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1 Introduction

The choices made by di¤erent individuals can sometimes reinforce each other. Net-
work externalities provide an obvious example: your joining a network makes it more
attractive for me to join, and vice versa. Explanations for Microsoft�s domination of
the operating system market, eBay�s domination of the online auction market, and
the permanence of the QWERTY keyboard layout have been based on network e¤ects
(Shapiro and Varian [27], Arthur [1]. For reviews of this area see Manski [22] and
Economides [10].). The rapid growth in popularity of social networking sites such as
Facebook and MySpace also illustrates the importance of social reinforcement: people
join because their friends have already done so. In his theory of entrapment, Dixit [8]
exploits reinforcing e¤ects of people�s choices to show how some may be entrapped
into joining a club in spite of the fact that its existence makes them worse o¤.1 There
is an early precedent for the importance of social reinforcement in the 1950 work
of Leibenstein on �Bandwagon, Snob and Veblen E¤ects�(Leibenstein [20]). Citing
as a precedent the 1834 work of Rae [24], Leibenstein analyses situations where my
demand for a good increases with the number of others also buying it, using the
term �bandwagon e¤ects�to describe such situations. This is an early theory of fads
and fashions, and again is based on the recognition that other people�s actions can
reinforce my choices. Schelling�s work on tipping exempli�es the same insights ([26]):
his iconic example is of a sudden change in the racial composition of a neighborhood.
Non-whites move into an originally white neighborhood, and when the proportion
reaches a critical level the neighborhood tips and the remaining whites move out.
Underlying this is an assumed (and hopefully outdated!) preference for neighbors of
one�s own color, so that the movement in of non-whites is mutually reinforcing, as is
the movement out of whites.
In the sociology literature, Granovetter [12] has described similar processes. He

discusses the adoption of new behaviors, which he models in terms of individuals�
adoption thresholds. A person�s adoption threshold is the number of others she
must see engaging in a new behavior before she too adopts that behavior. For early
adopters this number is low and for late adopters high. Again, in this framework
an action by one person makes similar actions by others more attractive to them by
moving them towards or across their adoption thresholds. We show below that these
threshold e¤ects can be modelled by utility-maximizing choices when utility depends
on the choices of others. Granovetter gives an interesting example of entrapment
into criminal behavior by groups of young males, and cites many other examples of
mutually reinforcing choices, from the adoption of birth control practices in Korea

1The popularity of the QWWERTY keyboard may also be an illustration of entrapment, in the
sense that a redesigned keyboard would enable everyone to type much faster than they currently do;
however, there is no incentive for any one individual to learn the new system on his own because
the keyboard he needs to purchase will have to be specially made and hence relatively expensive.
Furthermore it may not be available in other locations in which he is required to type.
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through migration choices in third world countries, education choices, and joining
strikes or riots. Watts [32] presents an analysis of cascades in a network of people
all of whom show threshold e¤ects in their behavior. Each agent is most in�uenced
by those to whom she is nearest in the network and Watts presents results on the
probability of a cascade when the network is a random graph. (A cascade is the
movement of the group from one pattern of behavior to another by a sequence of
individual changes - just like the classic image of a sequence of dominoes falling.)
Brock [3], drawing on results from Brock and Durlauf [4], looks at tipping in the
context of dynamical systems, and also builds on the idea of social reinforcement.
In his models the payo¤ to a choice depends on the choices of others and there is a
penalty for being �unfashionable,�which introduces the social reinforcement element.
Heal [13] discusses an example from the environmental �eld, the spread of unleaded

gasoline. The use of unleaded gasoline required technological innovations in the design
of engines and re�neries, with signi�cant �xed costs. These innovations were made,
and unleaded gas �rst introduced, in the U.S. Once this had happened, it was easier for
other countries to adopt unleaded auto fuel, the �xed costs having been paid. A really
nice detail is that Germany adopted unleaded fuel before Italy. As many German
tourists visit Italy by car, and their business is important in parts of Italy, unleaded
gas was introduced in many areas there before it was legally required. Adoption by
the U.S. and Germany made adoption by Italy very straightforward - more so than it
had been for the other two countries. This is an example of social reinforcement at the
national level leading to a cascade of adopters following an initial adopter. Wagner
[31] also �nds evidence of a cascading e¤ect as countries rati�ed the Montreal Protocol
on Substances that Deplete the Ozone Layer. From data on the timing of rati�cations,
he concludes that there was a reinforcing e¤ect: one country ratifying made others
more likely to follow suit. It seems likely that something similar will eventually
happen with responses to climate change: one country may develop new technologies
that reduce the cost of lowering CO2 emissions, and this will make joining a treaty
such as the Kyoto Protocol more attractive to others. Another example of this process
is the installation of air bags in cars. Mercedes Benz �rst installed them in a select
number of cars at very high average costs. As they and other car manufacturers
decided to make this standard equipment the economies of mass production reduced
the price signi�cantly, increasing the returns to adoption by others.
The idea of social reinforcement has also been used in the �nance literature:

Hong, Kubik and Stein [16] develop and test empirically the idea that stock market
participation is a¤ected by social interactions, and that a person�s chances of investing
are greater if most of his peers also invest. Another application in the area of �nance is
to �positive feedback trading,�where investors buy more of an asset that has recently
increased in value (DeLong et al. [7], Barberis and Schleifer [2]). So if some investors
buy and raise prices, then others follow suit, leading to just the kind of threshold
e¤ects discussed by Granovetter and Watts. As we show below, this behavior can be
explained by a model in which social interactions are valued by decision-makers.
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In cases of fashion-oriented behavior discussed by Leibenstein, there is a perceived
intrinsic value to being like others. In cases such as securities trading or adopting new
habits, the value of following others is not intrinsic but is derived: seeing the others
make a choice gives the impression that this choice is less risky than it would otherwise
appear to be. In trading models, transactions may reveal private information and
allow this to di¤use through the market. Lopez-Pintado andWatts [21] make a similar
distinction, but instead of the terms intrinsic and derived use the terms explicit and
implicit externalities.
Another area to which our models can be applied is the study of conventions and

their evolution. Young [33] models this as a coordination problem. He discusses at
length the example of choosing which side of the road to drive on. This can be seen
as a non-cooperative game with two Nash equilibria - all drive on the left or all on
the right. He gives examples of tipping from one equilibrium to another. Most of
his tipping examples are stochastic and dynamic, but one example that he looks at
is within our framework: this is an example of multiple linked countries choosing the
side of the road to drive on. He shows that a small group of countries or regions can
force everyone else to change if they change: in our terms, this group forms a tipping
set. In the case of a convention evolving, the central point is of course once again
mutual reinforcement: your adopting the convention makes it more attractive for me
to do likewise.
In all of these diverse situations, individuals� choices can reinforce each other.

Someone else choosing X over Y makes that choice more attractive to me. In game-
theoretic terms, these are all games that show the increasing di¤erences property that
is associated with supermodularity:2 agent i0s payo¤ to a choice increases if j makes
that choice as well. One can also think of this as strategic complementarity.
Here we formulate such reinforcing situations in game-theoretic terms, and model

tipping, cascading and entrapment as properties of the Nash equilibria of games.
Apart from Dixit�s work, there have been no previous attempts to model these re-
inforcement phenomena and the associated tipping or cascading in game-theoretic
terms. Using a static game-theoretic framework, we show that the potential for tip-
ping and cascading will be widespread when games display increasing di¤erences or
social reinforcement. This means that a subset of the participants, sometimes a very
small subset, can shift the system from one equilibrium to another just by changing
their choices. This is the point of Schelling�s work, though he makes it in the context
a dynamic processes rather than Nash equilibria. Although Granovetter does not

2The literature on supermodularity goes back to the 1970s, dating to the work of Donald Topkis
[28] [29], although it and the literature on tipping have evolved quite separately. The idea of
supermodularity was developed further by Xavier Vives [30] and Paul Milgrom and John Roberts
[23]: since then it has been used widely in the literatures on game theory and comparative statics.
Jeremy Bulow et al. [5] introduced the related idea of strategic complementarity. Supermodularity
allows us to identify a class of games for which rather general comparative static results are available,
and builds on the idea of increasing di¤erences, which means that the return to a move by one agent
can be increased by actions by other agents.
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talk about tipping, the idea is implicit in his models of how thresholds interact, and
he provides examples of cascades. We also show that if there are two (or more) equi-
libria, one of which Pareto dominates the other, then under very general conditions
there is a coalition of agents who can tip the ine¢ cient equilibrium to the e¢ cient
one. This is an interesting insight into the resolution of certain types of coordination
problem. Finally, we give a characterization of tipping sets for a family of symmetric
games.
Our work originated from research on mutual reinforcement in the context of

national security. Originally motivated by a desire to understand the impact of inter-
dependence in airline security after 9/11/01, it has evolved to a more general model
of how interdependence and reinforcement a¤ects the incentive to invest in protective
measures for any kind of network, including electronic networks such as computer
networks. (For the national security applications see our papers [14] [18], and for
computer network applications see Michael Kearns [17].) One of our early �ndings
was that many networks exhibit a tipping phenomenon with respect to investments
in security: for certain values of state variables few agents invest and the system is
vulnerable and insecure. A small change can lead to everyone investing with a mas-
sive increase in security. In trying to understand why tipping occurs we inevitably
are drawn to increasing di¤erences, as this is a template of a particular type of inter-
dependence that is well-understood. This interdependence introduces an element of
social reinforcement to investments in security.

1.1 Examples

Before we introduce the formal model and present our results, we work with examples
of games exhibiting tipping, cascading and entrapment, to provide a perspective on
these phenomena. To start with, consider a game with N agents in which each agent
i has two strategies, si = 0 or 1. We use s�i to denote the choices of all agents other
than i and take N = 10. The payo¤s are

ui = 0:5 if si = 0 and #(1) if si = 1

where #(1) is the number of 1s in s�i; i.e. the number of other agents who choose
1: There is social reinforcement in the choice of strategy 1 : it is more attractive,
the more people choose it. In game theoretic terms, choosing 1 rather than 0 shows
increasing di¤erences. So this very simple example captures some of the features of
the examples discussed above. Clearly f0; 0; :::0g is a Nash equilibrium. Likewise
f1; 1; ::1g is also a Nash equilibrium, which Pareto dominates. Any agent can tip the
equilibrium of zeros to that of ones. Thus if agent 1 changes from 0 to 1 then the
payo¤s to all other agents from choosing 1 are now 1 > 0:5 so that 1 is their best
response. As every agent is better o¤ at f1; 1; ::1g than at f0; 0; :::0g; it may seem
obvious that any agent would tip the latter to the former equilibrium. But the fact
remains that when everyone else plays 0; any agent�s best response is to play 0 too. To
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make it rational for an agent to tip, we would have to think of a multi-round version
of the game: in the �rst round agent i would play 1 in response to everyone else�s
0; and would loose from doing so, but in the next round all others would respond
with 1 and if this situation were to be maintained agent i would compensate for her
�rst-round loss.
Note that in contrast the equilibrium of ones can be tipped to that of zeros only

by a coalition of all but one players, the trivial tipping coalition. In this case the
equilibrium of ones seems stable and that of zeros seems unstable, as the former can
be tipped by the action of any agent and the latter requires the action of many. We
can easily modify this example to be more like the Schelling tipping examples:

ui = 4 if si = 0 and #(1) if si = 1

In this case we need �ve people to choose 1 to tip the equilibrium of zeros, which is
now more stable. The equilibrium of ones is correpondingly less stable.
Now consider a more complex example. The payo¤s are

ui (si; s�i) = 0:91i if si = 0

= #(1) if si = 1

Again there is social reinforcement in the choice of strategy 1; but now agents are
heterogeneous with respect to the payo¤ to 0: We again assume that N = 10: We
again have equilibria of all zeros and all ones. In this case agent N = 10 can tip the
equilibrium of zeros. If 10 changes from 0 to 1 then the payo¤ to choosing 1 for any
other agent is now 1: As 1 > :91; agent 1 will change too. But now the payo¤ to any
other agent from choosing 1 is 2; and as 2 > 1:82; agent 2 will change also. This logic
continues until all agents have changed, so that the only Nash equilibrium consistent
with N choosing 1 is all ones. Agent 10 starts a cascade. Note that no agent other
than 10 can tip the equilibrium of zeros.
Also note that agent 10 can tip the equilibrium of ones back to that of zeros. If

all are choosing 1 and then 10 changes, the payo¤ to 9 from choosing 1 is 8 and the
payo¤ to choosing 0 is 8:19: The payo¤ to zero is greater. Now there are two agents
choosing zero so for agent 8 the payo¤ to 1 is 7 and to zero is 7:28; and the payo¤ to
zero is greater. Again the change by 10 initiates a cascade from one equilibrium to
another.
So in this case with N = 10 there is only one agent who can tip, and he can tip

in either direction - from all zeros to all ones or vice versa. He alone can determine
which equilibrium is chosen. In a certain sense he is a dictator.
All players except 10 are worse o¤ at the equilibrium of zeros than at that of

ones (10 is better o¤), so when 10 tips an equilibrium of ones to one of zeros, he is
making everyone else worse o¤ - even though their best responses are now to choose
zero. This illustrates the issue of entrapment discussed in the Dixit paper: in this
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example, agent 10 can entrap all others at the equilibrium of all zeros. Granovetter�s
discussion of criminal behavior also seems to �t this framework: talking about the
behavior of delinquent boys, he states (page 1435) that �Most did not think it �right�
to commit illegal acts or even particularly want to do so. But group interaction was
such that none could admit this without loss of status: in our terms, their threshold
for stealing cars is low because daring, masculine acts bring status, and reluctance
to join, once others have, carries the high cost of being labelled a �sissy.��So illegal
moves by those with low thresholds �entrap�others into following suit even and make
them worse o¤.
This second example can be thought of as a threshold model along the lines

discussed by Granovetter: strategy 0 is the status quo, from which agent i will move
if the payo¤ from moving #(1) exceeds 0:91i. Essentially this means that agent one
has a threshold of 1, two has a threshold of 2, etc. An interpretation of this example
is therefore that a uniform distribution of thresholds can generate cascading.
It was a stochastic version of the second example that lead to our interest in these

issues: here it is:

ui (0) = 0:91i

ui (1) = 10
#(1)

N � 1 + 0:5
�
1� #(1)

N � 1

�
So the outcome of strategy 0 is certain, whereas that of strategy 1 is either 10 or
0:5 with probabilities #(1)

N�1 or
�
1� #(1)

N�1

�
: This structure arises in our earlier analysis

of airline security problems, where the payo¤ to investing in security (strategy 1)
depends on and increases with the number of other airlines who also invest, #(1)
(Heal and Kunreuther [14]). This example has most of the properties of the second
(deterministic) example discussed above.
These examples illustrate tipping, cascading and entrapment, showing that they

are closely related and arise in very simple and intuitive games when there is social
reinforcement of a strategy choice. Next we de�ne these e¤ects in a more general con-
text and relate them to known properties such as increasing di¤erences and strategic
complementarity. But �rst we make a comment on thresholds.

1.2 Thresholds

The concept of a threshold used in the sociological literature (Granovetter [12], Watts
[32]) can be modelled by interactions that display social reinforcement (and increasing
di¤erences) in the utility functions. Consider an agent who has to choose between 0
and 1; the payo¤s to which are

ui (0) = ai

ui (1) = # (1)1=2
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So there are social reinforcement e¤ects in the choice of alternative 1; and these
display diminishing returns. Clearly she will choose alternative 1 if #(1) > a21 and
this is agent i0s threshold for choosing 1 over 0. This in essence is Leibenstein�s
model, and underlies the discussions of Granovetter and Watts. Note that the social
reinforcement represented by the term #(1)1=2 could arise, as in Leibenstein�s case,
from the intrinsic merits of being similar to others, or could re�ect informational
gains from seeing others adopting choice 1 and prospering from it.

2 Tipping and increasing di¤erences

Consider a game with N players i 2 f1; 2; :::; Ng ; each choosing a strategy si from
the discrete set f0; 1g and having a utility function ui : f0; 1gN ! R which depends
on the choices of all agents. We have a natural order on the set of strategy vectors
f0; 1gN given by the standard vector ordering on RN .3
We assume that each agent�s payo¤ function ui shows what we term uniform

strict increasing di¤erences in the choices of strategies by other agents. Formally this
means that if 0i or 1i denotes a 0 or 1 in the ith position of the vector S of all strategy
choices and S�i denotes the vector of choices of all agents other than i; then 9 � > 0
such that if S

0
�i > S�i then

ui

�
1i; S

0

�i

�
� ui

�
0i; S

0

�i

�
� �+ ui (1i; S�i)� ui (0i; S�i) (1)

This implies that the payo¤ to agent i from changing from 0 to 1 increases by at
least � if another agent changes from 0 to 1: This is our formalization of �social
reinforcement.�All of the examples discussed above satisfy this condition. In order to
talk about tipping, we shall assume that the game has (at least) two Nash equilibria,
f0; 0; ::; 0g and f1; 1; ::; 1g. A policy-maker will naturally be interested in ruling out
the ine¢ cient equilibrium and ensuring an e¢ cient outcome, as in a coordination
problem (Vincent Crawford [6], Walter Heller et al. [15]). We study conditions under
which it is possible to do this by changing the strategies of a subset of the players.
This is the tipping problem: a �tipping set�of agents can by changing their strategies
shift the equilibrium from one extreme to the other. This �tipping set�is the set that
can �entrap�other agents, using Dixit�s term.
Let T be an arbitrary subset of players. We are going to investigate whether agents

in the set T can �tip�the system, i.e. can by changing strategy shift the equilibrium
from f0; 0; :::0g to f1; 1; :::1g : To do this we de�ne the T � game as the above game
with the additional constraint that for all players in T the only permissible strategy
choice is si = 1: If the T � game has as its only equilibrium f1; 1; ::::; 1g then we say
that T is a tipping set or T �set. The key point here is that when agents in T choose

3We use A > B to show that A exceeds B in at least one component and is no less in all and
A � B to show that it is at least as great in all components.
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strategy 1; this is also the best response for all agents not in T . So those in T can
lead others to change strategy by changing their own strategies.
A set is a minimal T � set if it is a T � set and no subset is. Clearly if T is a

T�set then getting the members of T to adopt strategy 1 will rule out the equilibrium
of zeros: members of the set T can tip the equilibrium, can force the system to the
e¢ cient outcome. If T is a small subset of N then this can be an important policy
tool.
Below we show that in certain cases a minimal T � set can be formed by a simple

algorithm, in which we rank agents by a very natural characteristic and then pick the
�rst K � N in this ranking. Intuitively the characteristic is a measure of the changes
in others agents�payo¤s that result when an agent changes her strategy from 0 to
1. It is a measure of the externalities that an agent generates, and a measure of the
degree to which they can reinforce the choices of others. Next we give conditions for
the existence of a tipping set and note that such a set always exists at an equilibrium
that is Pareto dominated by another. All proofs are in an appendix.

Proposition 1 Under assumption 1 of uniform strict increasing di¤erences and with
a large enough number of agents there exists a tipping set with less than N �1 agents
that tips the equilibrium with all 0s to that with all 1s.

Corollary 2 If there are two equilibria, one of which Pareto dominates the other,
then with uniform strict increasing di¤erences and with a large enough number of
agents there is a non-trivial tipping set that tips the dominated to the undominated
equilibrium.

It is easy to see intuitively the need for the condition that the number of agents
is �large enough.� Each time any agent changes strategy from 0 to 1; the payo¤ to
every other agent from such a change increases. For some agents this payo¤ is initially
negative. For the system to tip, the payo¤ from the change has to be positive for every
agent. We therefore need enough agents to change to bring the most negative payo¤s
above zero, and for this to be possible we need enough agents. What number of
agents is �large enough�depends on the parameter � in the de�nition (1) of increasing
di¤erences. The larger is �, the smaller is the critical number. To be precise, we show
in the proof of proposition 1 that

k > 1 +
Maxifui

�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
g

�

so that the number of agents has to exceed one plus the ratio of the maximum payo¤
to a change from 0 to 1 when all others choose 0; to the minimum reinforcement
e¤ect. If the reinforcement e¤ect is large relative to the payo¤ change, the number
of agents needed is small, and with a small reinforcement e¤ect, many agents are
needed.
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These results have implications for coordination problems: they may be solvable
if we can identify tipping sets. To be interesting this requires that these sets be
signi�cantly smaller than the population as a whole. The examples have shown that
this can be the case, and the next proposition sheds some more light on the nature of
tipping sets. If agents T � N form a tipping set and can shift the equilibrium from
all zeros to all ones and gain in the transition, then in a loose and intuitive sense it is
rational for them to coordinate and change the equilibrium. But this statement can
only make sense outside of the context of the original Nash game.
In order to provide a simple characterization of a T � set we focus on the special

case in which the di¤erence �ij (0)

�ij (0) =
�
uj
�
0N�2; 1i; 1j

�
� uj

�
0N�2; 1i; 0j

��
� (2)�

uj
�
0N�2; 0i; 1j

�
� uj; (0N�2; 0i; 0j)

�
is independent of the index j; i.e. the e¤ects of i0s change of strategy are symmetric
over other agents. In addition we assume that �ij (s�i�j) is independent of s�i�j
and so does not depend on the strategies chosen by others. So the process of social
reinforcement is symmetric. This rules out close personal ties, such as arise if my
payo¤ is a¤ected more by the behavior of friends and colleagues than by that of people
not known personally to me. These two conditions of symmetry and independence
taken together we call assumption A1.

�ij (0) = �ik (0) = �i (0) = �i (A1)

For each agent i; �i is the alteration in the payo¤ that all other agents get from
switching strategy from 0 to 1 as a result of agent i changing from 0 to 1, a uniform
externality that i by changing strategy imposes on others when they change strategy.
Given this, agents can be ranked unambiguously by the values of their �i func-

tions, and we assume without loss of generality that they are numbered so that
�1 � �2 � ::::::: � �N . An agent�s ability to tip the ine¢ cient equilibrium is mea-
sured by its �; and we show below that a minimal T � set consists of agents with
the greatest �s:

Proposition 3 Given A1, if a minimal T � set exists then for some integer F it
consists of the �rst F agents when agents are ranked by the value of �i.

Proposition 3 shows that the agents that are most capable of changing the game�s
equilibrium are those that generate the largest externalities to others or play the
greatest role in social reinforcement. They may be people who are perceived as
leaders in their community.
The terms �i are measures of the degree of increasing di¤erence, and assumption

A1 places a structure on these so that they are symmetric across agents. This struc-
ture is necessary for the simplicity of our arguments but not for the basic intuition
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that increasing di¤erences contribute to tipping, as Proposition 1 shows. Within the
structure de�ned by A1 we can say that increasing di¤erences being su¢ ciently large
in the sense of (9) is necessary and su¢ cient for tipping of the ine¢ cient equilibrium.
A numerical example of tipping at the ine¢ cient equilibrium of a super modular game
is given in [14].
It is possible to establish results like Proposition 3, but more complex ones, with

weaker assumptions than A1: Suppose for example that we drop the independence
assumption, namely that �ij (s�i�j) is independent of s�i�j. In this case in stating
and deriving a proposition analogous to Proposition 2 we need to reorder the agents
by the size of �i after each selection of a member of the tipping set, as the change
of strategy from 0 to 1 by one agent can alter the ranking of the agents still choosing
0 by their �is. In forming the tipping set at each stage we add the remaining agent
whose �i is greatest given the strategies now in place by all other agents, and this
gives a more general but less parsimonious version of Proposition 3. If we drop the
symmetry condition we are back with the general case of Proposition 1.

2.1 Cascading

A cascade is a sequence of events in which a change of strategy by one agent leads
another to change, the changes of the two together lead a third to change, and so
on. It is a version of the classic domino e¤ect. Avinash Dixit models this well and
we follow his framework [8]. In our context a cascade will begin from an equilibrium
where all agents choose si = 0: A cascade of length k is a situation where:

� if 1 were to change from 0 to 1 but all others were to remain at 0 then 20s best
response would be 1

� if 1 and 2 were to choose 1 and all others 0; then 30s best response would be 1:

� if 1; 2 and 3 were to choose 1 and all others 0; then 40s best response would be
1

� and so on up to agent k: The strategy tuple in which agents 1 through k choose
1 and all others choose 0 is a Nash equilibrium.

If we think of the game as one in which moves are made sequentially by players
in ascending order, if the �rst mover chooses 1 (perhaps as a result of factors outside
the game as we have de�ned it, such as policy inducements) then the second mover
chooses 1 and so on up to and including the k � th mover and thereafter all will
choose 0 and the outcome will be an equilibrium. If the only equilibria involve either
all zeros or all ones then the outcome of such a cascade will be the equilibrium with
all 1s, and this will be attained from the equilibrium of zeros by persuading agent
number one to change strategy.
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Formally we have a cascade of length k at the Nash equilibrium f0; 0; :::; 0g if
agents can be numbered so that agent 20s best response to f1; s2; 0; :::0g is s2 = 1;
agent 30s best response to f1; 1; s3; 0; :::0g is s3 = 1; and for all agents j for j � k the
best response to f1; 1; ::; sj; 0; ::0g is sj = 1; and in addition f1; 1; ::; sk = 1; 0; ::0g is a
Nash equilibrium. Using the framework and assumptions of the previous section we
can set out su¢ cient conditions for a cascade of length k.
We can give a formal characterization of the conditions for a cascade of length k

as follows:

Proposition 4 A cascade of length k occurs if

�j�1 � uj

0@ j�2z }| {
1; ::; 1; 0; ::; 0

1A� uj
0@ j�2z }| {
1; ::; 1; 0; 1; 0::0

1A
for all j � k.

Cascading, like tipping, depends on a game exhibiting �enough increasing di¤er-
ence.�A numerical example of cascading from the ine¢ cient to the e¢ cient equilib-
rium of a supermodular game is given in [14].

3 Applications

3.1 Schelling�s work

Schelling [26] provides a number of examples of the role of a critical mass in inducing
tipping: in these examples individuals make a decision about being part of process or
group based on what they see others doing. A key example is given by individuals�
decisions about whether to reside in a neighborhood, which they do if there are enough
others like themselves who are already there. Schelling�s most famous example, of
racial segregation in residential districts, was essentially dynamic, with a sequence
of changes evolving over time. However it is possible to capture much of what was
interesting in and essential to that model with a static formulation identical to that
used above.
Consider a population of P people of a certain type living in a neighborhood.

Each has two possible strategies - stay S or move M: The payo¤ to each depends
on how many others of the group do the same: the payo¤ to staying is the number
of others who stay, #(S); and the payo¤ to moving is likewise the number of others
who do this, #(M). Clearly all staying or all moving are both Nash equilibria, and
if #(M) > #(S) then the best response of all who have not moved is to move, so
that we have the possibility of tipping. This game displays increasing di¤erences, as
the payo¤ to changing from S to M increases with the number of people who have
already changed.
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3.2 Computer security

As shown in Kunreuther and Heal [18] there is a wide range of security-related
problems that exhibit features of supermodularity and in which tipping could occur.
One area that naturally falls into this class is computer security. Here the central issue
is the incentive each agent has to invest in protecting itself against a possible virus,
when it knows that it may be infected from other agents. The following example
adapted from Kearns [17] illustrates this problem. Imagine the user population of
a large organization in which each individual has a desktop computer with its own
local software and memory, but in which parties also maintain important data �les
or documents on a shared disk drive accessible to the entire organization.
From the perspective of the organization, the primary security concern is that

an intrusion (whether by a piece of malicious software or a human hacker) might
erase the contents of this shared hard drive. Each user�s desktop computer and its
contents� including E-mail, downloaded programs or �les, and so on� is a potential
point of entry for such intrusion. Each user must implicitly decide about many aspects
of their individual security practices: how often they change their password (and how
secure those passwords are against dictionary and other common attacks), whether
they enable encryption in their web and E-mail communications, their care in not
downloading suspicious �les and programs, their anti-virus software maintenance, and
many other features, each of which takes time and hence is costly. The vulnerability of
the shared hard drive is determined by the collective behavior along these dimensions.
Hence if an agent invests in rigorous security precautions, her investments can be
compromised by a failure to do likewise on the part of just one other. As it may be
the case that some other agents do not store valuable data on the shared drive, their
incentives to adopt best-practice security measures may be small. So we again have an
interdependent security problem, with increasing di¤erences in the associated game
and the possibility of tipping from an equilibrium where none take security seriously
to one where all do. In fact the formulae derived above for airline security apply with
minor modi�cations to the computer security case.

4 Conclusions

Social reinforcement of choices is widespread, and indeed may even be the norm in
many areas of behavior. It can be modelled by games showing increasing di¤erences,
and naturally generates a propensity for tipping and cascading. We have proven
that for a wide range of such situations there are non-trivial tipping sets, and have
characterized them for a class of symmetric cases.
Tipping requires an initial mover or group of movers who begin the process. Some-

times it may be in their interest to do so: for example, in our �rst example the equi-
librium with all ones is Pareto superior to that of all zeros, so that any agent can
see that she can tip the system from zeros to ones and that she will gain from doing
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so. In other cases agents may need an incentive from outside the game(a subsidy or
a penalty) to change strategy and tip the equilibrium: this is the case for some of
the security examples discussed by Heal and Kunreuther [14]. Regulators can use the
existence of a tipping set as a way of coordinating on a socially preferable equilibrium.
They only have to persuade the members of the tipping set to change, rather than
persuading everyone. Social reinforcement can also lead to entrapment, as discussed
by Dixit and illustrated by our second example, where agent 10 can tip from the
equilibrium of ones to that of zeros, at which everyone except her is worse o¤. An
interesting point about cascades, and tipping when the tipping set is small, is that it
provides a clear rationale for the oft-discussed policy of encouraging early adoption of
a desirable behavior pattern. If the conditions for cascading or tipping are met, then
subsidies to a set of early adopters could change the overall equilibrium provided that
they form a tipping set or the �rst steps of a cascade.

5 Proofs

5.1 Proof of Proposition 1

Key to our analysis is the e¤ect on agent j0s payo¤ of changing strategy from 0 to
1, and how this e¤ect changes when another agent, say i; also changes from 0 to 1:
How much does i0s move reinforce j? By the increasing di¤erences property (1), we
know that the change by i will increase the e¤ect on j0s payo¤ of the change by j.
Let s�i�j; 1i; 0j denote the vector of strategies where all agents k other than i; j are
choosing sk 2 s�i�j and i; j are choosing 1 and 0 respectively. De�ne

�j (i = 0; s�i�j) = uj (s�i�j; 0i; 1j)� uj (s�i�j; 0i; 0j)

and
�j (i = 1; s�i�j) = uj (s�i�j; 1i; 1j)� uj (s�i�j; 1i; 0j)

These are the returns to agent j from changing from 0 to 1 when agent i chooses
either 0 (in the �rst line) or 1 (in the second line) and everyone else chooses s�i�j.
The di¤erence between these returns is

�ij (s�i�j) = �j (i = 1; s�i�j)��j (i = 0; s�i�j) � 0 (3)

That is,

�ij (s�i�j) = [uj (s�i�j; 1i; 1j)� uj (s�i�j; 1i; 0j)]� (4)

[uj (s�i�j; 0i; 1j)� uj (s�i�j; 0i; 0j)]

This is the increase in the return to j0s change of strategy as a result of i0s change
of strategy, and from the condition of increasing di¤erences (1) we know that this is
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positive. It is a measure of the positive externalities or social reinforcement gener-
ated by a change of i0s strategy, such reinforcement being guaranteed by increasing
di¤erences. As more agents i change their strategy from 0 to 1 there will be a greater
increase in utility for the other agents j in the system.
We focus on equations (3) and (4) when all agents other than i and j are choosing

strategy 0 so as to derive conditions for tipping the equilibrium of zeros to that of
ones:

�ij (0) =
�
uj
�
0N�2; 1i; 1j

�
� uj

�
0N�2; 1i; 0j

��
� (5)�

uj
�
0N�2; 0i; 1j

�
� uj; (0N�2; 0i; 0j)

�
where 0N�2 indicates that there are N � 2 zeros in the positions other than i and
j: Note that if all ones is a Nash equilibrium, then if all agents other than i choose
strategy 1; i�s best response must be 1, so that N � 1 agents form a trivial tipping
set. For a tipping set to be interesting, it must contain fewer than N � 1 agents.
Consider the following sequence of inequalities, which link the equilibrium with

all zeros to that with all ones in a series of steps in each of which an additional agent
changes strategy from zero to one, and which hold by the increasing di¤erences (1)
property.

ui
�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
+ � < ui

�
0N�2; 11; 1i

�
� ui

�
0N�2; 11; 0i

�
(6)

ui
�
0N�2; 11; 1i

�
� ui

�
0N�2; 11; 0i

�
+ � < ui

�
0N�3; 11; 12; 1i

�
� ui

�
0N�3; 11; 12; 0i

�
ui (11; 12; ::; 1N�2; 1i)� ui (11; 12; ::; 1N�2; 0i) + � <
ui (11; 12; ::; 1N�1; 1i)� ui (11; 12; ::; 1N�1; 0i) (7)

If we take the �rst inequality

ui
�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
+ � < ui

�
0N�2; 11; 1i

�
� ui

�
0N�2; 11; 0i

�
we see that the payo¤ to agent i from a strategy change is raised by at least � when
agent 1 also picks strategy 1: The second inequality

ui
�
0N�2; 11; 1i

�
� ui

�
0N�2; 11; 0i

�
+ � < ui

�
0N�3; 11; 12; 1i

�
� ui

�
0N�3; 11; 12; 0i

�
shows that the payo¤ to i from the change from 0 to 1 is again increased by �
when agent 2 changes from 0 to 1: The inequalities repeat this process changing one
additional agent�s strategy each time. Working back from a typical inequality in (6)
we have that

ui
�
0N�k; 11; 12; 1i

�
� ui

�
0N�k; 11; 12; 0i

�
> (k � 1)�+ ui

�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
Note that

ui
�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
< 0
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as the vector of all zeros is a Nash equilibrium so 0 is a best response for i: note also
that to the contrary the last di¤erence

ui (11; 12; :::; 1N�1; 1i)� ui (11; 12; :::; 1N�1; 0i) > 0

is positive as the vector of all ones is also a Nash equilibrium and now 1 is a best
response. As the sequence of di¤erences starts negative and ends positive it must
change sign: for N su¢ ciently large there will be a k < N � 1 such that (k � 1)� �
ui
�
0N�1; 1i

�
+ ui

�
0N�1; 0i

�
> 0 and the �rst k agents will then form a T � set. To

be precise, we need k to satisfy

(k � 1) � > ui
�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
for all i

or

k > 1 +
ui
�
0N�1; 1i

�
� ui

�
0N�1; 0i

�
�

for all i

Thus k has to exceed one plus the maximum over all agents of the ratio of the
change in agent i�s payo¤ from changing from 0 to 1 when all others choose 0 to
the parameter � which indicates the minimum magnitude of the reinforcement e¤ects
between agents. The larger the reinforcement e¤ects, the smaller is the value of k
needed. Once the �rst k agents have chosen 1 as a strategy, this is the best response
of all other agents. This proves that a T � set exists and is not the trivial tipping set
of all agents but one.

5.2 Proof of Proposition 2

Let
�
0t; 1N�t�1; 1k

	
denote the following vector: the k � th coordinate is 1, t coordi-

nates are zero, all others (of which there are N � t� 1) are 1, and the �rst N � t� 1
coordinates are 1 if k > N � t and the �rst N � t are 1 otherwise.
From (3) and (4) and (A1) we can write

uj
�
0N�K�1; 1K ; 1j

�
�uj

�
0N�K�1; 1K ; 0

�
= uj

�
0N�1; 1

�
�uj

�
0N�1; 0

�
+
i=K�1X
i=1

�i (8)

Hence �nding a t such that ui
�
0N�t; 11; ::; 1t; 1i

�
�ui

�
0N�t; 11; ::; 1t; 0i

�
> 0 is the same

as �nding a t such that uj
�
0N�1; 1

�
� uj

�
0N�1; 0

�
+
Pi=t�1

i=1 �i > 0 or
Pi=t�1

i=1 �i >
uj
�
0N�1; 0

�
� uj

�
0N�1; 1

�
:

If F < N is a T � set then for all j > F we must have

uj
�
0N�F�1; 1F ; 1j

�
� uj

�
0N�F ; 1F

�
� 0

By (8) above this is equivalent to

i=F�1X
i=1

�i � uj
�
0N�1; 0

�
� uj

�
0N�1; 1

�
8j > F (9)

15



To construct a minimal T � set we need to �nd the smallest number F for which
(9) holds. Clearly we get this by ranking agents by the size of �i and choosing �rst
those with the largest value of �i; i.e. those that create the largest externalities or
that exhibit increasing di¤erences to the greatest degree.

5.3 Proof of Proposition 3

For a change by agent 1 to change agent 20s strategy we need that

u2 (1; 1; 0::0)� u2 (1; 0::0) = u2 (0; 1; 0::0)� u2 (0; ::0) + �1 > 0

or
�1 > u2 (0; ::0)� u2 (0; 1; 0::0)

Similarly for a change by agent 2 to change 30s strategy

u3 (1; 1; 1; 0::0)� u3 (1; 1; 0::0) = u3 (1; 0; 1; 0::0)� u3 (1; 0; ::0) + �2 > 0

or
�2 > u3 (1; 0; ::0)� u3 (1; 0; 1; 0::0)

The proposition follows by repeating this argument.
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