G is continuous at â. If G is
discontinuous at â, let q = µ−1(lima→â−G(a)) and let q = µ−1(lima→â+G(a)). Then Q(â) =∫ q
q qdµ(q)

µ(q)−µ(q) .

Definition 3 We say that ω is an equilibrium profile of transcript structures if each school max-
imizes the average desirability of placements of its students given the desirability mapping Q(·)
corresponding to ω. I.e., if Gi(·) is the distribution of expected abilities of students in school i
under the transcript structure Fi, and G′i(·) is the distribution of expected abilities under some
alternative transcript structure F ′i , then

∫ aH
aL

Q(â)dGi(â) ≥
∫ aH
aL

Q(â)dG′i(â).

Before we can state the main result of this section, we need an additional, somewhat technical
definition.

Definition 4 Let âL be the lowest and âH the highest expected ability levels produced in an equi-
librium. Then we say that the equilibrium is connected if for any point â ∈ (âL, âH) there exists a
school that produces students of all expected abilities in some ε-neighborhood of â.

Connectedness is a mild restriction. Indeed, if at least one school gives out some transcripts
with the worst and the best possible expected abilities, and everything in between, this restriction
is satisfied. Hence, if we observe a school (e.g., UC Berkeley) that places students in the entire
spectrum of positions, then connectedness holds. We discuss this restriction in more detail in
Appendix C and provide some sufficient conditions for the existence of a connected equilibrium.
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Finally, we assume that if all abilities are revealed truthfully, the corresponding desirability
mapping QT (·) does not switch from convexity to concavity infinitely often, i.e., there exists a
finite increasing sequence of ability levels ai, starting at the lowest and ending at the highest true
ability, such that QT (·) is convex or concave on each interval [ai, ai+1].

We are now ready to state and prove the main result of this section. It says that in all connected
equilibria desirability mappings (and therefore the aggregate distributions of expected abilities) are
the same. In fact, they do not even depend on how students are assigned to schools—only the
aggregate distribution of student abilities and the distribution of position desirabilities matter.14

Theorem 1 Suppose there is a connected equilibrium with desirability mapping Q1(·). Suppose
students are reshuffled among schools so that the aggregate distribution of student abilities remains
the same, but the distributions of abilities within schools possibly change, and suppose there is a
new connected equilibrium with desirability mapping Q2(·). Then for any â, Q1(â) = Q2(â), i.e.,
the desirability mappings coincide. Equivalently, the aggregate distribution of expected abilities in
any connected equilibrium is uniquely determined by the distribution of position desirabilities and
the aggregate distribution of true abilities, and does not depend on how these abilities are divided
among schools.

The proof of Theorem 1 proceeds in several steps. First, we show that in any equilibrium,
desirability mapping Q is an invertible, monotonically increasing, continuous function, i.e., no
positive mass of students receives the same expected ability. Next, we show that in any connected
equilibrium, the desirability mapping must be convex—otherwise, as in Example 3, at least one
school will be able to improve its payoff by mixing some students together. On the other hand,
if a school does mix students on some interval, the desirability schedule there cannot be strictly
convex (and therefore has to be linear): otherwise, the school would be better off by not mixing
the students. Also, we show that the lowest expected ability produced in equilibrium has to be the
same as the lowest true ability. The final, and most involved part of the proof, shows that there can
only exist one desirability mapping satisfying the above properties for a given pair of distributions
of desirabilities and true abilities. This part relies on the assumption that QT does not switch
from convexity to concavity infinitely often on [aL, aH ] and proceeds by induction on the number
of its inflection points. Along the way, the proof shows how to construct the unique equilibrium
desirability mapping and describes what happens in various special cases: For instance, if QT is
convex, then Q ≡ QT . If QT is concave, then Q is linear on [aL, âH ] for some âH and no students
have expected abilities above âH in equilibrium. If QT is S-shaped, with inflection point âi, then in
equilibrium there will be “information compression at the top”—up to some level â∗ ≤ âi, abilities
will be revealed truthfully and so Q and QT will coincide; above â∗, students of different abilities
will be mixed together and Q will be linear. Appendix A makes all these statements formal and
gives the full proof of Theorem 1.

14Of course, if there existed only one school, and all students went there, this school would be indifferent between
all possible amounts of information disclosure. This situation, however, would violate our assumption of price-taking
behavior by the schools.
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Hence, the same amount of information is disclosed in all connected equilibria. We will call this
the benchmark amount of information: the amount that is disclosed in equilibrium when schools
can release as little or as much information about their students as they want. Before proceeding
further, we give a definition that makes the words “amount of information disclosure” precise. Note
that if schools introduce more noise in their grades, the resulting distribution of expected abilities
gets compressed and its variance decreases. This leads to a natural partial ordering on the set of
profiles of transcript structures.

Definition 5 Profile of transcript structures ω is more informative than profile of transcript struc-
tures ω′ if distribution G of expected abilities generated by ω is second-order stochastically dominated
by distribution G′ of expected abilities generated by ω′.

This partial ordering has two extreme elements: the completely uninformative profile, which has
zero variance, and the profile revealing all student abilities, which has the highest possible variance.
Also, it is clear that a more informative profile has a higher variance than a less informative one,
since the former is a mean-preserving spread of the latter.

The last result of this section is another corollary of Theorem 1. It says that if truthful revelation
of abilities is an equilibrium, then there are no other connected equilibria.

Corollary 1 Suppose there are two connected equilibria in a market, and one of them is fully
informative. Then the other one also has to be fully informative, and therefore the same.

Proof. By Theorem 1, the desirability mappings of these two equilibria have to be the same. There-
fore, the distributions of expected abilities generated in these equilibria also have to be identical
(since they are uniquely determined by the mapping and the distribution of position desirability).
But the fully informative equilibrium is strictly more informative than any other one, and so the
second equilibrium also has to be fully informative, and therefore the same.

We conclude this section with brief comments on efficiency implications of information suppres-
sion. Our assumptions are insufficient to make unambiguous inferences about efficiency. Indeed, if
higher student ability and higher position desirability are complements, then positive assortative
matching is efficient, and therefore noisy transcripts will lead to a less efficient allocation of talent
than fully informative ones. If, however, they are substitutes, then negative assortative matching is
efficient, and suppressing information will in fact lead to a more efficient allocation. Thus, efficiency
implications of information suppression may be different for different markets.

Another dimension potentially important for evaluating efficiency is investment in human cap-
ital. In our model, a student’s ability is exogenously fixed. If learning entails costly effort, noisy
transcripts reduce the effort of at least some students (Becker, 1982). However, the efficiency loss
may be small, because the loss in human capital is partially compensated by saved effort. Moreover,
if signaling high ability is merely a ticket to high-rent jobs, then noisy transcripts may in fact be
welfare-improving.
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4 Unraveling

Sections 2 and 3 analyze information disclosure in a static framework. In this section, we take the
actions of schools as given, but add a time dimension to the model: students and positions can
decide when to sign employment contracts. We show that there is a strong connection between
the static concept of “benchmark information disclosure” and an inherently dynamic phenomenon
that frequently occurs in matching markets—“unraveling,” or “early contracting,” i.e., contracting
between students and positions before full information about the former is available. Examples of
early contracting include Early Action and Early Decision admission programs at many selective
colleges, which allow students to apply before Fall semester grades of their Senior year at high
school are available (Avery, Fairbanks, and Zeckhauser, 2003), the market for federal judicial law
clerks, where judges interview candidates two years prior to the beginning of the clerkships (Avery,
Jolls, Posner, and Roth, 2001), and many others (Roth and Xing, 1994).

A frequently stated reason for early contracting is insurance: a student may prefer to contract
early with a mediocre firm to avoid the possibility of being matched with a really bad firm in case
of a negative shock in the future (Li and Rosen, 1998; Li and Suen, 2000; Suen, 2000).15 We
consider this explanation in light of our model and establish a close, albeit not obvious, connection
between information disclosure and unraveling. To compute the benchmark amount of information
disclosure, one only needs to know the distribution of ability in the population and the distribution
of job desirability. It is easy to check that in situations where unraveling occurs due to insurance
reasons, waiting till all information is revealed will lead to the disclosure of more than the benchmark
amount of information. This is not a coincidence. Theorems 2 and 3 show that if the benchmark
amount of information is revealed, no unraveling occurs. Consequently, if schools can control
the amount of information disclosed to potential employers, the insurance reason for unraveling
disappears. The intuition is simple: in equilibrium, due to the convexity of desirability mapping
Q(·), the expected position desirability that a student will get tomorrow is higher than the position
desirability that he could get today.16

It may seem surprising that there is no unraveling under the benchmark amount of information
disclosure—after all, imagine all positions have similar desirability except for a few that are terrible,
e.g., unemployment. Then one might think that students would be eager to sign contracts earlier to
avoid this outcome. However, as the following example shows, this does not happen. What happens
instead is that the benchmark distribution of transcripts “mimics” the distribution of desirability—
a small group of students gets very bad transcripts, and the rest get compressed transcripts with
little information beyond being much better than the bad transcript.

Example 4. Suppose mass .8 of position desirabilities is distributed uniformly on [80, 100]
15Of course, this is not the only possible reason. Unraveling can also occur because of the use of an unstable

matching mechanism, exercise of market power, small numbers of participants in a matching market, and other
strategic reasons (Roth and Xing, 1994; Avery, Fairbanks, and Zeckhauser, 2003).

16Our arguments rely on the assumption that not only ordinal, but also cardinal preferences of schools and students
over positions coincide. Otherwise, unraveling may occur even if the benchmark amount of information is disclosed.
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(“good jobs”) and mass .2 of position desirabilities is distributed uniformly on [0, 80] (“bad jobs”).
Suppose also that student abilities in each school are distributed uniformly on [0, 100], and the
total mass of students is 1 (Figure V).

First, note that it is not an equilibrium for all schools to lump all students into one category. If
they do, then a school can profitably deviate by separating a small fraction of the worst students
into a new category. Second, providing fully informative signals is not an equilibrium either—the
resulting desirability mapping is concave, and so schools can benefit from mixing students (Figure
VI). So, what is the benchmark amount of information disclosure in this market?

It turns out that the desirability mapping corresponding to the benchmark amount of informa-
tion disclosure in this example is linear on the relevant range:

Q′(â) =

8
5 â, for â ≤ 62.5

100, for â ≥ 62.5

and the corresponding distribution of expected abilities, G, mimics the distribution of position
desirabilities:

G(â) =

 1
250 â, for â ≤ 50
1
5 + 16

250(â− 50), for 50 ≤ â ≤ 62.5.

Of course, distribution G has the same mean as the distribution of “true” abilities (uniform on
[0, 100]) and second-order stochastically dominates it, so there exist transcript structures Fi that
give rise to distribution G of expected abilities. Figure VII illustrates the resulting distribution of
expected ability and the corresponding desirability mapping.

Notice that in this equilibrium there is no unraveling (or, more precisely, no incentive to un-
ravel), since students become effectively risk-neutral. Consider a student whose first-year transcript
indicates an expected ability level corresponding to a particular job desirability. This student can
secure a job corresponding to his current expected ability or he can wait for second-year grades.
In the absence of private information about ability the expected change in ability implied by the
transcript must be zero. It is easy to see that the expected change in position desirability cannot
be negative as a result of arrival of new information.

In the remainder of the section, we first present a simple two-period model where no information
is available in period 1, which is very similar to the model of Suen (2000).17 This similarity
brings into focus the fact that the schools’ ability to control information undermines the insurance
reason for unraveling. We then show that the result becomes much stronger if information arrives
gradually: if more than the benchmark amount of information is disclosed, unraveling will occur.

17We should note that Suen’s model is more complicated—it involves wages. However, the main intuition that
unraveling is caused by workers’ demand for insurance can be applied to our model just as well, as we will show at the
end of this section when we demonstrate unraveling in environments where schools cannot fully control information.
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4.1 Two-period Model, Benchmark Amount of Information

Suppose students stay in school for 2 periods. In period 1 no information about them is known.
Therefore, for all students in school i expected ability in period 1 is the same, âi. A student has no
private information about his ability.18 Suppose employers and students can sign binding contracts
in either year of study based on the information available at that period.

Theorem 2 If in period 2 schools reveal the benchmark amount of information, then no position
can increase the expected ability of its match by making an early offer.

Proof. Take a student from school i in period 1. His expected ability in period 1 is âi. If he
waits until period 2, more information about his ability will be revealed; his expected ability will
become, say, â; and he will get a position of desirability Q(â). By the law of iterated expectations,
Ei[â] = âi. Desirability mapping Q(·) is convex, and therefore Ei[Q(â)] ≥ Q(âi). Thus, a student
will only accept an early offer from a position that is at least as desirable as Q(âi). But positions of
desirability Q(âi) and higher get a student of expected ability at least âi if they wait until period
2, and so cannot benefit form moving early.

4.2 Gradual Information Arrival

We now set up a continuous-time model of gradual information arrival, and show a close connection
between unraveling and information disclosure.

Students are in school from time τ = 0 until time τ = τ . At time 0 no information about a
student is known except for the school i that he attends. While the student stays in school, new
information arrives continuously and is added to his transcript (we assume that information about
students cannot disappear). Namely, at each time τ a potential employer can compute the student’s
expected ability âτ based on the school and the current transcript. Since employers use Bayes’ rule
to form beliefs about a student’s expected ability, the drift term must be zero and the process is a
martingale. We assume that âτ for students in school i follows a diffusion process

dâτ = σi(·)dz, (1)

where diffusion parameter σi(·) is a bounded continuous function of τ and âτ , such that the process
does not leave the interval [aL, aH ] and for all â ∈ (aL, aH), σi(â, τ) > 0. We also assume that
for some τ < τ function Q̂i(âτ ′ , τ ′) = E[Q(âτ )|âτ ′ , τ ′, i] is twice continuously differentiable for all
τ ′ ∈ [τ, τ ].19 Whenever expected ability follows such diffusion process we will say that information

18Even if students did have private information, unraveling would still not occur. In fact, the result would become
even stronger. In the absence of private information, unraveling is a matter of indifference for both students and po-
sitions. If students do have private information, adverse selection works against unraveling, because the lowest ability
students have higher payoff from unraveling than observationally equivalent students of higher ability. Essentially,
only the lowest ability students are eager to unravel, and unraveling cannot occur under equilibrium information
disclosure except for a set of measure zero.

19More formally, Q̂i(âτ ′ , τ ′) is twice continuously differentiable on the set of points {(a, τ ′)|τ ′ ∈ [τ, τ ], a is in the
domain of Q̂i(·, τ ′)}.
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arrives gradually. Also, we call the amount of information disclosed by schools at the end, i.e., at
time τ , the actual amount of information disclosure.

Each position’s desirability is constant and commonly known, and any student-position pair
can enter into a binding match at any time. Unraveling occurs if at some time τ < τ there is a
pair, student S and position P , that finds it profitable to sign such a contract.20

We now claim that it is an equilibrium for students and firms to sign contracts at time τ

without contracting early if the actual amount of information released by schools (i.e., the amount
of information disclosed at time τ) coincides with the benchmark amount of information. If more
than the benchmark amount of information is disclosed, some students and employers will find it
profitable to sign contracts earlier.

Theorem 3 Suppose that information about ability of students arrives gradually (see equation (1)).
If at time τ transcripts contain the benchmark amount of information, then it is an equilibrium for
all students and positions to wait until time τ to sign contracts. If at time τ transcripts contain
more than the benchmark amount of information, then some agents are strictly better off not waiting
till time τ to sign contracts.

The proof of the first statement of Theorem 3 follows the same intuition as the proof of Theo-
rem 2: If the benchmark amount of information is disclosed at time τ , desirability mapping Q(·) is
convex, making students effectively risk-neutral or risk-seeking, and thus giving them an incentive
to wait for additional information.

The proof of the second statement involves several steps. When the actual amount of informa-
tion disclosed at time τ is between the benchmark and the full amounts, we show that at the points
of strict convexity of the benchmark desirability mapping all three desirability mappings coincide,
and students of abilities below and above such points are not mixed together. Thus, any additional
information revelation in the actual vs. the benchmark amounts has to take place in an interval
where the benchmark desirability mapping is linear. But then at some expected ability level â∗
in this interval the actual desirability mapping Q(·) will be locally concave. This implies that at
some time τ sufficiently close to τ , a student of expected ability â∗ will strictly prefer immediately
signing a contract with a position of desirability Q(â∗) to waiting until time τ . See Appendix B
for the detailed proof.

5 Conclusion

Information suppression by schools is a widespread phenomenon, taking many forms from non-
disclosure policies to coarse transcripts and inconsistent grading standards. We show that such
behavior may be necessary in equilibrium: for many distributions of student abilities and job de-
sirabilities, if all schools revealed full information about their students, then some of them could

20It is profitable for the pair to sign such a contract if by waiting till time τ , P would get a student of expected
ability no higher than the expected ability of S given the information available at time τ ; S, in expectation, would
get a position of desirability no higher than that of P ; and at least one of these two inequalities is strict.

13



benefit by giving similar transcripts to students of different abilities, thus increasing the placement
into moderately desirable positions and reducing the placement into very desirable and very un-
desirable ones. We also show that an essentially unique amount of information is disclosed in all
equilibria. We call this the benchmark amount of information disclosure.

Schools are not the only actors in this market who can suppress information. By signing
contracts early, students and employers can forgo the information about the students’ performance
in the last few semesters. We show that these two seemingly distinct ways of suppressing information
are in fact closely related. If schools disclose the benchmark amount of information, students and
employers will not find it profitable to contract early. If they disclose more, unraveling will occur.

The intuition behind this connection is in fact very natural. Under the benchmark amount of
information disclosure, the mapping from expected student abilities inferred from their transcripts
to job desirabilities must be convex: otherwise, a school could “mix” some students together and
increase its payoff. Hence, if the benchmark amount of information is disclosed at graduation, a
student is effectively risk-neutral or even risk-seeking: in expectation, additional information does
not hurt him. If, however, schools disclose more than the benchmark amount of information, some
parts of the ability–desirability mapping become concave, and students in the relevant ability range
become effectively risk-averse, thus trying to avoid the arrival of future information by contracting
early.

Educational institutions are often criticized for not revealing full and accurate information
about their students, either by means of non-disclosure policies21 or as a result of grade inflation,
which can compress grades so that they lose some of their informativeness.22 Our results show
that information suppression may be inevitable. Even if schools reveal full information about their
students, some of that information will be suppressed via a different channel—unraveling will occur.
Unraveling in various markets and its consequences are documented in Roth and Xing (1994), Avery
et al. (2001), and Niederle and Roth (2003). Avery et al. give many colorful quotes from judges and
law school students who experience the effects of unraveling in the market for federal judicial law
clerks, such as “The unseemly haste to hire law clerks is a disgrace to the federal bench” and “Some
judges scrapped decorum and even bare civility.”23 Anyone who claims that more information needs
to be disclosed has to keep in mind the “unseemly haste” that may follow.
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A Proof of Theorem 1

We first show that in equilibrium there is a one-to-one mapping from expected ability to position
desirability, i.e., the distribution of expected abilities, as well as the corresponding desirability
mapping Q are continuous in equilibrium. This implies that Q is an invertible function.

Lemma 1 In equilibrium, any two students of the same expected ability â obtain equally desirable
positions.

Proof. Suppose in equilibrium students of expected ability â get jobs of desirabilities from q1 to
q2, q1 < q2, i.e., there is a positive mass of students of expected ability â. Let q̂ be the average
desirability that students of expected ability â get. q1 < q̂ < q2. Since there is a positive mass of
students of expected ability â, there must be at least one school producing a positive mass of such
students. This school has to include some students of lower and some students of higher ability in
this mass. Thus, it can select a small subset from the mass (say, ε-share of the mass) such that its
expected ability is â−δ, where δ is also small. Then the remaining mass has expected ability higher
than â, and therefore all students there get positions of desirability q2 or higher. For sufficiently
small ε and δ, the net change in average desirability is positive, i.e., the school was able to improve
upon its equilibrium transcript structure—contradiction.

Desirability mapping Q(·) is monotonically increasing. This, however, does not necessarily mean
that a student of a higher true ability will get matched to a better position than a student of a lower
true ability: if a school gives out transcripts that are not fully informative, the lower ability student
may receive a better transcript than the higher ability student and thus get a better position.

We will say that an equilibrium is fully informative at a particular value of position desirability
q if there is an ability level that is necessary and sufficient for receiving a position of this quality.
More precisely, equilibrium is fully informative at desirability q and ability a if Q(a) = q, no
students with true ability below a get matched with jobs of desirability above q, and no students
with true ability above a get matched with jobs of desirability below q. It is straightforward to
show that an equilibrium is fully informative (i.e., schools do not suppress any information) if and
only if it is fully informative at every position desirability.

Now, suppose a school produces students of expected abilities b and c. This could only be
optimal for the school if by mixing students of these abilities it could not raise its payoff, i.e., if
αQ(b) + (1 − α)Q(c) ≥ Q(αb + (1 − α)c) for any α ∈ [0, 1]. Since this reasoning can be applied
to every pair of points, and in a connected equilibrium there is a school producing students in a
neighborhood of any point, Q(â) has to be convex.

Next, if a school does mix students of true abilities b and c, by convexity of desirability mapping
Q(â) this could only be optimal if the desirability mapping is linear on the interval [b, c]. Conse-
quently, if Q(â) is strictly convex at a certain expected ability level a, it is fully informative at
Q(a): students with ability above a get positions better than Q(a) and students with ability below
a get positions worse than Q(a). Therefore, in that case Q(a) = QT (a) (recall that QT (a) is the
desirability mapping that would arise if all schools revealed all abilities truthfully).
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The next lemma shows that the lowest expected ability produced by schools is equal to the
lowest true ability. This is similar to the “lowest type not signalling” in a separating equilibrium
of a signalling game.

Lemma 2 In a connected equilibrium, let âL be the lowest expected ability level, and aL be the
lowest true ability level. Then âL = aL.

Proof. It is clear that âL ≥ aL, since it is impossible to produce students of expected ability lower
than the lowest true ability.

Suppose âL > aL. Take a school that has students of true ability aL (i.e., a positive mass of
students of abilities (aL, aL+ ε) for any positive ε). Since the school does not produce any students
of ability below âL, it has to “bundle” students in the interval (aL, aL + ε) with higher ability
students (0 < ε < âL − aL). But then, since Q(â) is increasing and convex, the school would
increase the average desirability of placements of its students by “unbundling” these low ability
students—contradiction.

We are now ready to prove Theorem 1. The proof proceeds by induction on the number of
intervals on which the convexity or concavity of QT (a) does not change (and, along the way,
shows how to construct the equilibrium desirability mapping). For convenience, we will call such
intervals “convexity intervals”. Recall that by assumption, QT (a) does not switch from convexity
to concavity infinitely often, and hence has a finite number of convexity intervals.24

Step 1. Suppose QT (a) has only one convexity interval.

Step 1. Case “Convex”. Suppose QT (a) is convex on [aL, aH ]. Then truthful revelation is an
equilibrium profile of transcript structures. Suppose there is another equilibrium profile of transcript
structures ω, involving some mixing of students, with desirability mapping Q(â) on [aL, âH ], where
âH ≤ aH . Take any point x1 on (aL, âH) such that QT (x1) 6= Q(x1). Equilibrium ω is not fully
informative at x1, and is therefore linear on some interval containing x1. Take the largest such
interval [a1, a2]. Equilibrium ω has to be fully informative at a1, and therefore QT (a1) = Q(a1).

With a2, there are two possibilities.
If a2 < âH or a2 = âH = aH , then ω also has to be fully informative at a2, with QT (a2) = Q(a2).

But then QT is convex, Q is linear on [a1, a2], QT (a1) = Q(a1), QT (a2) = Q(a2), and QT (x1) 6=
Q(x1) (with a1 < x1 < a2), which implies that QT (x1) < Q(x1), which in turn implies that for all
x ∈ (a1, a2), QT (x) < Q(x). This, in turn, implies that every firm of desirability q strictly between
q1 = QT (a1) = Q(a1) and q2 = QT (a2) = Q(a2) is matched to a better (in expectation) student
under truthful revelation than under equilibrium with mixing ω, which, finally, implies that the
total ability of students matched to those positions in equilibrium ω is strictly higher than the total

24We do not discuss in detail intervals on which QT is linear, and effectively assume its interval-wise strict concavity
or convexity. Considering the intervals on which the mapping is linear is not hard conceptually, but would make the
proof more cumbersome.
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ability of students matched to them under truthful revelation, i.e.,∫ q2

q1

(
a1 +

q − q1
q2 − q1

(a2 − a1)
)
dµ(q) <

∫ q2

q1

Q−1
T (q)dµ(q) =

∫ a2

a1

adG(a).

But this is impossible, because by construction desirability mapping Q is strictly convex at both
a1 and a2, and so the set of students matched with positions in the range [q1, q2] in equilibrium ω

is the same as the set of students matched with those positions under truthful revelation, and so
all of the integrals above have to be equal.

If a2 = âH < aH , then QT (âH) < QT (aH) = Q(âH), and by convexity of QT and linearity
of Q on [a1, âH ], for all x ∈ (a1, âH), QT (x) < Q(x), and therefore for all q ∈ (QT (a1), QT (aH)),
Q−1
T (q) > Q−1(q), which is again impossible because equilibrium ω is fully informative at a1 and

the set of students matched to positions above QT (a1) is the same under ω and under truthful
revelation (in both cases, it is the set of students with abilities above a1).

Step 1. Case “Concave”. Suppose QT (a) is concave on [aL, aH ]. In equilibrium, the desirability
mapping Q has to be linear on the entire interval [aL, âH ] for some âH ≤ aH . Indeed, suppose
there is a point, â, at which Q is not linear. Then it has to be strictly convex (and equilibrium
fully informative) at â. By an argument analogous to that of Case “Convex”, this is impossible.

Moreover, there exists only one âH that can arise in equilibrium—it is the unique one that
guarantees that the total ability of students assigned to all schools is equal to the total ability of
students in the population, i.e., the unique âH such that∫ qH

qL

(
aL +

q − qL
qH − qL

(âH − aL)
)
dµ(q) =

∫ aH

aL

adG(a).

Step 2. We are now ready to prove the inductive step. Suppose the theorem is true for all n < k

and suppose there are k > 1 convexity intervals in QT . Take the first one, i.e., the one that begins
at aL and ends at some value b1. It is now more convenient to consider the two cases in the reverse
order.

Step 2. Case “Concave”. Suppose QT is concave on [aL, b1]. By an argument analogous to the
one above, equilibrium desirability mapping Q has to be linear on interval [aL, c1] for some c1 > b1.
Let us find this point c1 and show that it is uniquely determined. Consider the graph of of QT
on a two-dimensional plane, and take the infinite ray that starts at the point (aL, qL) and has a
slope of zero. Start rotating this ray around its origin, increasing its slope. Once the ray begins to
intersect with the graph of QT at points (ai, qi) other than the origin, for each of these points (and
there is always a finite number of them, at most two per convexity interval) keep checking whether
they could potentially be the c1 we are looking for. Specifically, check whether the total ability
of all students of ability below ai is equal to the hypothetical total ability of students assigned to
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positions of quality below qi under the linear desirability mapping implied by the ray, i.e., whether∫ ai

aL

adG(a) =
∫ qi

qL

(
aL +

q − qL
qi − qL

(ai − aL)
)
dµ(q).

As soon as such a point exists, stop, and consider this point (a∗, q∗). If, by coincidence, there
are several such points on the ray, consider the one with the largest coordinates; this is Subcase
“Partially Linear” below. If no such point exists for any slope less than or equal to qH−qL

aH−aL , let
q∗ = qH , take the unique point (a∗, qH) such that the total ability of students assigned to positions
[qL, qH ] implied by desirability mapping qL + qH−qL

a∗−aL (â − aL) is equal to the total ability of all

students in the population, i.e.,
∫ qH
qL

(
aL + q−qL

qH−qL (a∗ − aL)
)
dµ(q) =

∫ aH
aL

adG(a); this is Subcase
“Fully Linear” below.

We now claim that in any connected equilibrium, c1 = a∗ and the desirability mapping on
[aL, a∗] is a straight line between (aL, qL) and (a∗, q∗).

Step 2. Case “Concave”. Subcase “Partially Linear”. Suppose there exists an equilibrium,
ω, for which c1 6= a∗. Consider students assigned to positions [qL, q∗] under ω and under truthful
revelation. Under truthful revelation, matching is based on true ability, and so these positions
get the worst possible students. Hence, the total ability of these students has to be at most as
high as the total ability of students assigned to these positions under ω. Now, consider desirability
mapping Q corresponding to ω. By construction, the slope of Q at aL is at least as high as q∗−qL

a∗−aL
and Q(a∗) > q∗, which implies that for all q ∈ [qL, q∗], Q−1(q) ≤ aL + q−qL

qi−qL (ai − aL), and for a
positive mass of positions q from this interval, Q−1(q) < aL + q−qL

qi−qL (ai − aL). But this leads us
to a contradiction, because then the total ability of students assigned to positions [qL, q∗] under
ω,
∫ qi
qL
Q−1(q)dµ(q), is strictly less than

∫ q∗
qL

(
aL + q−qL

q∗−qL (a∗ − aL)
)
dµ(q), which by construction is

equal to
∫ ai
aL
adG(a), i.e., the total ability of students assigned to these positions under truthful

revelation.
To complete the inductive step for this case, it is now sufficient to note that if a∗ = aH , we

are done; otherwise, the equilibrium desirability mapping for expected ability levels above a∗ is
uniquely determined as the equilibrium desirability mapping of the original economy excluding the
students of ability below a∗ and positions of desirability below q∗; in this truncated economy, the
number of convexity intervals is less than k, satisfying the assumptions of the inductive step.

Step 2. Case “Concave”. Subcase “Fully Linear”. This substep follows from the same ideas
as Subcase “Partially Linear” and Case “Concave” of Step 1, and is therefore omitted.

Step 2. Case “Convex”. Suppose QT is convex on [aL, b1]. Our method for finding the unique
equilibrium desirability mapping Q is based on the following observation. Suppose Q and QT do
not coincide on [aL, b1]. Then there exists a ∈ [aL, b1) such that

1. Q(x) = QT (x) for all x ∈ [aL, a],

2. Q(x) is linear on [a, b1],
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3. the slope of Q(x) on [a, b1] is less than or equal to the right derivative of QT (x) at a, and

4. if a > aL, the slope of Q(x) on [a, b1] is greater than or equal to the left derivative of QT (x)
at a.

Indeed, suppose for some x ∈ (aL, b1), Q(x) 6= QT (x). Then we know that Q(x) has to be linear on
some interval around x. Take the largest such interval [a, b]. The equilibrium is fully informative
at a; it is also fully informative at aL. If a = aL, statement (1) above follows trivially; otherwise it
follows from the convexity of QT (x) on [aL, a] by the argument analogous to Step 1, Case “Convex”.
By a similar argument, b has to be strictly greater than b1, giving us (2). Statement (4) follows
immediately from the convexity of equilibrium desirability mapping Q at any point, including,
of course, a. To prove (3), suppose the slope of Q(x) on [a, b1] is strictly greater than the right
derivative of QT at a. Then the total ability of students assigned to positions in some small interval
[Q(a), Q(a) + ε] in this equilibrium is strictly lower than the total ability of students assigned to
these positions under full information revelation, which is impossible.

Let r̄ be the left derivative of QT at b1. The observation above implies that any equilibrium
has to be either fully informative on [aL, b1] or be fully informative up to some ability level a ≥ aL
and linear with some slope r < r̄ on [a, b1]. Crucially, it also implies that for any slope r < r̄, there
exists exactly one point a(r) on [aL, b1] where an equilibrium switches from being fully informative
to being linear with slope r; this point a(r) is simply the point at which a line with slope r is
tangent to the graph of function Q.

We now proceed in essentially the same way as in Step 2, Case “Concave”, starting with a ray
from (aL, qL) and a slope of zero and gradually increasing the slope, looking first for a “Partially
Linear” subcase and then, after the ray crosses the point (aH , qH), looking for the “Fully Linear”
subcase. There are, however, two differences. First, as we increase the slope, we also gradually
move the origin of the ray along the graph of mapping QT , keeping the ray tangent to it. Second,
the slope may reach r̄ before encountering either “Partially Linear” or “Fully Linear” subcase. If
that happens, we know that the equilibrium has to be fully informative on [aL, b1], and the rest
of the desirability mapping is uniquely pinned down as the equilibrium desirability mapping of
the original economy excluding the students of ability below b1 and positions of desirability below
QT (b1); in this truncated economy, the number of convexity intervals is equal to k − 1, satisfying
the assumptions of the inductive step.

B Proof of Theorem 3

Suppose the benchmark amount of information is disclosed and there is no unraveling. We then
show that no student has an incentive to deviate, i.e., to sign a contract earlier than τ . Consider
an arbitrary school i. Let the interval of expected abilities of students at school i at time τ be
[ai, bi]. By the law of iterated expectations, no student at school i can have expected ability outside
of this interval at any time τ ≤ τ . Take any time τ < τ and any student from school i who has
expected ability âτ inside the interval at time τ . If he signs now, the best position he can get
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is of desirability Q(âτ ). If he waits until time τ , the expected desirability of position he gets is
E[Q(âτ )|âτ , τ, i]. By assumption, at time τ the school produces a positive density of students on
an interval, and transcript structures form an equilibrium—thus, Q(âτ ) is convex on the interval.
E[âτ ] = âτ , and so E[Q(âτ )|âτ , τ, i] ≥ Q(âτ ), and the student does not have an incentive to
deviate—this is the same logic as in the proof of Theorem 2.

Now suppose more than the benchmark amount of information is disclosed at time τ . We
first show that the corresponding desirability mapping is not convex. Let F be the distribution of
expected abilities under benchmark information disclosure, G the distribution of expected abilities
actually disclosed at time τ , and H the distribution of true abilities. We know that H is more
informative than G, which in turn is more informative than F . Suppose at some expected ability
level a, the desirability mapping corresponding to F is strictly convex. Then, as we have previously
explained, in the static equilibrium schools do not mix students with abilities below a and above
a, and so under both F and H, a student with reported expected ability a gets matched with a job
of the same desirability d. Moreover, the average (and the total) ability of students matched with
positions of desirabilities less than d is the same under F and H.

Consider two arbitrary distributions of expected abilities, β and γ, desirability level δ, and
expected ability level α corresponding to δ if expected abilities are distributed according to β.
Note that if γ is less informative than β, then the average (or total) ability of students matched
with positions of desirability less than δ under γ is a least as large as under β. Moreover, the two
are equal only if distribution β restricted to [aL, α] is a mean-preserving spread of distribution γ

restricted to the same interval, i.e., under γ (relative to β), students of expected ability levels below
α do not get mixed with students of expected ability levels above α.

But then it has to be the case that under distribution G, which in terms of informativeness
is between distributions F and H, students of ability below a do not get mixed with students of
ability above a. Therefore, any piece of additional disclosure of information under G vs. F has
to take the form of a mean-preserving spread of the distribution of expected abilities in a region
where the desirability mapping under F is linear. It is easy to see that any amount of additional
information in such a region leads to a desirability mapping that is not convex. Hence, there exists
some point â∗ inside that region such that Q′′(â∗) < 0.

Since â∗ is inside the region of reported abilities, there exists some τ1 < τ and school i such that
a positive mass of expected abilities is produced by school i in a small ε-neighborhood of â∗ for any
τ ∈ [τ1, τ ]. By assumption, Q̂i(âτ , τ) = E[Q(âτ )|âτ , τ, i] is twice continuously differentiable; also,
Q̂i(â, τ) = Q(â). Therefore, there exists τ2 < τ , τ2 ≥ τ1 such that ∂2Q̂i(â∗,τ)

∂â2 < 0 for all τ ∈ [τ2, τ ].
Finally, there exists τ3 < τ , τ3 ≥ τ2 such that diffusion parameter σi(â∗, τ) is strictly positive for
all τ ∈ [τ3, τ ].

By construction, Q̂i is a martingale, and therefore E[dQ̂i(â, τ)] = 0. By Ito’s lemma,

0 = E[dQ̂i(â, τ)] =
1
2
σ2
i

∂2Q̂i(â, τ)
∂â2

+
∂Q̂i(â, τ)

∂τ
.
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For τ ∈ [τ3, τ ], 1
2σ

2
i
∂2Q̂i(â∗,τ)

∂â2 < 0, and so ∂Q̂i(â∗,τ)
∂τ > 0. But this implies that Q(â∗) = Q̂i(â∗, τ) >

Q̂i(â∗, τ3), and so at time τ3 a student of expected ability â∗ strictly prefers unraveling and im-
mediately matching with a position of desirability Q(â∗) to waiting until time τ and getting, in
expectation, Q̂i(â∗, τ3), while the employer is indifferent.

C The Connectedness Restriction

In this appendix, we discuss the connectedness restriction. First, we give a sufficient condition for
the existence of a connected equilibrium: all schools are identical. Next, we show that in some
markets, a connected equilibrium may not exist, even if for every true ability level a ∈ (aL, aH)
there exists a school that has students of all true abilities in some ε-neighborhood of a.

Theorem C.1 If all schools have identical distributions of student abilities, there exists a symmet-
ric equilibrium in pure strategies. This equilibrium is connected.

Proof. We first prove the existence of a symmetric equilibrium in pure strategies. Let S be the set
of a school’s strategies. Let B(s) be the best responce correspondence—the set of best responces
for a school given that all other schools play s. We need to show that correspondence B(·) has a
fixed point.

Define Sn as the set of all strategies that generate a finite number of expected abilities {âni },
i ∈ {1, 2, . . . , 2n − 1}, such that expected ability ân2n−1 corresponds to the average true ability in
the population, ân2n−1+2n−2 corresponds to the expected ability of a better-than-average student,
ân2n−1−2n−2 corresponds to the expected ability of a worse-than-average student, and so on (there
can be a zero mass of students with a particular expected ability). Sn is not empty for n ≥ 1
because it contains the strategy that assigns the same expected ability to all students.

Note that Sn is just the set of distributions on the set of the above 2n−1 points that second-order
stochastically dominate the underlying distribution of student abilities.25 Sn is convex (if each of
two distributions dominates F , their affine combinations do too, and they are also concentrated on
the set of 2n−1 points), compact, and the payoff function is continuous on Sn (Each element in Sn
is just a vector of 2n−1 positive numbers adding up to 1, and so we can use the induced metric from
R2n−1). Consider now the best response correspondence Bn(·), which for every strategy s ∈ Sn

returns the (nonempty) set of best responses to s from the set Sn. Note that due to the continuity
of payoffs, Bn(·) is upper hemicontinuous. Note also that for any s, the set Bn(s) is convex, due
to the linearity of payoffs (if strategies s1 and s2 are in Bn(s) and thus give identical payoffs to
the school, for any α ∈ [0, 1], strategy (αs1 + (1− α)s2) is also in Sn and gives the same payoff to
the school, and therefore also belongs to Bn(s)). Thus, by Kakutani’s Fixed Point Theorem there
exists s∗n such that s∗n ∈ Bn(s∗n).

25Clearly, any distribution in Sn second-order stochastically dominates the underlying distribution of true student
abilities. On the other hand, any distribution s that second-order stochastically dominates the underlying distribution
of true student abilities can be obtained from that distribution by mixing some students together, because the
underlying distribution of true student abilities is a mean-preserving spread of s.
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Take the sequence {s∗n} for n → ∞. Since all distributions s∗n have supports on subsets of a
bounded interval [aL, aH ], this sequence has a weakly converging subsequence. Let s be the limit of
this subsequence. Note that the payoff function of a school is continuous both in its own strategy
and in the strategy of other players. Therefore, s is a best response to itself, and thus corresponds
to a symmetric equilibrium.

Let us show that this equilibrium is connected. Suppose it is not. This implies that there is
an interval (a, b) such that no school produces students of ability in this interval, but each (since
the equilibrium is symmetric) produces positive masses of students on both sides of the interval,
i.e., for any open interval containing a or b. But then the school can increase its payoff by mixing
some students of ability slightly below a and some students of ability slightly above b so that the
expected ability in this mix equals a.

The symmetry condition is sufficient for the existence of a connected equilibrium, but it is not
necessary, as Examples 2, 3, and 4 illustrate. However, it is not clear what a more general sufficient
condition on the primitives of the model could be: as we show in the following example, a connected
equilibrium may not exist, even if for any true ability level a ∈ (aL, aH) there exists a school that
has students of all true abilities in some ε-neighborhood of a.

Example C.1 There is mass .8 of students in “bad” schools, with abilities distributed uniformly
on [0, 50] and mass .2 of students in “good” schools, with abilities distributed uniformly on [0, 150].
There is also mass 1 of positions, distributed uniformly on [0, 100].

Suppose this market has a connected equilibrium. Under truthful information revelation the de-
sirability mapping would be concave. Hence, in the connected equilibrium, the desirability mapping
would be linear, and so the observed distribution of expected abilities would be uniform on [0, âH ].
The average true ability in this market is .8 · 25 + .2 · 75 = 35, and the average expected ability has
to be the same. Therefore, âH = 70. But no matter what mixing strategy it uses, a “good” school
will produce a positive mass of students with expected ability 75 or higher—contradiction.

Hence, there is no connected equilibrium in this market. Is there another equilibrium? It turns
out, there is, and moreover, the desirability mapping in it is not convex. In this equilibrium, each
“bad” school reveals full information about its students, and each “good” school “compresses” the
distribution of its students’ abilities from the true distribution of U [0, 150] to the distribution of
expected ability U [50, 100]. The resulting desirability mapping is

Q(â) =

8
5 â, for â ≤ 50

80 + 2
5(â− 50), for â ∈ [50, 100]

and it is easy to check that each school behaves optimally.
Finally, we would like to point out that there is a powerful force that is not captured in our model

and that would tend to eliminate disconnected equilibria with non-convex desirability mappings as
in Example C.1. This force is arbitrage. In our model, we abstract away from how students get
assigned to schools; in fact, as long as there exists a connected equilibrium, that doesn’t matter.
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If, however, schools can compete for students and can facilitate monetary transfers between them
(e.g., in the form of a high tuition and heterogeneous financial aid), then a non-convexity in the
desirability mapping would allow a school to get students from other schools, mix them together,
and get a higher average payoff for them. Thus, any non-convexity in the desirability mapping is
an arbitrage opportunity, which cannot persist in equilibrium.
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Figure I
  

Informativeness of Grades at Harvard

We use entropy as a proxy for the informativeness of grades. It is equal to 
(-Σi s i * ln(s i )) , where i  ranges from the worst grade to the best and s i  is 
the share of grade i  among all grades. If all students receive the same grade, 
no information is revealed and entropy is minimized. If a trascript structure 
is modified in a way that reduces the amount of information (e.g., students 
who had a C or a D can no longer be distinguished), entropy goes down.
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Figure II

Desirability Mapping Q in Example 2 under Full Information Revelation
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Figure III

Desirability Mappings in Example 3
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Figure IV

Measures of True and Expected Abilities at an Average School in Example 3



Figure V

Distributions of Desirabilities and True Abilities in Example 4
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Figure VI

Desirability Mapping Q in Example 4 under Full Information Revelation
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Benchmark Distribution of Expected Abilities and the Corresponding 
Desirability Mapping Q in Example 4

(a) Benchmark Distribution of Expected Abilities 

(b) Desirability Mapping Q
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