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1 Introduction

The seminal papers by Barro and Becker (Becker and Barro (1988) and Barro and
Becker (1989)) have generated increasing interest in the study of the macroeconomics
of fertility choice. The model is intuitive and analytically tractable. In its origi-
nal formulation, however, it has not been very successful in generating the desired
effects of changes in mortality and productivity on fertility choices and population
growth rates (see Doepke (2005), Bar and Leukhina (2005)) as emphasized by demog-
raphers. This original formulation has also been adapted to include a variety of other
interesting effects, such as the introduction of an educational choice and the related
quantity-quality trade-off or the idea that children are partially an investment.

In this paper we show that one of the key parameters in dynastic models with
Barro-Becker type altruism is the intertemporal elasticity of substitution (IES). We
develop a simple model of fertility choice based on Barro-Becker type altruism without
capital. While the original Barro-Becker formulation assumes very high levels of
IES, we allow for the full range of parameter values. We then derive analytical
and quantitative results that show why and how changes in infant, youth and adult
mortality as well as productivity growth rates produce the kinds of effects suggested
by demographers when low values of IES (closer to the growth and real business cycle
literatures) are considered.

There are two main reasons why the choice of the IES matters for qualitative
as well as quantitative results. The first effect comes from implicit complementar-
ity/substitutability assumptions in these preference formulations. High IES, as in the
original Barro-Becker formulation, implicitly introduces the assumption that family
size and utility of children are complements in utility. To the contrary, low IES im-
plies that they are substitutes in utility. This has important implications for the sign
of first order effects. For instance, if number and utility of children are complements,
the marginal utility of an extra child increases when productivity growth (and hence
utility of children) increases. All else equal, this implies an increase in fertility and
the population growth rate. With low elasticity and substitutability, the opposite is
true.

The second effect is related to children being partly an investment good in these
models and is most important for the size of the fertility response to changes in
mortality and productivity. Here, much of what we find comes from basic intuitions
about the desirability of changes in the growth rate of consumption for different
values of IES — again, when IES is low, the value of increasing the growth rate of
consumption is also low. In a dynastic model the principal effect of permanently
increasing fertility, that is, the population growth rate, is to permanently increase
growth rates in dynasty aggregates. Hence, because of the low IES any change in
economic environment that facilitates this growth is met with a higher fraction of
output going to current consumption and less to the investment good — fertility. This
causes the stock of population to grow more slowly than with high values for the IES.
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We first revisit the properties of Barro-Becker preferences when all preference con-
figurations are allowed. Along the way, we derive simple comparative statics at the
household level to highlight the effect of the complementarity versus substitutability
assumption for changes that exogenously increase children’s utility. We then intro-
duce longevity through random survival of adults1 as well as child mortality to derive
the dynasty’s utility and law of motion for population.2 This allows us to show how
the choice of high elasticity leads to number and utility of children being complements
and vice versa.

Next we solve the resulting dynastic planner’s problem with exogenous produc-
tivity growth and derive comparative statics across balanced growth paths. Here
we reinterpret increases in young age survival as decreases in the cost of surviving
children. This allows us to compare qualitative predictions of the model that differ
between population growth rates, surviving children and total births. What we find
is that in the dynastic model both the qualitative and quantitative properties of fer-
tility choice are highly sensitive to the choice of the IES and hence complementarity
versus substitutability. In particular, we find:.

1. The effect of an increase in the growth rate of productivity is to increase pop-
ulation growth and fertility if the IES is greater than one, give no change if
the IES equals one and decrease both population growth rates and surviving
fertility if the IES is less than one.

2. A reduction in youth mortality decreases the cost of producing a surviving
child and hence, increases surviving fertility and population growth rates for
any value of IES. However, the size of this increase is increasing in the IES —
in a quantitatively significant way. This also implies that the decrease in total
births tends to be larger for low IES.

3. Finally, we study the effects on fertility of increased life length. We find that
increasing expected work life conditional on reaching adulthood increases pop-
ulation growth rates, but decreases surviving fertility. Again, the increase in
population growth rates is increasing in the IES, while the decrease in surviving
births is decreasing in the IES.

Since population growth rates slightly decreased over the last 200 years, while
the number of births decreased substantially, these comparative statics results are
interesting, both in a qualitative and in a quantitative sense. Qualitatively, commonly
used values for the IES in the growth and RBC literatures also produce the observed
direction of changes in fertility choice in response to changes in productivity growth.
Quantitatively, “counterfactual” changes in population growth rates in response to
changes in mortality are small when the IES is low — a puzzle often encountered in
the fertility literature.

1In order to keep the model simple we follow Blanchard (1985) in making death a random
occurrence but assume that all alive agents are identical. This allows us to omit the age distribution
as a state variable and greatly simplifies the analysis.

2This is similar to Alvarez (1999) but with the addition of youth mortality and longevity.
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Next, we study quantitative comparative statics of these changes on fertility and
population growth rates. First we calibrate child costs in the model to match the
recent fertility experience in developed countries given their economic circumstances.
That is, fertility producing roughly zero population growth in an environment where
productivity growth is 2 percent per year, infant and child mortality rates are close
to zero and expected working lifetime is about 45 years. Here, again, we find that the
values of the costs of raising children are very sensitive to the choice of the IES: costs
of children required to match any given population growth rate are sharply decreasing
in the IES. This has been a problem in the fertility literature commonly using high
values of IES.

We then perform several experiments using changes in economic environment that
roughly correspond to changes over the past 200 years in developed countries. For
high values of IES (of the order of 2), both the population growth rate and the
Crude Birth Rate (CBR) increase substantially, contrary to the historical experience.
For intermediate values of IES (of the order of 1) changes in productivity growth
have no effect while changes in survival to adulthood decrease fertility. However
since this decrease is not large, the model predicts that population growth rates
increase substantially. Versions of the model with low IES (of the order of one third)
have interesting and realistic quantitative implications in line with the analytical
comparative statics above.

Finally, we simulate the U.S. experience since 1800, taking the timing of events
and all three changes in economic environment into account. We find that overall,
the model predicts that CBR would fall from 36.3 to 17.2 births per 1000 population.
This corresponds to about two-thirds of the observed change in the U.S.. In terms of
population growth rates, the model predicts a fall from 1.4 to 0.65 percent per year
which captures about one half of observed changes in the U.S.. Interestingly, about
90 percent of model predicted changes in fertility before 1880 are accounted for by
changes in productivity growth rates, while changes in mortality account for about
90 percent of the predicted fertility decrease thereafter. This finding speaks to the
debate about what the root cause of the fertility decline was — was it reductions in
youth mortality rates or was it accelerating economic development? What we find
is: it was a combination of both with the latter being the most important factor
early in the transition and mortality being the most important factor later on — a key
assumption being low intertemporal elasticity of substitution in consumption.

The remainder of the paper is organized as follows. Section 2 reviews the lit-
erature. Section 3 revisits parameter restrictions in preferences and gives intuitive
results relating to substitutability and complementarity. In Section 4 we setup and
solve the dynastic planner’s problem, impose balanced growth and derive analytical
comparative statics for population growth, surviving children and all births. Section 5
presents quantitative comparative statics and Section 6 presents model predictions for
the U.S. experience since 1800. In Section 7 we discuss various extensions. Section 8
concludes.
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2 Related Literature

Barro and Becker’s original formulation has also been adapted to include a variety of
other interesting effects, such as the introduction of an educational choice and the re-
lated quantity-quality trade-off or the idea that children are partially an investment.
Examples of the educational choice literature include Becker, Murphy and Tamura
(1990), Benhabib and Nishimura (1993), Galor andWeil (2000), Fernandez-Villaverde
(2001), Soares (2003), Doepke (2004), Manuelli and Seshadri (2006), Rosenzweig
(1990) and examples of children as an investment good are Ehrlich and Lui (1991),
Boldrin and Jones (2002), Boldrin, DeNardi and Jones (2005). We address quantita-
tive studies below. Most of these follow Barro-Becker utility parameter restrictions.
Hence, results in this paper shed interesting new light on these extensions.

More recently several authors have studied quantitative versions of the Barro-
Becker model to examine its ability to track the basic trends over the last 200 years
in fertility choices. These include Mateos-Planas (2002), Doepke (2005), and Bar
and Leukhina (2005). They study the quantitative response of fertility in the model
to changes in environment like infant, youth and adult mortality and changing pro-
ductivity growth rates in a variety of different, but related economic environments.
Surprisingly, they reach very different conclusions. For example:

1. In Mateos-Planas (2002) changes in mortality have only small effects on pop-
ulation growth and hence, he concludes that changes in productivity growth
and/or changes in the cost of child-rearing are more likely to be the sources of
the changes in fertility seen in the data.

2. Doepke (2005) also finds that reductions in child mortality appear not to be
responsible for the observed changes in fertility. In fact, the predicted change
in births is small and the model also has the counterfactual implication that
population growth rates and surviving fertility increase substantially.

3. Bar and Leukhina (2005) study both the effects of changes in young-age mor-
tality and productivity growth and conclude that the observed decreases in
mortality are responsible for a large fraction of the reduction in fertility, but
that changes in rates of productivity growth have very little effect.

The key difference in the assumptions that these authors make is about the size
of the intertemporal elasticity of substitution in consumption (IES below). Mateos-
Planas assumes that this is less than unity but focuses only on population growth
rates rather than births, Doepke assumes that the IES is greater than unity and Bar
and Leukhina use a value equal to one. In this paper we develop a simple model of
fertility choice based on Barro-Becker type altruism without capital but allowing for
the full range of preference parameter values. This simplification allows us to derive
analytical and quantitative results that help to reconcile the findings of these authors.

Other papers have also studied the quantitative properties of fertility models but
have focused on different channels and setups. In Fernandez-Villaverde (2001), the
effects of the falling relative price of capital and infant mortality rates are studied in
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an environment in which skill type is endogenous and skilled labor and capital are
complements. In Doepke (2004) the impact of child labor and compulsory schooling
laws are studied. In De la Croix and Doepke (2003) the role of income inequality is
examined. Greenwood and Seshadri (2002) study the impact of changes in productiv-
ity in agriculture and manufacturing in a model where food is a necessity. Eckstein,
Mira and Wolpin (1999) study the effects of changes in child mortality but in a life-
cycle model without Barro-Becker altruism. Kalemli-Ozcan (2002, 2003) analyzes
the effect of decreased child mortality in a stochastic fertility model focusing on the
decreased risk that follows when a binomial probability approaches 1. She concludes
that changes in survival probabilities significantly decreases fertility. Doepke (2005),
however, shows that this effect is greatly diminished when sequential fertility choices
are allowed (see also Sah (1991), Wolpin (1999) and Ben-Porath (1976)).

3 Barro-Becker altruism revisited

In this section, we analyze Barro-Becker type preferences and their properties re-
lated to the intertemporal elasticity of substitution. First we show that one implicit
restriction, namely positive utility, has lead to the assumption of complementarity
between number and utility of children and in turn high intertemporal elasticity of
substitution (IES) in the fertility literature. This restriction can be relaxed to also
allow substitutability between number and utility of children for low values of IES.
This assumption is crucial in determining the fertility response to permanent changes
in productivity growth, youth mortality and longevity.

3.1 The household problem: complements versus substitutes

The standard presentation of the Barro-Becker model usually begins with a descrip-
tion of the preferences of a period t adult. It is assumed that parents care about
three separate objects:

i) their own consumption in the period, ct,

ii) the number of children they have, nt, and,

iii) the average utility of their children, Ut+1.

This is usually specialized further. It is assumed that utility of the typical time t
household is of the form:

Ut = u(ct) + βg(nt)
∑nt

i=1
1
nt
Uit+1

where Uit+1 is the utility of the i-th child of the parent. Assuming that Uit+1 =
Ui′t+1 = Ut+1 for all i, i

′ this simplifies to:

Ut = u(ct) + βg(nt)Ut+1.
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Intuitively, it makes sense to assume:

1.) Parents like the consumption good:
utility is increasing and concave in own consumption;

2.) Parents are altruistic:
holding nt fixed and increasing Ut+1 increases (strictly) the utility of the parent;

3.) Parents like having children:
holding Ut+1 fixed and increasing nt increases (strictly) the utility of the parent.

4.) The increase described in 3.) is subject to diminishing returns.

The first requirement is straightforward. It is satisfied as long as u is increas-
ing and concave. The second has implications for what g can be. Since ∂(u(c) +
βg(n)U)/∂U = βg(n), it follows that (2.) implies that g(n) > 0 for all n. The third
requirement is less straightforward. Although this requirement makes intuitive sense,
there are, because of the special restrictions implicit on functional forms, some issues
that arise. For example, suppose that Ut+1 > 0. Then (3.) implies that g(n) must
be increasing in n. On the other hand, if Ut+1 < 0, (3.) implies that g(n) should
be decreasing in n. It follows that if it is possible for Ut+1 to be either positive OR
negative, it is impossible to satisfy all of these requirements simultaneously. In sum,
(1.)-(3.) are mutually inconsistent without some sort of restrictions on the possible
values for Ut+1. Similar issues arise with respect to (4.). If Ut+1 is restricted to be
positive, (4.) requires g to be concave while if Ut+1 is restricted to be negative, (4.)
requires that g is convex.

This is not to say that these conditions cannot be satisfied. We must simply
assume that either Ut+1 > 0 always or Ut+1 < 0 always and then make the appro-
priate assumptions on g. Without an assumption like this, the natural monotonicity
properties of utility cannot be guaranteed. Thus, we are left with two options:

I. Assume g(n) is non-negative, strictly increasing and concave and U > 0, or

II. Assume g(n) is non-negative, strictly decreasing and convex and U < 0.

As it turns out, the choice between these two options has important implications
for the properties of the model. This can be illustrated in a simple example.

First, consider how the solution of the problem of a time zero parent changes when
the growth rate in wages is changed. In the simplest case, they face a problem of the
form:

max
{c0,n0}

u(c0) + βg(n0)U1

s.t. c0 + θ0n0 ≤ w0,

where θ0 is the cost of raising a child to survive to adulthood and w0 is the wage rate
in time 0.

Increased wage growth only enters this problem through the indirect effect of
changing U1. That is, if wages grow faster, future generations will have larger choice
sets and hence, U1 will be larger. The first order condition for this problem is:
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Figure 1: Comparative Statics with respect to Ut+1

θ0u
′(w0 − θ0n0) = βU1g

′(n0).

The left hand side of this equation is the marginal cost in terms of period 0
consumption of having an extra child and is increasing in n0, while the right hand
side is the marginal benefit and is decreasing.

A change in U1 has different effects depending on which case we are in. In partic-
ular, whether an increase in U1 increases or decreases the right hand side depends on
whether U1 is positive or negative. That is:

∂RHS(n0, U1)

∂n0∂U1
= βg′(n0) =

∂2U0
∂n0∂U1

. (1)

When U1 is positive, g is increasing and hence, the cross partial in 1 is positive
— children and the utility of children are complements in the utility of the parent.3

In this case, it follows that a change in wage growth shifts the right hand side up
causing n0 to increase. Fertility is increasing in the rate of growth of wages. When
U1 is negative, g is decreasing and hence, this is negative — children and the utility
of children are substitutes in utility. In this case, it follows that the right hand
side shifts down and n0 falls. Fertility is decreasing in the rate of growth of wages.
Thus, whether an increase in wage growth (i.e., an acceleration of industrialization)
increases or decreases fertility is completely determined by this assumption. Also

3See Topkis (1998), Chapter 2, for the equivalence between complements/substitutes in utility
and the Marshallian definition of complements/substitutes.
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clear is that this effect is quite general — it is not restricted to changes in the rate of
growth of wages.

I. If U1 > 0, increasing U1 increases the marginal utility of children,MUn. Because
of this, anything that increases U1 will lead to a greater desire for children
(unless something else changes to offset that).

II. If U1 < 0, increasing U1 (smaller number in absolute value) lowersMUn, making
larger family sizes LESS desirable. Again, this is all holding everything else
equal.

From this discussion, we can also get a sense about how changes in the survival
rates of children depend on this choice. It is common in the literature (e.g., Barro and
Becker (1989), Doepke (2005), Bar and Leukhina (2006)) to model this as a reduction
in the cost of producing a surviving child — a reduction in θ0. Notice that this will also
typically increase U1. A decrease in θ0 causes the left hand side of the equation to shift
down. Hence, when children and their utility are complements (U1 > 0), it follows
that fertility will increase. In the opposite case (U1 < 0), there are off-setting effects
and the sign of the change cannot be predicted without more detailed analysis. This
discussion is complicated by the fact that U1 is not exogenous. Because of this, more
work is needed to generalize these intuitions below. Finally, note that in this simple
case, the parent has no direct method of affecting U1, and hence, although one part of
a quality/quantity trade-off is present — the direct preference part — other aspects of
it are missing (e.g., increasing U1 through leaving a larger bequest or spending more
on the education of the child). This is a weakness in some ways, but allows us to focus
our attention on the importance of the role of preferences much more transparently.4

Summarizing then, we see that which assumption we make about whether children
and their utility are substitutes or complements — and with it the implicit assumptions
about both the sign of U and the monotonicity of g — has important qualitative
implications about the properties of the model. As we will see below, almost all work
on the Barro-Becker model to date has focused on the first case and this has had
important implications about quantitative work using these preferences.

To the best of our knowledge, there is no good evidence for assuming that number
and well-being of children are complements. Instead, we find that with low elastic-
ity and substitutability, the model is able to generate trends in fertility similar to
those observed over the past 200 years in response to observed changes in mortality,
longevity and productivity growth rates. These are also the drivers most emphasized
by demographers.

To formally address the effect on fertility choice of these drivers, we introduce
both child mortality and adult longevity as follows. First, going back to the original
Barro-Becker work one common exercise has been to examine the implications for
the model quantities when survival rates of children (e.g., Infant Mortality Rates
(IMR) and Child Mortality Rates (CMR)) change. This has been done by assuming

4In Section 7.2, we address extensions in which the parent has some control over children’s utility.
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parents care about surviving children, ns,t = πsnb,t, where πs is survival rate of a
birth to adulthood and nb,t is the number of births. Note that every birth may be
costly even if the child does not survive to adulthood. The total cost of all births
is then given by θb,tnb,t.

5 Second, while the usual Barro-Becker model has adults
living for only one period, we introduce longevity again using certainty equivalence
to keep the state space minimal. This is similar to Blanchard (1985) who laid out
the perpetual youth idea. That is, adults survive from one period to the next with
a fixed probability π < 1. Longevity conditional on surviving to adulthood is then
given by

∑∞
t=0 π

t = 1
1−π

periods, or, if a period last for T years, T
1−π

years. In the
original Barro-Becker model, π = 0 and expected adult lifetime is T years. We then
assume that preferences of households are given by6

Ut = u(ct) + βg(π + πsnb,t)Ut+1

while the household’s budget constraint becomes

ct + θb,tnb,t ≤ wt

That is, we assume that people care about expected family size and that all adults
are identical, regardless of when they were born. Own survival is a perfect substitute
for surviving children in the utility. However, survival of both adults (π) and children
(πs) are exogenous.7 Setting π = 0 brings us back to the original Barro-Becker type
preference. If adults survival is certain, π = 1, then people live forever but care about
themselves exactly as much as they care about each child. Notice that all the results
derived above go though with this change. One additional effect is that increased
longevity (i.e. π) decreases the marginal utility of having an extra child, regardless
of the sign of Ut+1.

3.2 Dynasty utility and intertemporal elasticity

Note that by construction, the preferences given in this way have a natural time
consistency property: there is no inherent conflict in preferences between the agents
in period t and period t + 1. In the discussion above it can be seen that to fully
specify the model we need an explicit mechanism for the determination of the utility
of subsequent generations. This can be done through successive substitution into the
utility function of the time 0 agent, the dynasty head to get:

U0 =
∞∑

t=0

βt
[
Πt−1

k=0g(π + πsnb,k)
]
u(ct)

5This was used in the original Barro and Becker (1988) and Becker and Barro (1989) as well as
in Boldrin and Jones (2002), Schoonbroodt (2004), Doepke (2005), etc. Further layers of complexity
are introduced in Section 4.3.2.

6Note that with g(.) defined over surviving parent plus children, this is similar to Remark 1 in
Benhabib and Nashimura (1993) with z > 0 interpreted as adult survival.

7See Section 7 for issues related to this exogeneity assumption.
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Because of the term Πt−1
k=1g(π + πsnb,k), this utility function is typically not concave

as written. However, as discussed in Alvarez (1999), under certain conditions, this
can be rewritten as a concave problem in dynasty aggregate variables. Assume that
g(x) = xη, and let N0 = 1 and Nt = Πt−1

k=0(π + πsnb,k). This is the expected total
number of adults (parent and descendants) alive during period t evaluated in t − 1.
Assuming certainty equivalence/law of large numbers, we get the following law of
motion for population:

Nt+1 = πNt +Ns,t = Π
t
k=0(π + πsnb,k)

where Ns,t = ns,tNt is the total number of surviving children born in period t. Then
Πt−1

k=1g(π + πsnb,k) = g(Πt−1
k=1(π + πsnb,k)) = g(Nt), and so preferences for the dynasty

head can be rewritten as:

U0 =
∞∑

t=0

βtg(Nt)u

[
Ct

Nt

]

where Ct = Ntct is total consumption in period t. Note that this assumes that con-
sumption is the same for all adults in a period. Ut for t > 0 is defined similarly.

Following the discussion above, since g(N) = Nη is always positive, there are two
possible ways to satisfy conditions (1.)-(4.) above:

I. Assume that u(c) ≥ 0 for all c ≥ 0, that u is strictly increasing and strictly
concave and that 0 < η < 1;

II. Assume that u(c) ≤ 0 for all c ≥ 0, that u is strictly increasing and strictly
concave and that η < 0.

Either of these are consistent with the entire set of intuitive requirements laid
out in the original Barro-Becker papers. Typically we want more however. The
extra desirable requirements are that U0 as written here is increasing and concave in
(C,N). This is for standard reasons, we want the solution to maximization problems
to be unique, etc. For this, we specialize further and assume that and u(c) = c1−σ

1−σ
.

Given this assumption, there are two sets of parameter restrictions that satisfy the
natural monotonicity and concavity restrictions for this functional form, both in terms
of the aggregate, or dynasty variables, (C,N), and in terms of per capita values,
(N, c) = (N, C

N
).

I. The first is the standard assumption in the fertility literature:

0 ≤ η + σ − 1 < 1

0 < 1− σ < 1

In this case, 0 < η = η + σ − 1 + 1− σ < 1 and U > 0 for all (N,C) ∈ R2+.

II. The second possibility is one which allows for intertemporal elasticities of sub-
stitution in line with the standard growth and business cycle literature:

σ > 1

η + σ − 1 ≤ 0

In this case, η ≤ 1− σ < 0 and utility is negative.
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In the case where, η = 1 − σ (allowed under both configurations), utility becomes
a function of aggregate consumption only.8 Hence, conditions for monotonicity and
concavity of U involve UC and UCC only.9

4 A simple model of fertility choice

In this Section, we setup the planner’s problem with endogenous fertility choice that
we study and present analytical comparative statics results across Balanced Growth
Paths (BGP’s) for each of the parameter configureations laid out above. We begin
by focusing only on population growth rates, the natural construct that comes out
of BGP’s in this type of model. Next, to make comparisons with data easier, we
discuss how to construct (surviving) Crude Birth Rates (CBRs) from the model and
give comparative statics results for this measure of fertility. Finally, we discuss the
relationship between births and surviving children when infant and child mortality
rates are changed. Along with this we introduce a distinction between total births
in a period as measured by CBR and the number of surviving births from a period,
CBRs.

4.1 The planner’s problem

The model we study is similar in spirit to Becker and Barro (1988) and Barro and
Becker (1989). As opposed to Barro-Becker, we allow for a wider preference parameter
configuration as described above. Furthermore, we assume that the only source of
income is labor and there is no possibility of bequests (see also Doepke (2005)). This
allows us to derive clean analytical results. We follow the approach from Alvarez
(1999) in which a time zero dynastic head chooses the time paths of aggregate, dynasty
level variables. The problem solved is:

max{Ct,Nb,t,Ns,t,Nt}

∑∞
t=0 β

tNη
t

[
Ct
Nt

]1−σ

/(1− σ)

s.t:
Ct + θb,tNb,t ≤ wtNt, and
Nt+1 ≤ πNt +Ns,t,
Ns,t ≤ πsNb,t,
N0 given.

8The case with parameters in case II. is also mentioned as a possibility in Alvarez (1999), footnote
2, and used in the quantitative section of Mateos-Planas (2002) . He uses σ = 3. Although
this formulation is not common in the fertility literature, a similar formulation for utility, where
the arguments are consumption and leisure, is quite common in the growth literature. There are
numerous examples of this, see Ales and Maziero (2007) for a recent example of this. A few remarks
and issues with this utility formulation are addressed in the Appendix.

9Note that the intertemporal elasticity of substitution in consumption is only partially expressed
in σ. The actual elasticity also involves Nt. In the case where η = 1− σ, the analogy is exact. We
will nevertheless stick to this abuse of language for the remainder of the paper.
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where Ct is aggregate consumption in period t, Nt is the number of adults alive, θb,t
is the cost of a birth, Nb,t is the total number of births in period t, Ns,t is the number
of children that survive to working age and πs is the unconditional probability of a
child that is born surviving to working age, Ns,t is the number of births in period t
that survive to become adults in period t + 1 and wt is the wage rate.10 We assume
that adults survive to the next period of life with probability π but that all alive
adults are otherwise identical. Thus, death among adults is treated as in Blanchard
(1985). Given these assumptions, the expected working lifetime of an adult is 1

1−π

periods.11 Also implicit in this formulation is the assumption that each adult has the
same level of consumption Ct

Nt
= ct in any period. This problem can be rewritten by

eliminating Nb,t to obtain:

max{Ct,Ns,t,Nt}

∑∞
t=0 β

tNη
t

[
Ct
Nt

]1−σ

/(1− σ)

s.t:
Ct + θs,tNs,t ≤ wtNt, and
Nt+1 ≤ πNt +Ns,t,
N0 given.

where θs,t ≡
θb,t
πs

is the cost of producing a surviving child.12 This is formally equiv-
alent to the problem above but where, the cost of raising a child to working age
depends on the survival probability — an increase in πs decreases θs,t.

Under either of the sets of parameter restrictions derived in Section 3, this (time
zero) maximization problem has a concave objective function and a convex constraint
set. Thus, the problems have unique solutions, concave value functions, etc.

4.2 Equilibrium populations

The first order condition for the stock of population in period t+1, Nt+1, is given by:

θs,tN
η+σ−1
t C−σ

t

= β [wt+1 + θs,t+1π]N
η+σ−1
t+1 C−σ

t+1︸ ︷︷ ︸
A

+ β
(η + σ − 1)

(1− σ)
Nη+σ−2

t+1 C1−σ
t+1

︸ ︷︷ ︸
B

(2)

The intuition for this is as follows. On the left is the marginal cost in terms of
changed current utility of increasing Nt+1 (i.e., of producing an extra child). This

10Throughout we only look at the ’goods costs case’ but this is without loss of generality. This
goods cost is denoted by θt and we assume that it grows at the rate of overall technological im-
provement. In the end, the only model object that ends up mattering is θt

wt
which is constant by

assumption. If on the other hand, there was a time cost, say b fraction of the time available in a
period per child, we would find that b = θ

w
. So everything would be covered in that case as well.

11The original Barro-Becker formulation has π = 0. The formulation here has the advantage of
allowing us to perform comparative statics with respect to longevity and to calibrate to reasonable
life lengths without adding additional state variables.

12We introduce additional layers of complexity in Section 4.3.2.
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cost is just the direct cost of reduced consumption today (rescaled by the fact that
it only takes θs,t units of C to make one extra unit of N). On the right hand side are
the two pieces of the marginal benefits next period from increasing Nt+1. These are:
A. the value of the extra output the dynasty will have next period; B. the marginal
value of utility from having extra children.

To gain some more insight, consider the special case in which η = 1 − σ. In
this case, N is exactly like a capital good since the two utility effects of increasing
N exactly cancel out. These two effects are: 1. the direct benefit of having extra
children — g(N)

1−σ
= Nη

1−σ
— in the utility function; 2. the direct cost of having children

by diluting per capita consumption —
[CN ]

1−σ

1−σ
— in the utility function. As we can see

in the first order condition in (2), there are two things that give simplification. The
first is that (η + σ − 1) = 0 and so term (B) disappears entirely and second that
Nη+σ−1

t = Nη+σ−1
t+1 = 1, i.e., the marginal value of increased total consumption by

the dynasty in periods t and t+1 no longer depend on the size of the dynasty in the
period. Because of this, we get:

[
Ct+1

Ct

]σ
= β

[
wt+1

θs,t
+

θs,t+1
θs,t

π

]
(3)

This is the standard Euler Equation from anAk model in terms of aggregate consump-
tion, modified for the case θs potentially different from 1 with (1− π) corresponding
to depreciation, and time varying costs and benefits, i.e., wt and θs,t.

The Euler equation in (2) or (3) together with the feasibility constraint

Ct + θs,t [Nt+1 − πNt] = wtNt

which can be rewritten as

Ct

Nt
+ θs,t

[
Nt+1

Nt
− π

]
= wt (4)

and the initial condition N0 completely describe the equilibrium path.

4.3 Balanced growth and comparative statics

One advantage of the version of the model with labor income only is that it delivers
simple, and qualitatively reasonable analytic comparative statics results across Bal-
anced Growth Paths (BGPs).13 These are summarized here for completeness. We
focus on three distinct changes based on the quantitative experiments that we ex-
plore in the next section, namely the results of: i) changing γ, ii) changing θs, and
iii) changing π. These correspond to three commonly discussed quantitatively im-
portant changes in demographic patterns over the period from 1800 to 1990: i) the

13Some, but not all of these results carry over to generalized versions of the model with capital.
See Section 7.2 for a more detailed discussion.
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increased growth rate of labor productivity that came with industrialization, ii) the
fall in the direct cost of creating a surviving child through the reduction in infant and
child mortality rates, and iii) the substantial increase in expected lifetime that has
occurred in the last 100 years. As a first approximation, we study these changes by
deriving simple comparative statics with respect to the parameters of the model.

Assume that θs,t = γtθs and wt = γtw. Let γN,t =
Nt+1

Nt
be the population growth

rate between t and t+1, let γC =
Ct+1
Ct

be the growth rate in aggregate consumption

and let γc =
Ct+1/Nt+1

Ct/Nt
be the growth rate in per capita consumption. On a BGP, the

resource constraint in (4) becomes

1

γt

Ct

Nt
= w + θsπ − θsγN (5)

Since on a BGP (5) has to hold for every t, we must have
Ct

γtNt
= Ct+1

γt+1Nt+1
or γ = Ct+1/Nt+1

Ct/Nt
= γC

γN
= γc

Then, using this and (5) in (2) after dividing both sides by γt+1Nη+σ−1
t+1 C−σ

t+1 and
rearranging, we get

1

β
γ1−η
N γσ−1 +

(η + σ − 1)

(1− σ)
γN =

η

(1− σ)

[
w

θs
+ π

]
(6)

4.3.1 Comparative statics of population growth

The only endogenous variable in equation (6) is the population growth rate, γN , which
only enters on the left-hand side. Moreover, π (expected working life) and θs (costs of
children or youth mortality) only enter on the right-hand side while the productivity
growth rate, γ, only enters on the left-hand side. That is, holding (σ, β, η, w) fixed,

this equation is of the form: LHS(γN ; γ) = D(θs, π), where D(θs, π) =
η

(1−σ)

[
w
θs
+ π

]

(see Figure 2). Note that LHS(γN ; γ) is increasing in γN , for all values of γ, since

in both parameter restrictions we have that η ∈ [−∞, 1) and (η+σ−1)
(1−σ)

> 0. Similarly,

D > 0 since η
(1−σ)

> 0.

Because of this, it follows that LHS(γN ; γ) is increasing in γσ−1 holding σ fixed.
However, whether an increase in γ causes γσ−1 to increase or decrease depends on
whether σ > 1 or σ < 1. If σ < 1, an increase in γ causes γσ−1 to fall while if
σ > 1, an increase in γ causes γσ−1 to rise. From this it follows that γN is increasing
in γ if σ < 1 and decreasing in γ if σ > 1. The result that the sign intuition for
this result comes from the fact that for low (high) IES children and their utility are
substitutes (complements) in utility as shown in Section 3. However, the desire to
smooth consumption is important for the size of this effect.

D, on the other hand, is increasing in π and decreasing in θs for either parameter
configuration, and hence so is γN . Again, we can derive results about the size of
effects of changes in parameter values on γN for different values of (η, σ). To see this,
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Figure 2: Comparative statics of γN
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note that the left-hand side of equation (6) is increasing in γN . Further, it is concave
if 1 > η ≥ 1− σ > 0 (i.e. σ < 1), and convex in γN if η ≤ 1− σ < 0 (i.e. σ > 1) (see
Figure 3). Because of this, it follows that if γN > 1, a given size change in θs, or π
has larger effects on γN in the low curvature (high IES) case.

Further, equation (6) simplifies considerably when 1− σ = η. In fact,

γσ
N = βγ1−σ

[
w

θs
+ π

]
(7)

We use this version of the Euler equation in our quantitative analysis below. Sum-
marizing the discussion to here we see:

Proposition 1. The following comparative statics results across BGP’s hold for pop-
ulation growth, γN :

1. An increase in γ causes γN to rise if 1 > η ≥ 1 − σ > 0 and to fall if η ≤
1− σ < 0.

2. An increase in the cost of children, θs, causes the population growth rate, γN to
fall.

3. An increase in adult survival, π, causes γN to increase.

Moreover, if γN > 1, a change in θs or π has larger effects on the BGP level of γN if
1 > η ≥ 1− σ > 0 than if η ≤ 1− σ < 0.

It also follows that ∂γN
∂β

> 0 and ∂γN
∂w

> 0 if θs = a (goods cost) and ∂γN
∂w

= 0 if

θs = bw (time cost). We do not emphasize these because they play no role in the
quantitative discussion we focus on below.14

These comparative statics have important implications for studying trends in fer-
tility using this type of model. From the beginning of the 19th century to the end
of the 20th century, Crude Birth Rates (CBR) fell substantially, while population
growth rates (net of immigration) decreased only slightly. Since the rate of growth
of productivity has increased over the period describing these demographic changes,
it follows from this that we would expect population growth rates to fall as a result
as long as σ > 1. We explore this issue quantitatively below. Moreover, note that a
decrease in youth mortality is interpreted as a decrease in the cost of surviving chil-
dren, θs, while increases in expected working life lengths are interpreted as increases
in π. Hence, smaller increases in population growth in response to changes in mortal-
ity declines (through θs or π) may be a desirable prediction. From the proposition,
this is the case with lower IES (i.e., σ > 1). In the next two subsections, we derive
a model analogue for the Crude Birth Rate and introduce survival probabilities to
adulthood to discuss relevant comparative statics.

14If all child costs are goods costs, increases in labor income taxes are equivalent to reductions in
w. Thus, it follows that increasing the labor income tax rates will decrease both population growth
rates and fertility on the BGP, cf. Manuelli and Seshadri (2005). At the other extreme, if all costs
are in terms of time (θ = bw), fertility and population growth rates are independent of labor income
taxes.

17



4.3.2 Comparative statics of the Crude Birth Rate, surviving children

In this version of the model, the variable of choice is the total number of surviving
births in the dynasty in a given period, Ns,t. This does not map naturally to the
usual measures of fertility used by demographers such as Total Fertility Rate (TFR)
or Cohort Total Fertility Rate (CTFR). This is complicated by the fact that the
model is unisex and monoparental — i.e., each agent has children and is on his/her
own and this is true for everyone, not just women. These assumptions are made for
simplicity.15 There is a natural relationship, however, between Ns,t and a common
measure of fertility, the Crude Birth Rate — CBR. In the data, the latter is calculated
as the number of children born in a period divided by the population in that period.
In the model, we have:

CBRs,t =
Ns,t

Nt +Ns,t
=

Nt+1 − πNt

Nt +Nt+1 − πNt
=

γNt − π

1 + γNt − π
,

where γNt =
Nt+1

Nt
is the growth rate of the adult population between periods t and

t+1. This expression for CBRs corresponds to the number of births during a period
divided by the end of period population. Here, we are assuming that all children
survive giving the expression in the text. Below, we also introduce infant and child
mortalities and differentiate between CBR measured in births vs. CBR measured in
surviving children. Thus, this is one obvious identification between data and model
quantities that can be used.

On the BGP, CBRs is constant and is given by:

CBRs =
γN − π

1 + γN − π
=

1

1 + 1
γN−π

.

This is of the form 1
1+1/x

and because of this it follows that the comparative
statics results given above for γN for changes in γ and θs also hold for CBRs. The
one exception to this concerns the effects of changes in expected life length. Even in
this case, CBRs is a monotonically increasing function of (γN − π), and so the sign
of ∂CBRs

∂π
is the same as the sign of ∂γN

∂π
− 1. Thus, while an increase in π always

increases population growth rates, whether or not it increases CBRs depends on the
size of ∂γN

∂π
. If it is less then 1, ∂CBRs

∂π
< 0 while the opposite holds if ∂γN

∂π
> 1. When

η = 1− σ, we find that:
dγN

dπ
=

β (γγN)
1−σ

σ

Note that γγN = γC , the growth rate of aggregate consumption by the dynasty.
As is standard in growth models, β (γγN)

1−σ is the growth rate in utility. This
must be less than one for a well defined (finite) solution to exist for the dynasty’s
maximization problem. If σ > 1, that condition holds if β < 1, γ > 1 and γN ≥ 1.

15See Section 7 for further discussion of other measures of fertility.
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Thus, it follows that in this case, ∂CBRs
∂π

< 0 as long as γN ≥ 1. If σ < 1, the condition

is β (γγN)
1−σ < σ which is not necessarily satisfied. Summarizing, we have:

Proposition 2. The following comparative statics results hold across BGP’s for sur-
viving children, CBRs:

1. An increase in γ causes CBRs to rise if 1 > η ≥ 1 − σ > 0 and to fall if
η ≤ 1− σ < 0.

2. An increase in the cost of children, θs, causes the fertility rate, CBRs to fall.

3. If η = 1 − σ < 0, and βγ1−σ
[

w
θs
+ π

]
> 1 (i.e., γN > 1), an increase in π

causes CBRs to fall.

Moreover, if γN > 1, a change θs has larger effects on the BGP level of CBRs if
1 > η ≥ 1− σ > 0 than if η ≤ 1− σ < 0.

For the quantitative assessments below, it is interesting to note that by analogy to
a growth model, although a decrease in the depreciation rate causes the rate of growth
of the capital stock (i.e., population growth in this interpretation) to increase, this
does not necessarily imply that investment’s share in output (i.e., fertility) increases.
Indeed, when η = 1− σ < 0, population growth, γN , increases while fertility, CBRs,
falls in response to an increase in π.

4.3.3 The effects of changes in survival to adulthood: births vs. survivors

Going back to the original Barro-Becker work one common exercise has been to
examine the implications for the model quantities when survival rates of children
(e.g., Infant Mortality Rates (IMR) and Child Mortality Rates (CMR)) change.16

Because of the equivalence of the problems derived in Section 4, an increase in πs

lowers the cost of children and hence, by the argument above increases γN and CBRs.
Note that it is γN and CBRs calculated in terms of surviving children that increase
and this does not necessarily imply that, for example, CBR calculated in terms of
births goes up. To make this distinction clear we introduce one new piece of notation

CBRt =
Nb,t

Nt +Ns,t
=

CBRs,t

πs

Thus, even though CBRs is increasing in πs it need not be true that CBR is. Also,
the smaller the increase in CBRs the larger the decrease (smaller the increase) in
CBR in response to an increase in youth survival πs. This is the case for low levels
of IES as per Proposition 2.

Additional layers of complexity can also be added (cf. Doepke (2005) for exam-
ples). For example suppose that there are 3 stages that children must pass through to
become adults, say, infancy, childhood and youth. Suppose i) πi is the survival prob-
ability of infants which cost θi to raise ii) πic is the conditional survival probability to

16This was used in the original Barro and Becker (1988) and Becker and Barro (1989) as well as
in Boldrin and Jones (2002), Schoonbroodt (2004), Doepke (2005), etc.
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be a youth given survival through infancy and θc is the cost borne by parents during
childhood, and iii) πcy is the probability of surviving to adulthood conditional on sur-
viving to be a youth and θy is the cost to parents of children in youth. Then the total
child-rearing cost to a parent that has Nb births is θiNb + θcπiNb + θyπicπiNb while
the total number of surviving children produced is Ns = πsNb, where πs = πiπicπcy.
Thus, to produce Ns surviving children, Nb must be Ns

πs
and hence, the total cost is:

θsNs ≡ (θi + πiθc + θyπicπi)Nb =
θi+πiθc+θyπicπi

πs
Ns;

or, the per surviving child cost is:

θs =
θi

πiπicπcy
+ θc

πicπcy
+ θy

πcy
.

Again, we see that increasing survival rates (πi or πic or πcy or any subset) lowers
the cost of producing a surviving child and hence from the results above both the
population growth rate and CBRs increase. As above, this need not be true of
CBR, however. We use this formulation in our time series experiment for the U.S.
in Section 6.

Two special cases are worthy of mention. The first is one in which all costs have
to be borne for all births, e.g. πi = πic = 1. In this case we are back to the case
described in the beginning of this section where πs = πcy and θb = θi + θc + θy. This
is the case we consider in our first set of quantitative experiments. The second one is
where only survivors are costly, while births that die before a certain age are costless.
For example, if πic = πcy = 1 (i.e., children die in infancy or survive to adulthood)
and θi = 0, then Ns and CBRs are independent of πs = πi. Thus, Nb =

Ns

πi
and

CBR = CBRs
πi

are clearly decreasing (and hyperbolic) in πi (see Doepke (2005) for a
full exposition). In general, however, whether the number of births, CBR is increasing
or decreasing in πs depends on which of the two percentage increase is larger, the one
in CBRs or the one in πs. Again, we summarize in a proposition:

Proposition 3. The following comparative statics results hold across BGP’s for total
births, CBR:

1. An increase in γ causes CBR to rise if 1 > η ≥ 1 − σ > 0 and to fall if
η ≤ 1− σ < 0.

2. If If η = 1 − σ < 0, and βγ1−σ
[

w
θs
+ π

]
> 1 (i.e., γN > 1), an increase in π

causes CBR to fall.

Moreover, in both cases, percentage changes in CBR are equal to percentage changes
in CBRs.

3. An increase in πs causes CBR to fall if dCBRs
dπs

< CBRs
πs

.

As noted in the previous section, it is important for what is coming to remember
that although increases in the components of πs (and hence decreases in θs) increase
CBRs, this increase is smaller when σ > 1. Hence, it is more likely that the condition
in (3.) holds if σ > 1.
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5 Quantitative comparative statics

Our next task is to extend the insights gained above to get quantitative estimates of
the model predictions in terms of population growth rate and CBR in response to
(unanticipated) changes in the parameters as seen in the data.

First, we discuss how the model can be calibrated to match (current) levels of
fertility and/or population growth rates. Most of the parameters needed can be
taken directly from the quantitative growth and RBC literatures. The exceptions to
this are θ, the cost of raising a child, and η the utility parameter governing curvature
over dynasty size. For simplicity we set η = 1− σ throughout.17 We find that when
σ > 1, the needed calibrated costs to match any given fertility level are substantially
lower.

Second, we examine the quantitative comparative statics on BGP fertility of (un-
expected) changes in i) growth rates in productivity (or wages), ii) survival rates to
adulthood, iii) expected working lifetimes as observed in many western countries over
the last 200 years. In keeping with the comparative statics results highlighted in the
previous section, we find:

i) an increase in the rate of growth of wages causes a substantial reduction in
population growth rates when σ > 1, no change when σ = 1 and a significant
increase when σ < 1;18

ii) an increase in survival to adulthood increases surviving fertility and population
growth rates, but this effect is significantly smaller when σ > 1, indeed the
number of total births falls substantially;

iii) increasing expected lifetimes increases the population growth rate, but fertility
falls, and the size of the fall is larger when σ is higher.

In the last section, we combine these three effects to see what the predicted effects
on fertility are from changing all three of these factors with the appropriate timing
of events in the U.S. over the last 200 years. We find that it predicts that the CBR
falls from about 36 to 17 births per 1000 population, capturing two thirds of the 45
to 16 decrease observed in the data and with similar timing.

5.1 Calibration: fertility levels and costs of children

In this subsection we use the Euler equation in (7) to calibrate costs of children given
all other parameters and targeting zero population growth. This exercise corresponds
roughly to choosing a cost of children that matches the fertility experience (i.e., about
15 birth per 1000 population) of the developed countries (e.g., U.K., U.S., Germany,
France, etc.) over the 1970 to 1990 period. We find that the cost parameter needed to

17Note that given our two admissible parameter configurations, η would have to be adjusted
whenever we compare results for values of σ > 1 and σ < 1. Hence, the assumption that η = 1− σ
is fairly innocuous. In this case, the two utility effects of increasing dynasty size cancel out and
children are a pure investment good — independently of σ.

18By σ = 1 we mean the case where U0 =
∑
βt logCt.
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match this population growth rate is highly sensitive to our choice of σ. For example,
if σ = 0.5 it is necessary that the cost of a child is about 15.4 years of one adult’s
output. On the other hand, if σ = 3, this cost drops to about 4.5 years of output per
child.

From the results of the previous section, we find:

γN =
[
β
[

w
θs
+ π

]]1/σ
[γ]1/σ−1.

Now, suppose there are T years in a period. Then we can rewrite the equation
above in annual terms as (the subscript ann denotes annual values):

γT
N,ann =

[
βT
ann

[
w
θs
+ πT

ann

]]1/σ [
γT
ann

]1/σ−1

Solving for θs
w

gives

θs
w
= 1[

γσ
N,ann

βannγ
(1−σ)
ann

]T
−πTann

.

where the relevant πT
ann is the probability of an adult surviving (in the workforce)

for T years. We choose T = 20 and hence πann = 0.971 to match an expected
adult (working) life, T

1−π
, of 45 years. Moreover, we assume an annual discount

factor of βann = 0.96, an annual productivity growth rate of γann = 1.02, an annual
population growth of γN,ann = 1.00 and zero infant, child and youth mortality, i.e.
πi = πic = πcy = 1.0 (in line with recent experience in developed countries). Thus,
θs = θb in our calibration. We consider various values of σ ∈ {0.5, 1, 2, 3}.

Table 1: Costs of children

σ θs
w

T × θs
w

0.5 0.77 15.38
1.0 0.59 11.72
2.0 0.36 7.13
3.0 0.23 4.50

The units of θs
w

are the fraction of one periods per capita output that it costs to
raise one child. To get a sense of how costly children must be in the model in order to
match realistic growth rates of population, it is more convenient to express it in terms
of the number of years of output that are required to raise a child, i.e., T × θs

w
. Our

choice of T = 20 also corresponds to assuming that it takes 20 years for a newborn
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to become a productive worker. Given this, for various values of σ, our findings are
summarized in Table 1.

Clearly, the values of the costs of raising children — in the range of 5 to 15 years of
one person’s output — are very sensitive to the choice of the intertemporal elasticity
of substitution in consumption (IES). The intuition for this is as follows. When σ is
high (i.e., there is a strong desire to smooth consumption), high growth in aggregate
consumption is not valuable (as above, since the two utility effects of dynasty size
cancel out this is the only effect that matters). Aggregate consumption grows at rate
(γγN). Hence, everything else equal, the population growth rate is decreasing in the
desire to smooth consumption (σ). Vice versa, to get a given population growth rate
(i.e., fertility level) to be optimal, one needs higher costs of children when σ is lower.

These results have important implications about realism. For example, one im-
plication is that if σ = 0.5, to keep population constant approximately 77% of each
persons output between the ages of 20 and 40 must be devoted to child-rearing, an
unrealistically high number. In contrast, when σ = 3.0, the corresponding number is
only 23%.19

5.2 Industrialization and the transition to productivity growth

In this subsection we present the quantitative effect of an increase in the rate of
technological progress, γ, from 0 to 2 percent on the population growth rate (and
CBRs). We use the calibration of costs from Table 1 so that the zero population
growth target, γN,ann = 1.00 remains for γann = 1.02. Given our calibration strategy,
we assume that πi = πic = πcy = 1.0 throughout for this experiment. Because of
this, CBR = CBRs.

20 In Figure 4 (and Table A.1), we report CBR at an annual
frequency. This is calculated as:

CBRs,ann =
CBRs

T
.

In line with comparative statics results in Propositions 1 and 2, we can also see
that for high values of IES (σ = 0.5), CBRs increases by a factor of three while
for low values of IES, it decreases by about 25 percent in response to an increase in
productivity growth from 0 to 2 percent per year.

5.3 Survival to adulthood

Here, we use the calibrated version of the model to assess the impact of increases in
survival rates to adulthood that have been observed over the last 150 to 200 years.

19Equivalently, if σ = 0.5, it is only possible for two parents to raise 2/0.77≈ 3 children, and that
this would require 100% of both parents efforts. When σ = 3.0, on the other hand, this calculation
gives 2/0.23≈ 8.0 children.

20Note that as long as costs of children are adjusted appropriately, the length of the time period
does not matter for this result.
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Figure 4: CBRs as a function of γ for different values of σ
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For the most part we use the values from Doepke (2005) to facilitate comparisons
and highlight the effects of higher curvature in the utility function.

To do this, we assume, as above, that there are three sub-periods before reaching
working age after one period, 20 years. Thus, we need to specify both the sub-
period costs, (θi, θc, θy) and the sub-period conditional survival rates, (πi, πic, πcy).
We assume that in 1970, πi = πic = πcy = 1, and follow Doepke (2005) in assuming
that θy = 0 and costs are the same for every year age 0 to 5, i.e. θc

θi
= 4. Thus, given

this and our finding above on θs/w in the calibration section we get (θi, θc, θy)/w =
(1
5
θs
w
, 4
5
θs
w
, 0). Note that these vary with σ. However, we assume that these costs have

not changed over time while mortality rates have — decreasing the effective cost of
surviving children.

We consider the following exercise given these cost parameters. First, we assume
that πi = πic = 1, but, we vary πcy from 0.6 to 1. This corresponds to a situation
in which the full cost up to age 20 must be borne for every birth, but not all births
survive to become working adults. Our results are summarized in Figure 5 (and
Table A.2).

For all three values of σ, surviving fertility (CBRs) increases while total births
(CBR) decreases. However, for higher values of σ (lower IES) the increase in CBRs

is less pronounced while (for this range of πcy) the decrease in CBR is larger. Similar
to what we saw with changes in productivity, larger values of σ predict changes in
fertility and changes in population growth rates that are more closely in line with
observed historical trends. In the time series exercise in the next section, we change
all three subperiod survival probabilities.
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Figure 5: CBR and CBRs as a function of πcy for different values of σ
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Figure 6: CBRs as a function of EWL for different values of σ
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5.4 Life expectancy

Here we study the quantitative effects on fertility choice of changing the expected
working lifetime of an adult, π. As above, we use the calibration as our base case
with πann = 0.971 to match an expected working life of 45 years and calculate the
effects of lowering π to decrease expected working life to 25 years. As in Section 5.2,
note that in this exercise, CBR = CBRs since πs = 1 throughout by assumption.
Again, we consider σ = 0.5, σ = 1 and σ = 3.0. Our results for this case are
summarized in Figure 6 (and Table A.3). Expected working life, T

1−π
, is reported in

column 2.
As can be seen in Table A.3, an increase in expected working life increases pop-

ulation growth, γN , for all values of IES. CBRs however, decreases, and more so for
lower values of the IES. In fact, for σ = 0.5, fertility remains roughly constant, while
for σ = 3.0, it decreases by about 30 percent.

6 The U.S. experience 1800-1990

The pattern of fertility decline in the U.S. from 1800 to 1990 is as follows. According
to Hacker (2003), CBR was roughly constant at 45 births per 1000 population from
1800 to 1860, then decreased to 19 in 1930.21 From Haines (1994b), we find that
from 1930, the bottom of the pre WWII baby bust, CBR increased to 23 in the 1950s
and 1960s, the peak of the post WWII baby boom, and finally fell to 15.8 in 1990
(Figure 7).22 From Haines (1994b), population growth rates (net of immigration),
as plotted in Figure 8, decreased from 2.6 percent per year to 0.65 percent per year,
again with a down then upward swing from 1930 to 1960.

As a final experiment, we examine the effects of simultaneously changing γ, θs
(through changes in πi, πic, and πcy) and π in line with the experience of the U.S.
(and other industrialized countries, see the Appendix for the case of the U.K.) over
the period from 1800 to 1990. We calibrate to the U.S. population growth rate (rate
of natural increase, see Haines (1994b), Table 1) in the 1970s of γann,N = 1.0065.
This implies costs of children as summarized in Table 2.

As in Section 5.3 we assume that base costs in infancy and childhood are a fraction
of calibrated costs when infant and child mortality are zero. In terms of the costs in
the table above, we have (θi, θc, θy)/w = (

πs
1+4πi

θs
w
, 4πs
1+4πi

θs
w
, 0). We assume that these

stay constant throughout the experiment.23

We use data on productivity growth, survival probabilities to adulthood and ex-
pected lifetimes in the U.S. from 1800 to 1990 (see Table A.4 in the Appendix for the

21See Table A.4 for further detail. Note that earlier estimates of CBR in the 19th century were
higher, at about 55 births per 1000 population in 1800 to 45 in 1850 (e.g. Haines (1994b)).

22For an application of tools similar to those used in this paper with stochastic productivity to
address fluctuations in fertility, see Jones and Schoonbroodt (2006).

23See Mateos-Planas (2002) for an estimation of how these base costs must have changed in several
European countries to fully match their fertility experience.
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Table 2: U.S. Costs of children in 1990, Time Series Experiment

σ θs
w

T × θs
w

0.5 0.72 14.32
1.0 0.51 10.25
3.0 0.16 3.24

exact time series used and data sources). This data implies the following ranges for
(γ, πi, πic, πcy, π) :

• in 1800, (γ, πi, πic, πcy, π) = (1.00, 0.77, 0.89, 0.92, 0.58);

• in 1990, (γ, πi, πic, πcy, π) = (1.018, 0.99, 1.0, 1.0, 0.62).
Note that, in the model, agents assume that current values of these parameters

will prevail forever.24

Figure 7: The U.S. experience from 1800 to 1990, CBR
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24The assumption that agents believe that productivity growth, mortality and longevity will be
constant forever is an extreme one but greatly simplifies the analysis. Since a model period is twenty
years and these parameters change fairly slowly this seems a reasonable assumption. An alternative
extreme would be to assume that agents perfectly foresee the exact future path of parameter changes.
The results of this exercise for σ = 3 are shown in the Appendix. The predictions are virtually
identical.
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Figure 8: The U.S. experience from 1800 to 1990, annual population growth rate
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The results of this experiment are shown in Figure 7 and Figure 8. As can be seen,
for high IES (σ = 0.5) the model predicts a large increase in CBR. The model also
predicts a large increase in population growth rates in this case. These predictions are
in part due to the increase in survival to adulthood and in part due to the increased
growth rate in productivity, both of which always imply an increase in population
growth rates for σ < 1 (see Proposition 1). The first of these findings is consistent
with Doepke (2005) and is the reason for his conclusion that the basic Barro-Becker
model doesn’t fit the facts (even though a more sophisticated model with sequential
fertility choice performs slightly better).

For σ = 1, the model predicts a sizable fall inCBR. However, since the probability
of surviving to adulthood is increasing over the period, the number of surviving
children (CBRs) may increase even if the number of births (CBR) falls. In fact,
if increased survival to adulthood was the only exogenous change over the period,
CBRs (and the population growth rate, γN) would increase for all values of IES (see
Becker and Barro (1988), Barro and Becker (1989) and Propositions 1 and 2). Indeed,
the case shown with σ = 1 has CBR falling but CBRs increasing. These properties
of CBRs are directly reflected in the predicted time path of population growth rates
(see Figure 8).25 This is partly due to the fact that changes in productivity growth do
not affect CBRs or population growth rates when σ = 1 (see Propositions 1 and 2).
These results are in keeping with Bar and Leukhina (2005) who find that changes in
productivity have only a small effect on fertility while changes in mortality have a
relatively large effect.

Finally, for low IES (σ = 3), the overall changes give rise to a predicted fall

25Comparative statics with respect to π differ for CBRs and γN but observed changes in life
expectancy were small, see decomposition exercise below.
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in CBR from 36.27 in 1800 to 17.19 in 1990. This is similar in magnitude to the
reductions seen over the period in countries like the U.K. and the U.S. where CBR is
estimated to have been in the range of 35 to 45 children per 1000 population in 1800.
In this case, CBRs is decreasing over the period, which is mainly due to increased
productivity growth (see Proposition 2). In terms of population growth rates, the
model predicts a fall from 1.42 to 0.65 percent per year. Hence, changes in CBR
predicted by the model capture about two-thirds of changes observed in the data,
while model predictions of changes in population growth rates, γN , capture about
one half of observed changes.26

Next, we decompose the sources of these changes (for σ = 3) into the three
components separately. That is, we ask what the model would predict for both CBR
and for γN if two of the three forcing variables had stayed at their 1800 levels, while
the other changed as per the experiment above. The results from these calculations
are shown in Figures 9 and 10. We find that, taken one at a time, both changes
productivity growth (γ) and changes in survival probability to adulthood (πs) have
sizable impacts on CBR. Changes in expected lifetime (π) account for a relatively
small decrease in CBR. As can be seen, the effect is largest for changes in πs which
by itself shows a decrease in CBR from 36.3 to 24.7. The effect of changing γ alone is
smaller but still significant, reducing CBR from 36.3 to 28.6. The effect of a change
in π is substantially smaller, causing a reduction in CBR from 36.3 to 33.0. On the
other hand, the changes in both πs and π cause population growth, γN , to increase. It
is the increase in productivity growth, γ, that alleviates this so that, in sum, the effect
of the three changes taken together on γN is negative, i.e., the increase in γN from
increases in πcy and π is more than offset by the decrease in γN resulting from the
increase in γ.27 These finding are consistent with Mateos-Planas (2002) who focuses
on population growth rates (rate of natural increase) and therefore understates the
importance of mortality to understand the facts of the demographic transition.

The results of the decomposition exercise are also interesting because of their
implication about the timing of fertility decline. Previous authors have criticized
the hypothesis that the fertility decline was a byproduct of a reduction of infant
mortality rates because of questions about the relative timing of these two changes
(see for example, van de Walle (1986), Doepke (2005), Fogel (1991)). The model

26We have also experimented with even higher values for σ (not shown here). Although the implied
levels for the CBR are even higher in the earlier periods, this change is not large, and even levels of
σ close to 1,000 do not generate the entire change seen in the data.

27The range for survival probabilities conditional on reaching age 20, π, are deduced from measures
of expectation of life (EL) at age 20 (see Table A.4, column g). One issue related to this is that
expected time in retirement has increased dramatically over the past 150 years (see Lee (2001)). We
performed the same experiment using expected working life at age 20 (EWL) (i.e. the difference
between expected lifetime and expected years of retirement, see Table A.4, column i ) and obtained
very similar results, namely a decrease in CBR from 36.95 to 19.6 and a decrease in population
growth from 1.44 percent per year to 0.65 percent per year (details available upon request). The
trade-off between using either one of these measures is that on the one hand, EL overstates the
benefits in terms of income from having children, while EWL understates the benefits from dynasty
size (since retirement is analogous to death in this case).
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predictions here also show that the decrease in youth mortality has very little effect
before 1880. Then, from 1880 to 1950, changes in youth mortality (from survival to
age 20 of πs = 0.64 in 1880 to πs = 0.96 in 1950) account for 93 percent of the
total model predicted change in CBR. However, changes in productivity growth rates
(from 0 in 1800 to 1.4 percent per year in 1880) account for 90 percent of the total
model predicted change in CBR for the early period.

In sum then, all three effects are quantitatively important in understanding the
model predictions about the history of fertility and population growth over the last
200 years. An important requirement for the success of the model is low values for
the IES in consumption.

Figure 9: Decomposition, CBR

10

15

20

25

30

35

40

1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Time

C
B

R
 p

e
r 

1
0

0
0

 p
o

p
u

la
ti

o
n

CBR (Youth Mort. only)

CBR (TFP only)

CBR (Life Exp only)

CBR (All)

Figure 10: Decomposition, annual population growth rate
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7 Extensions

7.1 Lifetime, fertile period and other measures of fertility

The discussion of the sections above shows the potential interest in studying simple
Barro-Becker based models with low intertemporal substitution to understand fertility
choice. One difficulty with those results is that they are stated entirely in terms of
Crude Birth Rates and population growth rates, γN , across BGP’s, while the usual
statistics that are discussed are stated in terms of fertility rates. While there is a
direct mapping between γN and CBR in the model to their data counterparts, the
comparison to other measures such as Total Fertility Rate (TFR) or total Children
Ever Born (CEB) to a woman (also known as Cohort Total Fertility Rate) are not so
straightforward without making further assumptions about the relationship between
model and data quantities. This is because we have made the simplifying assumption
that all adults are identical independently of when they were born. The purpose of
this assumption is to keep the number of state variables in the model at one (i.e., Nt)
while still allowing the benefits from a birth to last for more than one model period
(i.e., 20 years). One cost of this assumption is that there is no direct upper bound on
the length of life, or the length of fecund life.28 This issue does not arise in a standard
Barro-Becker model in which it is assumed that an adult lives for only one period.
In that case, fertility of an individual over a lifetime is by assumption the same as
the fertility during one period. This also results in a one state variable model. The
cost however is that it is automatic that the benefits, both in terms of income and in
terms of utility flows, of a child last only for one period.

The obvious remedy for this problem is to increase the number of state variables
in the model and keep track of the age of the individuals in the economy. Such a
model would allow us to have both realistic expected adult lifetimes and realistic
fecund periods.

An alternative is to adopt the assumption that adults can only have children in
the first period of their adult lives. Under the additional assumption that exactly
half of these people are women there is a simple expression for the analog of CEB in
the model:

CEBmod =
Nbt

πsNbt−1
× 2 = 2× 1

πs
× Nbt

Nbt−1
,

where πs is the probability that a birth becomes an adult.

On the BGP, Nbt

Nbt−1
= γN

29, and hence this can be rewritten as:

28For example, consider the Total Fertility Rate, a common measure of fertility in demography.
This is defined as the total number of children a woman would have in her lifetime if she lived
long enough for her fertility to be completed. If we assume that in the model, all adults are literally
identical, fertility is never completed and hence, TFR frommodel data would be infinite by definition.

29Since γN =
Ns,t+πNt

Ns,t−1+πNt−1
=

γNsNs,t−1+πγNNt−1

Ns,t−1+πNt−1
, we must have γNs

≡
Ns,t

Ns,t−1
= γN . And since

on a BGP, πs,t = πs,t−1 = πs we have γN =
Nb,t

Nb,t−1
.
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Figure 11: Completed Fertility Model vs. Data: 1850 to 2000
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CEBmod = 2×
1
πs
× γN = 2×

1
πs
× γ20Nann.

Thus, for example, if πs = 1 and γN = 1, CEB = 2 — i.e., for population to be
constant (γN = 1) each woman must have two children in her life.

To see how well the model tracks individual fertility we constructed the implied
CEBmod for the simulated time series for the US from the previous section. This is
shown in Figure 11 along with several cuts of the historical U.S. data on CEB over
the period between 1850 and 2000. Included are the overall CEB, that for women
in families living on farms, and for those not living on farms.30 As can be seen, the
model predicts an increase in CEB from about 2.2 in 1990 to about 4 for women
having children about 1850. As can be seen in the figure, the increase in the data is
larger, from about 2 to about 5 or 6 children, depending on which cut of the data is
used. Thus, the predictions of the model capture about 2/3 of the decrease in fertility
for non-farm families, and only about 50% of the decline for farm families.

7.2 Adding child quality as a choice variable

In the model laid out so far, parents have no control over children’s well being or
quality, Ut+1. This simplification allowed us to derive simple intuitions and analytic
comparative statics. There are various ways, however, in which parents can affect
children’s initial conditions. Two ways addressed frequently in the literature using
dynastic models are bequests (e.g. Becker and Barro (1988), Barro and Becker (1989))
and human capital investments (e.g. Becker, Murphy and Tamura (1990), Manuelli

30This data on CEB is taken from the U.S. Census and only goes back to the 1825 to 1829 birth
cohort of women. Their active fertility period began in about 1850. See Jones and Tertilt (2007)
for more detail about sources.
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and Seshadri (2007)). In this Section, we include physical capital (i.e., bequests) into
the model. As in Barro and Becker (1989), interest rates and wages are determined
in equilibrium. We find that the basic intuitions go through with this change. That
is, for low values of IES, population growth rates fall when productivity growth rates
increase. However, the threshold for which the sign of the productivity growth effect
switches is no longer σ = 1. Quantitatively, effects are smaller. The intuition for
this result is that when productivity growth increases exogenously, Ut+1 tends to
increase, but parents now have an extra margin with which to adjust Ut+1 itself by
leaving fewer bequests. This tends to dampen the complementarity /substitutability
effect on fertility choice. This result suggests that even this model bypasses important
effects such as increasing returns in human capital (as in Becker, Murphy and Tamura
(1990), for example).

The representative dynasty problem we are interested in is given by

Max{Ct,Nt,Kt} U0({Ct, Nt, Kt}) =
∑∞

t=0 β
tNη+σ−1

t
C1−σ
t

1−σ

s.t.
Ct + θstNst +Xt ≤ wtNt + rtKt

Kt+1 ≤ (1− δ)Kt +Xt,
Nt+1 ≤ πNt +Nst

(N0,K0) given.
31

The first order condition with respect to Kt+1 and Nt+1 together with the budget
constraint, boil down to the following system of equations governing the solution to
this (partial equilibrium) problem:

γσ
ctγ

1−η
Nt = β(rt+1 + 1− δ)

θt(rt+1 + 1− δ) =
[
(η+σ−1)
(1−σ)

Ct+1
Nt+1

+ [wt+1 + θt+1π]
]

Ct
Nt
+ θtγNt +

Kt+1

Nt+1
γNt = [wt + πθt] + (rt + 1− δ)Kt

Nt

To close the model, wages and interest rates are determined in equilibrium by a
firm hiring labor and capital to maximize profits with a CRS production function,
F (Kt, γ

tNt) = AKα
t (γ

tNt)
1−α. That is,

rt = FK(Kt, γ
tNt)

wt = FN(Kt, γ
tNt)

On a balanced growth path, we have γc,t = γc = γ, γN,t = γN , γC = γK = γγN ,
wages grow at γ and interest rates are constant. Denoting detrended variables by x̂
the above equations become:

γN =
[β(r+1−δ)]

1
1−η

γ
σ

1−η

31Notice that since as before one implicit assumption is that all alive adults are identical in this
model, we have to assume that parents share their assets equally among all surviving family members
(including themselves), so that initial conditions of all households are the same.
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ĉ∗ = [ŵ + πθs] + γ (r + 1− δ) k̂∗ − θsγN − k̂∗γNγ

r + 1− δ = γ
θs

(η+σ−1)
(1−σ)

ĉ∗ + γ
θs
ŵ + πγ

r = αAk̂∗α−1

ŵ = (1− α)Ak̂∗α

From the first equation above, it is clear that–as usual in Barro-Becker type
models, higher interest rates are typically associated with higher population growth.
In light of the comparative statics results above, suppose the rate of productivity
growth, γ, increases. Holding the interest rate fixed (i.e., in partial equilibrium), this
decreases the population growth rate. However, the interest rate is endogenous. In
response to an increase in productivity growth the BGP level of the capital-people
ratio, k̂∗, decreases and hence the interest rate increases which tends to increase
population growth. Whether the population growth increases or decreases depends
on all parameters, in particular the side of the parameter space one chooses:

I. In the case where 0 < η < 1 and 0 < σ < 1 the positive effect from the interest
rate is large since 1

1−η
> 1. However, since in this case, we also have σ

1−η
≥ 1,

the direct negative effect from an increase in productivity growth is also large.

II. In the case where σ > 1 and η ≤ 1−σ < 0, the positive effect from the interest
rate is small since 1

1−η
< 1. However, since in this case, we also have σ

1−η
≤ 1,

the direct negative effect from an increase in productivity growth is also small.

In the case where η = 1− σ a sufficient condition for the population growth rate
to be decreasing in productivity growth is σ > 1−α (this condition is necessary and
sufficient in the case where there is full depreciation in physical capital and people
live for only one period, i.e. 1−δ = γπ = 0, the analogue without capital was σ > 1).
Since α > 0, it is possible that the net effect on population growth from an increase
in productivity is negative even if σ < 1. Nevertheless, the typical values used in
the fertility literature (σ ≈ 0.5) with a capital share of α ≈ 0.4 do not satisfy this
condition.

Quantitatively, experiments analogous to those in Section 6 (calibrating to 1990
and changing youth mortality, longevity and productivity growth as observed in the
US since 1800), give results that are quite similar. Using the same parameters as
before together with σ = 3, α = 0.4 and capital depreciation of 5% per annum, the
model predicts a fall in CBR from 30.2 to 17.19 (compared to 36.3 to 17.19 in the
model without capital), while for σ = 0.5 CBR falls from only 20.3 to 17.19 (com-
pared to an increase from 2 to 17.19 in the model without capital). For population
growth rates, however, the effect of increased productivity which decreases population
growth no longer dominates the effect from mortality and longevity which increases
population growth rates. This produces a slight overall increase from 0.47% per an-
num to 0.65% per annum when σ = 3 and a large increase from -0.01% to 0.65% per
annum when σ = 0.5.
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Hence, the choice of σ is still crucial for qualitative and quantitative predictions
of dynastic models even if parents have some control over children’s initial conditions
(through bequests in this case) and hence, their well-being, Ut+1.

7.3 Other Extensions

There are many important extensions that could be done to give a clearer picture of
the quantitative properties of models like this. These include, but are not limited to:

1. Education as Child Quality

Many of the authors who have worked on the history of fertility have em-
phasized the role of changes in education over the last 200 years. Examples
include Becker, Murphy and Tamura (1990), Galor and Weil (2000), Fernandez-
Villaverde (2001), Soares (2003), Doepke (2004) and (2005), Manuelli and Se-
shadri (2006), Rosenzweig (1990) and many others. From a formal point of
view, this is much like including a capital stock as discussed above, i.e., it is
another way for parents to affect the level of utility of their children. The tech-
nology and policy issues that arise might be quite different however. Examples
of the latter include the kinds of regulatory changes that have taken place, e.g.,
compulsary schooling, see Doepke (2005) for example.

2. Changes in costs of children

Throughout, we have assumed that the costs of raising a child to adulthood
have been unchanged over the period. However, when one adopts a broad view
of what determines these costs — e.g., subtracting out any direct input from
the child on a farm — this is clearly a strong assumption. Indeed, the relative
availability of land in the U.S. and the resulting implications for the size of net
costs of children may be one of key reasons the model predicts fertility that is
too low for the early years (and also one of the reasons that fertility was so
much higher in the U.S. than it was in the U.K.). Clearly the analysis would
benefit greatly from a more careful accounting of the costs of children along
these dimensions.

3. Endogenous Mortality

In our analysis, we have assumed that survival probabilities are exogenous to the
decision maker. While this is probably a reasonable assumption about many of
the improvements in health over the period (the development of the germ theory
of disease, the advent of pasteurization of milk and vaccinations), there are also
many aspects of health that affect these probabilities are in fact chosen. Indeed,
some authors have explicitly modeled this choice (e.g., Fernandez-Villaverde
(2001) and Kalemli-Ozcan (2002) and (2003)). Extensions along this line would
also be fruitful.
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8 Conclusion

In models of fertility choice based on parental altruism à la Barro and Becker, we have
shown that a key model feature is the decision on whether the number of children
and utility of those children are complements or substitutes. This is important both
qualitatively and quantitatively. When family size and utility of offspring are com-
plements, as is commonly assumed, there is a strong force to increase fertility when
conditions improve, either over time, or across countries. This is counter to what is
seen in the data. On the other hand, when they are substitutes, as we have shown
here, there is a strong force in the opposite direction. Further, we have shown that
this choice is closely related to the choice of the intertemporal elasticity of substi-
tution in consumption which through the desire to smooth consumption also affects
the size of the fertility response to changes in mortality, longevity and productivity
growth.

The effects laid out in this paper are purely preference driven and hence present
in many extensions including formulations with the possibility of leaving bequests or
educating children. Hence, the results in this paper shed new light on previous work
using Barro-Becker type preferences and are qualitatively relevant for any question
being addressed using these preferences.

As we have seen, the ability of the model quantities to match key features of
the data also depends critically on the choice of the IES. These quantitative results
help reconcile seemingly contradictory results in the quantitative literature addressing
trends in fertility.
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A Appendix

A.1 Remarks and issues regarding the dynasty utility

This formulation for the dynasty utility flow gives rise to some very useful simplifi-
cations that we will exploit below. One disadvantage of it however, is that it is not
equivalent to logarithmic utility when σ = 1. However, when η = 1− σ and σ → 1,
the preferences, will converge to those given by the utility function

∑
βt log(Ct). See

Bar and Leukhina (2006) for an explicit derivation of Barro-Becker preferences with
an IES equal to one.

Another concern may be the fact that, for σ > 1, U0 = −∞ if for any i and t,
nit = 0. From the dynastic point of view, if at any point in time, any descendant
has zero children that branch of the dynasty has −∞ continuation utility. When
0 ≤ σ < 1, this is not an issue however — the dynasty just gets U = 0. This is
particularly relevant for questions such as those in Doepke (2005) and Kalemli-Ozcan
(2003) where the probability to end up with zero children is positive. One can get
around this problem by adding small constants to consumption and children in the
utility and thereby preserve the properties of the present model to a large extent
while bounding utility away from −∞.32

Finally, there are ways to combine cases of low (high) IES and complementarity
(substitutability). For example, write the period utility in the dynasty problem as

[µNρ
t + (1− µ)Cρ

t ]
1−ψ
ρ

1− ψ

Then, as long as ρ < 1 − ψ, C and N are complements in utility and substitutes if
ρ > 1 − ψ. This implies that to overturn the effect of the IES, population and con-
sumption have to be very complementary/substitutable. The disadvantage of such a
formulation is that the basic interpretation of g and Ut+1 are no longer straightfor-
ward and disaggregation becomes difficult. The formulation above, implicitly assumes
ρ = 0, µ(1− ψ) = η + σ − 1 and (1− µ)(1− ψ) = 1− σ.

32Details available upon request.
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A.2 Results from Section 5

Table A.1: Changing productivity growth

Productivity Growth σ = 0.5 σ = 1.0 σ = 3.0

γann γN,ann CBRs,ann γN,ann CBRs,ann γN,ann CBRs,ann

1.00 0.98 5.25 1.00 15.38 1.013 21.37
1.01 0.99 10.49 1.00 15.38 1.007 18.45
1.02 1.00 15.38 1.00 15.38 1.00 15.38

Table A.2: Changing survival to adulthood (STA)

πcy θs/w γN,ann CBRann CBRs,ann

(STA)

0.6 0.85 0.993 19.68 11.81
σ = 0.5 0.8 0.80 0.997 17.51 14.01

1.0 0.77 1.00 15.38 15.38

0.6 0.65 0.996 22.46 13.48
σ = 1.0 0.8 0.61 0.998 18.31 14.65

1.0 0.59 1.00 15.38 15.38

0.6 0.26 0.998 24.16 14.50
σ = 3.0 0.8 0.24 0.999 18.80 15.04

1.0 0.23 1.00 15.38 15.38
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Table A.3: Changing expected lifetime (EL)

πann
T
1−π

γN,ann CBRs

(EL)

0.923 25 0.979 15.60
σ = 0.5 0.959 35 0.993 15.26

0.971 45 1.00 15.38

0.923 25 0.991 19.56
σ = 1.0 0.959 35 0.997 17.00

0.971 45 1.00 15.38

0.923 25 0.998 21.84
σ = 3.0 0.959 35 0.999 18.01

0.971 45 1.00 15.38

A.3 Time series used in Section 6

Data Sources for Table A.4:

• Column b, γ (annual productivity growth rate): is from the data on real wages
in Greenwood and Vanderbroucke (2005), from 1830 to 1988, for the period
from 1800 to 1830, we assumed γ = 1.00;

• Column c, πi (survival probability from age 0 to age 1): is derived from data
on Infant Mortality Rates, IMR’s from:

1850 to 1900 are from Haines (1994a), U.S. Model, Total Population Both Sexes;
1800 to 1840 are assumed to be the same as 1850;
1910 is taken from U.S. Department of Commerce (1910);
1920 to 1990 are from National Center for Health Statistics (1998);

• Column d, πic (survival probability to age 5, conditional on surviving to age 1):
1850 to 1900 are derived from year by year death rates in Haines (1994a), U.S.
Model, Total Population Both Sexes;
1800 to 1840 are assumed to be the same as 1850;
1910 is derived from year by year death rates from U.S. Department of Com-
merce (1910);
1920 to 1990 are from National Center for Health Statistics (1998);

• Column e, πcy(survival probability to age 20,conditional on surviving to age 5):
1850 to 1900 are derived from year by year death rates in Haines (1994a), U.S.
Model, Total Population Both Sexes;
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Table A.4: Annual Data Used for the Time Series Experiment in Section 6, U.S.

a b c d e f g h i j k
Y ear γ πi πic πcy

T
1−π

πann
T
1−π

πann CBR PG
EL EL EWL EWL data data

1800 1.000 0.771 0.895 0.916 38.41 0.964 36.73 0.961 45.40 1.027
1810 1.000 0.771 0.895 0.916 38.41 0.964 36.73 0.961 45.82 1.025
1820 1.000 0.771 0.895 0.916 38.41 0.964 36.73 0.961 45.12 1.027
1830 1.007 0.771 0.895 0.916 38.41 0.964 36.73 0.961 45.18 1.024
1840 1.007 0.771 0.895 0.916 38.41 0.964 36.73 0.961 48.17 1.023

1850 1.007 0.771 0.895 0.916 38.41 0.964 36.73 0.961 46.05 1.020
1860 1.007 0.803 0.909 0.926 40.32 0.966 38.69 0.964 45.19 1.018
1870 1.014 0.816 0.917 0.933 41.14 0.967 40.31 0.966 39.30 1.017
1880 1.014 0.775 0.899 0.920 39.65 0.966 38.03 0.963 35.16 1.016
1890 1.014 0.840 0.921 0.934 40.96 0.967 38.70 0.964 32.71 1.013

1900 1.014 0.871 0.930 0.940 41.73 0.968 38.80 0.964 28.58 1.013
1910 1.014 0.885 0.947 0.940 42.63 0.969 39.25 0.965 27.50 1.011
1920 1.018 0.908 0.990 0.992 44.45 0.971 40.60 0.967 24.92 1.012
1930 1.018 0.931 0.994 0.995 45.14 0.971 40.19 0.966 19.05 1.007
1940 1.018 0.945 0.997 0.997 46.77 0.973 41.01 0.967 18.60 1.012

1950 1.018 0.967 0.998 0.998 49.01 0.974 42.33 0.968 23.00 1.015
1960 1.018 0.973 0.999 0.998 49.65 0.975 41.77 0.968 22.70 1.011
1970 1.018 0.977 0.999 0.998 49.63 0.975 41.04 0.967 17.40 1.006
1980 1.018 0.987 0.999 0.999 51.73 0.976 40.46 0.966 15.10 1.006
1990 1.018 0.990 1.000 0.999 52.95 0.977 40.29 0.966 15.80 1.006

1800 to 1840 are assumed to be the same as 1850;
1910 is derived from year by year death rates from U.S. Department of Com-
merce (1910);
1920 to 1990 are from National Center for Health Statistics (1998);

• Column f, T
1−π

(EL) (expectation of life at age 20): is taken from Lee (2001),
Column B;

• Column g, πann (EL) (annual adult survival rate): is derived from Column f;

• Column h, T
1−π

(EWL) (expected working life at age 20): is taken from Lee
(2001), Column C;

• Column i, πann (EWL) (annual adult survival rate in the workforce): is derived
from Column h;

• Column j, CBR (crude birth rate, annual):
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1800 to 1930 are taken from Hacker (2003), Figure 1,
1940 to 1990 are from Haines (1994b), Table 3;

• Column k, PG (population growth rate, annual): are taken fromHaines, (1994b),
Table 1, RNI=rate of natural increase (net of immigration).

A.4 The case of the U.K.33

In this Section, we perform the same experiment as in Section 6 but using data for
the United Kingdom (England and Wales for the most part). The results are quite
similar: we capture about two-thirds of the change in CBR and one half of the change
in population growth.

The fertility experience in the U.K. over the past 200 years is similar to that of
the U.S., except that levels in 1800 were lower already. because of this the decrease,
both in CBR and population growth, was smaller. Mortality was also lower in the
U.K. than it was in the U.S. around that time. Finally, our estimates of productivity
growth suggest the latter was higher in 1800 as well. Since, fertility, mortality and
productivity growth are very similar in the two countries in 1990, all these observa-
tions are consistent with our theory and one would expect the model to capture the
same fraction of changes in fertility and population growth.

Data Sources for Table A.5:

• Column b, γ (annual productivity growth rate) from annual growth rate in
GDP per capita, (log GDP HP filtered λ = 400):
1800 to 1865 from Clark (2001),
1850 to 1990 from Maddison (1995), p. 194, rescaled to match Clark in 1850;

• Column c,d,e, (πi, πic, πcy) (survival rates from age specific mortality rates)
1800 to 1837 from Wrigley et al. (1997), Table 6.1, p.215,
1841 to 1990 from Human Mortality Database;

• Column f, T
1−π

(EL) (expectation of life at age 20):
1841 to 1990 from Human Mortality Database,
1800 to 1836 set constant at 39 years;

• Column g, πann (EL) (annual adult survival rate): derived from Column f;

• Column h, CBR (crude birth rate, annual):
1800 to 1871 from Wrigley et al. (1997),
1871 to 1986 from Mitchell (1998)

• Column i, CBR HP filtered (crude birth rate, annual): Column h HP filtered,
λ = 400;

• Column j, PG (population growth rate, annual):
1800 to 1837 from Wrigley et al. (1997), Table 6.1, p.215
1841 to 1990 from Human Mortality Database;

• Column k, PG HP filtered (population growth rate, annual): Column j HP
filtered, λ = 400.

33We thank Micheal Bar and Oksana Leukhina for help with data sources,
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Figure A.1: The U.K. experience from 1800 to 1990, CBR
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Figure A.2: The U.K. experience from 1800 to 1990, annual population growth rate
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Table A.5: Annual Data Used for the Time Series Experiment in Section A.4, U.K.

a b c d e f g h i j k
Y ear γ πi πic πcy

T
1−π

πann CBR CBR PG PG
EL EL data HP data HP

1801 1.006 0.863 0.884 0.864 39.00 0.965 37.60 39.23 1.014 1.014
1806 1.006 0.863 0.884 0.864 39.00 0.965 37.90 38.98 1.013 1.014
1811 1.006 0.867 0.870 0.925 39.00 0.965 39.18 38.72 1.015 1.014
1816 1.006 0.867 0.870 0.925 39.00 0.965 39.48 38.46 1.015 1.014
1821 1.006 0.855 0.864 0.943 39.00 0.965 40.22 38.17 1.016 1.014
1826 1.006 0.855 0.864 0.857 39.00 0.965 37.30 37.87 1.014 1.014
1831 1.006 0.860 0.877 0.840 39.00 0.965 36.03 37.55 1.012 1.014
1836 1.007 0.860 0.877 0.840 39.00 0.965 35.27 37.21 1.012 1.014
1841 1.007 0.838 0.859 0.894 40.57 0.967 35.61 36.86 1.011 1.013
1846 1.007 0.826 0.847 0.886 38.99 0.965 35.06 36.47 1.012 1.013
1851 1.008 0.829 0.858 0.893 40.19 0.966 35.98 36.05 1.016 1.013
1856 1.008 0.830 0.856 0.898 40.63 0.967 35.89 35.57 1.012 1.013
1861 1.009 0.836 0.854 0.902 40.48 0.967 36.30 35.02 1.012 1.013
1866 1.009 0.826 0.864 0.909 39.93 0.966 35.95 34.39 1.012 1.012
1871 1.010 0.830 0.874 0.913 40.01 0.966 35.00 33.67 1.015 1.012
1876 1.010 0.839 0.882 0.926 40.29 0.966 36.30 32.84 1.015 1.012
1881 1.010 0.845 0.889 0.930 41.33 0.967 33.90 31.91 1.012 1.011
1886 1.010 0.844 0.898 0.941 41.79 0.968 32.80 30.88 1.010 1.011
1891 1.010 0.837 0.900 0.942 41.37 0.968 31.40 29.76 1.016 1.010
1896 1.010 0.825 0.907 0.950 42.85 0.969 29.60 28.57 1.013 1.009
1901 1.010 0.843 0.919 0.953 43.43 0.970 28.50 27.32 1.010 1.009
1906 1.010 0.868 0.932 0.957 44.59 0.971 27.20 26.04 1.010 1.008
1911 1.011 0.883 0.939 0.958 45.37 0.971 24.30 24.74 1.006 1.008
1916 1.011 0.900 0.936 0.919 38.3 0.964 20.90 23.47 0.984 1.007
1921 1.011 0.918 0.958 0.964 47.54 0.973 22.40 22.23 1.010 1.007
1926 1.011 0.927 0.963 0.968 47.85 0.973 17.80 21.06 1.005 1.007
1931 1.012 0.935 0.972 0.970 48.54 0.974 15.80 19.98 1.004 1.006
1936 1.013 0.942 0.981 0.975 49.32 0.974 14.80 18.99 1.005 1.006
1941 1.013 0.946 0.984 0.968 48.33 0.974 13.90 18.09 0.979 1.006
1946 1.014 0.960 0.992 0.982 50.76 0.975 19.20 17.29 1.050 1.006
1951 1.015 0.972 0.995 0.992 52.39 0.976 15.50 16.55 1.003 1.006
1956 1.015 0.976 0.996 0.993 53.17 0.977 15.70 15.87 1.005 1.006
1961 1.016 0.978 0.997 0.993 53.48 0.977 17.60 15.22 1.010 1.005
1966 1.017 0.981 0.997 0.993 53.97 0.977 17.80 14.60 1.006 1.005
1971 1.017 0.983 0.997 0.994 54.26 0.977 15.90 13.98 1.005 1.005
1976 1.017 0.986 0.998 0.994 54.79 0.978 11.80 13.36 1.000 1.004
1981 1.018 0.989 0.998 0.995 55.69 0.978 12.80 12.75 1.000 1.004
1986 1.018 0.991 0.998 0.996 56.46 0.978 13.20 12.15 1.003 1.003
1991 1.018 0.993 0.999 0.996 57.39 0.979 13.20 12.15 1.004 1.003
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A.5 Perfect Foresight Transition Paths to BGP

In this section, we discuss an alternative to the calculation given in section 6. There,
the simulated data were calculated assuming that the agents believed that their cur-
rent circumstances, in terms of child costs, productivity growth rates and survival
probabilities, would prevail indefinitely into the future when making their decisions
— i.e., the calculations are BGP to BGP. The weakness of this is that it assumes that
agents act as if circumstances will not change in the future, even though they actually
will. At the other extreme, one could assume that agents in a give period t, anticipate
exactly all future changes that will occur — i.e., there is perfect foresight with respect
to future values of γ, π and θs. Here we give the calculations for the model under
this alternative assumption. We find that this makes very little difference in the end.

From the Planner’s problem in Section 4.1, the FOC for Nt+1 is:

θs,tN
η+σ−1
t C−σ

t = β
[
(η+σ−1)
(1−σ)

Nη+σ−2
t+1 C1−σ

t+1 + [wt+1 + θs,t+1πt+1]N
η+σ−1
t+1 C−σ

t+1

]

The other equation determining the solution is:

Ct = [wt + θs,tπt]Nt − θs,tNt+1.

After some algebra, these two equations can be rewritten as:

γ1−η
Nt

[[
wt+1
θs,t+1

+πt+1

]
−γNt+1

[
wt
θs,t

+πt
]
−γNt

]σ

= β
[
θs,t+1
θs,t

]1−σ [
(η+σ−1)
(1−σ)

[[
wt+1
θs,t+1

+ πt+1

]
− γNt+1

]
+
[

wt+1
θs,t+1

+ πt+1

]]

Ct
Nt

1
θs,t
=
[

wt
θs,t
+ πt

]
− γNt.

The first of these is a first order difference equation in γN . It has time varying
coefficients however.

If (θs,t, wt, πt) converge in the sense that wt
θs,t

→ w
θs
, θs,t+1

θs,t
→ γ, πt → π, it can be

shown that the solution to the model converges to the BGP determined by w
θs
, γ, and

π. Further, assuming that wt
θs,t
= w

θs
, θs,t+1

θs,t
= γ, and πt = π for all t ≥ t∗ for some t∗,

it can be shown that all of the relevant variables, measured in per capita terms, are
constant after date t∗. Because of this, the model can be solved backwards from t∗

in this case. Thus, suppose that the sequence of exogenous parameters is given by:

(θs,0, w0, π0, ..., θs,t∗, wt∗ , πt∗, γθs,t∗, γwt∗ , πt∗, ...).

Then, the solution to the perfect foresight infinite horizon problem is of the form:

(C0, N0, ....., Ct∗, Nt∗, Ct∗+1, Nt∗+1, ....)

where:

1) for t ≥ t∗ + 1, Nt+1 = γNNt with γN given by the solution to:

γ1−η
N = βγ1−σ

[
(η+σ−1)
(1−σ)

[[
wt∗
θs,t∗

+ πt∗

]
− γN

]
+
[

wt∗
θs,t∗

+ πt∗

]]
;
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2) Ct∗
Nt∗

1
θs,t∗

=
C∗

t∗

Nt∗

1
θs,t∗

=
[

wt∗
θs,t∗

+ πt∗

]
− γN ;

3) for s ≥ 1,

C∗

t∗

Nt∗

1
θs,t∗

=
[

wt∗
θs,t∗

+ πt∗

]
− γN ⇔

Ct∗+s
Nt∗+s

1
γsθs,t∗

=
[

wt∗
θs,t∗

+ πt∗

]
− γN ;

4) For t < t∗, γNt evolves according to the difference equation:

γ1−η
Nt

[[
wt+1
θs,t+1

+πt+1

]
−γNt+1

[
wt
θs,t

+πt
]
−γNt

]σ

= β
[
θs,t+1
θs,t

]1−σ [
(η+σ−1)
(1−σ)

[[
wt+1
θs,t+1

+ πt+1

]
− γNt+1

]
+
[

wt+1
θs,t+1

+ πt+1

]]
;

5) For t < t∗, Ct
Nt

is given by:

Ct
Nt

1
θs,t
=
[

wt
θs,t
+ πt

]
− γNt.

A.5.1 Numerical Implementation

We keep the length of a period at T = 20 years. Suppose from t∗ = 1990 on the growth
rate in productivity, γ, infant, child and youth mortality (πi, πic, πcy) (and hence,
detrended costs of raising surviving children, θs) and adult mortality (longevity), π,
are constant. Then, we can use 1) above to solve for the population growth rate,
γN , on the balanced growth path using parameter values for 1990. We can then
use 4) to solve backward for γNt, t = 1970 using γNt+1 = γNt∗ t∗ = 1990 and so
on. To do this, we have to make one additional assumption (similar to the balanced
growth assumption), namely that base costs of raising children, (θi, θc, θy) grow at the
same rate as wages every period but are otherwise constant while the cost of raising
a surviving child, θs, may vary additionally because youth mortality varies. As in
Sections 5.3 and 6, we assume that base costs are constant fractions of calibrated
costs when children survive with certainty. The results from this experiment are
almost indistinguishable from the BGP to BGP experiment in Section 6. This is not
surprising since changes in mortality and productivity growth are very smooth. That
is, knowing that mortality and productivity change slightly in the next few periods
induces very similar choices to the setting in which people believe today’s parameters
will prevail forever. Moreover, the length of a period being 20 years implies large
discounts of future utility (children’s utility) and hence changes expected in the future
do not affect current decisions very much.
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Figure A.3: Perfect Foresight versus Balanced Growth to Balanced Growth, CBR
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Figure A.4: Perfect Foresight versus Balanced Growth to Balanced Growth, γN

1800 1850 1900 1950 2000
1

1.005

1.01

1.015

1.02

1.025

1.03

Decade

P
o

p
u

la
ti

o
n

 G
ro

w
th

 R
a

te
, 

a
n

n
u

a
l

 

 
γ
N

 Perfect Foresight

γ
N

 BGP to BGP

γ
N

 data US

48




