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“The peculiar character of the problem of a rational economic order is determined pre-

cisely by the fact that the knowledge of the circumstances of which we must make use

never exists in concentrated or integrated form but solely as the dispersed bits of incom-

plete and frequently contradictory knowledge which all the separate individuals possess.

The economic problem of society is ... a problem of the utilization of knowledge which

is not given to anyone in its totality. ” (Friedreich A. Hayek, 1945)

1 Introduction

The dispersion of information is an essential part of the economic problem faced by society. This

concerns not only the idiosyncratic needs and means of different households and firms, but also

commonly-relevant fundamentals. For example, think of the business cycle. Information about

aggregate productivity and demand conditions is crucial for individual consumption, production,

and pricing decisions. Yet, such information is widely dispersed and it is only imperfectly aggregated

through markets, the media, or other channels of communication in society.

As emphasized by Hayek (1945), such information can not be centralized within a single in-

stitution, such as the government. Instead, society must rely on decentralized mechanisms for

the utilization of such information. One can then be assured that rational agents will always use

their available information in the most privately-efficient way. This, however, need not coincide with

what best serves social interests. For example, complementarities in investment or pricing decisions

may induce firms to overreact to public information, because public information helps forecast the

decisions of others; this can crowd out valuable private information and can also amplify the impact

of common noise, resulting in higher non-fundamental volatility. Furthermore, individuals may fail

to internalize how their own choices affect the information contained in financial prices or other

indicators of aggregate activity; this can lead to inefficient social learning about the underlying

economic fundamentals.

A novel role for policy then emerges: even if the government cannot centralize the information

that is dispersed in society and can not otherwise collect and communicate information, there

may exist policies that improve efficiency in the decentralized use of information by appropriately

manipulating the incentives faced by individual agents. Identifying such policies is the objective

of this paper. Our key result is to show how efficiency is achieved by appropriately designing the

contingency of marginal taxes on realized aggregate activity.

Preview. Rather than focusing on a specific application, we seek to highlight a more general

policy lesson. We thus conduct our analysis within an abstract, but tractable, class of games that

allow for two sources of inefficiency in the decentralized use of information: payoff externalities and

informational externalities. The former are short-cuts for a variety of strategic and other exter-

nal effects featured in applications, such as those originating in production spillovers, investment
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or pricing complementarities, monopoly power, social networking, and the like; they summarize

potential discrepancies between private and social payoffs. The latter reflect the (imperfect) aggre-

gation of information obtained through financial prices, the publication of data on macroeconomic

activity, or other forms of social learning.

Our analysis then proceeds in two steps. First, we compare the equilibrium in the absence

of policy intervention with the allocation that maximizes welfare subject to the sole constraint

that information can not be directly transferred from one agent to another; this helps detect the

potential inefficiencies in the decentralized use of information. Next, we identify tax schemes that

implement the efficient strategy as an equilibrium; this gives the key policy result of the paper.

The symptoms of inefficiency that we detect by comparing the equilibrium strategy with the

aforementioned socially optimal strategy depend on whether the inefficiency originates in pay-

off or informational externalities. In the first case, inefficiency manifests itself in excessive non-

fundamental volatility (overreaction to common noise) or excessive cross-sectional dispersion (over-

reaction to idiosyncratic noise). In the second case, inefficiency manifests itself in suboptimal

social learning (too much noise in macroeconomic indicators, financial prices, or other channels of

information aggregation).

Yet, the same policy prescription works for either case, as well as for economies that combine

the two sources of inefficiency. Our key result is that the government can control how agents

use different sources of information in equilibrium by making the marginal tax rate contingent

on aggregate activity. An appropriate design of the tax system then restores efficiency in the

decentralized use of information, irrespective of the specific source of inefficiency.

The logic behind this result is simple. When individuals expect marginal taxes to decrease

with realized aggregate activity, they also expect the realized net-of-taxes return on their own

activity to increase with aggregate activity. It follows that a negative dependence of marginal

taxes on aggregate activity imputes strategic complementarity in individual choices: agents have

an incentive to align their choices with those of others. Symmetrically, a positive dependence

imputes strategic substitutability: agents have an incentive to differentiate their choices.

Next note that a better alignment of individual decisions obtains when agents rely more on

common sources of information, whereas more differentiation obtains when agents rely more on

idiosyncratic sources of information. It follows that the government can use the contingency of

marginal taxes on aggregate activity to fashion how agents respond to different sources of infor-

mation. In particular, when marginal taxes decrease with aggregate activity, by inducing strategic

complementarity the policy also induces higher relative sensitivity of equilibrium actions to com-

mon information. Symmetrically, when marginal taxes increase with aggregate activity, by inducing

strategic substitutability the policy also induces higher relative sensitivity to idiosyncratic infor-

mation.
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It follows that, by appropriately designing the aforementioned contingency, the government can

control how agents use their available information. In so doing, the government can control, not

only the impact of noise on equilibrium activity, but also the quality of information contained in

prices and macroeconomic data. The government can thereby improve welfare even without itself

centralizing or communicating information to the market.

Discussion. It is often argued that financial markets overreact to public news, causing ineffi-

cient fluctuations in both asset prices and real investment. This idea goes back at least to Keynes

(1936), who argued that professional investors, instead of focusing on the long-run fundamental

value of the assets, try to second-guess the demands of one another, thus causing inefficient fluc-

tuations in asset prices and investment.1 In this paper, although we are partly motivated by the

broader theme that markets may react inefficiently to available information, we do not limit atten-

tion to any specific application, nor do we examine the deeper origins of such inefficiency (which,

unavoidably, will be specific to the application of interest). Rather, our goal is to identify policy

remedies that need not be sensitive to the details of the origin of the inefficiency. This explains

our choice to work with a theoretical framework that is abstract and flexible enough to allow for a

variety of distortions in the decentralized use of information.

Our analysis also takes as exogenous the limits society faces in aggregating dispersed informa-

tion. Investigating the foundations for these limits, and their potential implications for policy and

institutional design, is a challenging topic beyond the scope of this paper. Nevertheless, our analysis

offers some relevant insights. In our class of economies, equilibrium welfare may decrease with addi-

tional information because of possible inefficiencies in the equilibrium use of information. However,

once these inefficiencies have been removed, more information can only improve welfare. Therefore,

policies that provide the market with the right incentives for how to use available information also

complement policies, or other institutions, that provide the market with more information.

Furthermore, while our analysis focuses on how the contingency of taxes on aggregate activity

can improve the decentralized use of information, in practice, the contingency of monetary policy

on aggregate activity might also help in the same direction. Indeed, the more general insight that

comes out of our analysis is how the anticipation of such contingencies affects the incentives agents

face in using their available information, and how this in turn affects efficiency.

Methodological remarks. The policy exercise conducted in this paper strikes a balance

between two dominant paradigms: the Ramsey tradition to optimal policy (e.g., Barro, 1979,

Lucas and Stokey, 1983, Chari, Christiano and Kehoe, 1994); and the Mirrlees tradition, or the

“new public finance” paradigm (e.g., Kocherlakota, 2005; Golosov, Tsyvinski and Werning, 2006).

We deviate from the Ramsey tradition by introducing heterogeneous information and by avoiding

1This point was epitomized in Keynes’ famous beauty-contest metaphor for financial markets, which highlighted

the potential role of higher-order expectations. Elements of this role have recently been formalized in Allen, Morris

and Shin (2003), Bacchetta and Wincoop (2005), and Angeletos, Lorenzoni and Pavan (2007).
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ad hoc restrictions on the set of available policy instruments. In this respect, our policy exercise

is closer to the new public finance literature. At the same time, we deviate from the Mirrlees

tradition by abstracting from redistributive taxation (or social insurance) and focusing instead on

policies that correct inefficiencies in the response of equilibrium outcomes to aggregate shocks. In

this respect, our policy exercise is closer to the Ramsey tradition.

Furthermore, the Mirrlees literature studies environments in which agents have private infor-

mation regarding purely idiosyncratic shocks, such as an agent’s own tastes, talent, or labor pro-

ductivity; whenever aggregate shocks are featured in this literature, information regarding these

shocks is assumed to be common. In contrast, we study environments in which agents have dis-

persed information regarding aggregate shocks; these shocks could be about either the underlying

fundamentals or the distribution of information in society. The key difference then is that the

absence of common knowledge regarding these shocks generates strategic uncertainty: agents face

uncertainty regarding aggregate activity. It is precisely this uncertainty that makes the contingency

of taxes on aggregate activity essential for restoring efficiency—which also explains why the results

presented here are, to the best of our knowledge, completely novel to the policy literature.

Finally, note that the policies we identify resemble Pigou-like taxes in the sense that they

make agents internalize externalities. However, they are different with regard to both the nature of

the underlying distortion and the way they restore efficiency. In standard Pigou-like contexts, the

market produces/consumes too much or too little of a certain commodity. The Pigou remedy is

then to impose a tax or subsidy on this commodity. In our context, instead, the market reacts too

much or too little to certain sources of information. The analogue of the Pigou remedy would then

consist in imposing a tax or subsidy directly on the use of these sources of information. However,

this seems practically impossible. Our contribution is to show how the same goal can be achieved

indirectly by appropriately designing the contingency of taxes on aggregate activity.

Other related literature. The literature that studies dispersed information in macroeco-

nomic contexts goes back to Phelps (1970), Lucas (1972), Townsend (1983), and the rational-

expectations revolution of the 70’s and early 80’s. More recently, Mankiw and Reis (2000) and

Woodford (2001) have raised interest on the business cycle implications of combining information

heterogeneity with strategic complementarity in pricing decisions.2 We complement this line of

work by studying policy in environments that share this key combination.

Another line of work, following Morris and Shin (2002), has examined whether welfare increases

with more precise public information within specific models.3 Some of these papers have found a

negative result, which has then been used to make a case against central-bank transparency; others

have found the opposite result. In Angeletos and Pavan (2007) we showed how these apparently

2See also Amato and Shin (2006), Hellwig (2005), Lorenzoni (2006), and Mackowiak and Wiederholt (2006).
3See also Amador and Weil (2007), Angeletos and Pavan (2004), Baeriswyl and Conrand (2007), Heinemann and

Cornand (2006), Hellwig (2005), Roca (2006), and Svensson (2005).
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conflicting results can be explained by understanding the underlying inefficiencies in the equilib-

rium use of information. For that purpose, we considered an abstract framework that restricted

information to be exogenous but was flexible enough to nest most of the applications examined

in the literature; we then used this framework to study the social value of information (i.e., the

comparative statics of equilibrium welfare with respect to the information structure). In the first

part of the present paper, we use a generalized version of that framework for a different purpose:

to study how efficiency in the decentralized use of information can be restored through an appro-

priately designed tax system. In the second part of the paper, we extend the analysis to dynamic

environments in which information is partially endogenous; we then show how similar policies also

correct inefficiencies that originate from informational externalities.

In this last respect, our analysis complements that in Vives (1993, 1997) and Amador and

Weill (2007). These papers study the speed of social learning and the social value of information

in a dynamic economy where agents learn from noisy observations of past aggregate activity. Our

results identify policies that can control the speed of social learning and also guarantee that any

exogenous information is socially valuable.

Layout. Section 2 introduces the baseline framework. Section 3 studies inefficiencies in the

decentralized use of information due to payoff externalities. Section 4 identifies tax systems that

remove such inefficiencies. Section 5 extends the analysis to dynamic settings and Section 6 to

settings with informational externalities. Section 7 discusses implications for the social value of

information. Section 8 concludes. All proofs are in the Appendix.

2 The baseline static framework

In this section we outline our baseline framework: a game that abstracts from the institutional

details of any specific application but is flexible enough to capture the role of strategic interactions,

external payoff effects, and dispersed information in a variety of applications.

Actions and payoffs. The economy is populated by a continuum of agents of measure one,

indexed by i ∈ [0, 1], each choosing an action ki ∈ R. In addition, there is a government, which

imposes a tax τi ∈ R on each agent i, subject to the constraint that the budget is balanced.

Let ψ denote the cumulative distribution function of individual actions in the cross-section of

the population and let K ≡
∫

kdψ(k) and σk ≡ [
∫

(k−K)2dψ(k)]1/2 denote, respectively, the mean

and the dispersion of individual actions. The (reduced-form) payoff of agent i is given by

ui = U(ki,K, σk, θi) − τi, (1)

for some U : R
2 × R+ × Θ → R. The variable θi ∈ Θ ⊆ R represents a shock to agent i’s payoff.

For concreteness, in what follows we often think of ki as “investment” and θi as a “productivity

shock.” The external and strategic effects exhibited in U may originate, not only from preferences
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and technologies, but also from pecuniary externalities, monopoly power, oligopolistic competition,

social networks, and the like. What is crucial, though, is that payoffs can be reduced to the

specification assumed above without missing any channels of endogenous information aggregation;

the analysis of the latter is postponed to Section 6. Finally note that, by assuming linearity of

payoffs in transfers, we are ruling out any redistributive (or insurance) role for taxation.

Payoff restrictions. To maintain tractability, we assume that U is a concave quadratic poly-

nomial and that the external effect of dispersion depends only on its own level (i.e., Uσ(k,K, σk , θ) =

Uσσσk for all (k,K, σk , θ)).
4 To guarantee existence and uniqueness of both the equilibrium and the

efficient allocation, we assume the following: Ukk < 0, which imposes concavity at the individual’s

decision problem; −UkK/Ukk < 1, which ensures that the slope of the individual’s best response

with respect to aggregate activity is less than one; and Ukk + 2UkK +UKK < 0 and Ukk +Uσσ < 0,

which imposes concavity at the planner’s problem.5

Timing and information. There are three stages. In stage 1, the government announces a

policy rule T that specifies how taxes will be collected in stage 3 as a function of information that

will be public at that stage.6 In stage 2, agents simultaneously choose their actions under dispersed

information (described below). Finally, in stage 3, actions and aggregate productivity are publicly

revealed, taxes are paid, payoffs are realized, and the game ends.7

The information structure is as follows. Let ωi ∈ Ω denote the information (also the “type”) of

agent i. Next, let f ∈ F denote a joint distribution for (θi, ωi), with marginal distributions for θi

and ωi given by h ∈ H and φ ∈ Φ, respectively. The distribution f describes the joint distribution

of (θ, ω) in the cross-section of the population; we refer to f as the “state of the world.”8 First,

Nature draws f from a set of possible distributions F according to the probability measure F which

is common knowledge among the agents. Nature then uses f to draw a pair (θi, ωi) for each agent

i, with the pairs (θi, ωi)i∈[0,1] drawn independently from f . Each agent i then observes his own ωi,

but does not observe either θi or the distribution f. Note, though, that ωi encodes information, not

only about the agent’s own productivity θi, but also about the distribution f of productivities and

information in the population.

Although most of the analysis does not require any restriction on the information structure,

4The external effect of dispersion is relevant for certain applications: in new-keynesian models, e.g., dispersion in

relative prices has a negative welfare effect.
5Although the restriction −UkK/Ukk < 1 is necessary for the equilibrium to be unique in the absence of government

intervention, our main policy result does not rely on this restriction: the policies identified in Section 4 implement

the efficient allocation as the unique equilibrium even in economies that feature multiple equilibria in the absence of

policy intervention.
6Because the government has no private information, the announcement of T does not convey any information

about the fundamentals; its only role is to affect the agents’ incentives.
7Throughout, we do not require idiosyncratic productivities to be revealed at stage 3. Also, in Section 4.3 we

consider an extension that adds noise to the observation of actions and aggregate productivity at stage 3.
8This is with a slight abuse of terminology because f does not describe the specific (θi, ωi) for each single agent.
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we find it useful to impose a certain “regularity” condition. Fix an information structure (Ω, F,F)

and consider any two payoff structures, U1 and U2. Let k1 : Ω → R be an equilibrium strategy

for the economy E1 = (U1; Ω, F,F) and k2 : Ω → R an equilibrium strategy for the economy

E2 = (U2; Ω, F,F). We say that the information structure (Ω, F,F) is “regular” if and only if,

whenever U1
kθ/U

1
kk 6= U2

kθ/U
2
kk or U1

kK/U
1
kk 6= U2

kK/U
2
kk, there exists a positive-measure set Ω̃ ⊆ Ω

such that k1(ω) 6= k2(ω) for any ω ∈ Ω̃. This restriction can be fully appreciated (in terms of

primitives of the environment) only once we characterize the equilibrium. However it has a simple

economic meaning: it requires that different sensitivities of individual best responses to either the

fundamentals or others’ activity result to different equilibrium actions for a positive measure of

types. The role of this condition is to rule out trivial cases in which changes in incentives do not

lead to any change in the use of information.9

To illustrate the type of shocks and information structures that we allow, consider the following

Gaussian example. Agent i’s productivity is given by θi = θ̄+ςi, where θ̄ is an aggregate productivity

shock while ςi is an idiosyncratic productivity shock. The former is Normally distributed with mean

µθ and variance σ2
θ ; the latter is i.i.d. across agents and independent of θ̄, Normally distributed

with zero mean and variance σ2
ς . Each agent’s information ωi consists of a private signal xi = θi +ξi

about own productivity and a public signal y = θ̄+ε about the average productivity in the market.

The variable ξi is idiosyncratic noise, i.i.d. across agents, Normally distributed with zero mean

and variance σ2
x, whereas the variable ε is public noise, Normally distributed with zero mean and

variance σ2
y . The noises ξi and ε are independent of one another as well as of θ̄ and of ςi. In this

example, f is a distribution whose marginal h over θi is Normal with mean θ̄ and variance σ2
θ and

whose marginal φ over ωi = (xi, y) assigns measure one to y = θ̄+ ε and is Normal in xi with mean

θ̄ and variance σ2
ς + σ2

x. As it will become clear in Section 3, imposing the “regularity” condition

in this example is equivalent to imposing that the variances σ2
θ , σ

2
x and σ2

y are positive and finite.

Applications. The following examples are directly nested in our framework:

• ui = Aiki −
1
2k

2
i , with Ai = θi + aK, K =

∫

kidi, θi = θ̄ + ςi, and 0 < a < 1. This example

can be interpreted as a stylized version of models with production or network externalities:

the private return to investment (A) increases with aggregate investment (K) . The scalar a

then parametrizes the strength of the spillover effect, while θ̄ is a common productivity shock

and ςi is an idiosyncratic productivity shock.

• πi = π⋆ − (pi − p⋆)2 , with p⋆ = aθ̄ + (1 − a)P, P =
∫

pidi, a ∈ (0, 1), and π⋆ ∈ R. This

example captures the incomplete-information new-Keynesian business-cycle models of Wood-

ford (2002), Mackowiak and Wiederholt (2006), Baeriswyl and Conrand (2007), and others:

firms suffer a loss whenever their price (pi) deviates from some target level (p⋆), which in turn

9As it will become clear in Sections 3 and 4, the only result that is affected if we relax this condition is the

uniqueness of the optimal policy (not its existence).
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depends on the aggregate price level (P ). In this context, θ̄ represents exogenous aggregate

nominal demand conditions, while 1 − a determines the degree of strategic complementarity

in pricing decisions (a.k.a. “real rigidities”).

• πi = (a+ bθi + cK) ki−
1
2k

2
i , with K =

∫

kidi, and (a, b, c) ∈ R
3. This example nests the large

Cournot and Bertrand games studied in Vives (1984, 1998), Raith (1996), and various other

IO papers. In this context, θi represents a common demand or cost shock, ki the quantity (for

Cournot) or the price (for Bertrand) set by firm i, and c the degree of strategic substitutability

(for Cournot) or complementarity (for Bertrand) among firms’ decisions.

• ui = − (1 − r)
(

ki − θ̄
)2

− r(Li − L̄), with Li =
∫

(kj − ki)
2 dj, L̄ =

∫

Lidi, and r ∈ (0, 1).

This example is the beauty-contest game studied in Morris and Shin (2002), Svensson (2005)

and Heinemann and Cornand (2006): an agent faces a cost whenever the distance of his own

action from the actions of others (Li) is higher than the average distance in the population

(L̄). This game is supposed to capture, in a stylized fashion, Keynes’ idea that financial

markets involve a zero-sum race between professional investors for who will second-guess the

demands of others.

More generally, as it will become clear in Section 3.2, our framework nests—at least as far as

equilibrium is concerned—any model in which the agents’ interaction can be summarized in the

following best-response structure:

ki = Ei[ Λ(θi, θ̄,K) ]

for some linear function Λ. Clearly, the institutional details and deeper micro-foundations behind

this structure vary from one application to another. Nevertheless, by conducting our exercise within

an abstract framework that does not take any particular stand on these “details,” the lessons we

will provide in the subsequent sections are likely to hold across all these applications.

Remarks. Because the primary goal of this paper is to study policies that improve welfare

without centralizing the information that is dispersed in the population, throughout the analysis

we restrict attention to tax systems that utilize only information that is in the public domain. In

so doing, we rule out direct mechanisms in which the agents send reports about their types to the

government and then the government collects taxes on the basis of such reports. As we will show

in Section 4, this is actually without any loss of optimality within our framework as long as the

government does not use such reports to transfer information from one agent to another before

individual actions have been committed.

Note, however, that this does not mean that we rule out all forms of aggregation and exchange of

information in society; it only means that the government is not itself a channel of communication.

Indeed, we could readily reinterpret some of the exogenous information as the result of certain

types of information aggregation; for example, some or all of the agents may observe a signal about
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the underlying fundamentals that is the outcome of an opinion poll or the price of an unmodeled

financial market. What is crucial for the baseline analysis is that the information available to any

given agent does not depend on other agents’ strategies, nor is it affected by government policies;

these alternative cases are considered in Sections 6 and 7.

Finally, note that, while our prior work on the social value of information (Angeletos and Pavan,

2007) and virtually all the related literature (Morris and Shin, 2002, etc.) have limited attention

to the case of perfectly correlated shocks and to a specific Gaussian information structure, here we

allow the shocks to be imperfectly correlated and we consider more general information structures.

This will permit us to highlight that our main policy results need not be sensitive to the specific

details of the information structure. Nevertheless, we will still illustrate certain insights in the

Gaussian example considered above, while restricting, for simplicity, the shocks to be perfectly

correlated (σ2
ς = 0).

3 Decentralized use of information

In this section we show how the equilibrium and the efficient use of information depend on the

payoff structure U . This permits us to identify inefficiencies in the equilibrium use of information

that originate from payoff effects.

3.1 Common-information benchmarks

Before we proceed to the analysis of equilibrium and efficiency with dispersed information, it is

useful to review the case of common information; this will help isolate the inefficiencies that emerge

only under dispersed information.

To start, suppose that information were complete, so that each agent knows both his own

productivity and the cross-sectional distribution h of productivities in the population, and this

fact is common knowledge. We can then show that the complete-information equilibrium strategy

exists, is unique, and is given by

ki = κ
(

θi, θ̄
)

≡ κ0 + κ1θi + κ2θ̄,

where θ̄ ≡
∫

θdh (θ) denotes aggregate productivity and where the coefficients (κ0, κ1, κ2) are

determined by the payoff structure.10 Note that, by definition, an agent’s payoff depends only on

his own productivity; that an agent’s equilibrium action depends also on average productivity is

10The characterization of the coefficients (κ0, κ1, κ2) , as well as of the coefficients (κ∗

0, κ
∗

1, κ
∗

2) for the first-best

allocation, is in the proof of Proposition 1. These coefficients depend on the reduced-form payoff structure U ,

which in turn depends on the particular application under consideration. For the purposes of our analysis, however,

understanding the specific values of these coefficients is not essential.
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because the latter impacts the average action of others, which in turn affects the incentives of the

individual agent.

We can further show that the first-best allocation exists, is unique, and is given by

ki = κ∗
(

θi, θ̄
)

≡ κ∗0 + κ∗1θi + κ∗2θ̄,

where the coefficients (κ∗0, κ
∗
1, κ

∗
2) are again determined by the payoff structure. Note that, as with

equilibrium, the first-best action prescribed to an agent depends both on his own productivity and

on aggregate productivity; however, the dependence on aggregate productivity now emerges only

because of external effects.

Now suppose that information is incomplete but common across all agents. Because of the

quadratic specification of payoffs, a form of certainty equivalence holds: the equilibrium and effi-

cient actions under incomplete but common information are the best predictors of their complete-

information counterparts.

Proposition 1 Suppose all information is common. The unique equilibrium strategy is given by

ki = E[κ
(

θi, θ̄
)

|P], while the strategy that maximizes welfare is given by ki = E[κ∗
(

θi, θ̄
)

|P], where

P denotes the common information set.

Clearly, in economies in which κ = κ∗, there is no room for policy intervention as long as

information remains common. However, as we will show in the next few sections, even in these

economies there can be room for policy intervention once information is dispersed.11

3.2 Equilibrium use of information

We now turn to the analysis of equilibrium allocations when information is dispersed and when

there is no policy intervention. We define an equilibrium in the standard Bayes-Nash fashion.

Definition 1 An equilibrium is a (measurable) strategy k : Ω → R such that, for all ω ∈ Ω,

k (ω) = arg max
k

E[ U(k,K(φ), σk(φ), θ) | ω ], (2)

with K(φ) =
∫

Ω k (ω′) dφ(ω′) and σk(φ) = [
∫

Ω [k (ω′) −K(φ)]2dφ(ω′)]1/2 for all φ ∈ Φ.

Consider the following coefficient, which is the slope of an individual’s best response with

respect to aggregate activity:

α ≡
UkK

−Ukk
. (3)

This coefficient measures the degree of strategic complementarity or substitutability among indi-

vidual actions. The equilibrium use of information can then be characterized as follows.

11None of our results requires κ 6= κ∗. Indeed, the reader may henceforth assume κ = κ∗ if he/she wishes to focus

on economies in which inefficiency emerges only under dispersed information.
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Proposition 2 The equilibrium strategy exists, is unique, and satisfies

k(ω) = E[ κ
(

θ, θ̄
)

+ α ·
(

K (φ) − κ
(

θ̄, θ̄
))

| ω ] (4)

for all ω ∈ Ω, with K(φ) =
∫

Ω k (ω′) dφ(ω′) for all φ ∈ Φ.

Although Proposition 2 does not provide a closed-form solution for the equilibrium strategy, it

is an insightful representation of it. To see this, recall that κ(θi, θ̄) is the action agent i would have

taken had information been complete. Next, note that K(φ)−κ(θ̄, θ̄) is the average deviation in the

actions other agents are taking relative to what they would have done under complete information.

When actions are strategically independent (α = 0), a form of certainty equivalence continues to

hold: an agent’s equilibrium action under incomplete information is simply his expectation of the

action he would have taken under complete information. When instead actions are interdependent

(α 6= 0), the agent adjusts his action away from the aforementioned certainty-equivalence bench-

mark on the basis of his expectation of the average deviation in the population. In particular,

if actions are strategic complements (α > 0), the agent adjusts his action upwards whenever he

expects aggregate activity to be higher than what it would have been under complete information,

while he does the opposite if actions are strategic substitutes (α < 0). In other words, equilibrium

behavior is tilted to permit more alignment of actions when α > 0 and more differentiation when

α < 0. The coefficient α thus also captures how much agents value aligning their choices with one

another.

Proposition 2 has direct implications for how information is used in equilibrium. Because

relying on common sources of information facilitates alignment of individual choices, while relying

on idiosyncratic sources inhibits it, strategic complementarity increases the sensitivity of equilibrium

actions to the former and reduces the sensitivity to the latter, while the converse is true for strategic

substitutability.

To see this more clearly, consider the case where the agents’ shocks are perfectly correlated and

information is Gaussian. In this example, θi = θ̄ for all i, where θ̄ ∼ N
(

µ, σ2
θ

)

, and the information

of agent i consists of a private signal xi = θ̄+ ξi and a public signal y = θ̄+ ε, where ξi ∼ N
(

µ, σ2
y

)

is idiosyncratic noise and ε ∼ N
(

0, σ2
y

)

. The unique equilibrium is then

k(x, y) = κ0 + (κ1 + κ2) [γµµ+ γyy + γxx] , (5)

where the coefficients (γµ, γy, γx) are given by

γµ =
πθ

πθ + πy + (1 − α) πx
, γy =

πy

πθ + πy + (1 − α) πx
, γx =

(1 − α) πx

πθ + πy + (1 − α) πx
, (6)

and where πθ ≡ σ−2
θ , πy ≡ σ−2

y , and πx ≡ σ−2
x denote the precisions of, respectively, the prior, the

public signal, and the private signal.
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A higher α reduces γx and raises γµ and γy: stronger complementarity tilts the use of informa-

tion towards the prior and the public signal because they are relatively better predictors of others’

activity. Next, note that γx + γy = 1 − γµ, so that the equilibrium action of agent i can also be

expressed in terms of the underlying fundamentals and noises as follows:

ki = κ0 + (κ1 + κ2)
[

γµµ+ (1 − γµ)θ̄ + γyε+ γxξi
]

,

By strengthening the anchoring effect of the prior, stronger complementarity dampens the overall

sensitivity of individual actions to changes in the underlying fundamentals; in other words, it

increases “inertia.” By increasing the reliance to noisy public information, it also amplifies the

impact of common noise and hence increases the non-fundamental volatility of aggregate activity.

Finally, by reducing the reliance on noisy private information it mitigates the impact of idiosyncratic

noise and hence reduces the non-fundamental cross-sectional dispersion in activity.

Beyond the Gaussian example, a closed-form solution of the equilibrium strategy can be ob-

tained in terms of the hierarchy of beliefs regarding the underlying fundamentals.

Corollary 1 Let Ē1 ≡
∫

E[θ|ω]dφ(ω) denote the average of the agents’ expectations of their own

shocks and, for any n ≥ 2, let Ēn ≡
∫

E[Ēn−1|ω]dφ(ω) denote the corresponding n-th order average

expectation. The equilibrium strategy is given by

k(ω) = E[κ(θ, θ̂)|ω] ∀ ω, (7)

where θ̂ ≡
∑∞

n=1

(

(1 − α)αn−1
)

Ēn.

The equilibrium action under incomplete information thus has the same structure as the one

under common information replacing θ̄ with θ̂. The latter is simply a weighted sum of the entire

hierarchy of expectations about the underlying shocks, with the weights depending on the degree of

complementarity: the stronger the complementarity, the higher the relative weight on higher order

expectations. Since higher order expectations tend to be more anchored to common sources of

information, this suggests that the intuitions provided by the Gaussian example are more general.

3.3 Efficient use of information

We now turn to the following question. Suppose the government can not centralize information,

or otherwise transfer information from one agent to another, but can manipulate the way agents

use their available information. Can the government then improve upon the equilibrium use of

information?

In this section we address this question by bypassing the details of specific policy instruments

that may permit such manipulation and instead characterizing directly the strategy that maximizes

welfare under the sole restriction that information can not be centralized. We henceforth call this

strategy the efficient strategy, or the efficient use of information.
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Definition 2 An efficient strategy is a mapping k∗ : Ω → R that maximizes ex-ante utility.

Because payoffs are linear in transfers, the latter impact welfare only through incentives. Hence,

the combination of the efficient strategy with any transfer scheme that makes this strategy incentive

compatible defines the very best the government can do without centralizing information. That is,

when implementable, the efficient strategy is welfare-equivalent to the best incentive-compatible

direct mechanism among the ones that restrict the actions the planner recommends to each agent

to depend only on his report and not on the reports made by other agents. We will show how the

efficient strategy can be implemented in the next section; here, we focus on its characterization.

Towards this goal, consider any arbitrary strategy k : Ω → R and let

k̂(θ;h) ≡ E[k(ω)|θ, h]

denote the component of individual activity that is “explained” by the fundamentals. Similarly, let

K̂(h) ≡ E[k̂|h] =

∫

k̂ (θ;h) dh(θ) and σ̂2
k(h) ≡ Var(k̂ − K̂|h) =

∫

[k̂ (θ;h) − K̂(h)]2dh(θ)

be the fundamental components of the mean and the dispersion of activity. The action of any given

agent i can be decomposed in three components:

ki = k̂i + ǫ+ vi

The term k̂i captures the variation in individual activity that reflects variation in fundamentals.

The term ǫ ≡ (K−K̂) captures the non-fundamental variation in individual activity that is common

across agents; that is, ǫ captures the impact of common noise in information. Finally, the term

vi ≡ (k − K) − (k̂ − K̂) captures the non-fundamental variation in individual activity that is

idiosyncratic to the agent; that is, vi captures the impact of idiosyncratic noise.12

The following result then shows that a similar decomposition applies to ex-ante welfare.

Lemma 1 Given any strategy k : Ω → R, ex-ante utility (welfare) is given by

Eu = E[U(k̂, K̂, σ̂k, θ)] +
1

2
Wvol · vol +

1

2
Wdis · dis (8)

where Wvol ≡ Ukk + 2U2kK + UKK < 0 and Wdis ≡ Ukk + Uσσ < 0, and where

vol ≡ Var (ǫ) = Var (K) − Var(K̂) and dis ≡ Var (vi) = Var (k −K) − Var(k̂ − K̂).

The first term in (8) captures the welfare effects of the fundamental-driven variation in activity.

The other two terms capture the welfare effects of the residual variation in activity: vol measures

non-fundamental aggregate volatility, which originates in common noise, while dis measures non-

fundamental cross-sectional dispersion, which originates in idiosyncratic noise. The coefficients Wvol

12Note that, by construction, k̂i, ǫ and vi are orthogonal one to the other.
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and Wdis then summarize the sensitivity of welfare to these two types of noise: Wvol measures social

aversion to non-fundamental volatility, while Wdis measures social aversion to non-fundamental

dispersion.

Both non-fundamental volatility and non-fundamental dispersion contribute to a reduction

in welfare because of the concavity of payoffs. How much each of them contributes to welfare

losses depends on the details of the application under examinations: different primitive preferences,

technologies and market structures induce different social preferences over volatility and dispersion.

For our purposes, however, it suffices to summarize these social preferences in the coefficients Wvol

and Wdis. Their relative contribution can then be measured by the following coefficient:

α∗ ≡ 1 −
Wvol

Wdis
. (9)

Since Wvol captures social aversion to volatility, while Wdis captures social aversion to dispersion,

higher α∗ can be interpreted as higher aversion to dispersion relative to volatility.

Strategies that share the same fundamental-driven variation in activity may differ in the levels of

non-fundamental volatility and dispersion that they induce. Intuitively, the higher the sensitivity of

actions to common sources of information relative to idiosyncratic sources, the higher the exposure

to common noise relative to idiosyncratic noise, and hence the higher the non-fundamental volatility

of activity relative to its dispersion. One should thus expect the efficient strategy to depend on social

preferences over volatility and dispersion. This insight is formalized in the following proposition.

Proposition 3 The efficient strategy exists, is unique,13 and satisfies

k(ω) = E[ κ∗(θ, θ̄) + α∗
(

K(φ) − κ∗(θ, θ̄)
)

| ω ] (10)

for almost all ω, with K(φ) =
∫

Ω k (ω′) dφ(ω′) for all φ.

In equilibrium, an agent’s action was anchored to his expectation of κ, the complete-information

equilibrium action; however, it was also adjusted on the basis of his expectation of aggregate activity,

K, with the weight on the latter given by α. A similar result holds for the efficient strategy once we

replace κ with κ∗ and α with α∗. It follows that, just as α summarized the private value of aligning

actions across agents, α∗ summarizes the social value of such alignment.

That the efficient strategy is anchored to κ∗, the first-best action, is quite intuitive. That α∗

in turn is inversely related to the ratio Wvol/Wdis reflects our preceding discussion about volatility

and dispersion: the degree of alignment associated with the efficient strategy increases with social

aversion to dispersion and decreases with social aversion to volatility.

13Hereafter, when we say unique, we mean up to a zero-measure subset of Ω; this is a standard qualification that

one has to make with a continuum of types.
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Furthermore, just as α pinned down the relative sensitivity of equilibrium actions to different

sources of information, α∗ pins down the corresponding relative sensitivity of efficient actions. To

see this more clearly, consider again the Gaussian example with perfectly correlated shocks. The

efficient strategy is then given by

k(x, y) = κ∗0 + (κ∗1 + κ∗2)
[

γ∗µµ+ γ∗yy + γ∗xx
]

, (11)

for almost all (x, y), where the coefficients (γ∗µ, γ
∗
y , γ

∗
x) are given by

γ∗µ =
πθ

πθ + πy + (1 − α∗)πx
, γ∗y =

πy

πθ + πy + (1 − α∗)πx
, γ∗x =

(1 − α∗)πx

πθ + πy + (1 − α∗) πx
. (12)

It follows that, just as α determines the equilibrium levels of inertia, non-fundamental volatility

and dispersion, α∗ determines the levels that are optimal from a social perspective. As for the case

of more general information structures, the analogue of Corollary 1 applies for the efficient strategy

once we replace κ with κ∗ and α with α∗.

3.4 Inefficiency only under dispersed information

To further appreciate the inefficiencies that can emerge due to the dispersion of information, con-

sider economies in which κ = κ∗. In these economies, the equilibrium is (first-best) efficient

whenever information is common, leaving no room for policy intervention. Nevertheless, whenever

α 6= α∗, inefficiency emerges under dispersed information, opening the door to policy intervention.

The following is then an immediate implication of the results in the preceding sections.

Corollary 2 Consider an economy that is efficient under common information (κ = κ∗).

(i) The equilibrium is efficient under dispersed information if and only if α = α∗;

(ii) When α > α∗ and information is Gaussian, the equilibrium exhibits overreaction to public

information and excessive non-fundamental volatility.

(iii) When α < α∗ and information is Gaussian, the equilibrium exhibits overreaction to private

information and excessive non-fundamental dispersion.

4 Optimal policy

We now turn to the core contribution of the paper. We first explain how different tax schemes

affect the decentralized use of information. We then identify the tax schemes that implement the

efficient use of information as an equilibrium.
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4.1 Equilibrium with taxes

Suppose that the information that is publicly available at stage 3 includes all individual actions

(ki)i∈[0,1] as well as aggregate productivity θ̄.14 Then, without any loss of optimality (as it will

become clear in the next subsection), consider policies defined by

τi = T
(

ki,K, σk, θ̄
)

,

where the function T : R
2 × R+ × Θ → R is a quadratic polynomial in (k,K, θ̄), it is linear in

σ2
k, and satisfies the following properties: Ukk − Tkk < 0, −UkK−TkK

Ukk−Tkk
< 1, T

(

K,K, 0, θ̄
)

= 0 for

all (K, θ̄), and Tkk + Tσσ = 0. These properties preserve existence and uniqueness of equilibrium,

while also guaranteeing budget balance state-by-state.15 We denote the class of policies that satisfy

these properties by T . Finally, note that this class includes both progressive tax schemes (i.e., with

Tkk > 0) and regressive tax schemes (i.e., with Tkk < 0).16 One should thus think of this as a non-

linear tax-schedule that does not directly depend on individual productivity (θi), but is contingent

on aggregate outcomes
(

K,σk, θ̄
)

.

We then have the following result (to simplify the formulas, we henceforth normalize the payoff

structure by setting Ukk = −1; the general case is in the appendix).

Proposition 4 Given any tax scheme T ∈ T , let

α̃ ≡
α− TkK

1 + Tkk

κ̃0 ≡
(1 − α)κ0 − Tk (0, 0, 0)

1 − α+ Tkk + TkK
κ̃1 ≡

1

1 + Tkk
κ1 κ̃2 ≡

(1 − α) (κ1 + κ2) − Tkθ̄

1 − α+ Tkk + TkK
− κ̃1

The equilibrium strategy exists, is unique, and satisfies

k (ω) = E
[

κ̃
(

θ, θ̄
)

+ α̃
(

K (φ) − κ̃
(

θ̄, θ̄
))

| ω
]

(13)

for all ω ∈ Ω, where κ̃(θ, θ̄) ≡ κ̃0 + κ̃1θ + κ̃2θ̄ and K(φ) =
∫

Ω k (ω′) dφ(ω′) for all φ.

There are three instruments that permit the government to influence the agents’ activity: Tkk,

the progressivity of the tax system; TkK , the contingency of marginal taxes on aggregate activity;

and Tkθ̄, the contingency of marginal taxes on aggregate productivity. While all these instruments

matter for equilibrium outcomes, each of them has a distinctive role. The progressivity Tkk is the

only instrument that permits the government to control κ̃1, the sensitivity of the agents’ actions

to their information about their own productivity shocks. For given Tkk, the instrument that

14We relax this assumption in Section 4.3.
15To see the latter property, note that, for any cross-sectional distribution ψ of individual activity,

∫

T
(

k,K, σk, θ̄
)

dψ (k) = T
(

K,K, 0, θ̄
)

+ 1

2
(Tkk + Tσσ)σ2

k.
16In our environment, the progressivity of the tax system will turn out to affect the decentralized use of information,

but it does not interfere with redistributive concerns; this is because of the linearity of payoffs in transfers.
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permits the government to control the degree of complementarity (α̃) and thereby the sensitivity of

actions to common noise relative to idiosyncratic noise is the contingency TkK of taxes on aggregate

activity. Finally, for given Tkk and TkK , the instrument that permits the government to control

the sensitivity of individual actions to variations in aggregate productivity is the contingency Tkθ̄

of marginal taxes on θ̄.

4.2 Implementation of the efficient strategy

We now turn to the question of whether there exists a policy T ∗ ∈ T that implements the efficient

strategy as an equilibrium. Whenever this is the case, by the very definition of the efficient strategy,

this also guarantees that there is no other transfer scheme that can improve upon T ∗. This is true

even for transfer schemes that violate budget balance and/or anonymity, and even if one allows the

agents to send arbitrary messages to the planner and the planner to make the transfers contingent

on these messages. What is essential is only that the planner does not send informative messages to

the agents before they commit their choices. The next result establishes existence and uniqueness

of a policy T ∗ ∈ T that implements the efficient allocation.

Proposition 5 A policy in T that implements the efficient strategy always exists, is unique, and

has the property that, for given (κ, κ∗) , the optimal TkK increases with α and decreases with α∗.

The proof of this result is follows from Proposition 4. First, note that there exists a unique Tkk

such that κ̃1 = κ∗1. But then there also exists a unique TkK such that α̃ = α∗, a unique Tkθ̄ such

that κ̃2 = κ∗2, and a unique Tk (0, 0, 0) such that κ̃0 = κ∗0. The rest of the parameters of the policy

function T are then pinned down by budget balance, establishing that there exists a unique policy

that implements the efficient strategy as an equilibrium.17

The optimal policy has the property that, keeping κ and κ∗ constant, the optimal TkK increases

with α and decreases with α∗. This is because a higher TkK , by reducing the degree of complemen-

tarity perceived by the agents, it reduces the sensitivity of individual decisions to common noise

in information. If we thus look across economies that share the same equilibrium and efficiency

properties under complete information (i.e., they feature the same κ and κ∗) but differ in these

properties under incomplete information (i.e., they feature different α and α∗), we then find that

the optimal TkK is higher in economies that exhibit a larger discrepancy between the private and

the social value of aligning choices; equivalently, the optimal TkK is higher the more excessive the

non-fundamental volatility of the equilibrium relative to its non-fundamental dispersion.

17The uniqueness result holds for “regular” information structures. For “non-regular” information structures, the

degree of complementarity is irrelevant, leaving one degree of indeterminacy. See Section 4.5 for such a case.
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4.3 Implementation with measurement error

The policies considered so far do not require that the government have superior information than

the agents at any time: the taxes are conditioned on information that is public at the time taxes

are levied. However, the preceding analysis has assumed that actions are perfectly revealed at that

time. In contrast, for many applications it may be more appropriate to assume that actions, as

well as aggregate fundamentals, are only imperfectly observed.

To accommodate this possibility, we now consider a variant that allows actions and average

productivity to be observed with noise in stage 3. In particular, if agent i chooses ki in stage 2, then

in stage 3 the government—and all other agents—observes k̃i = ki + η + νi, where η is a common

noise while νi is an idiosyncratic noise, with respective variances σ2
η and σ2

ν . Similarly, instead of

the true aggregate productivity θ̄, the government—as well as any other agent—observes a signal

θ̃ = θ̄ + ς, where ς is noise with variance σ2
ς . All these noises could be interpreted as measurement

errors and are assumed to be independent of the fundamentals and of the information that agents

have in stage 2. We then let K̃ = K + η and σ̃2
k = σ2

k + σ2
ν denote, respectively, the cross-sectional

average and dispersion of k̃, and consider tax schedules of the form

τi = T (k̃i, K̃, σ̃k, θ̃),

where the function T is assumed to satisfy the same properties as in the previous section (i.e.

T ∈ T ). The tax an agent expects to pay is then given by:

E[T (k̃i, K̃, σ̃k, θ̃)|ωi] = E[T (ki,K, σk, θ̄)|ωi]

+1
2 (Tkk + 2TkK + TKK)σ2

η + 1
2(Tkk + Tσσ)σ2

v + Tθθσ
2
ς .

(14)

The last three terms in (14) capture the impact of measurement errors on the expected tax. Because

these terms are independent of the agents’ actions, they have no impact on individual incentives

and hence they do not interfere with the incentives provided by the tax system. It follows that,

not only the noise does not interfere with the ability to implement the efficient strategy, but also

it does not affect the properties of the optimal tax system.

Of course, the last property relies on the noise being additive (i.e., separable from the agents’

actions). When, instead, the noise is multiplicative, it does impact incentives. However, by appro-

priately adjusting the policy, the government can fully undo the incentive effects of the noise. It

follows that measurement error once again does not interfere with the ability to implementable the

efficient strategy, although it now may affect the details of the optimal tax system.

Proposition 6 The efficient strategy can be implemented regardless of whether activity and fun-

damentals are observed with measurement error.

Given this result, for the remainder of the analysis we can abstract from measurement error

without any significant loss of generality.
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4.4 Inefficiency only under dispersed information

As mentioned in Section 1, financial-market observers—at both the academic and the policy front—

are often concerned about how information is processed in financial markets. In particular, while

many believe that financial markets work well on average, many also feel that financial markets

often overreact to noisy public news, causing excessive non-fundamental volatility in both asset

prices and real investment. At some level, this possibility can be captured in our framework by

the restriction that κ = κ∗ and α > α∗. More generally, economies in which κ = κ∗ but α 6= α∗

offer an interesting benchmark because in these economies policy intervention becomes desirable

only when information is dispersed. We now thus examine the properties of optimal policy for this

special class economies.

Because α 6= α∗ means that the equilibrium is inefficient in its relative response to different

sources of information and hence to different types of noise, it is necessary that the marginal tax

co-varies with the components of activity that are not explained by the fundamentals. In particular,

letting ǫ = K − K̂ denote the component of activity that is due to common noise, we have the

following result.

Corollary 3 Consider economies in which inefficiency emerges only under dispersed information.

When α > α∗, the optimal policy has TkK > 0 and the marginal tax co-varies positively with ǫ. The

converse is true when α < α∗.

This result is intuitive. In situations in which, if it were not for policy intervention, the equilib-

rium would exhibit overreaction to common sources of information and excessive non-fundamental

volatility, the optimal marginal tax co-varies positively with the common noise that drives this non-

fundamental volatility. It is then precisely this property of the tax system that discourages agents

from overreacting to common sources of information and dampens non-fundamental volatility.

Note, however, that this appealing property of the tax system is achieved only in an indirect

way, without any need to monitor and quantify the various sources of information available to the

agents. This is done by making marginal taxes contingent on observable aggregate outcomes. In

particular, when α > α∗, the optimal policy reduces the complementarity in individual actions,

and thereby dampens the reaction of the equilibrium to common noise, by making the contingency

of marginal taxes on realized aggregate activity positive (TkK > 0). The optimal policy then

guarantees that the overall response of the equilibrium to aggregate productivity is not distorted

by making the marginal tax also a decreasing function of realized aggregate productivity (Tkθ̄ < 0).

4.5 Idiosyncratic vs aggregate shocks

Another special case of interest is the case of independent private values typically considered in

the new public finance literature. Studying this particular case helps appreciate how our policy
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results depend on the dispersion of information regarding aggregate shocks, as opposed to purely

idiosyncratic shocks.

Within our framework, this case can be captured as follows: first, suppose that ωi = θi, so

that θi is the private information of agent i and φ = h; second, suppose that the cross-sectional

distribution h is common knowledge, so that there is no uncertainty about the cross-sectional dis-

tribution of types in society. Because φ, the cross-sectional distribution of information, is common

knowledge, in equilibrium aggregate investment is also common knowledge. Together with the fact

that h, and hence θ̄, is commonly known and the fact that θi is known to agent i, this implies

that the unique equilibrium is given by k (ωi) = κ
(

θi, θ̄
)

. Similarly, the efficient allocation is given

by k (ωi) = κ∗
(

θi, θ̄
)

. As a result, neither α matters for equilibrium behavior, nor α∗ matters for

efficient allocations. We conclude that in the case of independent private values it is not necessary

to condition the tax system on realized aggregate activity.18

What renders α and α∗, and hence also the contingency TkK , irrelevant in the aforementioned

environment is not per se the fact that private values are independent but rather that there is

no strategic uncertainty: no agent faces uncertainty regarding the distribution of actions in the

population. Indeed, if we relax either the assumption that θi is known to agent i or the assumption

that h is common knowledge but maintain the assumption that φ is common knowledge, then the

distribution of actions is also common knowledge in equilibrium. This in turn eliminates the problem

of forecasting aggregate activity, once again guaranteeing that neither α matters for equilibrium

behavior nor α∗ matters for the efficient allocation—and therefore nor TkK is essential for achieving

efficiency. We conclude that the key distinctive property of the correlated-value environments we

consider in this paper is the strategic uncertainty created by the dispersion of information regarding

aggregate shocks.

Corollary 4 When the cross-sectional distribution of information in society (φ) is common knowl-

edge, the contingency of taxes on aggregate activity (TkK) is not essential for implementing the

efficient strategy.

5 A dynamic economy

The analysis so far has been confined to a static game. We now show how this static game can

be embedded in a dynamic setting with a more macro flavor. This serves two goals. First, it

helps further appreciate how our results can be relevant for applications. Second, it accommodates

18In particular, the efficient allocation can be implemented with a tax schedule that depends only on own activity

and θ̄.Moreover, should the tax be made contingent onK, this contingency would matter for equilibrium behavior only

through κ2 (the sensitivity of the complete-information equilibrium to θ̄), not through α (the degree of alignment);

the contingency on θ̄ should then be adjusted to perfectly offset the effect of TkK on κ2.
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the possibility that interesting dynamics in actions originate in the dynamics of information. In

this section, we start by taking the dynamics of information as entirely exogenous; we turn to the

analysis of endogenous information in Section 6.

5.1 Set up

There are N + 1 periods, with N ≥ 2. In each period t = 1, ..., N , each agent i chooses his level

of investment in a riskless discount bond, bi,t, and his level of consumption, ci,t. The agent also

chooses an action ki,t ∈ R, which we henceforth interpret as capital invested in a risky technology.

Investing ki,t costs G (ki,t) in period t and delivers F (ki,t,Kt, σt, Ai,t+1) in period t+ 1, where Kt

and σt are the mean and the dispersion of activities in period t, Ai,t+1 is an exogenous productivity

shock, and G and F are real-valued functions. To simplify the exposition, we henceforth impose

that the productivity shocks are perfectly correlated across agents, so that Ai,t+1 = θt for all i, t.

(The timing convention we adopt here is that θt denotes the common shock that is relevant for

period-t decisions.)

The agent’s period-t budget is given by

ci,t +G (ki,t) + qtbi,t = F (ki,t−1,Kt−1, σt−1, θt−1) + bi,t−1 − τi,t,

where qt denotes the period-t price of discount bonds (the reciprocal of the period−t risk-free

rate) and τi,t denotes the period-t taxes the agent pays to (or the transfers he receives from) the

government.19 Finally, the agent’s intertemporal preferences are given by

Ui =

N+1
∑

t=1

βt−1U (ci,t, ki,t) .

where Ut is a real-valued function.

This framework is quite flexible. All the applications we considered in the static benchmark

can be nested by setting U(c, k) = c and then letting −G(k) + βF (k,K, σ, θ) equal the payoffs

assumed in those statics examples (e.g., −G(k) + βF (k,K, σ, θ) can be interpreted as the profit of

a firm). Alternatively, a stylized version of the neoclassical growth model with convex investment

costs is nested by letting U (c, k) = c, F (k,K, σ, θ) = θk, and G (k) = k + χk2, for some constant

χ > 0. One could also interpret k as individual effort, in which case it would be natural to let

G (k) = 0 and U (c, k) = c−H(k), with H(k) = k2 representing the disutility of effort. Finally, one

could further allow U and G to depend on (K,σ, θ), as to capture externalities in leisure, pecuniary

externalities in the costs of investment, and so on.

19For t = N + 1, we impose that ki,t = bi,t = 0 for all i, in which case the last-period budget constraint reduces

to ci,N+1 = F (ki,N ,KN , σN , AN+1) −G (0) + bi,N − τi,N+1. Furthermore, for t = 1, without loss, we normalize each

agent’s endowment to zero so that F (ki,0,K0, σ0, A1) = bi,0 = 0 for all i.
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If agents had common information about the shocks in all periods, then the analysis could

proceed essentially without any further restrictions on the functions F, G and U. Here, however, we

are interested in cases where agents have heterogeneous information. To keep the analysis tractable,

we impose two restrictions. First, we assume that U is linear in consumption: U(c, k) = c−H(k),

for some function H. Second, we let

V (k,K, σ, θ) ≡ −[G (k) +H(k)] + βF (k,K, σ, θ)

and assume that V satisfies the same properties with respect to (k,K, σ, θ) as the function U in the

static model. The first restriction ensures that, in all periods and states, the bond market clears if

and only if qt = β (in which case the demand for the risk-free bond is indeterminate) and that the

life-time utility of agent i (in the absence of taxes) reduces to

Ui =

N
∑

t=1

βt−1V (ki,t,Kt, σt, θt) .

The second restriction then permits to extend our previous static analysis to the dynamic model.

The key here is to rule out informational externalities—the possibility that what an agent

knows in period t about θt depends on the actions other agents took in periods s < t. To ensure

this, we model the dynamics of the information structure as follows. The (exogenous) information

of an agent in period t is represented by ωi,t ∈ Ωt. Let f ∈ F denote a joint distribution for

{θt, ωi,t}
N
t=1, with marginal distributions for ωi,t given by φt ∈ Φt. The distribution f also describes

the cross-sectional distribution of {θt, ωi,t}
N
t=1 in the population. First, Nature draws f from a set

of possible distributions F according to the probability measure F . Nature then uses f to draw a

sequence {θt, ωi,t}
N
t=1 for each agent i, with {θt, ωi,t}

N
t=1 drawn independently from f . Finally, we

assume that (ωi,t−1, φt−1, θt−1) belongs to ωi,t, for all i and t. This ensures that there is nothing to

learn about (θs, φs)
N
s=t from the observation of other agents’ (past) actions—whether such actions

are observable is then irrelevant.20 It is then without loss of generality, for either equilibrium or

efficiency, to restrict attention to strategies that depend only on ωi,t.

5.2 Equilibrium, efficiency and policy

Given that information is exogenous in all dates and states, the analysis of both the equilibrium and

efficient allocations parallels that in the static benchmark. Let κ (θ) denote the (unique) solution

to Vk (κ, κ, 0, θ) = 0 and let κ∗ (θ) ≡ arg maxκ V (κ, κ, 0, θ) ; if information were complete, the

equilibrium action in period t would be κ (θt) , while the first-best action would be κ∗ (θt) .
21 Next,

20An alternative that would also guarantee that agents do not learn anything about (θs, φs)
N
s=t from the observation

of past actions is to assume that for all t > 1, ωi,t is a sufficient statistic for
(

ωi,t, (ωi,s,φs, θs)
t−1

s=1

)

with respect to

(θs, φs)
N
s=t.

21Both κ and κ∗ are linear functions of θ. In particular, κ(θ) = κ0 + (κ1 + κ2) θ and κ∗(θ) = κ∗

0 + (κ∗

1 + κ∗

2) θ with

the coefficients (κ0, κ1, κ2, κ
∗

0, κ
∗

1, κ
∗

2) determined as in the proof of Proposition 1 replacing U with V.
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let

α ≡ −
VkK

Vkk
and α∗ ≡ 1 −

Wvol

Wdis
,

with Wvol ≡ Vkk + 2VkK + VKK and Wdis ≡ Vkk + Vσσ ; once again, α summarizes the private value

of aligning choices (the equilibrium degree of complementarity), while α∗ summarizes the social

value of such alignment (the relative social aversion to dispersion and volatility). The equilibrium

and efficient allocations under incomplete information are then characterized in the following two

propositions, which are direct extensions of Propositions 2 and 3.

Proposition 7 The equilibrium strategy exists, is unique, and satisfies, for all periods t and all

ωt ∈ Ωt,

kt(ωt) = E[ κ (θt) + α · (Kt (φt) − κt (θt)) | ωt ],

with Kt(φt) =
∫

kt (ω′) dφt(ω
′).

Proposition 8 The efficient strategy exists, is unique, and satisfies, for all periods t and almost

all ωt ∈ Ωt,

kt(ωt) = E[ κ∗ (θt) + α∗ · (Kt (φt) − κ∗ (θt)) | ωt ],

with Kt(φt) =
∫

Ω kt (ω′) dφt(ω
′).

The efficient strategy can be implemented in a similar fashion as in Section 4. In particular,

efficiency can be induced in period t by making taxes in period t + 1 contingent on information

about Kt and θt that becomes publicly available at t+1. As in the static model, the optimal policy

does not require any informational advantage on the side of the government. It merely depends on

the agents anticipating when they make their decision that the marginal tax they will pay in the

future will be contingent on public information about aggregate economic conditions.

6 Informational externalities

A key functioning of modern economies that is missed in our preceding analysis is the aggregation

of dispersed information in various indicators of aggregate activity, such as financial prices, trade

volume, aggregate employment, output and investment data. What is crucial for our purposes is

that the informational content of these indicators depends on the way agents use their available

information in the first place: the more individuals rely on their private information, the more

informative aggregate activity is of the underlying fundamentals. The various channels of infor-

mation aggregation and social learning thus introduce informational externalities that have to be

taken into account when determining the socially optimal use of information.

We study this issue, and its policy implications, within a variant of the dynamic framework

introduced in the previous section. Past shocks are no longer directly revealed to the agents. Rather,
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the agents learn about these shocks from the observation of a noisy signal of past aggregate activity.

This signal is a proxy for the informational role of macroeconomic data, financial prices, and other

channels of information aggregation and social learning.

6.1 Set up

To be able to analyze the endogenous dynamics of information in a tractable way, we must sac-

rifice some of the generality we have permitted in the preceding analysis: we henceforth restrict

all exogenous information to be Gaussian. In particular, we assume that the component of the

fundamentals about which the agents have heterogeneous information is constant over time, we

denote this component by θ, and we assume that it is drawn from a Normal distribution with mean

µ and variance σ2
θ . The realization of θ is never revealed. Instead, at any date t, agents observe a

public signal yt = θ+εt and private signals xi,t = θ+ξi,t, where εt ∼ N (0, σ2
y,t) and ξi,t ∼ N (0, σ2

x,t)

are noises, independent of one another, independent across time, and independent of θ, with ξi,t

also independently and identically distributed across agents. In addition, at any date t ≥ 2, agents

observe the following three random variables, which affect payoffs and convey information about

θ: K̃t−1 = Kt−1 + ηt, σ̃t−1 = σt−1 + υt, and Ãt = θ + at, where ηt ∼ N (0, σ2
η,t), υt ∼ N (0, σ2

υ,t),

and at ∼ N (0, σ2
a,t) are shocks, common across agents, independent across time, and independent

of any other random variable. The period-t budget of the agent is given by

ci,t +G (ki,t) + qtbi,t = F (ki,t−1, K̃t−1, σ̃t−1, Ãt) + bi,t−1 − τi,t.

The variable Ãt can be interpreted as the period−t productivity shock, while θ is the underlying

mean (trend) productivity. That the variables K̃t−1 and σ̃t−1 that enter period−t income (through

F ) coincide with the signals about past activity is not essential. What is essential is that the

observation of income does not perfectly reveal either θ or Kt−1.
22

The rest of the model is as in Section 5. The intertemporal payoff of an agent is given by
∑N+1

t=1 βt−1U (ci,t, ki,t) , where U (ci,t, ki,t) = ci,t−h(ki,t). That preferences are linear in consumption

ensures once again that qt = β, that the trades of riskless bonds and the timing of consumption are

indeterminate, and that the intertemporal payoff of an agent (in the absence of taxes) reduces to

N+1
∑

t=1

βt−1V
(

ki,t, K̃t, σ̃t, Ãt+1

)

,

where V (k,K, σ,A) ≡ −[G (k)+H(k)]+βF (k,K, σ,A) . The function V is quadratic and satisfies

the same restrictions as in the previous sections.

22Also, the results that follow do not depend on whether the signals about past actions are public or private.

In particular, we could allow the agents to receive private signals K̃i,t−1 = Kt−1 + ηi,t, σ̃t−1 = σt−1 + υi,t, and

Ãi,t = θ + ai,t, in addition to, or in substitution for, the aforementioned public signals.
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6.2 Equilibrium

The essential difference between the economy of this section and the one examined in Section 5

is the endogeneity of information: the strategy agents follow in period t determines how much

information about θ is contained in (K̃t, σ̃t) and hence affects the agents’ behavior in periods t+ 1

on. In the absence of policy, this informational externality is not internalized by the agents: the

fact that the use of information in the present affects the information available in the future does

not alter private incentives. Thus, letting once again κ (θ) = κ0 + (κ1 + κ2)θ denote the unique

solution to Vk (κ, κ, 0, θ) = 0 and α ≡ −VkK/Vkk, we have the following result.

Proposition 9 The equilibrium strategy exists and is unique. Let {Ωt,Φt}
N
t=1 denote the (unique)

information structure generated by the equilibrium strategy. Then, for all t, the strategy and the

information structure jointly satisfy

kt(ωt) = E[ κ (θ) + α · (Kt (φt) − κ (θ)) | ωt ] (15)

for all ωt ∈ Ωt, with Kt(φt) =
∫

Ω kt (ω′) dφt(ω
′) for all φt ∈ Φt.

This result does not require the information structure to be Gaussian. However, once we restrict

θ and the exogenous noises to be Gaussian, this result ensures that the information contained in the

signals of past activity is also Gaussian. All the information—exogenous and endogenous—that is

available in any given period can then be summarized in two sufficient statistics, one for the private

and the other for the public signals; the dynamics of these two statistics admit a simple recursive

structure and the equilibrium strategy reduces to an affine combination of the two.

Proposition 10 The equilibrium strategy is given by

ki,t (ωi,t) = κ (γtXi,t + (1 − γt)Yt) ,

with

γt =
(1 − α) πx

t

(1 − α) πx
t + πy

t

. (16)

The variables Xi,t and Yt are sufficient statistics for all the private and public information about θ

that is available to agent i in period t, while πx
t and πy

t are their respective precisions. The sufficient

statistics are given recursively by

Xi,t =
πx

t−1

πx
t

Xi,t−1 +
σ−2

x,t

πx
t

xi,t and Yt =
πy

t−1

πy
t

Yt−1 +
σ−2

y,t

πy
t

yt +
σ−2

a

πy
t

At +
γ2

t−1 (κ1 + κ2)
2 σ−2

η,t

πy
t

ỹt (17)

where

ỹt ≡
K̃t−1 − κ0 − (κ1 + κ2) (1 − γt−1)Yt−1

(κ1 + κ2) γt−1
(18)
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is a linear transformation of the signal of past activity. Similarly, the precisions πx
t and πy

t are

given recursively by

πx
t = πx

t−1 + σ−2
x,t and πy

t = πy
t−1 + σ−2

y,t + σ−2
a,t + (κ1 + κ2)

2 γ2
t−1σ

−2
η,t . (19)

Finally, the initial conditions are Xi,0 = 0, Yi,0 = µ, γ0 = 0, πx
0 = 0 and πy

0 = σ−2
θ .

The logic behind condition (16) is the same as the one we encountered in the static benchmark.

For given degree of complementarity α, the relative sensitivity γt of the equilibrium strategy to

private information increases with the precision of private information and decreases with the

precision of public information. At the same, for given precisions, a higher α tilts the equilibrium

strategy away from private information and towards public information, as agents find it optimal

to better align their choices.

Conditions (17)-(19), on the other hand, describe the endogenous evolution of the information,

which can be understood as follows. First note that, because Xi,t−1 equals θ plus idiosyncratic

noise, aggregate activity in period t− 1 is given by

Kt−1 = κ0 + (κ1 + κ2) (γt−1θ + (1 − γt−1)Yt−1) .

Because Yt−1 is publicly known (and so are the coefficients κ0, κ1, κ2 and γt−1), observing K̃t−1 =

Kt−1 + ηt in period t is informationally-equivalent to observing the variable ỹt defined in (18). But

now note that

ỹt = θ +
1

(κ1 + κ2) γt−1
ηt,

which is simply a Gaussian signal with precision π̃t = γ2
t−1 (κ1 + κ2)

2 σ−2
η,t . It follows that all private

signals can be combined in the sufficient statistic Xi,t, while all public signals can be combined

in the sufficient statistics Yt. Condition (17) then states that these statistics are simply weighted

averages of all the available signals, with the weights dictated by the respective precisions of these

signals, while condition (19) states that the precisions of these statistics are simply the sums of the

precisions of the component signals.

The key property to notice is that the precision of information available in one period de-

pends on the strategy followed in previous periods. In particular, for all t, π̃t and thereby πy
t is

increasing in γt−1.
23 This is because the informative content of the signals of aggregate activity

is higher the more sensitive the strategies of the agents to their private information.24 This is an

important informational externality that the equilibrium fails to internalize in the absence of policy

intervention.
23When θ changes over time, the period-t precision of information regarding the period-t fundamental need be

monotonic over time; but it remains an increasing function of the sensitivities of past strategies to private information.
24A similar property typically holds in rational-expectation-equilibria models: the information contained in the

price increases with the sensitivity of individual asset demands to private information.
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6.3 Efficiency and policy

We now turn to the policy implications of the aforementioned informational externality by charac-

terizing the strategy that maximizes ex-ante utility taking into account this externality. However,

unlike the cases of exogenous information examined in the previous section, we now restrict at-

tention to strategies that are linear in the available private signals. Without this restriction, the

endogenous signals are no longer Gaussian and the analysis becomes intractable.

Suppose, for a moment, that the government fails to recognize that the strategy the agents

follow in period t affects the information available in subsequent periods. Suppose further that the

period-t private and public information were summarized in sufficient statistics Xi,t and Yt with

respective precisions πx
t and πy

t , so that

E [θ|ωi,t] =
πx

t

πx
t +πy

t

Xi,t +
πy

t

πx
t +πy

t

Yt,

and let κ∗ (θ) ≡ arg maxκ V (κ, κ, 0, θ) = κ∗0 + (κ∗1 + κ∗2)θ and α∗ ≡ 1 −Wvol/Wdis ≡ 1 − (Vkk +

2VkK + VKK)/(Vkk + Vσσ). Proposition 8 would then imply that the efficient strategy is given by

ki,t (ωi,t) = κ∗ (γ∗tXi,t + (1 − γ∗t )Yt) ,

with

γ∗t =
(1 − α∗)πx

t

(1 − α∗) πx
t + πy

t

.

Now suppose the government takes into account the endogeneity of the information. As long

as welfare in the subsequent periods is increasing in the precision of available information, it should

be desirable to adjust the current use of information so as to induce more learning in subsequent

periods. Because more learning is achieved only by the aggregation of private information, this

suggests that the informational externality raises the sensitivity of efficient strategies to private

information. The following result verifies this intuition.

Proposition 11 The linear strategy that maximizes ex-ante utility is given by

ki,t (ωi,t) = κ∗ (γ∗∗t Xi,t + (1 − γ∗∗t )Yt) ,

where

γ∗∗t =
(1 − α∗) πx

t

(1 − α∗) πx
t + πy

t − β (1 − α∗)
(

1 − γ∗∗t+1

)2
πx

t π
y
t

(

πy
t+1

)−2
(κ∗1 + κ∗2)

2 σ−2
η,t+1

for all t < N, while γ∗∗N = (1 − α∗) πx
N/

[

(1 − α∗) πx
N + πy

N

]

. Xi,t and Yt are sufficient statistics for

all the private and public information about θ available to agent i in period t, while πx
t and πy

t are

their respective precisions; they are obtained recursively using (17)-(19), replacing (γt, κ0, κ1, κ2)

with (γ∗∗t , κ∗0, κ
∗
1, κ

∗
2)
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The key result here is that, holding constant the current precisions of private and public

information, the optimal weight on private information is higher than what it would have been had

information in the subsequent periods been exogenous:

γ∗∗t >
(1 − α∗)πx

t

(1 − α∗)πx
t + πy

t

.

As anticipated, this follows directly from the internalization of the informational externality: by

raising the reliance on private information in one period, society achieves higher precision of infor-

mation and hence higher welfare in subsequent periods.25

The following alternative representation of the optimal strategy helps translate the result here

in terms of the degree of complementarity that the policy must induce in equilibrium.

Proposition 12 Consider the efficient linear strategy and let {Ωt,Φt}
N
t=1 be the associated infor-

mation structure. There exists a unique sequence {α∗∗
t }N

t=1 , with α∗∗
t < α∗ for all t < N and

α∗∗
N = α∗, such that the efficient strategy and the information structure jointly satisfy, for all t,

k∗t (ωt) = E[ κ∗ (θ) + α∗∗
t · (Kt (φt) − κ∗ (θt)) | ωt ] (20)

for almost all ωt ∈ Ωt, with Kt(φt) =
∫

Ω k
∗
t (ω′) dφt(ω

′) for all φt ∈ Φt.

As in the case without informational externalities, the weight α∗∗
t in condition (20) summarizes

how much society would like the agents to factor their expectations of other agents’ choices in their

own choices. Unlike the case without informational externalities, this weight now depends on the

information structure. Nevertheless, condition (20) remains a valid and insightful representation

of the optimal strategy: the result that α∗∗
t < α∗ highlights that having the agents internalize the

informational externality is isomorphic to having them perceive a lower complementarity in their

actions than the one they should have perceived had information been exogenous. This in turn

guides policy analysis: the optimal linear strategy can be implemented with similar tax schemes

as in the benchmark model, but now the sensitivity TkK of the marginal tax to aggregate activity

must be higher than what it would have been with exogenous information.

Corollary 5 Informational externalities unambiguously contribute to a higher optimal sensitivity

of the marginal tax to aggregate activity.

This result is true irrespective of the specific payoff interdependencies and irrespective of

whether the equilibrium would have been efficient had information been exogenous. Moreover,

it easily extends to richer Gaussian information structures, with multiple private and public signals

25Of course, this informational externality is absent in the very last period, which explains why the result does not

hold at t = N.
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of aggregate activity. It relies merely on two properties: (i) that a higher TkK induces more learning

by increasing the sensitivity of actions to private information; and (ii) that the social value of such

learning is positive because the optimal policy removes any inefficiencies in the use of information.

We further discuss the importance of this last point in the next section, where we study how

the policies we have identified affect the social value of information. Before turning to this issue,

however, we study the properties of optimal policy for a special case of interest: economies in which

inefficiency emerges only because of informational externalities.

This special case is motivated by the following observations. In certain settings (e.g., Walrasian

economies with no externalities), one may expect that competitive market forces achieve a perfect,

or near perfect, coincidence of private and social payoffs. Although such a coincidence may fail to

obtain in the absence of complete markets or in the presence of other market distortions, this case

still represents an important benchmark. At the same time, when information is dispersed, one may

expect that individual market participants fail to internalize how their choices affect the quality of

information contained in financial prices, macroeconomic indicators, and other endogenous signals

of the underlying fundamentals. In our set up, these settings correspond to economies in which

information is endogenous but where (κ, α) = (κ∗, α∗), so that private and social payoffs coincide

and inefficiency emerges only because of informational externalities.

The following is then an immediate implication of Corollary 5 along with the fact that, for

these economies, the optimal tax would be zero had information been exogenous.

Corollary 6 In economies in which inefficiency emerges only because of informational externali-

ties, the optimal policy is such that TkK > 0.

This result may be relevant for understanding optimal policy over the business cycle. Consider

standard real-business-cycle models in which all firms and households share the same information

regarding aggregate productivity and taste shocks. The assumption of frictionless competitive

markets along with the absence of direct payoff externalities then guarantees that the equilibrium

business cycle is efficient. Now consider a small, yet realistic, modification of these models: let

information be dispersed and only imperfectly aggregated through prices and macro data. This

modification is likely to render the business cycle inefficient as agents fail to internalize how their

choices affect the information of others. Our results then suggest the following policy remedy:

by having marginal taxes increase with realized aggregate macroeconomic activity and decrease

with realized productivity, the government can improve the information contained in prices and

macro data, and can thereby reduce the non-fundamental component of the business cycle (i.e., the

fluctuations that are driven by noise in information regarding aggregate demand and productivity

conditions).
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7 Implications for the social value of information

Throughout our analysis, we have ruled out policies that convey information to the agents. However,

if the government possess information that is not directly available to the market (e.g. macroeco-

nomic data collected by government agencies such as the Bureau of Labor Statistics, the US Census

Bureau, or the Federal Reserve Banks), then it is important to understand whether it is socially

desirable to communicate such information to the market. A positive answer is not obvious.

Indeed, as long the equilibrium use of information is inefficient, an increase in the precision of

available information can have a detrimental effect on welfare. For example, if α > α∗, agents may

overreact to any additional public information, exacerbating the already excessive non-fundamental

volatility. However, this can not be the case if the equilibrium use of information is efficient. This

is because the equilibrium strategy then coincides with the solution to a planning problem where

the planner directly controls how agents use their available information. An argument analogous

to Blackwell’s theorem then guarantees that additional information can not reduce welfare.26 The

following result is then a direct implication of these observations.

Corollary 7 In general, more precise information can reduce welfare. However, policies that re-

store efficiency in the decentralized use of information also guarantee a positive social value for any

information disseminated by policy makers or other institutions.

In an influential paper, Morris and Shin (2002) used an elegant example to illustrate the

possibility that more precise public information can reduce welfare: a “beauty-contest” game, where

the strategic complementarity perceived by the agents is not warranted from a social perspective,

causing overreaction to public news.27 This example has lead to a renewed debate on the merits

of transparency in central bank communications.28 Whereas this question has been studied largely

in isolation from other aspects of policy making, our results indicate that a central bank’s optimal

communication policy is far from orthogonal to the corrective roles of monetary and fiscal policies.29

In a related but different line of reasoning, Amador and Weill (2007) argue that, by crowding

out private information, an increase in the precision of exogenous public information can reduce

the precision of the endogenous information contained in prices and other indicators of economic

26For further details on how the welfare effect of additional information depends on the inefficiencies, if any, of the

equilibrium use of information, see Angeletos and Pavan (2007).
27Their example is nested in our baseline static framework with κ = κ∗ and α > α∗; it is an economy where

inefficiency emerges only under dispersed information and manifests itself in excessive non-fundamental volatility.
28See, for example, Amato and Shin (2006), Angeletos and Pavan (2004, 2007), Baeriswyl and Conrand (2007),

Heinemann and Conrand (2006), Hellwig (2005), Morris and Shin (2002, 2005), Roca (2006), Svensson (2005),

Woodford (2005).
29An exception is Baeriswyl and Conrand (2007), which focuses on the signaling effects of monetary policy.

30



activity and can thereby slow down social learning.30 A similar theme is explored in Morris and

Shin (2005) and Amato and Shin (2006). Our results imply that the government can improve the

informational content of prices, can raise the speed of social learning, and can guarantee that any

public information it disseminates is welfare improving, once it sets in place policies that correct

the underlying inefficiency in the decentralized use of information.

8 Concluding remarks

Information about commonly-relevant fundamentals—such aggregate productivity and demand

conditions or the profitability of available technologies—is highly dispersed in society, is only im-

perfectly aggregated through markets, and can not be centralized by the government or any other

institution. As first emphasized by Hayek (1945), this means that society has to rely on decentral-

ized market mechanisms for an effective utilization of such information. However, this does not

necessarily mean that the government should not interfere with the decentralized use of informa-

tion: to the extent that private and social incentives in the use of such information do not coincide,

the equilibrium’s response to certain sources of information may be inefficient, leading to excessive

non-fundamental volatility, excessive dispersion, or suboptimal social learning.

The key contribution of the paper was to identify policies that correct such inefficiencies: by

appropriately designing the contingency of marginal taxes on aggregate activity, along with other

properties of the tax system, the government can manipulate the incentives the agents face in using

different sources of information and can thereby improve welfare even if it cannot itself collect and

disseminate information or create new channels through which information is aggregated in society.

We established this result within an abstract but flexible framework in order to highlight the

potential generality of the insight. Of course, the details of the optimal contingency will depend on

the details of the application under examination. If the key inefficiencies are overreaction to public

news and excessive non-fundamental volatility, as it is often argued to be the case for financial

markets, then marginal taxes must increase with aggregate activity. The same is true if the key

inefficiency is the failure of markets to internalize the endogeneity of the information contained

in financial prices and macroeconomic data. In both cases, it is desirable to provide incentives

so that agents rely less on common sources of information; this can be achieved by introducing

a positive contingency of marginal taxes on signals of aggregate activity. The opposite policy

prescription applies to markets exhibiting overreaction to private information and excessive cross-

sectional dispersion. Nevertheless, the key principle—the optimality of marginal taxes contingent

on aggregate economic conditions—remains valid for any economy featuring dispersed information

regarding commonly-relevant fundamentals.

30Amador and Weill (2007) extend Vives (1993, 1997) to situations with both private and public learning. Both

models are nested in our analysis of Section 6 as special cases that rule out payoff externalities.
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Examining the practical, political-economy, considerations that might complicate the introduc-

tion of explicit aggregate contingencies in the tax code is clearly beyond the scope of this paper.

However, it is important to note that there are various direct and indirect ways through which

such contingencies can obtain in practice. For example, the government could first collect non-

contingent taxes and subsequently make rebates whose magnitude depends on realized aggregate

activity. Alternatively, the tax code could be revised over time on the basis of past macroeconomic

performance. To the extent that such rebates or revisions are systematic, they can have similar

incentive effects as the type of contingencies envisioned in this paper.

Moreover, the contingency of monetary policy to macroeconomic performance could serve a

similar role: how firms use different sources of information when making their pricing and produc-

tion choices depends on how they anticipate monetary policy to respond to the information about

aggregate employment, output and prices that arrives over time. For example, to the extent that

higher interest rates have similar incentive effects as higher taxes, the Central Bank can use the

contingency of its interest-rate policy on aggregate economic conditions, not only for the familiar

stabilization purposes, but also to improve the information that is contained in prices and macro

data. Further exploring how the policy objectives we have studied in this paper filter in the optimal

design of monetary policy is a fruitful direction for future research.
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9 Appendix

Proof of Proposition 1. We prove the result in three steps. Steps 1 and 2 characterize,

respectively, the complete-information equilibrium and the first-best allocation. Step 3 extends the

results to the case of incomplete but common information.

Step 1. Consider the complete-information equilibrium. Because payoffs are concave in k, for

any givenK the optimal action for agent i is pinned down by the first-order condition Uk (ki,K, θi) =

0. Because U is quadratic in (k,K, θ), the first-order condition is equivalent to

Uk (0, 0, 0) + Ukkki + UkKK + Ukθθi = 0. (21)

Aggregating across agents (i.e., integrating over θi), we thus have that

Uk (0, 0, 0) + [Ukk + UkK ]K + Ukθθ̄ = 0. (22)

Combining (21) with (22), and letting

κ0 ≡
Uk (0, 0, 0)

− (Ukk + UkK)
, κ1 ≡

Ukθ

−Ukk
, κ2 ≡

Ukθ

− (Ukk + UkK)
− κ1, (23)

gives the result.

Step 2. Next, consider the first-best allocation. A feasible allocation consists of a combination

of a strategy k : Θ × H → R and a system of budget-balanced transfers across agents. For any

given cross-sectional distribution of productivities h ∈ H and any given strategy k : Θ ×H → R,

let K(h) ≡
∫

k (θ;h) dh (θ) and σk(h) ≡ (
∫

[k (θ;h) −K(h)]2 dh (θ))1/2 be the corresponding mean

and dispersion of activity in the cross section of the population. Next, let

w(k;h) ≡

∫

U(k (θ;h) ,K(h), σk(h), θ)dh(θ) (24)

denote ex-ante utility behind the veil of ignorance (equivalently, welfare under an utilitarian aggre-

gator). Because of the quasi-linearity of payoffs in transfers, ex-ante utility depends only on the

strategy k. An allocation is thus efficient if and only if the strategy k : Θ × H −→ R maximizes

w(k;h). Because U is quadratic, and Uσ(k,K, σk , θ) = Uσσσk, we then have that

w = U(K,K, 0, θ̄) +
1

2
(Uσσ + Ukk)σ

2
k +

1

2
Uθθσ

2
θ + Uθk

{
∫

[k (θ) θ] dh (θ) −Kθ̄

}

where for simplicity we dropped the dependence of k, K and σk on h. Then let

L ≡ w − λ

(
∫

k(θ)dh (θ)−K

)

− µ

(
∫

[k(θ) −K]2 dh (θ) − σ2
k

)

denote the Lagrangian for this problem. Optimizing L with respect to K,σ2
k and k(θ) we have that

Ukθθ − λ− 2µ [k(θ) −K] = 0

Uk(K,K, θ̄) + UK(K,K, θ̄) − Uθkθ̄ + λ = 0

1

2
(Uσσ + Ukk) + µ = 0
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Combining, we have that

Ukθθ + Uk(K,K, θ̄) + UK(K,K, θ̄) − Ukθθ̄ + (Uσσ + Ukk) [k(θ) −K] = 0 (25)

or equivalently

Ukθθ+Uk(0, 0, 0)+UK (0, 0, 0)+[UkK + 2UkK + UKK ]K+UKθθ̄+(Uσσ + Ukk) [k(θ) −K(h)] (26)

Integrating over θ we then have that

K =
Uk(0, 0, 0) + UK(0, 0, 0)

− [UkK + 2UkK + UKK ]
+

(UKθ + Ukθ) θ̄

− [UkK + 2UkK + UKK]
(27)

Substituting (27) into (26), and letting

κ∗0 ≡
Uk (0, 0, 0) + UK (0, 0, 0)

−(Ukk + 2UkK + UKK)
, κ∗1 ≡

Ukθ

− (Ukk + Uσσ)
, κ∗2 ≡

Ukθ + UKθ

−(Ukk + 2UkK + UKK)
− κ∗1, (28)

gives the result.

Step 3. Now suppose that information is incomplete but common. Since all information is

common, the aggregate activity K is also commonly known in equilibrium. The first-order condition

for agent i is thus given by

Uk (0, 0, 0) + Ukkki + UkKK + UkθE[θi|P] = 0,

where P denotes the commonly-available information set (whatever this is). Aggregating this across

agents, and noting that the cross-sectional average of E[θi|P] is simply E[θ̄|P], we get

Uk (0, 0, 0) + [Ukk + UkK ]K + UkθE[θi|P] = 0.

Note that the above two conditions are identical to conditions (21) and (22), except for the fact

that θi and θ̄ have been replaced by E[θi|P] and E[θ̄|P]. It is thus immediate that the equilibrium

action for agent i is given by

ki = E
[

κ(θi, θ̄)|P
]

.

A similar argument implies that the efficient action is given by

ki = E
[

κ∗(θi, θ̄)|P
]

,

which completes the proof of the result.

Proof of Proposition 2. We prove the result in two steps. Step 1 proves that condition (4)

characterizes any equilibrium. Step 2 proves existence and uniqueness.

Step 1. Take any strategy k : Ω → R and let K(φ) =
∫

k (ω) dφ (ω) . A best-response is a

strategy k′ : Ω → R such that, for all ω, k′ (ω) solves the first-order condition

E[Uk(k
′,K (φ) , θ) | ω] = 0. (29)
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Using the fact that Uk(k
′,K, θ) = Uk(κ(θ, θ̄), κ(θ̄, θ̄), θ) + Ukk · (k′ − κ(θ, θ̄)) + UkK · (K − κ(θ̄, θ̄)),

where κ stands for the complete-information equilibrium allocation and the fact that κ solves

Uk(κ(θ, θ̄), κ(θ̄, θ̄), θ) = 0 for all
(

θ, θ̄
)

, (29) reduces to

E[Ukk · (k
′ − κ(θ, θ̄)) + UkK · (K (φ) − κ

(

θ̄, θ̄
)

) | ω] = 0,

or equivalently k′(ω) = E[κ(θ, θ̄) + α
(

K (φ) − κ
(

θ̄, θ̄
))

| ω]. In equilibrium, k′(ω) = k(ω) for all ω,

which gives (4).

Step 2. What remains to prove is that the equilibrium exists and is unique; this can be done

with the help of Proposition 3, which characterizes the efficient use of information. Let U denote

the class of payoff functions U that satisfy the properties specified in Section 2. An economy is

given by e ≡ (U,Θ,Ω, F ) . By comparing conditions (4) and (10), it is immediate that the set of

equilibrium strategies for the economy e = (U,Θ,Ω, F ) coincides with the set of efficient strategies

for an economy e′ = (U ′,Θ,Ω, F ) such that the κ∗ and α∗ corresponding to e′ coincide with the

κ and α corresponding to e. Moreover, U ′ ∈ U as long as U ∈ U . As shown in Proposition 3, the

efficient strategy for any economy e′ with U ′ ∈ U exists and is uniquely determined for all but a

measure-zero set of ω. It follows that an equilibrium for the economy e exists and is unique.

Proof of Corollary 1. From (4), we have that aggregate investment satisfies

K(φ) =

∫

E[ κ(θ, θ̄) − ακ(θ̄, θ̄) | ω ]dφ(ω) + α

∫

E[ K (φ) | ω]dφ(ω).

Using the fact that κ1 = κ2(1 − α)/α,

κ(θ, θ̄) − ακ(θ̄, θ̄) = (1 − α)κ0 + κ1θ.

It follows that

K(φ) = (1 − α)κ0 + κ1Ē
1 + α

∫

E[ K (φ) | ω]dφ(ω)

and hence that

E[K (φ) | ω] = (1 − α)κ0 + κ1E[Ē1|ω] + αE[

∫

E[ K (φ) | ω′ ]dφ(ω′) | ω ].

Iterating and then substituting into (4) gives

k(ω) = E[ κ0 + κ1θ + κ1

∞
∑

n=1

αnĒn | ω ], (30)

which together with κ1 = κ2(1 − α)/α and the definition of θ̂ gives the result.

Proof of Lemma 1. A Taylor expansion of U(k,K, σk, θ) around (k̂, K̂, σ̂k, θ) gives

Eu = E[ U(k̂, K̂, σ̂k, θ) + Uk(k̂, K̂, σ̂k, θ)(k − k̂) + UK(k̂, K̂, σ̂k, θ)(K − K̂) + Uσ(k̂, K̂, σ̂k, θ)(σk − σ̂k)

+
1

2
Ukk(k − k̂)2 +

1

2
UKK(K − K̂)2 +

1

2
Uσσ(σk − σ̂k)

2 + UkK(k − K̂)(K − K̂) ].
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By the law of iterated expectations,

E[K|h] = E[E[K|θ, h]|h] = E[E[E[k(ω)|φ]|θ, h]|h]

= E[E[k(ω)|θ, h]|h] = E[k̂(θ;h)|h] = K̂(h).

It follows that E[K] = E[K̂] and that

E[Uk(k̂, K̂, σ̂k, θ)(k − k̂)] = E[UK(k̂, K̂, σ̂k, θ)(K − K̂)] = 0.

Furthermore, because U is linear in σ2
k, Uσ(k̂, K̂, σ̂k, θ) = Uσσσ̂k(σk − σ̂k). It follows that

Uσ(k̂, K̂, σ̂k, θ)(σk − σ̂k) +
1

2
Uσσ(σk − σ̂k)

2 =
1

2
Uσσ

[

σ2
k − σ̂2

k

]

Next, note that

(k − k̂)2 = [(k −K) − (k̂ − K̂)]2 + (K − K̂)2 + 2(K − K̂)[(k −K) − (k̂ − K̂)].

Because E[k] = E[K] = E[k̂] = E[K̂] and because (K − K̂) is orthogonal to [(k−K)− (k̂− K̂)], we

then have that

E[(k − k̂)2] = Var[(k −K) − (k̂ − K̂)] + Var[K − K̂].

Finally, note that

E[(k − K̂)(K − K̂)] = E[(K − K̂)2] + E[(k −K)(K − K̂)] = E[(K − K̂)2]

because (k −K) is orthogonal to (K − K̂).

Combining all the above results, we thus have that

Eu = E[U(k̂, K̂, σ̂k, θ)] +
1

2
Uσσ

[

σ2
k − σ̂2

k

]

+
1

2
UkkVar[(k −K) − (k̂ − K̂)]

+
1

2
UkkVar[K − K̂] +

1

2
UKKVar(K − K̂) + UkKVar(K − K̂).

Using the fact that

Var[(k −K) − (k̂ − K̂)] = Var[k −K] − Var[k̂ − K̂] = σ2
k − σ̂2

k

and rearranging, then gives the expression in (8).

Proof of Proposition 3. A strategy is efficient if and only if it maximizes

Eu =

∫

F

∫

Ω,Θ
U(k(ω),K(φ), σk(φ), θ)df(ω, θ)dF(f),

with K(φ) =
∫

Ω k(ω)dφ (ω) and σk(φ) =
[∫

Ω[k(ω) −K(φ)]2dφ (ω)
]1/2

with φ denoting the marginal

distribution over Ω generated by f. The strict concavity and the quadratic specification of U ensures
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that a solution to this problem exists and is unique for almost all ω. Let G (φ) denote the marginal

distribution of φ and Z (θ|φ) denote the distribution of θ conditional on φ, as implied by their joint

distribution F . The Lagrangian for this problem can be written as

Λ =
∫

Φ

∫

Θ

∫

Ω U(k(ω),K(φ), σk(φ), θ)dφ(ω)dZ(θ|φ)dG(φ)

+
∫

Φ λ(φ)
[

K(φ) −
∫

Ω k(ω)dφ (ω)
]

dG(φ)

+
∫

Φ η(φ)
[

σ2
k(φ) −

∫

Ω[k(ω) −K(φ)]2dφ (ω)
]

dG(φ)

Therefore, the first order conditions with respect to K(φ), σk(φ), and k(ω), which are necessary

and sufficient for optimality, are given by the following:

∫

Θ

∫

Ω UK(k(ω),K(φ), θ)dφ (ω) dZ(θ|φ) + λ(φ) = 0

for almost all φ
(31)

∫

Θ

∫

Ω Uσ(k(ω),K(φ), σk(φ), θ)dφ (ω) dZ(θ|φ) + 2η(φ)σk(φ) = 0

for almost all φ
(32)

∫

Θ×Φ [Uk(k(ω),K(φ), θ) − λ(φ) − 2η(φ)(k (ω) −K(φ))]dP (θ, φ|ω) = 0

for almost all ω
(33)

where P (θ, φ|ω) denotes the cumulative distribution function of (θ, φ) conditional on ω.

Using the facts that UK(k,K, θ) is linear in its arguments, that K(φ) =
∫

Ω k (ω) dφ (ω) , and

that Uσ(k,K, σk , θ) = Uσσσk, conditions (31) and (32) reduce to

λ(φ) = −

∫

Θ
UK(K(φ),K(φ), θ)dZ(θ|φ) = −UK(K(φ),K(φ), θ̄)

η(φ) = −1
2Uσσ.

Substituting the above into (33), we conclude that the strategy k : Ω → R is efficient if and only if

it satisfies the following condition for almost all ω ∈ Ω :

E[ Uk(k,K, θ) + UK(K,K, θ̄) + Uσσ[k −K] | ω ] = 0 (34)

where, for simplicity, we have dropped the dependence of k on ω and of K on φ. Because both

Uk(k,K, θ) and UK(k,K, θ) are linear, condition (34) can be rewritten as

E[ Uk(κ
∗(θ̄, θ̄), κ∗(θ̄, θ̄), θ̄) + Ukk · (k − κ∗(θ̄, θ̄)) + UkK · (K − κ∗(θ̄, θ̄)) + Ukθ(θ − θ̄)

+UK(κ∗(θ̄, θ̄), κ∗(θ̄, θ̄), θ̄) + (UkK + UKK) · (K − κ∗(θ̄, θ̄)) + Uσσ(k −K) | ω ] = 0.
(35)

Now note that, when all agents follow the first-best allocation, then in each state aggregate invest-

ment is given by K = κ∗(θ̄, θ̄). Replacing κ∗(θ, θ̄) and κ∗(θ̄, θ̄) into condition (25) in the proof of

Proposition 1, we thus have that the first best strategy solves

Uk(κ
∗(θ̄, θ̄), κ∗(θ̄, θ̄), θ̄)+UK(κ∗(θ̄, θ̄), κ∗(θ̄, θ̄), θ̄)+Ukθ(θ− θ̄)+(Uσσ + Ukk)

[

κ∗(θ, θ̄) − κ∗(θ̄, θ̄)
]

= 0

(36)
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Substituting (36) into (35) and rearranging gives (10).

Proof of Corollary 2. Part (i) follows from Propositions (2) and (3): for any “non-

degenerate” information structure F , given κ = κ∗, the unique solution to (4) coincides with the

unique solution to (10) if and only if α = α∗. Next, consider parts (ii) and (iii). When information

is Gaussian and shocks are perfectly correlated

k = κ0 + (κ1 + κ2) [γµµ+ γyy + γxx] ,

K = κ0 + (κ1 + κ2) [γµµ+ (γy + γx) θ + γyε] ,

k̂ = K̂ = κ0 + (κ1 + κ2) [γµµ+ (γy + γx) θ] .

It follows that

vol = [(κ1 + κ2) γy]
2 σ2

y and dis = [(κ1 + κ2) γx]2 σ2
ξ

The results then follow directly from (6) and (12).

Proof of Proposition 4. Given any policy T ∈ T , let

Ũ
(

k,K, σk, θ, θ̄
)

≡ U (k,K, σk , θ) − T (k,K, σk, θ̄)

denote an agent’s payoff, net of taxes.

Now let k̃ : Θ × H −→ R denote the complete-information equilibrium strategy when pay-

offs are given by Ũ . Because Ũ is concave in k, k̃ (θ;h) must solve the first-order condition

Ũk(k̃ (θ;h) , K̃ (h) , θ, θ̄) = 0, with K̃(h) =
∫

k̃ (θ′;h) dh (θ′) . Because Ũ is quadratic in (k,K, θ, θ̄),

the first-order condition can be rewritten as

Ũk (0, 0, 0, 0) + Ũkkk̃ (θ;h) + ŨkKK̃ (h) + Ũkθθ + Ũkθ̄θ̄ = 0. (37)

Integrating over θ, we then have that

Ũk (0, 0, 0, 0) +
[

Ũkk + ŨkK

]

K̃ (h) +
[

Ũkθ + Ũkθ̄

]

θ̄ = 0. (38)

Combining (37) with (38) then gives k̃ (θ;h) = κ̃(θ, θ̄) ≡ κ̃0 + κ̃1θ + κ̃2θ̄ with

κ̃0 =
Ũk (0, 0, 0, 0)

−
[

Ũkk + ŨkK

] =
Uk (0, 0, 0) − Tk (0, 0, 0)

−Ukk − UkK + Tkk + TkK

κ̃1 =
Ũkθ

−Ũkk

=
Ukθ

−Ukk + Tkk

κ̃2 =
Ũkθ + Ũkθ̄

−
[

Ũkk + ŨkK

] − κ̃1 =
Ukθ − Tkθ̄

−Ukk − UkK + Tkk + TkK
− κ̃1
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Using (23) the coefficients (κ̃0, κ̃1, κ̃2) can then be conveniently rewritten as follows:

κ̃0 ≡
(1 − α)κ0 + 1

Ukk
Tk (0, 0, 0)

1 − α− 1
Ukk

Tkk −
1

Ukk
TkK

(39)

κ̃1 ≡
1

1 − 1
Ukk

Tkk
κ1 (40)

κ̃2 ≡
(1 − α) (κ1 + κ2) + 1

Ukk
Tkθ̄

1 − α− 1
Ukk

Tkk − 1
Ukk

TkK
− κ̃1 (41)

Normalizing Ukk = −1 then gives the formulas in the proposition.

Next, consider the game under incomplete information. Take any strategy k : Ω → R and let

K(φ) =
∫

k (ω) dφ (ω) . A best-response is a strategy k′ : Ω → R such that, for all ω, k′ (ω) solves

the first-order condition

E[Ũk(k
′,K (φ) , θ, θ̄) | ω] = 0. (42)

Using the fact that Ũk(k
′,K, θ, θ̄) = Ũk(κ̃(θ, θ̄), κ̃(θ̄, θ̄), θ, θ̄)+ Ũkk ·(k

′− κ̃(θ, θ̄))+ ŨkK ·(K− κ̃(θ̄, θ̄))

and the fact that κ̃ solves Ũk(κ̃(θ, θ̄), κ̃(θ̄, θ̄), θ, θ̄) = 0 for all
(

θ, θ̄
)

, (42) reduces to

k′(ω) = E[κ̃(θ, θ̄) + α̃
(

K (φ) − κ̃
(

θ̄, θ̄
))

| ω]

with

α̃ ≡
ŨkK

−Ũkk

=
UkK − TkK

−Ukk + Tkk
=
α+ 1

Ukk
TkK

1 − 1
Ukk

Tkk

. (43)

In equilibrium, k′(ω) = k(ω) for all ω, which gives (13). That a solution to (13) exists and is unique

follows from the same arguments as in step 2 in the proof of Proposition 2.

Proof of Proposition 5. Take any generic information structure F . For the equilibrium

with policy to coincide with the efficient strategy, it is necessary and sufficient that

α̃ = α∗, κ̃0 = κ∗0, κ̃1 = κ∗1, κ̃2 = κ∗2. (44)

It thus suffices to prove that there exists a policy T ∗ ∈ T that satisfies (44) and that this policy is

unique. This is easily shown from conditions (39)-(41) and (43). First, note that κ̃1 = κ∗1 if and

only if

Tkk = Ukk(1 − κ1/κ
∗
1) = −Uσσ . (45)

Because Ukk +Uσσ < 0 this also guarantees that Ukk −Tkk < 0. Next, note that, given Tkk = −Uσσ ,

α̃ = α∗ if and only

TkK = −Ukk (α− α∗) − Tkkα
∗ = −Ukkα+ (Ukk + Uσσ)α∗ = Uσσ − UkK − UKK . (46)

That Tkk and TkK satisfy −UkK−TkK

Ukk−Tkk
< 1 then follows from the fact thatWvol ≡ Ukk+2UkK+UKK <

0. With (Tkk, TkK) thus determined, and with both Tkθ̄ and Tk (0, 0, 0) being unconstrained, it is
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then immediate that there exist a unique Tkθ̄ such that κ̃2 = κ∗2 and a unique Tk (0, 0, 0) such that

κ̃0 = κ∗0; these are given by

Tkθ̄ = Ukk (1 − α) [(κ∗1 + κ∗2) − (κ1 + κ2)] − (Tkk + TkK) (κ∗1 + κ∗2) = −UKθ, (47)

Tk (0, 0, 0) = Ukk (1 − α) (κ∗0 − κ0) − (Tkk + TkK)κ∗0 = −UK (0, 0, 0) .

Finally, for T to balance the budget (state by state) it must be that T
(

K,K, 0, θ̄
)

= 0 for all
(

K, θ̄
)

and that Tkk + Tσσ = 0. Along with the other properties identified above, it is then easy to verify

that this is equivalent to imposing the following:

T (0, 0, 0, 0) = Tθ̄(0, 0, 0) = Tθ̄θ̄ = 0

TK(0, 0, 0) = −Tk(0, 0, 0) = UK (0, 0, 0)

TKK = −2TkK − Tkk = −Uσσ + 2UkK + 2UKK

TKθ̄ = −Tkθ̄ = UKθ

Tσσ = −Tkk

This also implies that the policy T is unique. Finally, that TkK increases with α and decreases with

α∗ follows directly from (46) along with the facts that Ukk < 0 and Wdis ≡ Ukk + Uσσ < 0.

Proof of Proposition 6. For the case of additive measurement error, the result follows

directly from (14) noting that the last three terms in (14) do not affect individual decisions. For

the case of multiplicative measurement error, let k̃i = ki(1+η+νi), K̃ = K(1+η), σ̃2
k = σ2

k(1+η)2

and θ̃ = θ̄(1 + ς). A Taylor expansion of T (k̃i, K̃, σ̃k, θ̃) around T (ki,K, σk, θ̄) then gives

E[T (k̃i, K̃, σ̃k, θ̃)|ωi] = E[T (ki,K, σk, θ̄)+
1
2Tkk

(

σ2
η + σ2

v

)

k2
i +TkKσ

2
ηkiK+1

2TKKσ
2
ηK

2+1
2Tσσσ

2
ησ

2
k| ωi]

Proposition 4 thus continues to hold with κ̃ and α̃ redefined as follows:

κ̃0 =
Uk (0, 0, 0) − Tk (0, 0, 0)

−Ukk − UkK + TkK(1 + σ2
η) + Tkk

(

1 + σ2
η + σ2

v

)

κ̃1 =
Ukθ

−Ukk + Tkk

(

1 + σ2
η + σ2

v

)

κ̃2 =
Ukθ − Tkθ̄

−Ukk − UkK + TkK(1 + σ2
η) + Tkk

(

1 + σ2
η + σ2

v

) − κ̃1

α̃ =
UkK − TkK(1 + σ2

η)

−Ukk + Tkk

(

1 + σ2
η + σ2

v

)

By implication, Proposition 5 also continues to hold, although now the optimal tax contingencies

depend on σ2
η and σ2

v .
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Proof of Corollary 3. From (45), (46) and (47), we have that the restriction κ = κ∗ implies

that

Tkk = 0, TkK = −Ukk (α− α∗) , and Tkθ̄ = −TkK (κ1 + κ2) .

The tax system is thus linear in k, with a marginal tax rate given by

Tk(K, θ̄) = Tk (0, 0) + TkKK + Tkθ̄θ̄.

Next, recall that K̂ ≡ E[K|h] and hence ǫ ≡ K − K̂ is orthogonal to any function of h, including

θ̄ and K̂. It follows that Cov(Tk(K, θ̄), ǫ) = TkKV ar(ǫ), which is positive if and only if TkK is

positive, which in turn is true if and only if α > α∗.

Proof of Corollary 4. Because φ is common knowledge, the n-th order average expectation

Ēn of θ (which is measurable in φ) is also common knowledge and equal to Ē1, for all n. Moreover,

because φ is common knowledge and because θ̄ ≡ E [θ|h] = E [θ|h, φ] , we have that

Ē1 ≡ E [E[θ|ω]|φ] = E [E[θ|ω, φ]|φ] = E [θ|φ] = E [E [θ|h, φ] |φ] = E
[

θ̄|φ
]

,

Combining these results, we have that

θ̂ ≡
∞
∑

n=1

(

(1 − α)αn−1
)

Ēn = E
[

θ̄|φ
]

= E
[

θ̄|ω
]

.

From Corollary 1 it then follows that the unique equilibrium is given by

k (ω) = E
[

κ
(

θ, θ̄
)

|ω
]

,

in which case α is irrelevant. Similar arguments imply that the efficient allocation is given by

k (ω) = E
[

κ∗
(

θ, θ̄
)

|ω
]

,

so that α∗ is also irrelevant. Along with the result in Proposition 4, we then have that the efficient

strategy can always be implemented with a tax scheme for which TkK = 0.

Proof of Propositions 7 and 8. These are direct extensions of Propositions 2 and 3.

Proof of Proposition 9. Start with t = 1. Because information is exogenous in the

first period, that the equilibrium strategy at t = 1 is unique and solves (15) follows directly from

Proposition 2. Now consider t = 2. The information structure is now endogenous but uniquely

determined by the unique equilibrium strategy for t = 1. That the equilibrium strategy at t = 2 is

unique and solves (15) thus follows again from Proposition 2. Repeating the same argument for all

t > 2 establishes the result.
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Proof of Proposition 10. Start with t = 1. In the first period, information is exogenous

with ωi,1 = (xi,1, y1, A1). Standard Gaussian updating then gives

E [θ|ωi,1] =
πx
1

πx
1
+πy

1

Xi,1 +
πy
1

πx
1
+πy

1

Y1, (48)

where Xi,1 = xi,1, π
x
1 = σ−2

x,1, Y1 =
σ−2

θ

πy
1

µ +
σ−2

y,1

πy
1

y1 +
σ−2

a,1

πy
1

A1 and πy
1 = σ−2

θ + σ−2
y,1 + σ−2

a,1. Using

κ(θ) = κ0 + (κ1 + κ2)θ, we then have that the unique solution to (15) is given by

k1 (ωi,1) = κ0 + (κ1 + κ2) (γ1Xi,1 + (1 − γ1)Y1) , (49)

with

γ1 ≡ [(1 − α) πx
1 ] / [(1 − α) πx

1 + πy
1 ] .

To see this, start by guessing that the equilibrium strategy satisfies (49) for some coefficient γ1.

Next, use this guess to compute aggregate activity as K1 = κ0 + (κ1 + κ2) (γ1θ + (1 − γ1)Y1).

Finally, use the latter along with (15) and (48) to derive the equilibrium γ1.

Next, consider t = 2. In the second period, ωi,2 = ωi,1 ∪ (xi,2, y2, A2, K̃1, σ̃1). The endogenous

signal is given by

K̃1 = κ0 + (κ1 + κ2) (γ1θ + (1 − γ1)Y1) + η2

The information about θ contained in K̃1 is thus the same as that contained in

ỹ2 ≡
K̃1 − κ0 − (κ1 + κ2) (1 − γ1)Y1

(κ1 + κ2) γ1
= θ + η̃2,

where η̃2 = η2/[(κ1+κ2)γ1] is Gaussian noise with variance σ2
η̃,2 = σ2

η,2/ (κ1 + κ2)
2 γ2

1 . The signal σ̃1,

on the other hand, conveys no information about θ, because (49) implies that σ1 = (κ1 + κ2)
2 γ2

1σ
2
x,1,

which is common knowledge. It follows that the period-2 public information about θ can be summa-

rized in a sufficient statistic Y2 such that the posterior about θ conditional on (y1, A1, K̃1, σ̃1, y2, A2)

is Gaussian with mean

Y2 =
πy

1

πy
2

Y1 +
σ−2

y,2

πy
2

y2 +
σ−2

a,2

πy
2

A2 +
γ2
1 (κ1 + κ2)

2 σ−2
η,2

πy
2

ỹ2

and precision πy
2 = πy

1 + σ−2
y,2 + σ−2

a,2 + γ2
1 (κ1 + κ2)

2 σ−2
η,2. Similarly, the private information can be

summarized in the sufficient statistic Xi,2 such that the posterior about θ conditional on (xi,1, xi,2)

is Gaussian with mean

Xi,2 =
πx

1

πx
2

Xi,1 +
σ−2

x,2

πx
2

xi,2

and precision πx
2 = πx

1 + σ−2
x,2. The unique solution to (15) is then given by

k2 (ωi,2) = κ0 + (κ1 + κ2) (γ2Xi,2 + (1 − γ2)Y2) ,

with γ2 ≡ [(1 − α) πx
2 ] / [(1 − α) πx

2 + πy
2 ] .
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It is immediate that the construction of the equilibrium strategy for t = 2 applies also to any

t ≥ 3 with the statistics Xi,t an Yt defined recursively as in the proposition. We conclude that the

unique equilibrium strategy is

ki,t (ωi,t) = κ0 + (κ1 + κ2) (γtXi,t + (1 − γt)Yt) ,

with γt ≡ [(1 − α) πx
t ] / [(1 − α) πx

t + πy
t ] .

Proof of Proposition 11. We prove the result in two steps. Part (i) characterizes the efficient

linear strategy in the absence of payoff externalities; this helps isolate the role of informational

externalities. Part (ii) then extends the result to general payoff structures.

Part (i). Suppose V (k,K, σ, θ) does not depend on (K,σ) and, without any further loss of

generality, let

V (k,K, σ, θ) = − (k − θ)2 .

Let ht = {y1, A1, K̃1, ..., yt−1, At−1, K̃t−1, yt, At} denote the public history in period t and suppose

agents follow a strategy k = {kt}
N
t=1 such that

kt (ωi,t) = Pt (ht) +

t
∑

τ=1

Qt,τxi,τ ,

where Pt (ht) is a deterministic function of ht and Qt,τ are deterministic coefficients. It follows that

ki,t = Pt + γtθ +

t
∑

τ=1

Qt,τξi,τ ,

and hence K̃t = Pt + γtθ + ηt+1, where Pt is a shortcut for Pt (ht) and γt is defined as

γt ≡
t

∑

τ=1

Qt,τ .

Next consider welfare. Given any linear strategy, ex-ante utility is Eu =
∑N

t=1 wt, where

wt ≡ E [v (ki,t, At+1)] = E [v (ki,t, θ)] − σ2
a,t+1

and where

E [v (ki,t, θ)] = E

[

E

[

−
{(

Pt + γtθ +
∑t

τ=1
Qt,τξi,τ

)

− θ
}2

∣

∣

∣

∣

θ, ht

]]

= E

[

− (Pt + γtθ − θ)2 −
∑t

τ=1
Q2

t,τσ
2
ξ,τ

]

Now consider a strategy k̂ = {k̂t}
N
t=1 that is a variation of the initial strategy k = {kt}

N
t=1

constructed as follows. First, pick an arbitrary t and let k̂i,s(ωi,s) = ki,s(ωi,s) for all s < t. Next, in

period t, pick an arbitrary function P̂t and any coefficients Q̂t,τ such that
∑t

τ=1 Q̂t,τ = γt, and let

k̂t(ωi,t) = P̂t (ht) +
t

∑

τ=1

Q̂t,τxi,τ .
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Finally, for all s > t, let

k̂s(ωi,s) = P̂s (hs) +
s

∑

τ=1

Qs,τxi,τ ,

where the functions P̂s are such that

P̂s

(

..., K̃t, ...
)

= Ps

(

..., K̃t − P̂t (ht) + Pt (ht) , ...
)

.

By construction, at any period s 6= t, the strategy k̂ induces the same outcomes, and by

implication the same per-period welfare level wt, as the initial strategy k. It follows that a necessary

condition for the strategy k to be efficient is that, for all t and all ht,

(

Pt, (Qt,τ )tτ=1

)

∈ arg max
P̂t,Q̂t,τ

= E

[

−
(

P̂t + γtθ − θ
)2

−
∑t

τ=1
Q̂2

t,τσ
2
ξ,τ

∣

∣

∣

∣

ht

]

s.t.
∑t

τ=1 Q̂t,τ = γt

This in turn is the case if and only if, for all t and all ht

Pt (ht) = (1 − γt)E [θ|ht] and Qt,τ = γt

σ−2
ξ,τ

∑t
j=1 σ

−2
ξ,j

∀τ. (50)

Next note that, because Pt is public information, the observation in period t + 1 of K̃t =

Kt + ηt = Pt + γtθ + ηt is informationally equivalent to the observation of a signal

ỹt+1 ≡
K̃t − Pt

γt
= θ + η̃t+1 (51)

where ηt+1 = ηt+1/γt is Gaussian noise with precision σ−2
η̃,t+1 = γ2

t σ
−2
η,t+1. It follows that, given any

linear strategy, the common posterior about θ in period t is Gaussian with mean E [θ|ht] = Yt and

precision πy
t , where Yt and πy

t are defined recursively by

Yt =
πy

t−1

πy
t

Yt−1 +
σ−2

y,t

πy
t

yt +
σ−2

a

πy
t

At +
γ2

t−1σ
−2
η,t

πy
t

ỹt

πy
t = πy

t−1 + σ−2
y,t + σ−2

a,t + γ2
t−1σ

−2
η,t ,

with initial conditions Y1 = µ0 and πy
1 = σ−2

0 . Similarly, the private posteriors are Gaussian with

mean

E [θ|ωi,t] =
πx

t

πx
t + πy

t

Xi,t +
πy

t

πx
t + πy

t

Yt,

and precision πt = πx
t + πy

t , where

Xi,t =
πx

t−1

πx
t

Xi,t−1 +
σ−2

x,t

πx
t

xi,t and πx
t = πx

t−1 + σ−2
ξ,t ,

with initial conditions Xi,1 = xi,1 and πx
1 = σ−2

ξ,1 .
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Now note that

Xi,t =

s
∑

τ=1

σ−2
x,τ

∑t
j=1 σ

−2
x,j

xi,t,

which together with (50) gives
s

∑

τ=1

Qt,τxiτ = γtXi,t.

We conclude that a linear strategy k maximizes ex-ante utility only if, for all t and all ωi,t,

ki,t (ωi,t) = (1 − γt)Yt + γtXi,t (52)

for some coefficient γt ∈ R.

To determine the optimal γ’s, note that, when agents follow a strategy as in (52),

E [v (ki,t, θ)] = −
{

γ2
t (πx

t )−1 + (1 − γt)
2 (πy

t )
−1

}

and hence

Eu = WFB −
∑N

t=1
βt−1

{

γ2
t (πx

t )−1 + (1 − γt)
2 (πy

t )
−1

}

,

where WFB is the first-best level of welfare (the one obtained under complete information about

θ). Because the evolution of πx
t does not depend on γt, the choice of the optimal linear strategy

reduces to the following problem:

min
{γt}

∑N

t=1
βt−1

{

γ2
t (πx

t )−1 + (1 − γt)
2 (πy

t )
−1

}

s.t. πy
t+1 = πy

t + ∆t + σ−2
η,t γ

2
t ∀t

with initial condition πy
1 = σ−2

θ , where ∆t ≡ σ−2
ε,t + σ−2

a,t is the exogenous change in the precision of

public information.

Consider the value functions Lt : R
2
+ → R+ defined by

Lt (πx
t , π

y
t ) ≡ min

{γs}
N
s=t

∑N

s=t
βs−t

{

γ2
s (πx

s )−1 + (1 − γs)
2 (πy

s )−1
}

s.t. πy
s+1 = πy

s + ∆s + σ−2
η,sγ

2
s ∀s ≥ t

For all t ≤ N, Lt (πx
t , π

y
t ) must satisfy

Lt (πx
t , π

y
t ) = min

γt

{

γ2
t (πx

t )−1 + (1 − γt)
2 (πy

t )
−1

+ βLt+1

(

πx
t+1, π

y
t+1

)

}

s.t. πy
t+1 = πy

t + ∆t + ψtγ
2
t

and hence the optimal γt is the solution to the following FOC:

γt (πx
t )−1 − (1 − γt) (πy

t )
−1

+
1

2
β
∂Lt+1

∂πy
t+1

∂πy
t+1

∂γt
= 0.
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¿From the envelope theorem,

∂Lt+1

∂πy
t+1

= − (1 − γt+1)
2 (

πy
t+1

)−2
.

Finally, from the low of motion for πy
t ,

∂πy
t+1

∂γt
= 2σ−2

η,t+1γt.

It follows that, for all t ≤ N − 1, the optimal γt satisfies

γ∗∗t =
πx

t

πx
t + πy

t − β
(

1 − γ∗∗t+1

)2
πx

t π
y
t

(

πy
t+1

)−2
σ−2

η,t+1

>
πx

t

πy
t + πx

t

Finally, for t = N, γ∗N = πx
N/

(

πx
N + πy

N

)

, simply because this is the last period and hence there is

no more an informational externality.

Part (ii). Consider now the more general payoffs V and let

κ∗ (θ) ≡ arg max
κ

V (κ, κ, 0, θ) = κ∗0 + (κ∗1 + κ∗2)θ

with (κ∗0, κ
∗
1, κ

∗
2) as in (28) replacing U with V. A similar argument as in part (i) ensures that the

efficient linear strategy must satisfy

kt (ωit) = κ∗0 + (κ∗1 + κ∗2) (γtXit + (1 − γt)Yt) ,

for some γt, with Xit and Yt are the relevant sufficient statistics of available private and public

information. Ex ante utility is then given by

Eu = WFB +
∑N

t=1
βt−1 (κ∗1 + κ∗2)

{

Wσσ

2
(γt)

2 (πx
t )−1 +

WKK

2
(1 − γt)

2 (πy
t )

−1
}

,

where WFB ≡
∑N

t=1 β
t−1W (κ∗ (θ) , 0, θ) is the first-best level of welfare. Using the fact that

Wσσ < 0, WKK < 0, and WKK/Wσσ = 1 − α∗, we conclude that the optimal γ’s must solve the

following problem:

min
{γt}

N
t=1

∑N

t=1
βt−1

{

γ2
t (πx

t )−1 + (1 − α∗) (1 − γt)
2 (πy

t )
−1

}

s.t. πy
t+1 = πy

t + ∆t + (κ∗1 + κ∗2)
2 σ−2

η,t γ
2
t ∀t

Letting Lt (πx
t , π

y
t ) denote the associated value function in period t, we have

Lt (πx
t , π

y
t ) = min

γt

{

γ2
t (πx

t )−1 + (1 − α∗) (1 − γt)
2 (πy

t )
−1

+ βLt+1

(

πx
t+1, π

y
t+1

)

}

s.t. πy
t+1 = πy

t+1 = πy
t + ∆t + (κ∗1 + κ∗2)

2 σ−2
η,t γ

2
t

The FOC for γt gives

γt (πx
t )−1 − (1 − α∗) (1 − γt) (πy

t )
−1

+
1

2
β
∂Lt+1

∂πy
t+1

∂πy
t+1

∂γt
= 0.

46



The envelope condition for πy
t+1 gives

∂Lt

∂πy
t+1

= − (1 − α∗) (1 − γt+1)
2 (

πy
t+1

)−2
,

while the law of motion for πy
t+1 gives

∂πy
t+1

∂γt
= 2 (κ∗1 + κ∗2)

2 σ−2
η,t+1γt.

It follows that the optimal γ’s satisfy

γ∗∗t =
(1 − α∗)πx

t

πy
t + (1 − α∗) πx

t − β (1 − α∗)
(

1 − γ∗∗t+1

)2
πx

t π
y
t

(

πy
t+1

)−2
(κ∗1 + κ∗2)

2 σ−2
η,t+1

,

which completes the proof.

Proof of Proposition 12. Let {γ∗∗t }N
t=1 be the coefficients that characterize the efficient

linear strategy as in Proposition 11 and let {πx
t , π

y
t }

N
t=1 be the corresponding precisions of private

and public information generated by the efficient linear strategy. The result then follows from

letting α∗∗
t be the unique solution to

(1 − α∗∗
t ) πx

t

(1 − α∗∗
t ) πx

t + πy
t

= γ∗∗t .

In fact, it is then and only then the unique solution to (20) coincides with the strategy obtained in

Proposition 11.

Proof of Corollary 7. Consider the environments with both exogenous and endogenous

Gaussian signals studied in Section 6. The result follows directly from the proof of Proposition

12, where it is shown that, for all periods t, the present-value welfare losses Lt obtained along

the efficient linear strategy are decreasing functions of πx
t and πy

t , the precisions of private and

public information available in the beginning of period t. Putting aside informational externalities,

the result can also be established for non-Gaussian signals using a Blackwell-like argument for the

planner’s problem that characterizes the efficient strategy.
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[8] Bacchetta, Philippe, and Eric van Wincoop (2005), “Can Information Heterogeneity Explain

the Exchange Rate Determination Puzzle?,” American Economic Review 95.

[9] Barro, Robert (1979), “On the Determination of the Public Debt,” Journal of Political Econ-

omy 87, 940-71.

[10] Chari, V.V., Lawrence Christiano, and Patrick Kehoe (1994), “Optimal Fiscal Policy in a

Business Cycle Model,” Journal of Political Economy 102, 617-652.

[11] Golosov, Michael, Aleh Tsyvinski and Iván Werning (2006), “New Public Finance: A User’s

Guide, ”NBER Macroeconomics Annual 2006.

[12] Hayek, Friedreich A. (1945), “The Use of Knowledge in Society,” American Economic Review

35.

[13] Hellwig, Christian (2005), “Heterogeneous Information and the Benefits of Transparency,”

UCLA mimeo.

48



[14] Heinemann, Frank, and Camille Cornand (2006), “Optimal Degree of Public Information Dis-

semination,” Economic Journal, forthcoming.

[15] Kocherlakota, Narayana (2005), “Advances in Dynamic Optimal Taxation,” 9th World

Congress of the Econometric Society.

[16] Lorenzoni, Guido (2006), “A Theory of Demand Shocks,” MIT mimeo.

[17] Lorenzoni, Guido (2007), “News Shocks and Optimal Monetary Policy,” MIT mimeo.

[18] Lucas, Robert E., Jr. (1972), “Expectations and the Neutrality of Money,” Journal of Economic

Theory 4, 103-124.

[19] Lucas, Robert E., Jr., and Nancy L. Stokey (1983), “Optimal Fiscal and Monetary Policy in

an Economy without Capital,” Journal of Monetary Economics 12, 55-93.

[20] Mackowiak, Bartosz, and Mirko Wiederholt (2007) “Optimal Sticky Prices under Rational

Inattention,” Humboldt University/Northwestern University mimeo.

[21] Morris, Stephen, and Hyun Song Shin (2005), “Central Bank Transparency and the Signal

Value of Prices,” Brookings Papers on Economic Activity.

[22] Morris, Stephen, and Hyun Song Shin (2002), “The Social Value of Public Information,”

American Economic Review 92, 1521-1534.

[23] Phelps, Edmund (1970), “Introduction: The New Microeconomics in Employment and Infla-

tion Theory,” in A.A. Alchian, C.C. Holt et al., Microeconomic Foundations of Employment

and Inflation Theory, New York: Norton.

[24] Raith, Michael (1996), “A General Model of Information Sharing in Oligopoly,” Journal of

Economic Theory 71, 260-288.

[25] Roca, Mauro (2006), “Transparency and Monetary Policy with Imperfect Common Knowl-

edge,” Columbia University mimeo.

[26] Svensson, Lars (2005), “The Social Value of Public Information: Morris and Shin (2002) is

Actually Pro Transparency, Not Con,” forthcoming in American Economic Review.

[27] Townsend, Robert M. (1983), “Forecasting the Forecasts of Others,” Journal of Political Econ-

omy 91, 546-588.

[28] Vives, Xavier (1984), “Duopoly Information Equilibrium: Cournot and Bertrand,” Journal of

Economic Theory 34(1), 71-94.

49



[29] Vives, Xavier (1988), “Aggregation of Information in Large Cournot Markets, ” Econometrica

56, 851-876.

[30] Vives, Xavier (1993), “How Fast Do Rational Agents Learn?”Review of Economic Studies 60,

329-347.

[31] Vives, Xavier (1997), “Learning from Others: a Welfare Analysis,” Games and Economic

Behavior 20, 177-200.

[32] Woodford, Michael (2002), “Imperfect Common Knowledge and the Effects of Monetary Pol-

icy,” in P. Aghion, R. Frydman, J. Stiglitz, and M. Woodford, eds., Knowledge, Information,

and Expectations in Modern Macroeconomics: In Honor of Edmund S. Phelps, Princeton Uni-

versity Press.

[33] Woodford, Michael (2005), “Central Bank Communication and Policy Effectiveness,” paper

given at the 2005 Symposium of the Federal Reserve Bank of Kansas City at Jacksons Hole,

The Greenspan Era: Lessons for the Future.

50




