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Abstract

This paper analyzes the theoretical and quantitative implications of optimal capital tax-
ation in the neoclassical growth model with aggregate shocks and incomplete markets. The
model features a representative-agent economy with proportional taxes on labor and capital.
I first consider the case that the only asset the government can trade is a real risk-free bond.
Taxes on capital are set one period in advance, reflecting inertia in tax codes and ruling out
replication of the complete markets allocation. Because capital income varies with the state of
the economy, capital taxation provides a state contingent source of revenues. I thus identify a
novel potential role for capital taxation as a risk sharing instrument between the government
and private agents. However, this benefit must be weighted again the distortionary cost of
capital taxation. For a baseline case, the optimal policy features a zero tax on capital. More-
over, numerical simulations show that the baseline case provides an excellent benchmark. I
next allow the government to hold a non trivial position in capital. Capital ownership provides
the same benefit or risk sharing but without the cost of tax distortions. In a variety of quanti-
tative exercises, I show that capital ownership allows the government to realize about 90% of
the welfare gains from moving to complete markets. Large positions are typically required for
optimality. But smaller positions achieve substantial benefits. In a business-cycle simulation, I
show that a 15% short equity position achieves over 40% of the welfare gains from completing
markets.

1 Introduction

In this paper, I explore the issue of capital taxation and government ownership when fiscal expen-

ditures and aggregate income are random, and the government can only trade a limited number of

assets. Markets are incomplete, and hedging of the government budget is limited in scope. This

∗My debt to my advisors Ricardo Caballero, George-Marios Angeletos and Ivan Werning cannot be overstated.
For helpful discussions and insightful comments, I thank Daron Acemoglu, Abhijit Banerjee, Olivier Blanchard, V.V
Chari, Xavier Gabaix, Mike Golosov, Patrick Kehoe, Narayana Kocherlakota, Guido Lorenzoni, Veronica Guerrieri,
and seminar participants at the Minneapolis Fed, MIT, Chicago, Harvard, Princeton, Berkeley, Stanford, NYU,
Columbia, Yale.
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creates a new potential role for capital taxation and ownership as risk sharing instruments between

the government and private agents. In the model, capital taxation and capital ownership provide

a state contingent source of revenues. For example, if the marginal product of capital is positively

correlated with adverse shocks to the government budget, positive capital taxes, or a long position

in the capital stock, might provide the government with a good hedging instrument.

I approach these issues by taking a minimal step away from the complete markets case: I

consider the stochastic neoclassical growth model with homogenous consumers and a benevolent

government facing fiscal expenditure shocks. I allow the government to trade a risk free bond, to

levy fully state contingent linear taxes on labor, and to levy linear taxes on capital that are not

fully state contingent. Specifically, I assume that taxes on capital are set one period in advance,

at the time investment decisions are made. This assumption is meant to capture inertia in fiscal

policy. With fully state contingent taxes on capital the government would be able to replicate the

complete markets allocation, as shown by Judd (1992) and Chari, Christiano and Kehoe (1994).1

With a lag in capital taxes, the complete markets allocation is not achievable.

An important insight in this paper is that when contemplating the hedging consequences of

a marginal increase in capital taxes, the government needs to take two effects into consideration.

First is the direct effect in the form of increased revenues in proportion to the marginal product

of capital. Second is an opposing indirect effect through the adjustment of capital: Lower capital

accumulation reduces the revenues from labor and capital taxes. The hedging benefits of capital

taxation depend only on the covariance of these two effects with the government’s need for funds

across states of the world on a given date. An important benchmark is the baseline case where the

production function is Cobb Douglas and preferences are quasi-linear. I show in this case that taxes

on capital should be set to zero from the first period on. With these specifications, the covariances

of the direct and indirect effects with the government’s need for funds exactly cancel out, leaving

no role for capital taxes.

For general preferences, I show that optimal taxes on capital can be decomposed into two terms.

The first "hedging" term — the only one present when preferences are quasi-linear — reflects the

hedging role of capital taxes, and would be zero if markets were complete. The second "intertem-

poral" term corresponds to the motive for capital taxation when markets are complete: It might

be optimal for the government to distort capital accumulation to smooth available resources in the

economy across time. Echoing the result in the previous paragraph, I show that the hedging term is

zero when the production function is Cobb Douglas. Regarding the intertemporal term, the optimal

policy prescribes a one time capital tax (respectively subsidy) following a high (respectively low)

government expenditure shock in order to reduce the variability of the net present value of labor

tax surpluses across states.

1An intuition for this result can be given along the following lines: Since investment only reacts to average taxes
on capital, the government can vary capital taxes across states while keeping the average constant, leaving investment
in physical capital unaffected. This endows the government with enough degrees of freedom to perfectly shift the
tax burden across states and to replicate the complete markets outcome as long as long as it can also trade a risk
free bond.
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Numerical simulations show that the baseline case provides a good benchmark: the hedging

term, while not theoretically zero, turns out to be negligible. Incomplete markets do not seem

to make a case for using capital taxation as a hedging instrument. The intertemporal term is

approximately zero mean. Its volatility decreases sharply with the period length.

In contrast to capital taxes, capital ownership may provide the government with a powerful hedg-

ing instrument. The reason is that unlike taxing, trading does not introduce additional distortions:

The indirect effect on labor and capital tax bases arising with capital taxation is absent for capital

trading. 2Indeed, when preferences are quasi-linear and the only disturbance in the economy takes

the form of government expenditures shocks, I show that the government can perfectly approximate

the complete markets allocation by taking a very large position in capital, counterbalanced by an

equally large opposite position in the risk free bond.

Outside of this benchmark case, numerical simulations show that capital ownership allows to

realize about 90% of the welfare gains from moving to complete markets. Government expenditure

shocks tend to call for a long position, while productivity shocks typically require a short position.

In business cycle simulations, productivity shocks dwarf government expenditure shocks as a source

of variation in the government’s budget, calling for a short position.

Optimality typically requires large position. The magnitude of the position decreases sharply

with the period length. Moreover, smaller positions allow to reap substantial benefits: In a business

cycle simulation with a five years period length, I show that a short position of 15% of the capital

stock achieves more than 40% of the gains from completing markets.

I then characterize the optimal holding of capital by the government in a more general portfolio

problem with additional assets. I derive the government’s optimal liability structure in a unified

framework, that I term the GCAPM — Government Capital Asset Pricing Model — and that re-

sembles the CCAPM: Assets that covary with the government’s need for funds command a lower

expected return. I am able to explicitly derive the pricing kernel of the government. This can be

used to price non-traded assets, and provides theoretical foundations for capital budgeting rules in

public, non traded companies.3

Related Literature.
An extensive literature on capital taxation with complete markets has emerged from the cele-

brated zero long run capital tax result established by Chamley (1986) and Judd (1985). This paper

adds to this literature by studying the case of incomplete markets.

Chamely (1986) and Judd (1985) showed that in all steady states of the economy, taxes on capital

are optimally set to zero. Zhu (1992) proved a stochastic analog of the Chamley-Judd result:

In every stochastic steady state of the neoclassical growth model, depending on the underlying

parameters of the model, taxes on capital are either zero or take both signs with positive probability.

2Another way to interpret trading is that it allows the government to tax capital excess returns: As is well known,
this form of non-linear capital taxation is non-distorsionary.

3This is also potentially useful to compute the value of non-traded government liabilities, as for example dispensing
with future nuclear waste, honoring implicit social contracts etc.
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I prove that in my model, an analogous result holds for the intertemporal term. Moreover, as

Zhu (1992) and Chari, Christiano and Kehoe (1994) pointed out, if preferences are homogenous

and separable between consumption and leisure, a stronger version of the zero capital tax result

applies: Taxes on capital should be zero from the second period on. Echoing this result, I show

that if preferences are quasi-linear, the intertemporal term is zero. However outside of this case,

homogenous preferences do not imply that the intertemporal term should be zero in my model.

The paper also contributes to the literature on fiscal policy in incomplete markets pioneered

by Barro (1979). Barro considered a deterministic, partial equilibrium environment and associated

an exogenous convex deadweight cost to taxes. Variations in the deadweight costs are costly; a

benevolent government should therefore seek to smooth taxes across time. Barro showed that

just like consumption smoothing problems, tax smoothing by the government imparts a random

walk component to taxes and public debt. Most closely related to this paper is Aiyagari, Marcet,

Sargent and Seppälä (2002) and, more recently, Werning (2005). They studied fiscal policy in general

equilibrium under incomplete markets. They analyzed a version of the no capital economy in Lucas

and Stokey (1983) with only risk free debt. They showed that Ramsey outcomes display features

of Barro’s model. In particular, labor taxes inherit a near unit root component. I extend this line

of research by introducing capital along with a more general asset structure, and studying capital

taxation in addition to labor taxation. I demonstrate that the results of Aiyagari, Marcet, Sargent

and Seppälä (2002) carry through when capital is introduced: Labor taxes and government debt

inherit a random walk component.

Finally, this paper is related to literature studying the optimal liability structure of the gov-

ernment under incomplete markets. The foundational paper is Bohn (1990). Bohn considered a

stochastic version of Barro’s model with risk neutral consumers and an ad hoc convex cost for

distortionary taxes. The literature on the optimal portfolio of the government under incomplete

markets has entirely focused Bohn’s model, maintaining the assumption of risk neutrality and adopt-

ing an ad hoc deadweight cost for taxes. My model provides microfoundations for Bohn’s findings,

and shows that important caveats to his theory need to be introduced. I also analyze explicitly the

situation where consumers are risk averse. This goes beyond existing contributions.

Angeletos (2002) and Buera and Nicolini (2004) assume that markets are incomplete: the gov-

ernment can only trade risk free debt with multiple maturities. They show that generically, the

government can replicate the complete market allocation when enough maturities are traded, and

characterize the optimal maturity structure of government debt in such instances.

The central idea in this paper that non-state contingent taxes have important risk sharing impli-

cations can be traced back to Stiglitz (1969)4. Stiglitz considered the partial equilibrium problem of

a consumer that must decide how to allocate a given amount of wealth between a riskless asset and

a risky asset. He examined how the government can affect the allocation of wealth and welfare using

a variety of linear taxes. My model can be seen as a general equilibrium risk sharing model between

the government and the agents. As in Stiglitz (1969), linear taxes on assets — here capital — have

4I thank Abhijit Banerjee for pointing this analogy to me.
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hedging consequences. However, I show that taking into account the distortionary consequences of

linear taxes by analyzing the savings margin — taken as inelastic in Stiglitz’s analysis — is crucial.

On the methodological side, this paper builds on Werning (2005). Existing models either adopt a

Lagrangian approach — as for example Aiyagari, Marcet, Sargent and Seppälä (2002) — or develop a

recursive representation by incorporating some multipliers in the state space — an approach initiated

by Marcet and Marimon (1998). Werning (2005) revisits Aiyagari, Marcet, Sargent and Seppälä’s

model and develops a recursive representation with three state variables: debt, expected marginal

utility one period ahead, and the state of the Markov shock process. I develop a parsimonious

recursive representation of the Ramsey problem with only four state variables, which are directly

related to the allocation: the present value of government liabilities, capital, past marginal utility

and the state of the Markov shock process. In the particular case where preferences are quasi-

linear, I am able to reduce the state space to two state variables: the present value of government

liabilities and the state of the Markov shock process. Developing a recursive approach using only

variables directly linked to the allocation allows a better understanding of the properties of Ramsey

outcomes, is useful for developing intuition, simplifies calculations, and in some cases, permits easier

numerical simulations.

The rest of the paper is organized as follows. Section 2 introduces the economic environment, sets

up the Ramsey problem, and develops a recursive representation. Section 3 presents the properties

of debt and taxes in the quasi-linear preferences case. I analyze the general case in Section 4.

In Section 5, I study capital ownership by the government and characterize the optimal liability

structure of the government. All proofs omitted in the main text are contained in the Appendix.

2 The Economy

The model is a neoclassical, stochastic production economy. The economy is populated by a con-

tinuum of identical, infinite-lived individuals and a government.

Time is discrete, indexed by t ∈ {0, 1, ...}. The exogenous stochastic disturbances in period
t are summarized by a discrete random variable st ∈ S ≡{1, 2, ..., S} : the state at date t. I let

st≡{s0, s1, ..., st} ∈ St denote the history of events at date t. I assume that st follows a Markov

process with transition density P (s0|s) and initial distribution π0 = P (.|s−1).
In each period t, the economy has two goods: a consumption-capital good and labor. Households

have access to an identical constant returns to scale technology to transform capital kt−1 and labor

lt into output via the production function kt−1+F (kt−1, lt, st)
5. The production function is smooth

in (kt−1, lt) and satisfies the standard Inada conditions. Notice that this formulation incorporates

a stochastic productivity shock. The output can be used for private consumption ct, government

consumption gt, and new capital kt. Throughout, I will take government consumption gt = g(st) to

be exogenously specified. Therefore, the resource constraints in the economy are

5This formulation allows for capital depreciation. The depreciation of capital is subsumed in the production
function F (kt−1, lt, st).
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ct + gt + kt ≤ F (kt−1, lt, st) + kt−1, ∀t ≥ 0 and st ∈ St (1)

Households rank consumption streams according to

E−1
∞X
t=0

βtu(ct, lt, st) (2)

where β ∈ (0, 1) and u is smooth and concave in (ct, lt), increasing in consumption, decreasing

in labor, and satisfies the standard Inada conditions. Note that this formulation incorporates a

stochastic preference shock.

The government raises all revenues through a tax on labor income τ lt and a tax on capital income

τkt . Except for taxes on capital τ
k
t , households and the government make decisions whose time t

components are functions of the history of shocks st up up to t. By contrast, I assume that taxes

on capital are predetermined: the government makes decisions on τkt one period in advance. Hence

τkt is a function of the history of shocks up to t − 1, st−1. The capital stock k0 is inelastic, hence

providing a non distortionary source of revenues to the government. In order to limit the amount

of revenues the government can extract at no cost, I assume that the date 0 tax rate on capital τk0
is exogenously fixed.

The assumption that taxes on capital are set one period in advance deserves some discussion.

It is more efficient to postpone this discussion below after some definitions have been introduced.

Incomplete markets and debt limits. Households and the government borrow and lend
only in the form of risk-free one period bonds paying interest rt(st−1) in every state at date t. The

government budget and debt limit constraints are6:

(1 + rt)b
g
t−1 ≤ τ ltltwt + τkt (F (kt−1, lt, st)− wtlt) + bgt , ∀t ≥ 0 and st ∈ St (3)

M(kt, uc(ct, lt, st), st) ≤ uc(ct, lt, st)b
g
t ≤M(kt, uc(ct, lt, st), st), t ≥ 0 and st ∈ St (4)

Here bgt is the amount of government debt outstanding at date t.When (3) holds with strict inequal-

ity, I let the difference between the right hand side and the left hand side be a nonnegative level of

lump sum transfers Tt to the households. The upper and lower debt limits M(kt, uc(ct, lt, st), st),

M(kt, uc(ct, lt, st), st) in (4) influence the optimal government plan. In full generality, I allow the

debt limits to depend on the capital stock of the economy and the current marginal utility of

consumption. I discuss alternative possible settings for M(kt, uc(ct, lt, st), st), M(kt, uc(ct, lt, st), st)

below. Note that I define debt and asset limits on uc(ct, lt, st)b
g
t instead of b

g
t . This is natural

given my definition of debt: bgt is the amount of debt issued at the end of period t. The quantity

uc(ct, lt, st)b
g
t is therefore just debt weighted by the state price density.

The representative household operates a firm and supplies and hires labor at wage wt on a

6Note that in a specification with capital depreciation, this formulation supposes that capital depreciation is
deductible.
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competitive market.7 The household’s problem is to choose stochastic processes {ct, lt, ldt , kt} to
maximize (2) subject to the sequence of budget constraints

ct + bgt ≤
¡
1− τ lt

¢
wtlt +

¡
1− τkt

¢
(F (kt−1, l

d
t , st)− wtl

d
t ) + kt−1 − kt + (1 + rt)b

g
t−1 + Tt (5)

taking wages, interest rates and taxes {wt, rt, τ
l
t, τ

k
t }t≥0 as given. Here bgt represents the house-

hold’s holding of government debt, ldt the household’s labor demand and lt the household’s labor

supply. The stochastic processes {ct, lt, ldt , kt}t≥0 must be measurable with respect to st. The labor
market clears if lt = ldt .

The household also faces debt limits analogous to (4), which I assume are less stringent than

those faced by the government. Therefore, in equilibrium, the household’s problem always has an

interior solution. The household’s first order conditions require that two Euler equations hold, one

for the risk free rate and the other for the net return on capital, in addition to a labor-leisure

arbitrage condition and the condition that labor is paid its marginal product.

1 = (1 + rt)Et
½
β
uc,t+1
uc,t

¾
, ∀t ≥ 0 and st ∈ St (6)

1 = Et
½
β
uc,t+1
uc,t

£
1 +

¡
1− τkt

¢
Fk,t+1

¤¾
, ∀t ≥ 0 and st ∈ St (7)

τ lt = 1 +
ul,t
uc,twt

, ∀t ≥ 0 and st ∈ St (8)

wt = Fl(kt−1, l
d
t , st), ∀t ≥ 0 and st ∈ St (9)

Remark 1 Note for future reference that wt = Fl(kt−1, l
d
t , st) implies, using the constant return

to scale assumption, that F (kt−1, ldt , st) − wtl
d
t = kt−1Fk(kt−1, l

d
t , st). Hence if this condition holds,

revenues from capital taxation can be written as τkt kt−1Fk(kt−1, l
d
t , st).

Definition 1 Given bg−1, r0, k0, τ
k
0 and a stochastic process {st}t≥0, a feasible allocation is a

stochastic process {ct, lt, kt}t≥0 satisfying (1) whose time t elements are measurable with respect

to st.A risk free rate process {rt}t≥0 , a wage process {rt}t≥0 and a government policy
{τ lt, τkt , bgt}t≥0 is a set of stochastic processes such that wt, τ

l
t and b

g
t are measurable with respect to

st, τkt and rt are measurable with respect to s
t−1.

Definition 2 Given bg−1, r0, k0, τ
k
0 and a stochastic process {st}, a competitive equilibrium is

a feasible allocation, a risk free rate process, a wage process and a government policy such that

{ct, lt, lt, kt}t≥0 solves the household’s optimization problem, and the government budget constraints
(3) and (4) are satisfied.8

7Giving the firms to consumers is just one of the many equivalent ways of resolving the indeterminacy of the the
objective of competitive firms under incomplete markets.

8Note that this definition imposes that the labor market clears by imposing that the third argument in {ct, lt, lt, kt}
is equal to the second.
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Definition 3 The Ramsey problem is to maximize (2) over competitive equilibria. A Ramsey
outcome is a competitive equilibrium that attains the maximum.

Discussion of debt limits. By analogy with Aiyagari, Marcet, Sargent and Seppälä (2002),
henceforth AMSS, I shall study two kinds of debt limits, called natural and ad hoc. Natural debt

limits amount to imposing that debt be less than the maximum debt that could be repaid almost

surely under an optimal tax policy. Following AMSS, I call a debt or asset limit ad hoc if it is more

stringent than the natural one. In this model, natural debt limits, which depend on the capital

stock kt in the economy, are in general difficult to compute. But as mentioned above, it is easy

to see that they are of the form Mn(kt, uc(ct, lt, st), st) ≤ uc(ct, lt, st)b
g
t ≤ M

n
(kt, uc(ct, lt, st), st).

Imposing that debt limits are weakly tighter than the natural ones rules out Ponzi schemes.

Discussion of the measurability assumption for τkt . It is well known since the work of

Judd (1992) and Chari, Christiano and Kehoe (1994) that with complete markets, taxes on capital

are indeterminate: the government faces an embarrassment of riches, with too many instruments to

implement the Ramsey outcome. In fact, the complete markets optimum can be implemented with

complete markets and taxes on capital set one period in advance, or under incomplete markets with

only a risk free bond but fully adjustable taxes on capital. The reason for this is that investment

depends only on the average tax rate on capital, and not on the particular way it is spread between

states. When only a risk free bond is traded, the government can take advantage of this and

adjust taxes on capital to hedge its burden across states — thereby replicating the complete markets

outcome.

Inertia in fiscal policy — captured here by the assumption that taxes have to be set one period

in advance — restricts the state-contingency of capital taxes, prevents replication of the complete

markets allocation, and requires analyzing optimal taxes on capital in a truly incomplete markets

environment.

Because they are not the focus of this paper, taxes on labor, on the other hand, are left fully

adjustable. One may wonder whether this asymmetric treatment of labor and capital taxes doesn’t

bias the results in favor of labor taxation. But in fact, most of the insights that I derive would

still be valid if additional restrictions were put on labor taxes. Of course, the exact results depend

on the particular form of these restrictions. But for example, if the production function is Cobb

Douglas — with or without depreciation — the formulas for taxes on capital (22) and (28) are still

valid if taxes on labor are also restricted to be set one period in advance. The reason is that in this

case, capital can be factored out from the additional restrictions imposed on the planing problem.

3 A Recursive Representation for the Ramsey Problem

The following lemma characterizes the restrictions that the government budget and behavior of

households place on competitive equilibrium feasible allocations, risk free rate processes and gov-

ernment policies.
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Lemma 1 A feasible allocation {ct, lt, kt}t≥0, a risk free rate process {rt}t≥0, a wage process {wt}t≥0,
and a government policy {τ lt, τkt , bgt}t≥0 constitute a competitive equilibrium if and only if (1), (3),

hold with equality and (4), (6), (7), (8) and (9), hold, with lt = ldt .

I develop a recursive representation of the Ramsey problem from t = 1 on. This recursive

representation uses four state variables: The value of the capital stock k inherited from the previous

period, the value of government debt from the previous period b, the marginal utility of consumption

in the previous period θ ≡ uc(c−, l−, s−) and the shock that hit the economy in the previous period

s−. It is easy to see that the planning problem is recursive in these four state variables, and that

the value function of the government satisfies the following Bellman equation.

Bellman equation 1

V (k, b, θ, s−) = maxE {u(cs, ls, s) + βV (k0s, b
0
s, uc(cs, ls, s), s)|s−}

subject to

(1 + r)E {βuc(cs, ls, s)|s−} = θ

E
©
βuc(cs, ls, s)

£
1 +

¡
1− τk

¢
Fk(k, ls, s)

¤
|s−
ª
= θ

τ ls = 1 +
ul(cs, ls, s)

uc(cs, ls, s)Fl(k, ls, s)
, ∀s ∈ S

(1 + r)b+ gs ≤ τ lslsFl(k, ls, s) + τkkFk(k, ls, s) + b0s, ∀s ∈ S

cs + gs + k0s ≤ F (k, ls, s) + k, ∀s ∈ S

M(k0s, uc(cs, ls, s), s) ≤ uc(cs, ls, s)b
0
s ≤M(k0s, uc(cs, ls, s), s), ∀s ∈ S

The constraints on the problem are, in order of appearance: (i) that the risk free rate satisfies

the usual Euler equation; (ii) that the net return on capital satisfies the usual Euler equation; (iii)

that agents equalize their marginal rates of substitutions between leisure and consumption to the

net real wage; (iv) that the budget constraint of the government is satisfied in each state s ∈ S; (v)
that the resource constraint holds in each state s ∈ S and (vi) that the amount of government debt
issued in each state s ∈ S satisfies the debt and asset limits.
The initial period must be treated in isolation since there, marginal utility of consumption in the

previous period is not defined. Equivalently, one can think of the problem at date t = 0 as solving

V (k0, b
g
−1, θ0, s−1) with the additional constraint that the date 0 tax on capital is given by τk0 and

that θ0 is such that the implied date 0 risk free rate is equal to r0. Hence it is straightforward to

obtain the entire solution for the Ramsey problem once the solution to the Bellman equation above

has been found.

It will prove convenient to replace b by a new state variable b̃ = bθ representing debt weighted

by the state price density. I can then define the corresponding value function Ṽ (k, b̃, θ, s−) =

V (k, bθ, θ, s−). In order to write the Bellman equation satisfied by Ṽ , I first rearrange the constraints.

I use the first constraint to substitute r, the third to substitute τ ls, and I multiply the fourth

9



constraint by uc(cs, ls, s). To save on notation I write Xs for any function X(k, k0s, b̃
0
s, ls, s) in state

s.

Bellman equation 2

Ṽ (k, b̃, θ, s−) = maxE
n
us + βṼ (k0s, b̃

0
s, uc,s, s)|s−

o
(10)

subject to

E
©
βuc,s

£
1 +

¡
1− τk

¢
Fk,s

¤
|s−
ª
= θ (11)

b̃
uc,s

βE {uc,s|s−}
+ gsuc,s ≤ lsFl,suc,s + lsul,s + τkkFk,suc,s + b̃0s, ∀s ∈ S (12)

cs + gs + k0s ≤ Fs + k, ∀s ∈ S (13)

M(k0s, uc,s, s) ≤ b̃0s ≤M(k0s, uc,s, s), ∀s ∈ S (14)

The presence of capital, capital taxes, and marginal utility make the constraint set in (10) non-

convex. This poses two kinds of problems. First, first order conditions are necessary but not

sufficient for characterizing the solution. Second, it considerably complicates the task of establishing

the differentiability of the value function Ṽ — which is required to partially characterize the solution

by a set of necessary first order conditions.

All the properties of Ramsey outcomes I derive can be established using either a Lagrangian

approach, or expanding the Bellman equation (10) over two periods — hence bypassing this technical

difficulty, but at the cost of heavier notations and poorer intuition. I therefore proceed assuming the

value function Ṽ is differentiable in (k, b̃, θ), and refer the reader to the appendix for an approach

that does not rely on this assumption.

4 The Quasi-Linear Case

In the Ramsey problem, the government simultaneously chooses taxes and manipulates intertem-

poral prices. Manipulating prices substantially complicates the problem, especially with incomplete

markets. Here I simplify by adopting a specification of preferences that eliminates the government’s

ability to manipulate prices. As in AMSS, this brings the model into the form of a consumption

smoothing model and allows me to adapt results for that model to the Ramsey problem.

I assume that u(c, l, s) = c+H(l, s), where H is a smooth, decreasing and concave function. I

assume H 0(0) = ∞ in order for labor supply to be interior. Making preferences linear pins down

intertemporal prices. This allows a drastic simplification of (10), as two state variables b — which is

equal to b̃ in this case — and s− are now sufficient to describe the state of the economy. Intuitively,

the reasons for this simplification are twofold. The first reason is that θ is now fixed and equal to 1

— hence θ can be dropped as a state variable. The other reason is that, intertemporal prices being

entirely pinned down, I can perform a change of timing in the recursive approach: The optimal

investment in capital k can now be thought as being chosen simultaneously with the the tax rate

10



on capital τk — which allows to turn the state variable k into a control variable.

Under this specification, natural debt limits are independent of the capital stock, and marginal

utility is constant: Mn(k, uc, s) = Mn
s and M

n
(k, uc, s) = M

n

s . Consistent with this property, in

this setup, I consider only fixed debt limits M s and Ms. After further simplifying the constraints

by using the resource constraint to substitute cs, I derive a new Bellman equation.

Bellman equation 3

Ṽ (b̃, s−) = maxE
½
Fs + k

µ
1− 1

β

¶
− gs + βṼ (b̃0s, s)|s−

¾
(15)

subject to

E
©
β
£
1 +

¡
1− τk

¢
Fk,s

¤
|s−
ª
= 1 (16)

b̃
1

β
+ gs ≤ lsFl,s + lsHl,s + τkkFk,s + b̃0s, ∀s ∈ S (17)

Ms ≤ b̃0s ≤Ms, ∀s ∈ S (18)

4.1 Stochastic properties of Ramsey outcomes

I attach a multiplier μ to (16), νs to (17) and ν2,s and ν1,s to the two constraints in (18). I can

then form a Lagrangian associated with the right hand side of (15)

L(b̃, s−) = E
½
Fs + k

µ
1− 1

β

¶
− gs + βṼ (b̃0s, s) + μ

£
1− β

£
1 +

¡
1− τk

¢
Fk,s

¤¤
|s−
¾

+E
½
νs

∙
lsFl,s + lsHl,s + τkkFk,s + b̃0s − b̃

1

β
− gs

¸
+ ν2,s

h
b̃0s −M

i
+ ν1,s

h
M − b̃0s

i
|s−
¾

where μ, νs, ν1,s and ν2,s are functions of b̃ and s−.

The Envelope condition delivers

βṼb(b̃, s−) = −E{νs|s−} (19)

and the first order condition for b̃0s gives

βṼb(b̃
0
s, s) = −νs + ν1,s − ν2,s (20)

Combining these two equations, I find that, denoting by νs−, ν1,s− and ν2,s− the corresponding

multipliers in the previous period, the following martingale equation hold

νs− = E{νs|s−}+ν1,s− − ν2,s− (21)

In the rest of the this section, I will often, with some abuse of notation, switch from recursive

notations to sequential notations.

Therefore, off debt-limits, νs− = E{νs|s−}. Using sequential notations, the process {νt} is a

11



positive martingale. Equation (20) then shows that debt b̃t is a non-linear invariant function of

−νt + ν1,t − ν2,t and st, and hence inherits a near random walk component. The policy functions

{ls, k, τ k} associated with (15) show that for a Ramsey outcome, ct, lt and τ lt are invariant functions
of b̃t−1, st−1 and st, while kt−1 and τkt are invariant functions of b̃t−1 and st−1.

Debt and taxes — on both labor and capital — therefore inherit a random walk component,

reflecting the desire to smooth distortionary taxes across states and time. This tax smoothing

intuition is familiar in incomplete markets environments since the work of Barro (1979) and AMSS.

Note that under complete markets, a similar Bellman equation would hold, but νt would be constant

across time and states, and not a mere martingale. Therefore debt and taxes would depend only

on the current shock st affecting the economy as well as on st−1, and would hence inherit the serial

correlation properties of {st}, as in Lucas and Stokey (1983).
The fact that capital taxes, when set optimally, have a random walk component — and hence

are persistent — is new, and might come as a surprise when confronted with the results of Chamley

(1986) and Judd (1985). This reflects the fact that hedging needs of the government depend on

the level of government debt, which has a random walk component. When public debt is low, the

government is free to raise debt when confronted with an adverse shock : debt is then a good shock

absorber. By contrast, when public debt is close to the debt limit, the ability of the government

to shift the tax burden to the future is restricted. Hedging through capital taxes is then more

attractive. As the simulations below will show, τkt is an extremely non-linear function of b̃t−1— in

all simulations increasing and convex. This reflects the non-linearity in government hedging needs,

and is a contrast with labor taxes.

4.2 Taxes on capital

Manipulating the first order conditions, it is possible to derive a formula to characterize taxes on

capital

τk =

E{−(1−τk)kFkk,s|s−}
E{Fk,s|s−}

1 +
E{Fk,sνs|s−}
E{Fk,s|s−}

∙
Cov {kFk,s, νs|s−}
E{kFk,s|s−}

− Cov {kFkk,s, νs|s−}
E{kFkk,s|s−}

¸
(22)

The left hand side of (22) is increasing in τk. The right hand side comprises three terms. The

first term
E{−(1−τk)kFkk,s|s−}

E{Fk,s|s−}

1 +
E{Fk,sνs|s−}
E{Fk,s|s−}

(23)

has as its numerator the inverse of the elasticity of capital k to taxes on capital τk. This inverse

elasticity factor is standard in the taxation literature. The higher the elasticity, the lower the

absolute value of the tax rate.

The second term
Cov {kFk,s, νs|s−}
E{kFk,s|s−}

(24)

12



represents the direct effect of an increase in τk : it relaxes the budget constraint of the government

(17) in state s in proportion to the tax base of τk, kFk,s. The more kFk,s is correlated with νs, the

higher the optimal τk, as taxes on capital pay better in states where the budget constraint of the

government is more binding, i.e. where the need for funds is higher.

The third term

−Cov {kFkk,s, νs|s−}
E{kFkk,s|s−}

(25)

reflects the indirect effect of an increase in τk. Increasing τk affects investment k and hence the

capital tax base kFk,s and the revenues from labor taxation lsFl,s + lsHl,s in each state s ∈ S.
The formula makes use of the constant returns to scale assumption to replace lsFkl,s by −kFkk,s.

How adverse these effects are depends on the correlation between kFkk,s and νs. The higher the

correlation, the bigger the effects in states where the need for funds is high, and hence the lower τk.

Hence, (22) brings together a standard inverse elasticity factor with two terms that have an asset

pricing feel, and reflect the government’s desire to use taxes on capital set one period in advance to

hedge its need for funds across states. This illustrates that the government uses capital taxes not

to levy funds on average, but only to smooth its need for funds across states — a stark difference

with labor taxes.

In a complete market environment, (22) still holds, but νs is constant across states, so that τk

is equal to 0. This outcome is then a particular case of the classical uniform taxation result by

Atkinson and Stilgitz (1972), transposed to this Ramsey setup by Zhu (1992) and Chari, Christiano

and Kehoe (1994), which holds more generally for preferences which are CRRA and separable

between consumption and leisure.

As the following proposition shows, this zero tax result carries through in a particular case.

Proposition 1 If F is Cobb Douglas, τkt = 0 for all t ≥ 1.

Therefore, for the strong Cobb Douglas benchmark, taxes on capital are 0 from period 1 on. In

this case where the elasticity of substitution between capital and labor σ is equal to 1, the hedging

benefits from the direct effect of a marginal increase in τk at τk = 0 are exactly offset by the

marginal hedging cost from the indirect effect through the capital tax base and labor revenues.

Remark 2 Equation (22) and Proposition 1 are valid irrespective of the asset structure of the
economy. It holds for example if the government is required to balance its budget in every period, if

it is restricted to trade only a perpetuity etc.

In the general non Cobb Douglas case, the sign of τk is ambiguous — it may be optimal to tax

or subsidize capital. The sign of τk will in general depend on the way productivity shocks and

preference shocks interact with government consumption shocks and on the particular functional

form for the production function. Under technical conditions, It is possible to characterize the sign

of τk in special cases.

13



Proposition 2 1) Assume that F is CES with elasticity of substitution σ. Consider the case where
productivity shocks are Hicks neutral. The following holds: (i) if σ > 1, and if ls > ls0 if and only

if νs < νs0 , then τk > 0; (ii) if σ > 1, and if ls < ls0 if and only if νs < νs0 , then τk < 0; (iii) if

σ < 1, and if ls > ls0 if and only if νs < νs0 , then τk < 0; (iv) if σ < 1, and if ls < ls0 if and only

if νs < νs0 , then τk > 0. 2) Assume that F (k, l) = A(s)kαl1−a − δk: then τk has the same sign as

Cov {Fk,s, νs|s−}.

This proposition is partly unsatisfactory as it relies on an assumption on endogenous objects ls
and νs. It is natural, for example, to expect case (i) in the absence of productivity or preference

shocks: it is reasonable to expect that in this environment with no wealth effects, a higher need

for funds calls for higher taxes on labor resulting in lower labor supply. Non-convexities in (15)

considerably complicate the task of establishing how ls co-varies with νs.
9

Remark 3 Note that taxes on capital are zero when σ = 1 and when σ =∞ : absent productivity

shocks, the marginal product of capital is fixed if capital and labor are perfect substitutes, and hence

capital taxation provides no hedging benefits.

4.3 Long run behavior

The long run behavior of Ramsey outcomes is similar to AMSS. I refer the reader to this paper for

an extensive discussion, and sketch the principal properties. Here the difference between natural

and ad hoc debt limits is marked.

Under natural asset limits, the multiplier ν2,t is zero throughout. The natural asset limit −Mn
s

is the amount of assets that allows the government to withstand any sequence of shocks with zero

taxes. It makes no sense for the government to accumulate more assets than −Mn
s .When favorable

shocks cause government assets to grow beyond −Mn
s , it is optimal for the government to rebate

consumers the difference via a lump sum rebate. Therefore (21) becomes

νs− = E{νs|s−}+ν1,s−

so that the stochastic process {νt} is a nonnegative supermartingale. Therefore, the supermartingale
convergence theorem (see Lòeve (1977)) asserts that νt converges almost surely to a nonnegative

random variable. As in AMSS, there are two possibilities:

(i) If the Markov process {st}t≥0 is ergodic then the lemma below shows that under the condition
that Ṽ is concave in b̃ and that the policy functions in (15) are continuous, νt converges almost

surely to zero. In that case, taxes τkt and τ lt converge to the first best levels τ
k
t = 0 and τ lt = 0. In

the limit, the level of government assets converges in state s is −Mn
s , the level of assets sufficient

to finance the worst possible sequence of shocks forever from interest earnings.
9In the case where F is CES with only government expenditure shocks or only technological shocks, for all

the numerical simulations that I have performed, only cases (i) and (iii) ever occured. In the case where F (k, l) =
A(s)kαl1−a−δk, with only technological shocks or only government expenditure shocks, for the numerical simulations
that I have performed, Cov {Fk,s, νs|s−} was always negative.
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(ii) If the Markov process {st}t≥0 has an absorbing state, then νt can converge to a strictly

positive value; νt converges when st enters the absorbing state. From then on, taxes and all other

variables in the model are constant. Taxes on capital are zero.

A technical assumption is necessary to rule out non-generic cases where the planner is able to

achieve the complete markets allocation.

Assumption 1 For any (b, s) such that b > Mn
s , the complete markets allocation with initial con-

dition (b, s) is not a competitive equilibrium with incomplete markets.

Lemma 2 Consider the case of natural debt and asset limits. Assume that Assumption 1 holds,
that the Markov process {st}t≥0 is ergodic, that the value function Ṽ is continuously differentiable

and concave in b̃, and that the policy functions in (15) are continuous. Then νt converges to zero

almost surely.

When the asset limit is more stringent than the natural one, convergence to the first best can be

ruled out. In this case, the lower debt limit occasionally binds. This puts a nonnegative multiplier

ν2,t in (21), and {νt} ceases to be a supermartingale. This fundamentally alters the limiting behavior
of the model in the case where the Markov process {st}t≥0 has a unique invariant distribution. In
particular, rather than converging almost surely, νt continues to fluctuate randomly. Off debt limits,

νt behaves like a martingale, and capital taxes do not converge to 0.

In addition, if the range of the policy functions b̃0s can be restricted to a compact set, one can

show that an invariant distribution for government debt exists.

5 The general case

The insights from the simple example examined in the previous section largely carry through to

the case where preferences are not risk neutral and separable. But the possibility to manipulate

intertemporal prices brings about the traditional motive for taxes on capital, which interacts with

the motive uncovered in the previous section.

5.1 Stochastic properties of Ramsey outcomes

Let us attach a multiplier μ to (11), νs to (12), ν2,s and ν1,s to the two constraints in (14), and ψs

to (13). I can then form a Lagrangian associated with the right hand side of (10)

L(k, b̃, θ, s−) = E
n
us + βṼ (k0s, b̃

0
s, uc,s, s) + μ

£
βuc,s

£
1 +

¡
1− τk

¢
Fk,s

¤
− θ
¤
|s−
o

+E
½
νs

∙
−b̃ uc,s

βE {uc,s}
− gsuc,s + lsFl,suc,s + lsul,s + τkkFk,suc,s + b̃0s

¸
|s−
¾

+E
n
ψs [Fs + k − cs − gs − k0s] + ν2,s

h
b̃0s −M(k0s, uc,s, s)

i
+ ν1,s

h
M(k0s, uc,s, s)− b̃0s

i
|s−
o

where μ, νs, ν1,s, ν2,s and ψs are functions of k, b̃, θ and s−.
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Using the Envelope condition for b̃, a martingale equation similar to (21) can be derived

νs− =
E{νsuc,s|s−}
E{uc,s|s−}

+ν1,s− − ν2,s− (26)

Off debt limits, the multiplier νt is a now a risk adjusted martingale, imparting, as in the simple

example in the previous section, a unit root component to the solution of (10). The condition

βṼb(k
0
s, b̃

0
s, uc,s, s)) = −νs + ν1,s − ν2,s (27)

shows that the vector of endogenous state variables {kt−1, b̃t, uc,t−1} inherits a near random walk

component. The policy functions {cs, ls, k, τ k} associated with (10) imply that for a Ramsey out-
come, kt, b̃t, ct, lt and τ lt are invariant functions of kt−1, b̃t−1, uc,t−1, st−1 and st, while τ

k
t is invariant

function of kt−1, b̃t, uc,t−1 and st−1. Therefore, kt, b̃t, ct, lt, τ lt and τ
k
t inherit a unit root component.

As in the risk neutral case, debt and taxes display a random walk component, reflecting the

desire to smooth distortionary taxes across time, a sharp contrast with the complete markets Ramsey

outcome, where a similar Bellman equation holds, but with νt constant across time and not a mere

martingale.

Hence, the stochastic properties of Ramsey outcomes are similar to those discussed in the quasi-

linear example. The analysis is only made more difficult by the need to keep track of additional

state variables kt−1 and uc,t−1.

5.2 Taxes on capital

A formula similar to (22) can be derived

τk = T h(k, b̃, θ, s−) + T i(k, b̃, θ, s−) + T b(k, b̃, θ, s−) (28)

To save on space, I report the formulas for T h, T i and T b in the first part of the Appendix. It

should be noted that these are valid from t = 1 on. There are three motives for taxing capital,

corresponding to the three terms T h, T i and T b on the right hand side of (28).10

The first term, T h is the "hedging" term and reflects the hedging motive discussed in the previous

section. Two differences with (22) should be emphasized. First, the formula is adjusted for risk

through uc,s. Second, the multiplier ψs on the resource constraint (13) appears. In the quasi-

linear case, ψs is equal to one. When risk aversion is introduced, the stochastic process {βtψt}t≥0
represents the intertemporal prices the government would be willing to pay for additional resources

at different dates. The process
n

ψt
uc,t

o
t≥0
converts these prices in consumption equivalent units.The

presence of ψs is natural since taxes on capital affect capital accumulation and hence resources

available.

The second term T i is the "intertemporal" term and corresponds to the traditional motive for

10The superscrpits "h", "i" and "b" stand respectively for "hedging", "intertemporal" and "bounds".
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capital taxation: The government can induce intertemporal resource transfers by affecting capital

accumulation through capital taxation to reduce the burden taxation. The formula calls for subsi-

dizing capital between t and t+1 when resources are expected to be scarcer at t+1 than at t — i.e.

when ψt+1
uc,t+1

is expected to be larger on average than ψt
uc,t

— especially if the net marginal product of

capital 1 +
¡
1− τkt+1

¢
Fk,t+1 or marginal utility uc,t+1 is positively correlated with

ψt+1
uc,t+1

.

This formula (28) for τk is valid under complete markets, with the only difference that νs is

constant. Under complete markets, T h is equal to zero, but not T i in general. The well known case

where taxes on capital are zero under complete markets is the case of CRRA preferences, separable

between consumption and leisure. Indeed, under complete markets,

ψs

uc,s
= 1 + ν

csucc,s
uc,s

− ucl,s
uc,s

l s

so that if u(c, l, s) = c1−σ−1
1−σ +H(l, s),

ψs

uc,s
= 1− νσ

is constant along the optimal path, and T i is equal to zero from period 2 on.

When markets are incomplete, ψs
uc,s

is not constant anymore at a Ramsey outcome when prefer-

ences are CRRA and separable, so that T i is not equal to zero even in this particular case: At the

Ramsey outcome, the government would be willing to pay a different price — in consumption equiv-

alent units — for additional resources at different dates and in different states, so that the traditional

motive for capital taxation remains. In fact, as already mentioned, the zero capital taxation result

under CRRA and separable preferences is an application of the uniform commodity taxation result

of Atkinson and Stigitz (1972). This result relies crucially on the assumption of complete markets.

The last term T b imparts a role for relaxing debt limits to capital taxes. For example, if the

maximum debt limit is increasing in the capital stock in the economy, it is optimal to subsidize

capital when the limit is binding to relax this constraint and allow for more debt accumulation.

This term is zero if the imposed debt limits do not depend on capital. Note that this term would

have been present in (22) if I had allowed debt limits to depend on capital.

The case where the production function is Cobb Douglas still provides a useful benchmark.

Proposition 3 If F is Cobb Douglas, then T h
t = 0. for t ≥ 1.

As in the quasi-linear case, T h is zero as soon as the need for hedging disappears.

Remark 4 If the Markov process {st}t≥0 enters an absorbing state at t0, then T h
t = 0 for t ≥ t0+1.

Remark 5 As in the quasi-linear case, equation (28) and Proposition 3 are valid irrespective of the
asset structure of the economy.

It is also possible to give a characterization of T i along the lines of Zhu (1992).
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Assumption 2 The stochastic process xt = {kt, b̃t, uc,t, st} is a stationary, ergodic, first order
Markov process on a compact set X∞: There exists a probability measure P∞ on a compact set X∞

such that for all t, and measurable set A,

Pr{xt ∈ A} = P∞{A}

lim
j→∞

Pr{xt+j ∈ A|xt} = P∞{A}

Assumption 3 The policy functions in (10) — including the multipliers — are continuous and for
every closed set A ⊆ X∞, and t > 0, Pr{xt ∈ A|x0 = x} is continuous in x.

Assumption 4 P∞{1 +
¡
1− τk

¢
Fk,t > 0} = 1.

Proposition 4 If assumptions 2, 3 and 4 hold, then one of the following holds: (i) P∞ {T i
t = 0} =

1; (ii) P∞ {T i
t > 0} > 0 and P∞ {T i

t < 0} > 0.

This proposition shows, that the insights of Zhu (1992) are still valid for the traditional motive

for capital taxation embodied in T i . At a stochastic steady state, T i cannot be always positive or

always negative.

6 Capital Ownership and the Structure of Government Li-

abilities

So far, I have restricted the government to trade only a risk free bond with consumers, whereas

consumers faced a non-trivial portfolio decision in allocating their savings between government debt

and capital. Preventing the government from trading on capital is without loss of generality under

complete markets. But in environments with incomplete markets, this arbitrary restriction regains

bite. Allowing the government to trade on the capital gives the government more ways to smooth

taxes across time and states, and to hedge government expenditure shocks.

As we already mentionned, another way to interpret trading is that it allows the government to

tax capital excess returns. This form of non-linear capital taxation is non-distorsionary and offers

the same hedging benefits as a non-trivial position on the stock market.

6.1 The Government Capital Asset Pricing Model

I now remove this restriction. To illustrate that physical capital is an asset among others that the

government can trade with consumers, I also introduce exogenous assets indexed by i ∈ Is− . The
subscript s− allows for the possibility to let the investment opportunity set formed by the exogenous

assets to vary with the state variable s.

I now allow the government and consumers to trade three kinds of assets: (i) a risk free bond;

(ii) capital — an asset whose return in state s is 1 +
¡
1− τk

¢
Fk,s; (iii) and #Is− assets in zero net
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supply indexed by i ∈ Is−— whose return in state s when the shock in the previous period was s−
is Ri,s−

s .

Generically, if the number of traded assets is less than the number of shocks, markets are truly

incomplete and the complete markets Ramsey outcome is not attainable. I will maintain this

assumption throughout.

It is easy to see that the planning problem is still recursive with the same state variables

k, b̃, θ, s−, where b̃ is now the value of the government’s net financial position vis-a-vis the private

sector. Denoting by xi government’s holdings of asset i ∈ Is− and by kg government’s holdings of

capital, the government’s value function satisfies a modified version of (10):

Bellman equation 2’

Ṽ (k, b̃, θ, s−) = maxE
n
us + βṼ (k0s, b̃

0
s, uc,s, s)|s−

o
(29)

subject to

E
©
βuc,s

£
1 +

¡
1− τk

¢
Fk,s

¤
|s−
ª
= θ (30)

E
©
βuc,sR

i,s−
s |s−

ª
= θ (31)

X
i∈Is−

xi(R
i,s−
s − θ

βE {uc,s}
)uc,s + kg(1 +

¡
1− τk

¢
Fk,s −

θ

βE {uc,s}
)uc,s + b̃

uc,s
βE {uc,s}

+ gsuc,s

≤ lsFl,suc,s + lsul,s + τkkFk,suc,s + b̃0s, ∀s ∈ S (32)

cs + gs + k0s ≤ Fs + k, ∀s ∈ S (33)

M(k0s, uc,s, s) ≤ b̃0s ≤M(k0s, uc,s, s), ∀s ∈ S (34)

There are two differences between (10) and (29). First, there is now one Euler equation for each

exogenous asset (31). The second difference is in the budget constraint of the government (32),

where the total liability the government has to repay or refinance in state s is now

X
i∈Is−

xi(R
i,s−
s − θ

βE {uc,s|s−}
) + kg(1 +

¡
1− τk

¢
Fk,s −

θ

βE {uc,s|s−}
) + b̃

1

βE {uc,s|s−}

The government therefore faces a non-trivial portfolio decision. It must decide not only the level

but also the composition of its liabilities.

As is clear from (29), introducing more assets only relaxes the constraints in the planning

problem. Therefore, as in the quasi-linear case, introducing more traded assets, or allowing the

government to trade capital, improves the Ramsey outcome.

Remark 6 Expanding the set of assets the government can trade with consumers improves the
Ramsey outcome

Here, more traded assets only give the government more flexibility to smooth distortionary taxes.
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This result hinges crucially on the absence of consumer heterogeneity. In this case, the introduction

of additional traded assets would impose new constraints since heterogenous agents will generally

engage in trades between themselves — which could potentially render the task of the planner more

difficult.

Assuming an interior solution exists and that debt limits do not bind in state s−, the following

set of first order conditions characterize the optimal asset and liability structure of the government.

For this, it is convenient to label the risk free rate Rs− ≡ θ
βE{uc,s|s−} .

E {βRs−uc,sνs|s−} = θνs− (35)

E
©
β
£
1 +

¡
1− τk

¢
Fk,s

¤
uc,sνs|s−

ª
= θνs− (36)

E
©
βRi,s−

s uc,sνs|s−
ª
= θνs− (37)

These equations form the government counterpart of the standard CCAPM Euler equations: I

refer to them as the Government Capital Asset Pricing Model (GCAPM). Assets that pay well in

states of the world where government funds are scarce require a lower expected rate of return, as

can be seen for example from rewriting (37) in the following way

E
©
Ri,s−
s |s−

ª
= Rs− − Cov {R

i,s−
s , uc,sνs|s−}

E {uc,sνs|s−}

Equations (35), (36) and (37) hold together with the standard CCAPM Euler equations

E {βRs−uc,s|s−} = θ

E
©
β
£
1 +

¡
1− τk

¢
Fk,s

¤
uc,s|s−

ª
= θ

E
©
βRi,s−

s uc,s|s−
ª
= θ

Equations (35), (36) and (37) show that {βtuc,tνt}t≥0 can be thought of a pricing kernel for the
government. This pricing kernel applies to assets traded with consumers — which is the case for all

assets considered so far. It characterizes the price the government is willing to pay for an asset trade

with consumers. Note that the result that νs is a risk adjusted martingale is simply a restatement

of (35).

If consumers are not on the other side of the trade, the pricing kernel {βtuc,t(νt + ψt
uc,t
)}t≥0 is

different and involves the shadow costs of resources ψt. Indeed, the price the government would be

willing to pay for a non traded investment project paying out Xs in state s is

E
n
Xsuc,s(νs +

ψs
uc,s
)|s−

o
νs− +

ψs−
θ
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It should also be emphasized that the results on capital taxation still hold when more traded

assets are introduced. In particular, taxes are still given by (28). The only difference is in the

hedging term: the elasticity of capital to the tax rate has to be replaced by the elasticity of the

part of the capital stock held by the private sector to the tax rate

E{−(k − kg)(1− τk)Fkk,suc,s|s−}
E{Fk,suc,s|s−}

The GCAPM, together with the CCAPM, provides a simple and powerful framework for address-

ing the optimal liability structure of the government in various contexts. In ongoing work, Farhi

and Werning (2005) study the optimal maturity structure of government debt when the government

is restricted to issue only risk-free debt of a limited number of maturities.

6.2 The GCAPM in The Quasi-Linear Case

I consider here the case where preferences are quasi-linear. This stripped down setup will allow me

to derive stark results on the optimal structure of government liabilities.

As in the previous subsection, I allow the government and consumers to trade three kinds of

assets: (i) a risk free bond; (ii) capital — an asset whose return in state s is 1 +
¡
1− τk

¢
Fk,s; (iii)

and #Is− assets in zero net supply indexed by i ∈ Is−— whose return in state s when the shock

in the previous period was s− is Ri,s−
s . The definitions of feasible allocations, competitive equilibria

and Ramsey outcomes can be straightforwardly extended to this new setup.

It is easy to see that the planning problem is still recursive with the same state variables b̃ and

s−, where b̃ is now the value of the government’s net financial position vis-a-vis the private sector.

Denoting by xi government’s holdings of asset i ∈ Is− and by kg government’s holdings of capital,

the government’s value function satisfies a modified version of (15) analogous to (32).

Bellman equation 3’

Ṽ (b̃, s−) = maxE
½
Fs + k

µ
1− 1

β

¶
− gs + βṼ (b̃0s, s)|s−

¾
(38)

subject to

E
©
β
£
1 +

¡
1− τk

¢
Fk,s

¤
|s−
ª
= 1 (39)

E
©
βRi,s−

s |s−
ª
= 1 ∀i ∈ Is− (40)X

i∈Is−

xi(R
i,s−
s − 1

β
)+kg(1+

¡
1− τk

¢
Fk,s−

1

β
)+b̃

1

β
+gs ≤ lsFl,s+lsHl,s+τ

kkFk,s+b̃
0
s, ∀s ∈ S (41)

Ms ≤ b̃0s ≤Ms, ∀s ∈ S (42)

To make the comparison with (32), I have left as constraints in the program the conditions

E {βRi,s−
s |s−} = 1 which do not depend on the allocation when the marginal utility of consumption

21



is constant, and are just in this case exogenous conditions that need to be met for an equilibrium

to exist.

In a particular case, allowing the government to trade physical capital actually allows its to

reach the complete markets Ramsey outcome.

Proposition 5 Absent productivity and preference shocks, the government can perfectly approx-
imate the complete markets Ramsey outcome with a larger and larger long or short position in

capital.

The intuition for this proposition is that absent productivity and preference shocks, the complete

markets Ramsey outcome features constant labor supply across states. Hence the return on physical

capital is risk free: physical capital and the risk free bond are colinear assets. By commanding small

deviations from the constant level labor supply of the complete markets allocation, the government

can align the variations of the returns on capital with its need for funds. By taking extreme

positions in capital, compensated by opposite positions on the risk free bond, the government can

then leverage these variations and smooth perfectly its need for funds across states.

The extreme positions required for replicating the complete markets allocation are reminiscent

of the findings of Angeletos (2002) and Buera and Nicolini (2004) . Both contributions analyze

how the government can use different maturities of risk free debt to implement complete markets

Ramsey outcome. They find that generically, if the number of maturities is larger than the number

of shocks, then the complete markets allocation can be implemented, but that typically, very large

positions in the different maturities are required. It is also worth noting that in this example with

quasi-linear preferences, different maturities of risk free debt would not permit the government to

replicate the complete markets Ramsey outcome since the entire term structure is entirely pinned

down by preferences.

With productivity and preferences shocks, the government can typically no longer replicate the

complete markets Ramsey outcome if fewer assets than states of the world are traded. The GCAPM

takes the particularly simple form11

E
©£
1 +

¡
1− τk

¢
Fk,s −R

¤
νs|s−

ª
= 0 (43)

E
©£
Ri,s−
s −R

¤
νs|s−

ª
= 0 (44)

where R ≡ 1
β
is the risk free rate.

Equations (43) and (44) can be compared to the standard CCAPM Euler equations

E
©
1 +

¡
1− τk

¢
Fk,s −R|s−

ª
= 0

E
©
Ri,s−
s −R|s−

ª
= 0

11I choose to write the GCAPM and CCAPM equations in this "excess return" format to allow for easier comparison
with Bohn (1990).

22



which characterize the optimal portfolio for consumers. The only difference between the two

sets of equations is that the marginal utility of consumption, 1, is replaced by νs — the multiplier

measuring the severity of the government budget constraint in state s. The stochastic process

{βt (1 + νt)}t≥0 can be interpreted as the pricing kernel of the government. A way to see this is to
introduce, instead of assuming an exogenous process for government expenditures, a standard utility

for government funds v(gt, st). In this case, the first order condition for government expenditures is

vg(gt, st) = 1 + νt.

Note that the pricing kernel of the government is not trivial — i.e. has a positive variance —

despite the face that agents are risk neutral. The variation in the pricing kernel comes only from

the imperfect ability to smooth taxes across time under incomplete markets. Indeed, if markets

were complete, the pricing kernel of the government and the pricing kernel of the agents would be

colinear — in this instance, constant.

These equations can be compared to the results in Bohn (1990)̇. Following Barro (1979), Bohn

considers an environment with incomplete markets, no capital and risk neutral consumers, where

the government must finance an exogenous stream of expenditures using distortionary taxes. Taxes

τ are assumed to impose an ad hoc increasing convex deadweight cost h(τ). Bohn derives the

following formula for the return of any traded asset R

E {[Rt −R]h0(τ t)} = 0 (45)

Hence (44) can be seen as a microfounded version of (45). Some important differences are worth

noting. In particular it is not generally true in my model that νt is a function of τ lt and τkt or even

of tax revenues, as a perfect analogy with (45) would require. In fact, νt is a function of the #S2+1
variables st, st−1 and ebt−1. Generically, νt is therefore not a function of the #S+1 functions τ ls and
τk. In the specification with a utility v(gt, st) from government expenditures, νt = vg(gt, st) − 1,
so that νt is a function of gt and st — which can be expressed as a function of st−1, st and ebt−1.
Importantly, the state st appears in this formula along with government expenditures. Even if I

were to assume that v(gt, st) is independent of st, this discussion would suggest that a non linear

function of government expenditures vg(gt)− 1 is better suited for approximating the marginal cost
of public funds that an increasing function of taxes or tax revenues h0(τ t) as in (45). This discussion

is important, as tests and implications of this theory rely crucially on sorting out correctly the time

series properties of the pricing kernel of the government.

I have focused so far on traded assets. Uncovering the pricing kernel of the government allows me

to determine the price the government would be willing to pay for non traded assets. In particular,

consider a marginal public investment project requiring an outlay I, and whose payoff Xs is not

spanned by traded assets. Then the government should follow the following capital budgeting rule:

invest in the project if and only if

E{Xs|s−}
R− Cov {Xs/I,1+νs|s−}

1+E{νs|s−}

≥ I (46)
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where R = 1
β
. This capital budgeting rule (46) shows that the government should discount cash

flows using the beta associated with its own pricing kernel, and not with that of consumers. Hence

the government should attach a public risk premium to returns that covary negatively with shocks

affecting adversely its budget.

It is interesting to note that the asset holdings in the optimal portfolio of government liabilities

{xit, kg,t} has a unit root component. Hence not only do the government’s total liabilities b̃t have a
random walk component, but the composition of its liabilities display a similar kind of persistence.

7 Numerical Simulations

7.1 Numerical method and parameter values

Numerical method. I approach the problem by solving the dynamic programming problems (10),
(29), (15) and (38), and then back out the optimal policies. In my calculations, I restrict the state

space to be rectangular and bounded. I check numerically that enlarging the rectangle doesn’t alter

the results. The dynamic programming problem is then solved by a value iteration algorithm with

Howard acceleration. I approximate the value function with cubic splines.

Calibration of the risk averse case. To permit comparability of my results to those in Chari,
Christiano and Kehoe (1994), I consider the same parameters and functional forms. I assume that

preferences are of the form

u(c, l) = (1− γ) log(c) + γ log(1− l)

Technology is described by a production function

F (k, l, z, t) = kα(exp(ρt+ z̃)l)1−α − δk

This incorporates two kinds of labor augmenting technological change in the production function.

The variable ρ captures deterministic growth in this technical change. The variable z̃ is a zero

mean technological shock that follows a two-state Markov chain with mean z̄ and autocorrelation

ρz. Let government expenditure be given by gt = G exp(ρt+ g̃) where G is a constant and g̃ follows

a two-state Markov chain with mean ḡ and autocorrelation ρg. I take γ = 0.75, β = 0.98, α = 0.34,

ρ = 0.016, G = 0.07, ρg = 0.89, σg = 0.07, ρz = 0.81 and σz = 0.04.

I impose fixed debt limitsM = −0.2GDP
fb
and M̄ = GDP

fb
, where GDP

fb
is the mean across

states of first best level of GDP that would occur if the state were absorbing.

Notice that without technological shocks, the economy has a balanced growth path along which

consumption, capital and government spending grow at rate ρ and labor is constant. As in Chari,

Christiano and Kehoe (1994), it is straightforward to modify the model to allow for exogenous

growth.
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The length of the accounting period where capital are held fixed by assumption is an important

parameter. I analyze two series of simulations, one where the period length is one year, and one

where the period length is five years.

Calibration of the quasi-linear case. I also calibrate a model with quasi-linear preferences
given by

u(c, l) = c+ γ log(1− l)

To ensure that labor is stationary, I impose that growth is zero in this case. I also adjust γ to 0.5.

7.2 Results

Results in the quasi-linear case. Figure 1 displays several variables along a typical path, in an
economy with only government expenditure shocks and no capital ownership. The top left panel

displays the path of shocks, which take only two possible values, one and two, corresponding to low

and high expenditures respectively. Note that debt, labor taxes, labor and capital all appear to

be more persistent than the shock process, reflecting the fact that they incorporate a random walk

component. The bottom left panel represents taxes on capital. Taxes on capital are negative — as

predicted by Proposition 2— but are never larger than 10−5. I experimented with other specifications

of the production function (CES) and never got a result larger than 10−4. Note that capital taxes

also seem to incorporate some persistence, although less than other variables in the economy. Capital

taxes are relatively larger in absolute value when debt approaches its upper limit.

Figure 2 (respectively 3) displays the policy functions when the previous government expendi-

ture shock was low (respectively high). On the horizontal axis of every graph is inherited debt. On

the vertical axis is the variable whose name indexes the graph. The solid blue (respectively dashed

green) lines correspond to the policy functions when the contemporaneous shock is low (respectively

high). The second graph on the top row is a zoom on the top left graph representing the policy

functions for debt. The thick red line is the 45 degree line. As is apparent from this graph, a high

shock is partially absorbed through an increased debt, and a low shock through a decrease in debt.

The bottom left graph displays the policy functions for the multipliers. Both are increasing in the

level of inherited debt. The multiplier associated with the high shock is always larger than the

multiplier associated with the low shock. Moreover, the bottom right panel shows that the variance

of νs across states for a given s− is increasing in the level of inherited debt: As inherited debt gets

close to the upper debt limit, the government is more limited in its ability to use debt as a shock

absorber if the high shock hits. Note that this variance is always minuscule here, reflecting the fact

that with reasonable debt limits, risk free debt is a very good shock absorber. Capital taxes are

small for two reasons: First because of the Cobb Douglas benchmark, second because the variance

of νs is small. As government debt approaches the upper limit, the variance of νs increases and

with it the absolute value of the tax rate.

Table 1 displays the optimal capital ownership level in the invariant distribution, depending on

the environment. I first discuss the results when the period length is set to one year. With only
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government expenditure shocks, Proposition 5 shows that the government takes an infinite long or

short position in capital and replicates the complete markets allocation. With only two possible

productivity shocks, the government can also replicate the complete markets allocation, with a finite

— but large — short position of −295% of k
fb
, where is the mean across states of first best level of

capital that would prevail if the state were absorbing. That a short position is required is easily

understood: The marginal product of capital correlates positively with productivity shocks, and

hence with government revenues. The magnitude of the position results from the fact that capital

is very colinear with risk free debt. Hence a large leveraged position, short in capital, long in the

risk free bond, is required to provide the government with a state contingent source of revenues that

matches the desired variations in the net present value of government surpluses. With government

expenditure shocks and productivity shocks, the government cannot replicate the complete markets

allocation anymore. The optimal government capital ownership level is almost identical to the

one that prevails with only technological shocks. This reflects the fact that in this business cycle

calibration, technological shocks are a bigger source of variation in the government needs for funds

than government expenditure shocks.

Increasing the period length to five years does not alter the result of Proposition 5. By contrast,

optimal government capital ownership in the case of productivity shocks, or both productivity

shocks and government expenditure shocks drops from −295% to −59%. The reason is that as the
period length is increased, shocks per period become less persistent - getting closer and closer to

i.i.d. Hence the variation of the net present value of government surpluses that the government seeks

to hedge becomes smaller — approximately 5 times smaller. Hence a smaller position in capital is

required.

In this model, the welfare gains from completing markets are small. In all simulations, I compute

them to be less than 0.01% of lifetime consumption. This confirms the finding of AMSS for business

cycle type calibrations. The size of welfare gains is well understood from AMSS: They depend on

the size and persistense of the shocks, the curvature in the uitlity function, and the debt limits. The

welfare gains are much larger in a war and peace exercise I report below. Nevertheless, an interesting

question is: How much of the gap between welfare in the incomplete markets, no government

ownership allocation and welfare in the complete markets allocation can government ownership

cover? In all simulations, I find this number to be above 85%. Moreover, in the simulation with a

5 year period length and both government and productivity shocks, I find that a short position of

15% of k
fb
allows to realize 47% — a large, but more reasonable position— of these welfare gains.

I also calibrate a war and peace example, with a one year period length and only government

expenditure shocks. The parameters are the same as in the business cycle simulation, except for

σg which I take to be equal to 0.7 instead of 0.07. I compute the mean welfare gains to be 0.6%

of lifetime consumption. The welfare gains reach 1.5% of lifetime consumption if debt is close to

the debt limit and the economy experienced a high government expenditure shock in the previous

period. With such large shocks, taxes on capital are larger in absolute value than in the business-

cycle simulations, but small — between 0 and −1% with probability 75%. Taxes on capital become
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large — up to −20% — when debt is very close to the debt limit.

Results in the risk averse case. I first start with a limited experiment: I start the economy
in period 0 with a given value of (b0, k0, θ0, s−) with s− = 1, corresponding to the low government

expenditure shock. In period 1, a permanent government expenditure shock hits the economy. This

shock can be high — correpsonding to s = 2 — or low — corresponding to s = 1 — with probabilities

5% and 95% respectively. Capital ownership by the government is disallowed. All the uncertainty

in the economy is resolved in period 1. Figures 4 and 5 display the impulse responses of several

variables in the economy corresponding to the high and low shock respectively.

First note that the hedging term is non-zero only in the first period, and is smaller than 10−3.

Hence taxes on capital are dominated by the intertemporal term. Following a high shock, taxes

on capital spike at 150% and then fall back to 0. The interest rate drops to −2% and then reverts

almost immediately to 2%. This effect would be present even in an economy without capital as in

AMSS. Werning (2005) coins the term "interest rate manipulation".

Debt initially goes up to absorb the high government expenditure shock in period 1, and then

drops permanently to a level lower than b0. From the government’s budget constraint, it is apparent

that this is the mechanical result of the spike in capital taxation revenues and the low interest rate

that prevails between period 1 and period 2. The lower post period 2 debt level helps reduce the

burden of interest payments on the government’s budget constraint. Capital taxes therefore play a

important role in absorbing the shock: They help reduce the debt burden after a high shocks both

by lowering the interest rate and by directly collecting revenues. Note that in the case where the

low shock hits, capital is subsidized between period 1 and period 2. Capital taxes are therefore not

used to raise revenues on average, but rather to help absorb the variations in the net present value

of government expenditures.

Consumption initially increases. This is just an intertemporal substitution effect as consumers

face a low interest rate between period 1 and period 2. From period 2 on, consumption is permanently

lower. Labor and labor taxes also move up permanently after period 2, hinting at the random walk

properties of these variables. The fact that labor and labor taxes increase is just the result of

a wealth effect, as consumption drops after period 2. Capital drops after the shock. From the

resource constraint, one can see that this drop in investment is the mirror image of the increase in

consumption stemming from interest rate manipulation and the increase in government expenditure.

Figures 6 and 7 display impulse responses for a similar exercise with respectively a low and high

productivity shock. The technological shock inperiod 1 can be low — correpsonding to s = 2 — or

high — corresponding to s = 1 — with probabilities 5% and 95% respectively.

Figure 8 displays a typical path for several variables in an economy with only government

expenditure shock and no capital ownership. After a transition from a low shock to a high shock,

the tax on capital spikes at about 200% and then reverts to a level of about 5%. That taxes on

capital are positive until a new low shock hits reflects the fact that resources are scarcer today

than tomorrow on average, given the possibility that a low shock occurs. Symmetrically, after a

transition from a high shock to a low shock, the tax on capital spikes at about −200% and then
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reverts to a level of about -5%.

The volatility of capital taxes depends crucially on the period length. The reason can be ex-

plained as follows. Ultimately, the welfare costs associated with capital taxes come through the

distortion that they impose on the path of consumption. The distortion associated with a one time

capital tax becomes larger as the period length is increased, because consumption is distorted for

a longer period. By contrast, the benefits in terms of reduced debt following a high shock decrease

as shocks become less persistent per period. In the continuous time limit, the costs are zero, and

the government is able to replicate the complete markets allocation with infinite taxes or subsidizes

during an infinitely small period following the shock.

Figure 9 displays a typical path for several variables in the economy when the period length is

set to five years. The positive and negative spikes in capital taxes are now 20% and -20%. Table

2 summarizes the statistical properties of capital and labor taxes depending on the period length.

Standard deviations and autocorrelations are reported per period and not per year. The standard

deviation of labor taxes — 5.1% — is close to the number reported by Chari, Christiano and Kehoe

(1994) — 6%—for this case. Labor taxes are quite persistent, and more persistent when the period

length is 5 years: this is the consequence of less abrupt movements in capital taxes and the capital

stock when the period length is longer. Importantly, note that capital taxes hardly display any

persistence. This is due to the fact that the magnitudes of capital taxes is essentially by a difference

term ψs
uc,s
− ψs−

θ
, which tends to remove the unit root component in ψs

uc,s
.

For an economy with only two government expenditure shocks and a one year period length,

the government can replicate the complete markets allocation with a capital ownership of about

2300% of k
fb
. This position drops to 680% of k

fb
when the period length is extended to five years.

For an economy with only two productivity shocks and a one year period length, the government

can replicate the complete markets allocation with a capital ownership of about −400% of k
fb
.

This position drops to −157% of k
fb
when the period length is extended to five years.The welfare

gains from completing markets are small — 0.09% of lifetime consumption — albeit larger than in

the quasi-linear case.

8 Conclusion

I have characterized optimal capital taxation and government ownership when markets are incom-

plete. In this context, capital taxation and ownership are two ways for the government to collect

state dependent revenues and hedge its burden from distortionary taxation across states. Although

I have focused on capital taxation, the insight that with incomplete markets and a policy lag, taxes

acquire a direct hedging role, and that the indirect hedging consequences of the distortions they

generate should be taken into account, is more general.

I have found that this hedging motive for capital taxation is always negligible: Capital taxes

come with distortions through the adjustment of capital. This affects the capital tax base and labor

tax revenues across states in a way that almost perfectly undoes the direct hedging benefits. In a

28



baseline case, capital taxes are exactly zero. Away from this benchmark, the hedging component

of capital taxes is always computed to be minuscule.

By contrast, capital ownership provides the government with a powerful hedging instrument.

The reason is that trading, unlike taxing, does not involve distorsions. In a baseline case, I have

shown that the government can perfectly approximate the complete markets allocation by taking

an infinitely long or short position in capital. Away from this benchmark, optimal positions are

large and decrease sharply when the period length is increased. Substantial benefits can be reaped

from smaller positions. Government expenditure shocks call for a long position while productivity

shocks push in the direction of a short position. In a business cycle calibration, I have shows that

productivity shocks is the leading force — resulting in an optimal long position.

Refining these propositions would require developing a more realistic model for investment —

incorporating adjustment costs and time to build — and asset valuation. It would also be interesting

to move away from the representative agent framework I have analyzed. Unobservable agent het-

erogeneity together with the government’s concern for redistribution would provide an endogenous

reason for the use distorsionary taxes. Finally, the large capital positions called for by the model

put strain on the assumption of a benevolent government with full commitment. In this light,

incorporating relevant political economy constraints into Ramsey type models of optimal taxation

appears as a promissing research avenue. I leave these issues for future work.

9 Appendix

The three terms in (28)
The three terms in (28) are

τk = T h(k, b̃, θ, s−) + T i(k, b̃, θ, s−) + T b(k, b̃, θ, s−)

where

T h(k, b̃, θ, s−) =

E{−k(1−τk)Fkk,suc,s|s−}
E{Fk,suc,s|s−}

E{Fk,suc,s ψs
uc,s

|s−}
E{Fk,suc,s|s−} +

E{Fk,sνsuc,s|s−}
E{Fk,suc,s|s−}

∙
Cov {kFk,suc,s, νs|s−}
E{kFk,suc,s|s−}

− Cov {kFkk,suc,s, νs|s−}
E{kFkk,suc,s|s−}

¸

T i(k, b̃, θ, s−) = −

E [1+(1−τk)Fk,s]uc,s ψs
uc,s

−ψs−
θ

|s−
βE{uc,sFk,s|s−}

E{Fk,suc,s ψs
uc,s

|s−}
E{Fk,suc,s|s−} +

E{Fk,sνsuc,s|s−}
E{Fk,suc,s|s−}

T b(k, b̃, θ, s−) =

ν2,s−
β

Mk,s−−
ν1,s−
β

Mk,s−

βE{uc,sFk,s|s−}
E{Fk,suc,s ψs

uc,s
|s−}

E{Fk,suc,s|s−} +
E{Fk,sνsuc,s|s−}
E{Fk,suc,s|s−}

where ψs− is the multiplier on the resource constraint in the previous period.
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Proof of Lemma 1
The consumer’s problem is a convex program, and u and F are not satiated. Then the first order

conditions (6), (7) and (8) together with (5) holding with equality are necessary and sufficient for

an optimum in the consumer’s problem. It is straightforward to see that if (1) holds with equality,

the fact that (3) holds with equality implies that (5) holds with equality — a version of Walras law.

A derivation of (26) and (28) using a Lagrangian approach
The approach in the text relies on the assumption that the value function is differentiable.

An alternative to making that assumption is to approach the task of characterizing the Ramsey

allocation by composing a Lagrangian for the Ramsey problem. I keep notations as close as possible

to those in the text.

I attach stochastic processes {βt Pr(st)μt, βt Pr(st)νt, βt Pr(st)ν1,t, βt Pr(st)ν2,t, βt Pr(st)ψt}t≥0
to the constraints

uc,t = Et
©
βuc,t+1

£
1 +

¡
1− τkt+1

¢
Fk,t+1

¤ª
, ∀t ≥ 0 and st ∈ St,

b̃t−1
uc,t

βEt−1 {uc,t}
+ gtuc,t ≤ ltFl,tuc,t + ltul,t + τkt kt−1Fk,tuc,t + b̃t, ∀t ≥ 0 and st ∈ St,

M(kt, uc,t, st) ≤ b̃t ≤M(kt, uc,t, st), ∀t ≥ 0 and st ∈ St and

ct + gt + kt ≤ Ft + kt−1, ∀t ≥ 0 and st ∈ St.

Then the Lagrangian for the Ramsey problem can be represented as

L
¡
bg−1, r0, k0, τ

k
0

¢
= E−1

∞X
t=0

βtut

E−1
∞X
t=0

βt
£
−μtuc,t + μt−1uc,t

¡
1 +

¡
1− τkt

¢
Fk,t

¢¤
+E−1

∞X
t=0

βtνt

µ
−b̃t−1

uc,t
βEt−1 {uc,t}

− gtuc,t + ltFl,tuc,t + ltul,t + τkt kt−1Fk,tuc,t + b̃t

¶
+E−1

∞X
t=0

βt
h
ν2,t

³
b̃t −M(kt, uc,t, st)

´
+ ν1,s

³
M(kt, uc,t, st)− b̃t

´i
+E−1

∞X
t=0

βtψt (Ft + kt−1 − cs − gt − kt)

where I have introduced for notational convenience the multiplier μ−1, which I impose to be

zero: μ−1 = 0.

I am now in position to derive the first order conditions associated with this Lagrangian.

The first order condition for b̃t is

νt −
Et {uc,tνt+1}
Et {uc,t}

+ ν2,t − ν1,t = 0
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which proves equation (26).

The formula for the optimal tax on capital (28) can be derived by combining the first order

conditions for τkt and kt−1.The first order condition for τkt can be written as

−μt−1Et−1 {uc,tFk,t}+ Et−1 {uc,tkt−1Fk,tνt} = 0 (47)

For t ≥ 1,the first order condition for kt−1 is

0 = μt−1Et−1
©
βuc,t

¡
1− τkt

¢
Fkk,t

ª
+ Et−1

©
βνt

¡
ltFkl,tuc,t + τktFk,tuc,t + τkt kt−1Fkk,tuc,t

¢ª
(48)

−ν2,t−1Mk,t−1 + ν1,t−1Mk,t−1 + Et−1 {βψt(1 + Fk,t)}− ψt−1

I use (47) to replace μt−1. I then use the constant return to scale assumption to replace ltFkl,t

by −kt−1Fkk,t , to rearrange (47) as follows

0 =
¡
1− τkt

¢ Et−1 {uc,tkt−1Fk,tνt}
Et−1 {uc,tFk,t}

Et−1 {βuc,tFkk,t}+ τktEt−1{βνtFk,tuc,t}− (1− τkt )Et−1{βνtkt−1Fkk,tuc,t}

+τktEt−1 {βψtFk,t}+ Et−1{
ψt

uc,t
β(1 + (1− τkt )Fk,t)uc,t}−

ψt−1
uc,t−1

Et−1{β(1 + (1− τkt )Fk,t)uc,t}

−ν2,t−1Mk,t−1 + ν1,t−1Mk,t−1

which in turn can be rewritten as

τkt = T h
t + T i

t + T b
t

where

T h
t =

Et−1{−kt−1(1−τkt )Fkk,tuc,t}
Et−1{Fk,tuc,t}

Et−1{Fk,tuc,t ψt
uc,t

}
Et−1{Fk,tuc,t} +

Et−1{Fk,tνtuc,t}
Et−1{Fk,tuc,t}

∙
Et−1{kt−1Fk,tuc,t, νt}
Et−1{kt−1Fk,tuc,t}

− Et−1{kt−1Fkk,tuc,t, νt}
Et−1{kt−1Fkk,tuc,t}

¸

T i
t = −

Et−1 [1+(1−τk)Fk,t]uc,t ψt
uc,t

− ψt−1
uc,t−1

βEt−1{uc,tFk,t}
Et−1{Fk,tuc,t ψt

uc,t
}

Et−1{Fk,tuc,t} +
Et−1{Fk,tνtuc,t}
Et−1{Fk,tuc,t}

and

T b
t =

ν2,t−1
β

Mk,t−1−
ν1,t−1

β
Mk,t−1

βEt−1{uc,tFk,t}
Et−1{Fk,tuc,t ψt

uc,t
}

Et−1{Fk,tuc,t} +
Et−1{Fk,tνtuc,t}
Et−1{Fk,tuc,t}

This in turn shows that (28) holds.

Proof of Proposition 1
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If F (k, l, s) = A(s)kαl1−α, then kFkk,s = (α− 1)Fk,s so that

Cov {kFkk,s, νs|s−}
E{kFkk,s|s−}

=
(α− 1)Cov {Fk,s, νs|s−}
(α− 1)E{Fk,s|s−}

=
Cov {kFk,s, νs|s−}
E{kFk,s|s−}

By (28), this implies that τk = 0.

Since (28) applies from t = 1 on, this shows that τkt = 0 for all t ≥ 1.

Proof of Proposition 2
I first prove the following lemma

Lemma 3 Consider {xn, yn, zn}1≤n≤N ∈ RN
++, and probability distribution {pn}1≤n≤N with pn > 0

for all n. Assume that there exists n and n0 such that zn 6= zn0 . The following holds: (i) assume that

xn < xn0 if and only if zn > zn0, then
E{xnynzn}
E{xnyn} < E{ynzn}

E{yn} ; (ii) assume that xn < xn0 if and only if

zn < zn0, then
E{xnynzn}
E{xnyn} > E{ynzn}

E{yn} .

Proof.
E{xnynzn}
E{xnyn}

<
E{ynzn}
E{yn}

if and only if

E{xnynzn}E{yn} < E{ynzn}E{xnyn}

if and only if X
n,n0

pnpn0xnynznyn0 <
X
n,n0

pnpn0ynznxn0yn0

if and only if

0 <
X
n,n0

pnpn0ynznyn0 [xn0 − xn]

if and only if

0 <
1

2

X
n6=n0

pnpn0ynyn0 [zn − zn0 ] [xn0 − xn]

which trivially proves claims (i) and (ii) in the lemma.

Assume F is CES with elasticity of substitution σ with Hicks neutral technology shocks:

F (k, l) = A(s)
h
αk

σ−1
σ + (1− α)l

σ−1
σ

i σ
σ−1

Then

Fk(k, l) = αA(s)k
−1
σ

h
αk

σ−1
σ + (1− α)l

σ−1
σ

i 1
σ−1

and

−kFkk(k, l) =
1
σ

α
1−α

¡
k
l

¢σ−1
σ + 1

αA(s)k
−1
σ

h
αk

σ−1
σ + (1− α)l

σ−1
σ

i 1
σ−1
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so that

−kFkk(k, l) =
1
σ

α
1−α

¡
k
l

¢σ−1
σ + 1

Fk(k, l)

Proposition 2 now follows. Consider for example case (i). Then
1
σ

α
1−α(

k
ls
)
σ−1
σ +1

is a decreasing function

of νs. Lemma 3 shows that

E{−kFkk,s, νs|s−}
E{−kFkk,s|s−}

<
E{kFk,s, νs|s−}
E{kFk,s|s−}

which proves that τk > 0. Cases (ii), (iii) and (iv) in Proposition 2 can be proved along the same

lines.

I then prove the second part of the proposition. If F (k, l, s) = A(s)kαl1−α − δk, then kFkk,s =

(α− 1)(Fk,s + δ) so that

Cov {kFkk,s, νs|s−}
E{kFkk,s|s−}

=
(α− 1)Cov {Fk,s, νs|s−}

(α− 1)δ + (α− 1)E{Fk,s|s−}
=
Cov {kFk,s, νs|s−}
E{kFk,s|s−}+ δ

Hence
Cov {kFkk,s, νs|s−}
E{kFkk,s|s−}

<
Cov {kFk,s, νs|s−}
E{kFk,s|s−}

if and only if Cov {kFk,s, νs|s−} > 0. This proves the second part of the proposition.
Proof of Lemma 2
It is clear that eV is decreasing in eb. Since eV is differentiable, this is equivalent to eVb ≤ 0. Since,

βeVb,t = −νt + ν1,t, this proves that νt − ν1,t ≥ 0.
Under natural debt limits, (21) becomes

νs− = E{νs|s−}+ν1,s−

which I can rewrite as

νs− − ν1,s− = E{νs − ν1,s|s−}+ E{ν1,s|s−}

This proves that
neVb,to

t≥1
is a nonnegative supermartingale. Therefore, the supermartingale

convergence theorem (see Lòeve (1977)) asserts that eVb,t converges almost surely to a finite non-
negative random variable eVb,∞. Let Se be the unique ergodic set of {st}t≥0. Consider, for every
s ∈ Se, the random sets Ss = {t, st = s}. Let φs(−1) = −1 and for all t ≥ 0, define the sequence
of random numbers φs(t) = inf{t > φs(t − 1), st = s}. Since eV is continuously differentiable and

concave, this implies in turn that there are finite random variable eb∞,s such that for every s ∈ Se,
{ebφs(t)}t≥0 converges to eb∞,s. Since policy functions in (15) are continuous, this implies that every

point {ebs}s∈Se in the support of {eb∞,s}s∈Se is such that for every states s and s− in the unique

ergodic set of {st}t≥0, eb0s(ebs− , s−) = ebs and eVb,s(ebs, s) = eVb,s−(ebs− , s−). This implies that for starting
at such a point (ebs, s), the planner is able to implement the optimal complete markets allocation.
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By Assumption 1, this is only possible if ebs = −Mn
s for all s. This proves Lemma 2.

Proof of Proposition 3
If F (k, l, s) = A(s)kαl1−α, then kFkk,s = (α− 1)Fk,s so that

Cov {kFkk,suc,s, νs|s−}
E{kFkk,suc,s|s−}

=
(α− 1)Cov {Fk,suc,s, νs|s−}
(α− 1)E{Fk,suc,s|s−}

=
Cov {kFk,suc,s, νs|s−}
E{kFk,suc,s|s−}

Proof of Proposition 4
The proof follows closely Zhu (1992). More details can be found there.

Note that T2,t > 0 if and only if

Et−1
n£
1 +

¡
1− τk

¢
Fk,t

¤
uc,t

ψt
uc,t

o
Et−1 {[1 + (1− τk)Fk,t]uc,t}

>
ψt−1
uc,t−1

T2,t < 0 if and only if

Et−1
n£
1 +

¡
1− τk

¢
Fk,t

¤
uc,t

ψt
uc,t

o
Et−1 {[1 + (1− τk)Fk,t]uc,t}

<
ψt−1
uc,t−1

and T2,t = 0 if and only if

Et−1
n£
1 +

¡
1− τk

¢
Fk,t

¤
uc,t

ψt
uc,t

o
Et−1 {[1 + (1− τk)Fk,t]uc,t}

=
ψt−1
uc,t−1

Let me denote
£
1 +

¡
1− τk

¢
Fk,t

¤
uc,t by Kt and

ψt
uc,t

by ξt. Since policy functions in (10) are

continuous, Kt and ξt are continuous functions K(xt) and ξ(xt) of xt = {kt, b̃t, uc,t, st}. Call π(x0, x)
the transition function.

Let Υ be the operator mapping the space z of continuous functions of x into itself, defined by

Υ(f)(x) ≡
R
f(x0)K(x0)π(x0, x)R

K(x0)π(x0, x)

Therefore, T2(x) > 0 if and only if Υ(ξ)(x) > ξ(x), T2(x) < 0 if and only if Υ(ξ)(x) < ξ(x) and

T2(x) = 0 if and only if Υ(ξ)(x) = ξ(x). Thus the sign of T2 is entirely determined by the sign of

Υ(ξ)− ξ.

Suppose P∞{Υ(ξ)(x) ≤ ξ(x)} = 1. Let ξ ≡ max{ξ, P∞{ξ(x) ≥ ξ} = 1}. Define At = {x, ξ(x) ≥
Υtξ(x)}, Bt = {x,Pr{ξ(xt) ≥ ξ|x0 = x} = 1}, A = ∩∞t=0At and B = ∩∞t=0Bt. Then At, Bt, A and B

are closed, and P∞{At} = P∞{Bt} = 1. Hence A ∩B is closed and P∞{A ∩B} = 1. By definition
of ξ, there exists x ∈ A ∩ B such that ξ(x) = ξ. This implies Pr{ξ(xt) = ξ|x0 = x} = 1. Using the
ergodicity of xt,

P∞{ξ(x) = ξ} = lim
t→∞

Pr{ξ(xt) = ξ|x0 = x} = 1

Hence P∞{ξ(x) = ξ} = 1. Similarly P∞{Υ(ξ)(x) ≥ ξ(x)} = 1 implies P∞{ξ(x) = ξ} = 1 where
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ξ ≡ inf{ξ, P∞{ξ(x) ≤ ξ} = 1}. This proves Proposition 4.
Proof of Proposition 5
Consider the complete markets allocation {kc, lc,eb0c} in state (eb, s−). Labor lc and net government

liabilities in the end of the periodeb0c are constant across states of the world s. DefineXs ≡ 1
β
eb+gs−eb0c.

Consider next the incomplete markets environment. Denote by R(k, ls) ≡ lsFl,s + lsHl,s the

revenues from labor taxation in state s. Set τk = 0 and solve, for a given kg, the following system

in {k, ls}.

E{R(k, ls)|s−} = E{Xs|s−} (49)

(Fk(k, ls)− r) +
R(k, ls)

kg
=

Xs

kg
, ∀s ∈ S (50)

Note that if (50) holds and |kg| <∞, then (49) is equivalent to E{Fk(k, ls)|s−} = r. If (50) holds

and |kg| =∞, then E{Fk(k, ls)|s−} = r holds automatically.

Denote by {k(kg), ls(kg)} the solution: together with eb0c,s(kg) ≡ eb0c for all s, the variables
{k(kg), ls(kg),eb0c,s} satisfy the constraints in (15). Then

lim
kg→∞

{k(kg), ls(kg)} = lim
kg→−∞

{k(kg), ls(kg)} = {kc, lc}

Therefore, by choosing kg large and picking {k(kg), ls(kg),eb0c,s}, the government can approximate
as well as desired the complete markets allocation in state (eb, s−). By doing this in every state and
date, the government can therefore perfectly approximate the complete markets allocation. This

proves proposition 5.
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10 Figures and Tables
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Figure 1: A typical path, quasi-linear preferences, government expenditure shocks.
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Figure 4: Impulse responses, high permanent government expenditure shock
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Figure 5: Impulse responses, low permanent government expenditure shock
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Figure 6: Impulse responses, low permanent technology shock
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Figure 7: Impulse responses, high permanent technology shock
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Figure 8: A typical path: government expenditure shocks, one year period length
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Figure 9: A typical path: government expenditure shocks, five years period length
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