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1 Introduction

This paper is about the estimation of New-Keynesian models of the monetary

transmission mechanism. We evaluate a number of recent findings obtained

using single equation methods and we develop a system approach that makes

use of additional identifying information extracted using factor analysis from

large data sets. The combination of factor analysis and GMM to estimate

the parameters of systems of forward looking equations is one of the distinc-

tive features of our work, which extends the univariate analysis in Favero,

Marcellino and Neglia (2005). The latter paper has also stimulated theoret-

ical research on the properties of the factor-GMM estimators, see Bai and

Ng (2006b) and Kapetanios and Marcellino (2006b), which provide a sound

theoretical framework for our empirical analysis.

Following the influential work of Galí and Gertler (1999, GG), a number

of authors have used instrumental variable methods to estimate one or more

equations of the New-Keynesian model of the monetary transmission mech-

anism. GG used the New-Keynesian paradigm to explain the behavior of

U.S. inflation as a function of its first lag, expected first lead, and the mar-

ginal cost of production. Their work stimulated considerable debate, much

of which has focused on the size and significance of future expected inflation

in the New-Keynesian Phillips curve. Similar arguments have been made

over the role of expected future variables in the other equations of the New-

Keynesian model: for example Clarida, Galí and Gertler (1998) estimate a

Taylor rule in which expected future inflation appears as a regressor and

Fuhrer and Rudebusch (2002) have estimated an Euler equation for output

in which expected future output appears on the right-hand-side.

The estimation of models that include future expectations has revived

a debate that began in the 1970’s with the advent of rational expectations

econometrics. In this context, a number of authors have raised economet-
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ric issues that relate to the specification and estimation of single equations

with forward looking variables. For example, Rudd and Whelan (2005, RW)

showed that the GG parameter estimates for the coefficient on future inflation

may be biased upward if the equation is mis-specified due to the omission of

relevant regressors that are instead used as instruments. With regard to the

estimation of the coefficients of future variables they pointed out that this

problem can yield differences between estimates that are based on the follow-

ing two alternative estimation methods. The first (direct) method estimates

the coefficient directly using GMM; the second (indirect) method computes

a partial solution to the complete model that removes the expected future

variable from the right-hand-side and substitutes an infinite distributed lag

of all future expected forcing variables. RW use their analysis to argue in

favor of Phillips curve specifications that favor backward lags of inflation over

the New-Keynesian specification that includes only expected future inflation

as a regressor.

Galí, Gertler and Lopez-Salido (2005, GGLS) have responded to the RW

critique by pointing out that, in spite of the theoretical possibility of omitted

variable bias, estimates obtained by direct and indirect methods are fairly

close, and when additional lags of inflation are added as regressors in the

structural model to proxy for omitted variables, they are not significant.

While the Rudd-Whelan argument is convincing, the CGLS response is less

so since other (contemporaneous) variables might also be incorrectly omitted

from the simple GG inflation equation. Even if additional lags of inflation

were found to be insignificant, their inclusion could change the parameters

of both the closed form solution and the structural model. We argue, in

this paper, that these issues can only be resolved by embedding the single

equation New-Keynesian Phillips curve in a fully specified structural model.

Other authors, e.g. Fuhrer and Rudebusch (2002), Lindé (2005) and Jon-
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deau and Le Bihan (2003) have pointed out that the Generalized Method of

Moment (GMM) estimation approach followed by GG could be less robust

than maximum likelihood estimation (MLE) in the presence of a range of

model mis-specifications such as omitted variables and measurement error,

typically leading to overestimation of the parameter of future expected infla-

tion. GGLS correctly replied that no general theoretical results are available

on the relative merits of GMM and MLE under mis-specification, that the

comparison could be biased by the use of an inappropriate GMM estimator,

and that other authors such as Ireland (2001) provided evidence in favor of

a (pure) forward looking equation for US inflation when using MLE. In this

paper we hope to shed additional light on the efficiency and possible bias of

GMM estimation by comparing alternative estimation methods on the same

data set and the same model specification.

A different and potentially more problematic critique of the GG approach

comes fromMavroeidis (2005), Bårdsen, Jansen and Nymoen (2003), and Na-

son and Smith (2005), building upon previous work on rational expectations

by Pesaran (1987). Pesaran (1987) stressed that the conditions for identifi-

cation of the parameters of the forward looking variables in an equation of

interest should be carefully checked prior to single equation estimation. To

check identification conditions one must specify a model for all of the right-

hand-side variables. Even if there are enough instruments available such

that conventional order and rank conditions are fulfilled and parameters are

not underidentified there might nevertheless be a problem of weak identifi-

cation. The articles cited above have shown that in the presence of weak

identification, estimation by GMM yields unreliable results. Weak identifica-

tion is related to the quality of the instruments when applying GMM. When

instruments are only weakly correlated with the corresponding endogenous

variables they might not be particularly useful for forecasting e.g. future
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expected inflation. The resulting GMM estimators might then suffer from

weak identification, which leads to non-standard distributions for the estima-

tors. As a consequence, this can yield misleading inference, see e.g. Stock,

Wright and Yogo (2002) for a general overview on weak instruments and

weak identification.

In summary, the recent literature on the New-Keynesian Phillips curve

has highlighted four main problems with the single equation approach to

estimation by GMM. First, parameter estimates may be biased due to corre-

lation of the instruments with the error term. Second, an equation of interest

could be mis-specified because of omitted variables or parameter instability

within the sample. Third, parameters of interest may not be identified be-

cause there are not enough instruments available. Fourth, parameters may

be weakly identified if the correlation of the instruments with the target

variable is low.

In this paper we analyze the practical relevance of these problems, propose

remedies for each of them, and evaluate whether the findings on the impor-

tance of the forward looking component are robust when obtained within a

more general econometric context. In Section 2 we compare single equation

and system methods of estimation for models with forward looking regres-

sors. In Section 3 we conduct a robustness analysis for a full forward looking

system. In Section 4 we analyze the role of information extracted from large

data sets to reduce the risk of specification bias and weak instruments prob-

lems. In Section 5 we summarize the main results of the paper and conclude.

2 Single Equation versus System Approach

We begin this Section with a discussion of the estimation of the New-Keynesian

Phillips curve. This will be followed by a discussion of single-equation esti-
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mation of the Euler equation and the policy rule. We then contrast the single

equation approach to a closed, three-equation, New-Keynesian model. We es-

timate simultaneously a complete structural model which combines the three

previously estimated single-equation models for the Phillips curve, the Euler

equation and the policy rule and we compare system estimates of parameters

with those of the three single-equation specifications.

Our starting point is a version of the New-Keynesian Phillips curve in-

spired by the work of Galí and Gertler (GG 1999),

πt = α0 + α1π
e
t+1 + α2xt + α3πt−1 + et, (1)

where πt is the GDP deflator, πet+1 is the forecast of πt+1 made in period

t, xt is a real forcing variable (e.g. marginal costs as suggested by GG,

unemployment - with reference to Okun’s law - as in e.g. Beyer and Farmer

(2007a), or any version of an output gap variable). The error term et is

assumed to be i.i.d. (0, σ2e) and is, in general, correlated with the non-

predetermined variables (i.e, with πet+1 and xt). Since we want to arrive

at the specification of a system of forward looking equations, we prefer to

use as a real forcing variable the output gap1, measured as the deviation

of real GDP from its one-sided HP filtered version as widely used in the

literature.2

To estimate equation (1) we replace πet+1 with πt+1, such that (1) becomes

πt = α0 + α1πt+1 + α2xt + α3πt−1 + vt. (2)

1The forward looking IS curve is usually specified in terms of the output or unemploy-

ment gap.
2Notice that although common practice in the applied literature the use of the HP

filtered version of the output gap is by no means unproblematic. For example, Nelson

(2006) finds that the HP cyclical component of U.S. real GDP has no predictive power

for future changes in output growth and Fukac and Pagan (2006) provide an example in

which HP filtering produces biased coefficient estimates within a New-Keynesian model.
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Equation (2) can be estimated by GMM, with HAC standard errors to take

into account the MA(1) structure of the error term vt = et+α1(π
e
t+1−πt+1).3

All data is for the US, quarterly, for the period 1970:1-1998:4, where the

constraint on the end date is due to the large data set we use in Section 4.4

In the first panel of the first column of Table 1 we report the single-

equation estimation results. As in GG (1999) and Galí et al. (2003), we

find a larger coefficient on πet+1, about 0.78, than on πt−1, about 0.23. The

coefficient on the forcing variable is very small and not statistically significant

at the 5% level, again in line with previous results.

There are at least two related problems with this single equation ap-

proach: first, the appropriateness or availability of the instruments cannot

be judged in isolation without reference to a more complete model, and there-

fore, second, the degree of over, just, or under-identification is undefined.

The issue of identification and the use of appropriate instruments in ra-

tional expectations models is a very subtle one, see e.g. Pesaran (1987),

Mavroeidis (2005), Bårdsen et al. (2003) or Beyer and Farmer (2003a). In

linear backward looking models, such as conventional simultaneous equation

models, rank and order conditions can be applied in a mechanical way (see

e.g. Fisher, 1966). In rational expectation models, however, the conditions

for identification depend on the solution of the model, i.e. whether the so-

lution of the model is determinate or indeterminate, see Beyer and Farmer

(2007b).

3In particular, to compute the GMM estimates we start with an identity weighting

matrix, get a first set of coefficients, use these to update the weighting matrix and finally

iterate coefficients to convergence. To compute the HAC standard errors, we adopt the

Newey West (1994) approach with a Bartlett kernel and fixed bandwidth. These calcula-

tions are carried out with Eviews 5.0.
4We have estimated the models using the output gap and unemployment as real forcing

variables. To save space we present here only the output gap results.
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In our case, as it is common in this literature, we have used (three) lags

of πt, xt and the interest rate, it as instruments where it is the 3-month US

Federal funds interest rate. However, since it does not appear in (1), both

πet+1 and xt may not at all or may only weakly depend on lags of it, which

would make it an irrelevant or a weak instrument. To evaluate whether or

not lagged interest rates are suitable instruments, we estimated the following

sub-VAR model:

xt = b0 + b1πt−1 + b2xt−1 + b3it−1 + uxt,

it = c0 + c1πt−1 + c2xt−1 + c3it−1 + uct, (3)

where uxt and uct are i.i.d. error terms, which are potentially correlated with

et. If b3 = 0, i.e., it does not Granger cause xt, then lags of it are not relevant

instruments for the endogenous variables in (1).

Whether lagged values of inflation and the real variable beyond order

one (i.e., πt−2, πt−3, xt−2 and xt−3) are relevant instruments for πet+1 is also

questionable. If the solution for πt only depends on πt−1 and xt−1, which is

the case when the solution is determinate, then the additional lags are not

relevant instruments. However, in case of indeterminacy additional lags of πt

and xt matter, which may re-establish the relevance of πt−2, πt−3, xt−2 and

xt−3 as instruments.5

As a consequence of the model dependence with respect to the number

of available and relevant instruments, the Hansen’s J-statistic, a popular

measure for the relevance of the instruments and overidentifying restrictions

that we also present for conformity to the literature, can be potentially un-

5Beyer and Farmer (2003a) conduct a systematic search of the parameter space in a

model closely related to the one studied in this paper. They sample from the asymptotic

parameter distribution of the GMM estimates and find, for typical identification schemes,

that point estimates lie in the indeterminate region, but anywhere from 5% to 20% of the

parameter region may lie in the non-existence or determinate region.
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informative and even misleading when applied in a forward looking context.

Estimating (1) and (3) using only one lag of π, x, and i as instruments,

we find that b3 6= 0 but the null hypothesis b3 = 0 cannot be rejected.

In this case, since the instruments are only weakly correlated with their

targets, the resulting GMM estimators can suffer from weak identification,

see Mavroeidis (2005, 2006). This might lead to non-standard distributions

for the estimators and can yield misleading inference, see e.g. Stock, Wright

and Yogo (2002). Empirically, we find that the size of the standard errors

for the estimators of the parameters α1 and α2 in (1) matches the estimated

values for α1 and α2.

However, when we estimate (1) and (3) using three lags of π, x, and i as

instruments, we find that b3 6= 0 but the null hypothesis b3 = 0 is strongly
rejected. The estimated parameters for (1) are reported in the first panel

in column 2 of Table 1. Compared with the corresponding single equation

estimates we find that the point estimates of the parameters are basically

unaffected (there is a non-significant decrease of about 5% in the coefficient of

πet+1 and a corresponding increase in that of πt−1). Yet, there is a substantial

reduction in the standard errors of 30-40%. Similar results are obtained when

(3) is substituted for a VAR(3) specification. These findings suggest that the

model is identified, but the solution could be indeterminate. Intuitively,

indeterminacy arises because the sum of the estimated parameters α1 and α3

in (1) is very close to one.

So far the processes for the forcing variables was assumed to be purely

backward looking. As an alternative we consider a forward looking model

also for xt. For example, Fuhrer and Rudebusch (2002) estimated a model

for a representative agent’s Euler equation (in their notation)

xt = β0 + β∗1x
e
t+1 + β∗2(

1

k

k−1X
j=0

(iet+j − πet+j+1)) + β∗3xt−1 + β∗4xt−2 + ηt, (4)
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where xt is real output (detrended in a variety of ways), xet+1 is the forecast

of xt+1 made in period t, it−πet+1 is a proxy for the real interest rate at time

t, and ηt is an i.i.d. (0, σ
2
η) error term. In our sample period, the second lag

of x is not significant and only the current interest rate matters. Hence, the

model becomes

xt = β0 + β1x
e
t+1 + β2(it − πet+1) + β3xt−1 + ηt. (5)

Replacing the forecast with its realized value, we get

xt = β0 + β1xt+1 + β2(it − πt+1) + β3xt−1 + µt, (6)

where µt = β1(x
e
t+1 − xt+1) + β2(π

e
t+1 − πt+1).

As in the case of the New-Keynesian Phillips curve, this equation can

be estimated by GMM, appropriately corrected for the presence of an MA

component in the error term µt. As in our estimates of the New-Keynesian

Phillips curve, we use three lags of x, i and π as instruments. The results are

reported in the first column of the second panel of Table 1 The coefficient on

xet+1 is slightly larger than 0.5 and significant, and the coefficient on xt−1 is

also close to 0.5 and significant. These values are in line with those in Fuhrer

and Rudebusch (2002), who found lower values when using ML estimation

rather than GMM and the positive sign of the real interest in the equation

for the output gap is similar to the Fuhrer-Rudebusch results when they used

HP de-trending.

As with the New-Keynesian Phillips curve, we estimate Equation (6)

simultaneously together with a sub-VAR(1) as in (3), but here for the forcing

variables πt and it. Again, the significance of the coefficients in the VAR(1)

equations (in particular those for lagged πt in the it equation) lends support

to their relevance as instruments. The numerical values of the estimated

parameters for the Euler equation remain nearly unchanged. However, as in
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the case of the Phillips curve above, the precision of the estimators increases

substantially. These results are reported in the second column of the second

panel in Table 1.

In order to complete our building blocks for a forward looking system we

finally also model the interest rate with a Taylor rule as in Clarida, Galí and

Gertler (1998, 2000). Our starting point here is the equation

i∗t = i+ γ1(π
e
t+1 − π∗t ) + γ2(xt − x∗t ), (7)

where i∗t is the target nominal interest rate, i is the equilibrium rate, xt is

real output, and π∗t and x∗t are the desired levels of inflation and output.

The parameter γ1 indicates whether the target real rate adjusts to stabilize

inflation (γ1 > 1) or to accommodate it (γ1 < 1), while γ2 measures the

concern of the central bank for output stabilization.

Following the literature, we introduce a partial adjustment mechanism of

the actual rate to the target rate i∗ :

it = (1− γ3)i
∗
t + γ3it−1 + vt, (8)

where the smoothing parameter γ3 satisfies 0 ≤ γ3 ≤ 1, and vt is an i.i.d.

(0, σ2v) error term. Combining (7) and (8), we obtain

it = γ0 + (1− γ3)γ1(π
e
t+1 − π∗t ) + (1− γ3)γ2(xt − x∗t ) + γ3it−1 + vt (9)

where γ0 = (1− γ3)i, which becomes

it = γ0 + (1− γ3)γ1(πt+1 − π∗t ) + (1− γ3)γ2(xt − x∗t ) + γ3it−1 + �t, (10)

with �t = (1−γ3)γ1(π
e
t+1−πt+1)+vt, after replacing the forecasts with their

realized values

The results for single equation GMM estimation (with 3 lags as instru-

ments) are reported in the first column of the third panel of Table 1. As in
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Clarida et al (1998, 2000), the coefficient on future inflation is larger than

one. We also found the coefficient on output to be larger than one, although

the standard errors around both point estimates are rather large. Again, as

in the cases of single equation estimations of the Phillips curve and the Euler

equation, we are able to reduce the variance of our point estimates by adding

sub-VAR(1) equations for the forcing variables πt and xt when estimating the

resulting system by GMM (see column 2). As above, for both approaches we

have used up to three lags for the intrument variables.

We are now in a position to estimate the full forward looking system,

composed of Equations (1), (5) and (9):

πt = α0 + α1π
e
t+1 + α2xt + α3πt−1 + et, (11)

xt = β0 + β1x
e
t+1 + β2(it − πet+1) + β3xt−1 + ηt,

it = γ0 + (1− γ3)γ1(π
e
t+1 − π∗t ) + (1− γ3)γ2(xt − x∗t ) + γ3it−1 + vt

The results are reported in column 3 of Table 1. For each of the three equa-

tions the estimated parameters are very similar to those obtained either in

the single equation case or in the systems completed with VAR equations.

Furthermore, the reductions in the standard errors of the estimated parame-

ters are similar to those obtained with sub-VAR(1) specifications. Since the

VAR equations can be interpreted as reduced forms of the forward looking

equations, this result suggests that completing a single equation of interest

with a reduced form may be enough to achieve as much efficiency as within a

full system estimation. However, the full forward looking system represents

a more coherent choice from an econometric point of view, and the finding

that the forward looking variables have large and significant coefficients in

all the three equations lends credibility to the complete rational expectations

model.

The nonlinearity of our system of forward looking equations makes the
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evaluation of global identification impossible. However, if we linearize the

model around the estimated parameters and focus on local identification,

we can show that the model is (at least) exactly identified, see Beyer et al

(2005). Exact identification holds when the point estimates imply a deter-

minate solution. The model would be potentially overidentified in case of an

indeterminate equilibrium.

3 Robustness analysis

While system estimation increases efficiency, the full forward looking model

in (11) could still suffer from mis-specification problems, see e.g. Canova

and Sala (2006). To evaluate this possibility, we conducted four types of

diagnostic tests. First, we ran an LM test on the residuals of each equation

to check for additional serial correlation i.e. serial correlation beyond the

one that is due to the MA(1) error structure of the model. Second, we ran

the Jarque and Bera normality test on the estimated errors. Although our

GMM estimation approach is robust to the presence of non-normal errors,6

rejection of normality could signal other problems, such as the presence of

outliers or parameter instability. Third, we ran an LM test to check for the

presence of ARCH effects; rejection of the null of no ARCH effects might

more generally be a signal of changes in the variance of the errors. Finally,

we checked for parameter constancy by running recursive estimates of the

forward looking system.

The results of our mis-specification tests are reported in the bottom lines

of each panel in Table 2. For convenience, we also present in column 1

again the estimated parameters. There are only minor problems of residual

correlation in the inflation equation, but normality is strongly rejected for

6Note that this is not the case for maximum likelihood estimation.
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the inflation and interest rate equation and the interest rate equation also

fails the test for absence of serial correlation and absence of ARCH.

The rejection of correct specification could be due to parameter instability

in the full sample 1970:3 - 1998:4. Instability might be caused by a variety of

sources including external events such as the oil shocks, internal events, such

as the reduction in the volatility of output (e.g. McConnell and Perez-Quiros

(2000)), or changes in the monetary policy targets. Since we had more faith

in the second part of our sample, we implemented a backward recursion by

estimating the system first for the subsample 1988:1-1998:4, and recursively

reestimating the system by adding one quarter of data to the beginning of the

sample, i.e. our second subsample consisted of the quarters 1987:4—1998:4,

our third was 1987:3 — 1998:4 and so on until 1970:3-1998:4.

In Figure 1, we report recursive parameter estimates. These graphs con-

firm that the likely source of the rejection of ARCH, normality and serial

correlation tests is the presence of parameter change. Although the para-

meter estimates are stable back to 1985:1, going further back than this is

associated with substantial parameter instability in all three equations, and

particularly in the estimated Taylor rule. Although parameter instability

is more pronounced when we use unemployment as a measure of economic

activity, it is also present in estimates obtained when using the output gap.

Overall, these mis-specification tests cast serious doubts on results ob-

tained for the full sample, and they suggest that a prudent approach would

be to restrict our analysis to a more homogeneous sample. For this reason,

in the subsequent analysis, we report results only for the subperiod 1985:1-

1998:4.

Our subsample results are presented in the second column of Table 2. It

is interesting to note that the values of the estimated parameters of the New-

Keynesian Phillips curve and the Euler equation are similar to those obtained
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for the full sample. However, parameter estimates of the coefficients of the

Taylor rule differ substantially from the single equation estimates. Most

prominently, there is a marked decrease in the estimated coefficient on the

output gap. In the post 1985 subsample we fail to reject the null hypothesis

for all four of our diagnostic tests, thereby lending additional credibility to

our estimation results.

The final issue we briefly consider is the role of the method of estima-

tion. Fuhrer and Rudebusch (2002), Lindé (2005) and Jondeau and Le Bi-

han (2003) have suggested that GMM may lead to an upward bias in the

parameters associated with the forward looking variables, while maximum

likelihood (ML) produces better results. For example Lindé (2005) finds

that estimated parameters were not heavily biased from true parameters. In

case of exact identification ML coincides with indirect least squares where

the reduced form parameters of the model are mapped back into those of the

structural form. We compared our estimates with the point estimates from

GMM by computing the indirect least squares estimates from the reduced

form. Using this approach, we find that our GMM estimates are similar to

the ML values.

For the subsample 1985-1998, the estimated coefficient on πet+1 in the

inflation equation is 0.76 and 0.62 for that on future expected output gap

in the Euler equation whereas the GMM estimates of these parameters are,

respectively, 0.61 and 0.47. The differences are slightly larger for the coeffi-

cient on future inflation in the Taylor rule, in the range 2.1− 2.4 with ML.
Overall we are reassured that our finding of significant coefficients on future

expected variables is robust to alternative system estimation methods.
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4 Enlarging the information set

The analysis in Sections 2 and 3 supports the use of a system approach to the

estimation of forward looking equations. For the 1985:1—1998:4 sample, our

estimated system passes a wide range of mis-specification tests. Moreover,

the Hansen’s J-statistic, reported at the foot of Table 2, is unable to reject

the null of relevant instruments for this period (but it is worth recalling the

caveats on the use of the J-test in this context). However, there could still

be problems of weak instruments and/or omitted variables which are hardly

detectable using standard tests, (see e.g. Mavroeidis (2005)). This section

proposes a method that can potentially address both of these issues.

Our approach is to augment our data by adding information extracted

from a large set of 146 macroeconomic variables as described in Stock and

Watson (2002a, 2002b, SW). We assume that these variables are driven by a

few common forces, i.e. the factors, plus a set of idiosyncratic shocks. This

assumption implies that the factors provide an exhaustive summary of the

information in the large dataset, so that they may alleviate omitted variable

problems when used as additional regressors in our small system. Moreover,

the factors extracted from the Stock and Watson data are known to have

good forecasting performance for the macroeconomic variables in our small

dataset and they are therefore likely to be useful as additional instruments

that may alleviate weak instrument problems, too. Bernanke and Boivin

(2003) and Favero, Marcellino and Neglia (2005) showed that when estimated

factors are included in the instrument set for GMM estimation of Taylor

rules, the precision of the parameter estimators increases substantially. The

economic rationale for inclusion of these variables is that central bankers rely

on a large set of indicators in the conduct of monetary policy; our extracted

factors may provide a proxy for this additional information. An additional

reason for being interested in the inclusion of factors in our analysis is that,
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the inclusion of factors in small scale VARs has been shown to remove the

“price puzzle” suggesting that factors may be used to reduce or eliminate

the estimation bias, that arises from the omission of relevant right-hand-side

variables.7

In the following subsection, we present a brief overview on the specifica-

tion and estimation of factor models for large datasets. Following this discus-

sion, we evaluate whether the use of the estimated factors changes the size

and or the significance of the coefficients of the forward looking components

in the New Keynesian model.

4.1 The factor model

Equation (12) represents a general formulation of the dynamic factor model

zt = Λft + ξt, (12)

where zt is an N × 1 vector of variables and ft is an r× 1 vector of common
factors. We assume that r is much smaller than N , and we represent the

effects of ft on zt by theN×r matrix Λ. ξit is anN×1 vector of idiosyncratic
shocks.

Stock and Watson require the factors, ft, to be orthogonal although they

may be correlated in time and with the idiosyncratic components for each

factor.8 Notice that the factors are not identified since Equation (12) can be

rewritten as

zt = ΛGG−1ft + ξt = Ψpt + ξt,

where pt is an alternative set of factors and G is an arbitrary invertible r× r

matrix. This fact makes it difficult to form a structural interpretation of the
7For a definition and discussion of this issue the reader is referred to Christiano, Eichen-

baum and Evans (1999) pages 97—100.
8Precise moment conditions on ft and ξt, and requirements on the loading matrix Λ,

are given in SW.
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factors, but it does not prevent their use as a summary of the information

contained in zt.

SW define the estimators bft as minimizing the objective function
VN,T (f,Λ) =

1

NT

NX
i=1

TX
t=1

(zit − Λift)
2.

Under the hypothesis of r common factors, they show that the optimal es-

timators of the factors are the r eigenvectors corresponding to the r largest

eigenvalues of the T × T matrix N−1PN
i=1 ziz

0
i, where zi = (zi1, ..., ziT ).

Moreover, the r eigenvectors corresponding to the r largest eigenvalues of

the N × N matrix T−1
PT

t=1 ztz
0
t are the optimal estimators of Λ. These

eigenvectors coincide with the principal components of zt; they are also the

OLS estimators of the coefficients in a regression of zit on the k estimated

factors bft, i = 1, ..., N .9 Although there are alternative estimation methods
available such as the one by Forni and Reichlin (1998) or Forni et al (2000),

we chose the SW approach since there is some evidence to suggest that it

dominates the alternatives in this context.10

No statistical test is currently available to determine the optimal number

of factors. SW and Bai and Ng (2002) suggested minimizing a particular

information criterion, however its small sample properties in the presence of

heteroskedastic idiosyncratic errors deserves additional investigation. In their

9SW prove that when r is correctly specified, bft converges in probability to ft, up to
an arbitrary r × r transformation matrix, G. When k factors are assumed, with k > r,

k−r estimated factors are redundant linear combinations of the elements of ft, while even
when k < r consistency for the first k factors is preserved (because of the orthogonality

hypothesis). See Bai (2003) for additional inferential results.
10Kapetanios and Marcellino (2006a) found that SW’s estimator performs better in

simulation experiments, and Favero et al. (2005) reached the same conclusion when using

the estimated factors for the estimation of Taylor rules and VARs.
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empirical analysis with this data set, SW found that the first 2-3 factors

are the most relevant for forecasting key US macroeconomic variables. In

the following analysis we however evaluate the role of up to six factors to

make sure sufficient information is captured. Finally, Bai and Ng (2006a)

have shown that the estimated factors when used in subsequent econometric

analyses do not create any generated regressor problem when
√
T/N is op(1).

This condition requires the number of variables to grow faster than the sample

size, which basically guarantees faster convergence of the factor estimators

than of the estimators of the other parameters of interest. We assume that

this condition is satisfied in our context, where
√
T/N = 0.055.

4.2 The role of the estimated factors

As we mentioned, the estimated factors can proxy for omitted variables in

the specification of the forward looking equations. In particular, we use up

to six contemporaneous factors as additional regressors in each of the three

structural equations, and retain those which are statistically significant.

Since the factors are potentially endogenous, we use their first lag as ad-

ditional instruments. These lags are likely to be useful also for the other

endogenous variables in each structural equation. Bai and Ng (2006b) and

Kapetanios and Marcellino (2006b) provide a detailed derivation of the prop-

erties of factor-based GMM estimators.

In column 3 of Table 2 we report the results of GMM estimation of the

forward looking system over the period 1985-1998.

First, a few factors are strongly significant in the equations for inflation

and the real variable. While it is difficult to provide an economic interpreta-

tion for this result, it does point to the omission of relevant regressors in the

Phillips curve and Euler equation. In contrast, no factors are significant in

the Taylor rule, which indicates that output gap and inflation expectations
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are indeed the key driving variables of monetary policy over this period.

Second, in general the estimated parameters of the forward looking vari-

ables are 10 to 20% lower than those without factors, but they remain

strongly statistically significant.

Third, the precision of the estimators systematically increases, as the

standard errors of the estimated parameters are 10 to 50% lower than those

without the factors. This confirms the usefulness of the additional informa-

tion contained in the factors.

Fourth, since the highest lag order of the regressors in the structural

model is one, it could suffice to include one lag of πt, xt, and it in the

instrument set instead of three lags. In this case, the point estimates are

unaffected, as expected, but the standard errors increase substantially. This

finding suggests that the solution of the system could be indeterminate, in

which case more lags would indeed be required.

Finally, since there is no consensus on the best way to compute robust

standard errors in this context, we verified the robustness of our findings

based on Newey West (1994) comparing them with those based on Andrews

(1991). The latter are in general somewhat lower, but the advantages result-

ing from the use of factors are still systematically present.

5 Conclusions

In this paper we provided a general econometric framework for the analysis

of models with rational expectations, focusing in particular on the hybrid

version of the New-Keynesian Phillips curve that has attracted considerable

attention in the recent period.

First, we showed that system estimationmethods where the New-Keynesian

Phillips curve is complemented with equations for the interest rate and ei-
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ther unemployment or the output gap yield more efficient parameter esti-

mates than traditional single equation estimation, while there are only minor

changes in the point estimates and the expected future variables play an im-

portant role in all the three equations. The latter result remains valid even

if MLE is used rather than system GMM.

Second, we stressed that it is important to evaluate the correct specifica-

tion of the model, and we showed that our systems provide a proper statisti-

cal framework for the variables over the 1985-1998 period, while during the

’70s there is evidence of parameter changes, in particular in the interest rate

equation.

Third, we analyzed the role of factors that summarize the information

contained in a large data set of U.S. macroeconomic variables. Some factors

were found to be significant as additional regressors in the New-Keynesian

Phillips curve and in the Euler equation, alleviating potential omitted vari-

able problems. Moreover, using lags of the factors as additional instruments

in our small New-Keynesian system, the standard errors of the GMM esti-

mates systematically decrease for all the estimated parameters; the gains are

particularly large for the coefficients of forward looking variables.

In conclusion, using the factors, data after 1985 is not inconsistent with

the New-Keynesian interpretation of a determinate equilibrium driven by

three fundamental shocks. The estimated parameters of the complete model

form a consistent picture which coincides with New-Keynesian economic the-

ory. We should note that while our results support the relevance of forward

looking variables in our estimated equations there is a large variety of alterna-

tive models compatible with the observed data which can have very different

properties both in terms of the relevance of the forward looking variables

and of the characteristics of their dynamic evolution. This has been demon-

strated in Beyer and Farmer (2003b). A more detailed analysis of this issue
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represents an interesting topic for further research in this field.
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Appendix: Tables and Figures

Table 1. Single equation vs sytem estimation, GDP gap

Estimation method
Eqn. Var. (coeff.) Single Sub-VAR System

[1] [2] [3]

πt πet+1 (α1)
0.778∗∗∗

(0.139)
0.726∗∗∗

(0.090)
0.672∗∗∗

(0.084)

gapt (α2)
−0.067∗
(0.034)

−0.051∗∗
(0.025)

−0.038∗
(0.023)

πt−1 (α3)
0.231∗

(0.128)
0.281∗∗∗

(0.082)
0.334∗∗∗

(0.072)
Adj. R2 0.860 0.899 0.870
J − stat
p− value

4.809 (6)
0.56

17.993(18)
0.45

13.780(18)
0.74

xt = gapt gapet+1 (β1)
0.544∗∗∗

(0.046)
0.538∗∗∗

(0.033)
0.540∗∗∗

(0.034)

rit (β2)
0.017
(0.013)

0.016
(0.011)

0.015
(0.011)

gapt−1 (β3)
0.487∗∗∗

(0.040)
0.486∗∗∗

(0.030)
0.484∗∗∗

(0.029)
Adj. R2 0.954 0.954 0.954
J − stat
p− value

5.778 (6)
0.44

18.453(18)
0.42

−

it πet+1 (γ1)
1.103∗∗

(0.458)
1.072∗∗∗

(0.362)
1.186∗∗∗

(0.308)

gapt (γ2)
1.675∗

(0.922)
1.659∗∗

(0.691)
1.476∗∗

(0.704)

it−1 (γ3)
0.921∗∗∗

(0.027)
0.922∗∗∗

(0.020)
0.920∗∗∗

(0.022)
Adj. R2 0.885 0.885 0.885
J − stat
p− value

10.702∗ (6)
0.098

15.574(18)
0.62

−

Note: The instrument set includes the constant and three lags of gap, π, i. Sample is 1970:1-1998:4.
The columns report results for single equation estimation (Single), system estimation where

the completing equations are Sub-VARs (Sub-VAR), and full forward looking system (System).

HAC s.e. (no pre-whitening, Bartlett kernel, fixed bandwith Newey West)

in (). *, **, and *** indicate significance at 10%, 5% and 1%.

J-stat is χ2(p) under the null hypothesis of p valid over-identifying restrictionns
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Table 2. Alternative forward looking sytems, GDP gap

1970-1998 1985-1998
Eqn. Var. (coeff.) No factors No factors Significant

Factors
as regressors

[1] [2] [3]

πt πet+1 (α1)
0.672∗∗∗

(0.083)
0.605∗∗∗

(0.093)
0.435∗∗∗

(0.081)

gapt (α2)
−0.038∗
(0.023)

−0.012
(0.018)

0.067
(0.049)

πt−1 (α3)
0.334∗∗∗

(0.072)
0.319∗∗∗

(0.067)
0.343∗∗∗

(0.042)
Adj. R2 0.870 0.481 0.531

No corr (4) 1.599 2.007 2.302∗

Norm 6.907∗∗ 1.877 0.065
No ARCH (4) 2.990 0.565 1.505

xt = gapt gapet+1 (β1)
0.540∗∗∗

(0.034)
0.466∗∗∗

(0.044)
0.623∗∗∗

(0.033)

rit (β2)
0.015
(0.011)

−0.021
(0.015)

0.057∗∗∗

(0.010)

gapt−1 (β3)
0.484∗∗∗

(0.029)
0.558∗∗∗

(0.047)
0.491∗∗∗

(0.040)
Adj. R2 0.954 0.966 0.953

No corr (4) 0.177 0.884 0.453
Norm 2.721 2.198 0.440

No ARCH (4) 1.510 0.896 1.270

it πet+1 (γ1)
1.186∗∗∗

(0.308)
1.123∗∗

(0.458)
1.098∗∗∗

(0.178)

gapt (γ2)
1.476∗∗

(0.704)
0.771∗∗∗

(0.160)
0.846∗∗∗

(0.012)

it−1 (γ3)
0.920∗∗∗

(0.022)
0.867∗∗∗

(0.024)
0.841∗∗∗

(0.090)
Adj. R2 0.885 0.945 0.947

No corr (4) 2.172∗ 0.237 0.227
Norm 525.0∗∗∗ 1.833 3.257

No ARCH (4) 2.743∗∗ 0.765 0.583
J − stat
p− value

13.780(18)
0.74

12.824 (18)
0.80

12.942 (18)
0.99

Note: The instrument set includes the constant and three lags of gap, π, i (no factors) plus the first lag
of the six estimated factors (other case).

The regressors are either as in Table 1 (no factors) or include some

contemporaneous factors (see text for details)

HAC s.e. (as in Tab.1) in (). *, **, and *** indicate significance at 10%, 5% and 1%; The mis-specification

tests (No corr, Norm, No ARCH) are conducted on the residuals of an MA(1) model for the

estimated errors. No corr is LM(4) test for no serial correlation,Norm is Jarque-Bera statistic for

normality, and ARCH in LM(4) test for no ARCH effects.

J-stat is χ2(p) under the null hypothesis of p valid over-identifying restrictionns
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Figure 1: Backward recursive estimation, 1988:1 - 1970:1, system with GDP
gap
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