
NBER WORKING PAPER SERIES

EMPIRICAL ASSET PRICING AND STATISTICAL POWER IN THE PRESENCE
OF WEAK RISK FACTORS

A. Craig Burnside

Working Paper 13357
http://www.nber.org/papers/w13357

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2007

I am grateful to the National Science Foundation for financial support (SES-0516697). I thank John
Cochrane, Martin Eichenbaum, Bjorn Eraker, Ron Gallant, Lars Hansen, Ravi Jagannathan, Sergio
Rebelo, Barbara Rossi, George Tauchen, Mark Watson and Motohiro Yogo, for useful conversations,
and seminar participants at Duke, Wharton, and the Board of Governors of the Federal Reserve System
for comments.  The usual disclaimer applies. The views expressed herein are those of the author(s)
and do not necessarily reflect the views of the National Bureau of Economic Research.

© 2007 by A. Craig Burnside. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Empirical Asset Pricing and Statistical Power in the Presence of Weak Risk Factors
A. Craig Burnside
NBER Working Paper No. 13357
August 2007
JEL No. C33,F31,G12

ABSTRACT

The risk factors in many consumption-based asset pricing models display statistically weak correlation
with the returns being priced. Some GMM-based procedures used to test these models have very low
power to reject proposed stochastic discount factors (SDFs) when they are misspecified and the covariance
matrix of the asset returns with the risk factors has less than full column rank. Consequently, these
estimators provide potentially misleading positive assessments of the SDFs. Working with SDFs specified
in terms of demeaned risk factors improves the performance of GMM but the power to reject misspecified
SDFs may remain low. Two summary tests for failure of the rank condition have reasonable power,
and lead to no Type I errors in Monte Carlo experiments.

A. Craig Burnside
Department of Economics
Duke University
213 Social Sciences Building
Durham, NC 27708-0097
and NBER
burnside@econ.duke.edu



Classical tests of stochastic discount factor (SDF) models are conducted under the main-

tained hypothesis that the models are true. Con�dence regions and standard errors for

parameter estimates are derived under two important assumptions: the proposed SDF nests

the true speci�cation, and the covariance matrix of the asset returns and risk factors has full

column rank. Tests of pricing errors and over-identifying restrictions proceed in the same

way. In this paper, I explore the properties of point estimates and the power of inference when

these assumptions fail. Using asymptotic theory, as well as small sample simulation-based

evidence, I show that some, but not all, standard tests based on the Generalized Method

of Moments (GMM) have very low power to reject the proposed SDF when it is false and

the rank condition fails to hold. An example of the failure of the rank condition is that the

covariance between the vector of asset returns and one of the risk factors is zero. This means

that my results are especially relevant for tests of consumption-based asset pricing models,

because many consumption-related risk factors proposed in the literature display statistically

insigni�cant covariance with the returns being priced, implying statistical failure of the rank

condition.

I consider the conventional, though not universal, case where the model SDF is estimated

using data on excess returns. In this case, the mean of the SDF is unidenti�ed but a subset

of the model parameters can still be identi�ed by adopting a normalization. Two candidate

normalizations described by Cochrane (2005)� one using raw risk factors, the other using

demeaned risk factors� are theoretically equivalent when the model is true. In contrast, I

show that empirical results obtained using GMM estimators are dramatically di¤erent for

the two normalizations when consumption-based models are estimated. In particular, the

normalization that expresses the SDF in terms of raw risk factors tends to cast the models in

a favorable light. Measures of �t are close to 1, and the estimated parameters of the SDF are

statistically signi�cant. For the normalization that uses demeaned risk factors, the models

appear to �t the data very poorly, and estimated parameters have a much lower degree of

statistical signi�cance.

My experiments with Monte Carlo simulation suggest that this lack of robustness does

not stem from the small sample properties of the estimators under the null. Rather, I favor

an alternative explanation, that the rank condition on the covariance between the returns

and the risk factors does not hold and that the proposed consumption-based SDFs are false.

In a single factor model, the rank condition fails when the proposed risk factor is uncorrelated
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with the returns. This necessarily implies that the model is false or that the excess returns

being studied are all mean zero. I discard the second possibility because the returns I study

in this paper do not appear to be jointly mean zero. In multifactor models failure of the

rank condition can point to a third possibility. The SDF may be true, yet the returns being

studied may simply be uninformative about the relevance of one or more, or some linear

combination, of the factors. I discard this possibility as well, because it implies that in large

samples measures of �t would converge to 1 for any normalization of the model, yet, in

practice, these measures di¤er dramatically across normalizations.

How do failure of the rank condition and falsehood of the proposed SDF explain the

lack of robustness across normalizations? Using asymptotic theory I demonstrate that the

normalization that uses raw risk factors has the following properties: (i) the estimated

parameters of the SDF converge in probability to a non-zero limit such that the estimated

SDF is uncorrelated with the returns, (ii) an R2 measure of model �t converges in probability

to 1, (iii) the t-statistic associated with any parameter of the SDF that converges to a

non-zero limit (of which there is at least one) will diverge in probability to �1 leading

to the conclusion that the associated risk factor helps to price the assets, and (iv) under

some additional regularity assumptions the test of the over-identifying restrictions rejects

the model with the same probability as the size of the test, that is, as if the model were

true. My simulation-based evidence indicates that these properties are borne out in �nite

samples.

The normalization that uses demeaned risk factors does not share these properties. When

the rank condition fails the parameters of this normalization of the SDF are asymptotically

unidenti�ed. Under additional assumptions about the data generating processes, I show that

the parameter estimates and test statistics have asymptotic distributions, but these results

do not lead to general statements about the statistical signi�cance of the parameter esti-

mates and the likelihood of rejecting the model in large samples. Simulation-based evidence

suggests that in �nite samples a researcher is more likely to conclude that the model has

poor �t, reject it based on the test of the pricing errors, and conclude that the spurious

factor does not price the assets, when the SDF is expressed in terms of demeaned factors.

Nonetheless, even with the demeaned normalization the power to reject the model can be

low.

Failure of the rank condition is a possibility of genuine relevance because several of the
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risk factors studied in the consumption-based asset pricing literature are only weakly cor-

related with the returns. Favorable inference regarding the relevance of these risk factors

should, therefore, be treated cautiously. Although my results are speci�cally relevant for

empirical work that uses GMM and one of the two normalizations, they have broader rele-

vance, because the �rst stage of GMM with the demeaned normalization is equivalent to the

two-pass regression method pioneered by Black, Jensen and Scholes (1972) and Fama and

MacBeth (1973), and widely used in the consumption-based asset pricing literature. In a

separate paper, Burnside (2007a), I extend my discussion to further variants of the demeaned

speci�cation used by Parker and Julliard (2005) and Yogo (2006).

There is an extensive literature relating to this paper which examines the properties

of asset pricing tests in the presence of spurious risk factors, that is risk factors that are

uncorrelated with the returns. Kan and Zhang (1999a) examine the behavior of GMM

estimators in the presence of spurious risk factors. Their results relate to mine for the

demeaned speci�cation, although they study risk factors that are mean zero by construction.

Kan and Zhang (1999b) study similar issues in the context of the two-pass approach to

model evaluation. A more closely related paper to this one is Kan and Robotti (2006). They

examine the behavior of the Hansen and Jagannathan (1997) distance measure under the

two model normalizations discussed here. They show that results can depend dramatically

on the normalization chosen. A contribution of this paper is that I demonstrate the relevance

of the theoretical results here and in the prior literature to consumption-based asset pricing.

Going beyond simple failure of the rank condition, or spuriousness of a risk factor, I

consider another possibility: that a risk factor has the same covariance with every asset

return being explained. I refer to this as panel spuriousness and should be considered when

factor betas are statistically signi�cant, but have very little spread, as is the case for the

quarterly Fama-French portfolios and US consumption growth.1 A panel spurious factor is

not irrelevant, but cannot explain the cross-sectional distribution of the expected returns

being studied. I show that in su¢ ciently large samples both normalizations will lead to

rejection of the over-identifying restrictions. However, in �nite samples, if the covariance

1In related work, Lewellen and Nagel (2006) and Lewellen, Nagel and Shanken (2006) criticize empirical
estimates of the conditional CAPM (and CCAPM) arguing that the spread in the betas in these models is
too small for inference to be reliable. Daniel and Titman (2005) discuss the properties of the Fama-MacBeth
procedure when the test assets lie in a low-dimensional subspace of the full payo¤ space. Their analysis
undoubtedly has bearing on GMM-based procedures as well, and one of the sets of data I examine in this
paper (the Fama-French 25 returns, described below) is central to their discussion.
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between the returns and the factor is small, the performance of the raw-factor normalization

mimics the case where the factor is spurious.

My �ndings suggest that a useful diagnostic, prior to estimation, is to simply estimate

factor betas (the slope coe¢ cients in a time series regression of the returns on the risk factors)

and perform diagnostic tests on their signi�cance.2 A simple test of the rank condition

suggested by Cragg and Donald (1997) and Wright (2003) is a useful summary statistic,

has reasonable power in �nite samples, and leads to no Type I errors in my Monte Carlo

experiments.

I also propose a simple post-estimation diagnostic. When a risk factor or linear combi-

nation of risk factors is spurious, the probability limit of the mean of the SDF is zero for

the normalization that uses raw factors. A test for whether the mean is zero is straightfor-

ward, and performs quite well in Monte Carlo simulations. It has reasonable power against

false models, especially at the �rst stage of GMM, and leads to no Type I errors in my

experiments.

The paper is organized as follows. Section 1 lays out a standard linear factor model.

Section 2 discusses the identi�cation problem and the two normalizations of the SDF. Section

3 discusses the approach to be used in estimating the two model normalizations. Section 4

discusses empirical �ndings for two sets of data from the �nance literature: the Fama and

French (1993) returns on 25 portfolios sorted by market capitalization and book-to-market

value, and the Lustig and Verdelhan (2007) data on 8 portfolios of returns to long positions

in the foreign exchange market, sorted by short-term interest rates. It lays the foundation

for the rest of the paper by showing that inference regarding consumption-based models is

sharply dependent on the normalization. Section 5 discusses the asymptotic properties of the

estimates and diagnostic tests under the maintained assumption that the model is valid, and

under the alternative assumption that it is misspeci�ed and a risk factor is spurious. Section

6 performs a series of small-sample Monte Carlo simulation exercises that demonstrate the

consequences of failure of the rank condition in samples similar in size to those being studied

in the literature. Section 7 concludes.

2Kan and Zhang (1999b) make the same suggestion and point out that while Chen, Roll, and Ross (1986)
and Ferson and Harvey (1993) performed such tests, relatively few researchers do so.
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1 Model Setup and Moment Conditions

I consider the estimation of a class of linear factor pricing models where the SDF takes the

form

mt = a� f 0tb: (1)

Here ft is a k � 1 vector of risk factors, a is a scalar constant and b is k � 1 vector of
parameters. If mt is the true SDF, then standard arguments imply that the price of any

asset at time t� 1 whose payo¤ at time t is xt is pt�1 = Et�1(mtxt). Therefore the expected

price of the asset is E(pt�1) = E(mtxt). It follows that the return to an asset, Rt = xt=pt�1,

satis�es Et�1(mtRt) = 1 and E(mtRt) = 1. Consequently, the di¤erence between the returns

on two assets R1t �R2t satis�es E[mt(R1t �R2t)] = 0.

Now consider a particular n� 1 vector, Ret , whose ith element, Reit, is the excess return
at time t to asset i de�ned as the di¤erence between the return on asset i and the risk free

rate. If mt given by (1) is the true SDF, then

E (Retmt) = 0. (2)

The restriction (2) implies that

E(Ret ) = �
cov(Ret ;mt)

E(mt)
: (3)

Equation (3) states that the expected return, E(Reit), is higher for those assets for which

cov(Reit;mt) is lower. Variation in E(Reit) across i implies variation in cov(R
e
it;mt) across i.

A beta representation of the model, derived from (3), is

E(Ret ) = �
cov(Ret ;mt)

var(mt)| {z }
�m

var(mt)

E(mt)| {z }
�m

: (4)

The term �m is an n � 1 vector of SDF betas, while �m is the market price of risk, as it

measures the expected excess return for an asset whose SDF beta is 1. One such asset is

an SDF mimicking portfolio whose excess return is �m � [mt �E(mt)]. An alternative beta

representation, obtained by substituting (1) into the numerator of (3), is

E(Ret ) =
cov(Ret ; f

0
t)b

E(mt)
= cov(Ret ; f

0
t) var(ft)

�1| {z }
�f

var(ft)b

E(mt)| {z }
�f

: (5)

The term �f is an n � k matrix of factor betas, while �f is a k � 1 vector of factor risk
premia. Row i in the matrix �f is the vector of slope coe¢ cients in a time series regression

of Reit on ft.
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2 Normalizations of the SDF

The moment restriction (2) does not separately identify the parameters a and b. This is

because the GMM errors, Retmt, for the parameter pair (a; b) are proportional to the GMM

errors for the parameter pair (ka; kb), for any constant k. I consider two approaches to

achieving identi�cation, both of which involve picking a particular normalization of the

SDF.

To achieve identi�cation, consider rewriting (1) as

mt = am�
t = a(1� f 0tb

�) (6)

where b� = b=a. Given this way of writing the SDF, the model is estimated by exploiting

the moment restrictions:

E(Retm
�
t ) = 0: (7)

I refer to this normalization as the a-normalization.

Alternatively (1) can be rewritten as

mt = �m�
t = �[1� (ft � �)0 b�], (8)

where � is the unconditional mean of ft, � is a scalar, � = a��0b and b� = b=(a��0b). Given
this way of writing the SDF, the model is estimated by exploiting the moment restrictions:

E (ft) = � E(Retm
�
t ) = 0: (9)

I refer to this normalization as the �-normalization.

If the original model, (1), is true and (2) holds, the moment restrictions stated in (7)

and (9) are also valid. Although b� and b� are di¤erent parameters (except when � = 0) the

normalizations are equivalent in the sense that the GMM errors 1� f 0tb� and 1� (ft � �)0 b�

are proportional to one another when evaluated at the true parameter values. Also, b� can

be obtained from b� and �: b� = b�=(1� �0b�).

3 Estimation and Inference using GMM

3.1 The a-Normalization

Using the n moment restrictions given by (7), b� is estimated using GMM. De�ne u�t (b
�) =

Retm
�
t = Ret (1� f 0tb

�) and let g�T (b
�) = 1

T

PT
t=1 u

�
t = �Re �DT b

� be an n� 1 vector of pricing
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errors, where �Re = 1
T

PT
t=1R

e
t , DT =

1
T

PT
t=1R

e
tf
0
t and T is the sample size. I consider GMM

estimators that set a�Tg
�
T = 0, where a

�
T is a k � n matrix and takes the form a�T = D0

TW
�
T ,

where W �
T is an n�n positive de�nite weighting matrix. It follows that the GMM estimator

of b� is

b̂� = (D0
TW

�
TDT )

�1
D0
TW

�
T
�Re: (10)

I consider two-stage GMM estimators. In the �rst stage W �
T = In. In the second stage,

W �
T = (S

�
T )
�1 where S�T =

1
T

PT
t=1 û

�
t û
�0
t , û

�
t = Ret (1 � f 0t b̂

�
1) and b̂

�
1 represents the �rst stage

estimator of b�.

Let ��T = �DT . A test of the pricing errors is based on the statistic

J� = Tg�T (b̂
�)(V̂ �

g )
+g�T (b̂

�); (11)

where

V̂ �
g = A�TS

�
TA

�
T
0 with A�T = In � ��T (a

�
T �

�
T )
�1a�T ; (12)

and X+ indicates the generalized inverse of the matrix X.

Equations (6) and (7) imply that

E(Ret ) = E (Retft) b
�: (13)

In a �nite sample, corresponding to the left-hand side of (13) is the vector of actual expected

returns, �Re. Corresponding to the right-hand side of (13) is a vector of predicted expected

returns given by DT b̂
�. The model�s �t is evaluated using the cross-sectional R2:

R2� = 1�
( �Re �DT b̂

�)0( �Re �DT b̂
�)

( �Re � �Re)0( �Re � �Re)
; (14)

where �Re = 1
n

Pn
i=1

�Rei is the cross-sectional average of the mean returns in the data.

Equation (13) can be rewritten as

E(Ret ) = E(Retft) var(ft)
�1E(m�

t )| {z }
�f

var(ft)b
�

E(m�
t )| {z }

�f

(15)

Since m�
t = mt=a and b� = b=a, it follows that �f and �f are the same objects de�ned in (5).

The mean and covariance matrix of ft are estimated by GMM using the moment restrictions

E(ft � �) = 0 (16)

E [(ft � �)(ft � �)0 � �f ] = 0: (17)
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An estimate of �f is given by

�̂
�
f =

�̂f b̂
�

1� �̂0b̂�
; (18)

where �̂ = �f � 1
T

PT
t=1 ft and �̂f = Sf � 1

T

PT
t=1(ft � �f)(ft � �f)0 are, respectively, the

sample mean and covariance matrix of ft. Standard errors for �̂
�
f are obtained by the delta

method using the joint distribution of b̂�, �̂ and �̂f . The details are discussed in Appendix

A.3

3.2 The �-Normalization

Using the n+k moment restrictions given by (9), b� and � are estimated using GMM. De�ne

u�1t(b
�; �) = Retm

�
t = Ret [1�(ft��)0b�] and let g�1T (b�; �) = 1

T

PT
t=1 u

�
1t = �Re�

�
DT � �Re�0

�
b�.

De�ne u�2t(�) = ft � � and let g�2T (�) =
1
T

PT
t=1 u

�
2t =

�f � �. De�ne u�t = ( u
�0
1t u�02t )

0 and

g�T = ( g
�0
1T g�02T )

0. I consider GMM estimators that set a�Tg
�
T = 0, where a

�
T is a 2k� (n+k)

matrix and takes the form

a�T =

�
d0TW

�
T 0

0 Ik

�
; (19)

where dT = DT � �Re �f 0 andW �
T is an n�n positive de�nite weighting matrix. It follows that

the GMM estimators of b� and � are

b̂� = (d0TW
�
TdT )

�1
d0TW

�
T
�Re (20)

�̂ = �f: (21)

I consider two-stage GMM estimators. In the �rst stage W �
T = In. In the second stage,

W �
T = (PTS

�
TP

0
T )
�1 where PT = ( In �Re(b̂�)0 ) and S�T is a consistent estimator of S

�
0 =P+1

j=�1E(u
�
tu
�0
t�j).

4 Because u�2t may be serially correlated I use a VARHAC estimator,

described in more detail in Appendix A, to compute S�T .

Let

��T =

�
�dT �Reb̂�0

0 �Ik

�
: (22)

A test of the pricing errors is based on

J� = TgT (b̂
�; �̂)(V̂ �

g )
+gT (b̂

�; �̂); (23)

3The appendices are available at http://www.duke.edu/~acb8/research.htm
4Cochrane (2005) suggests using the matrix ( In 0n�k ) in place of PT in the expression for W �

T . This
is less e¢ cient in terms of the covariance matrix of b̂�, but is asymptotically equivalent in terms of the test
of the overidentifying restrictions.

8



where

V̂ �
g = A�TS

�
TA

�
T
0 with A�T = In+k � ��T (a

�
T �

�
T )
�1 a�T : (24)

Equations (8) and (9) imply that

E(Ret ) = E
�
Ret (ft � �)0

�
b�: (25)

Corresponding to the right-hand side of (25) is a vector of predicted expected returns, dT b̂�.

The cross-sectional R2 measure is:

R2� = 1�
( �Re � dT b̂

�)0( �Re � dT b̂
�)

( �Re � �Re)0( �Re � �Re)
: (26)

Equation (25) can be rewritten as

E(Ret ) = E
�
Ret (ft � �)0

�
var(ft)

�1| {z }
�f

var(ft)b
�| {z }

�f

: (27)

Since m�
t = mt=� and b� = b=�, it follows that �f and �f are the same objects de�ned in (5).

As in the previous case, the covariance matrix of ft is estimated by GMM using the moment

restriction (17). An estimate of �f is given by

�̂
�
f = �̂f b̂

�; (28)

where �̂f = Sf , as before. Standard errors for �̂
�
f are obtained by the delta method using

the joint distribution of b̂�, �̂ and �̂f . The details are discussed in Appendix A.

4 Empirical Findings

Here I consider two sets of data. The �rst is from Lustig and Verdelhan (2007) (henceforth

LV), and consists of eight portfolios of positions in foreign currency, with the U.S. dollar as

the home currency, sorted on the basis of the foreign interest rates. The second set of data

is widely used in the consumption-based asset pricing literature: the Fama-French set of 25

portfolios of US stocks sorted on size and the book-to-market value ratio (henceforth, FF25).

The data are described in more detail in Appendix B.

4.1 Lustig-Verdelhan Foreign Exchange Portfolios

I consider the annual real US dollar excess returns to portfolios of short-term foreign govern-

ment securities denominated in foreign currency. The sample period is 1953�2002. LV form
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these portfolios on the basis of the interest rates on the underlying securities. In particular

the real excess returns on a large number of countries�treasury securities are sorted into eight

bins in each period according to the nominal interest rates on the securities, from lowest to

highest. The returns to holding equally-weighted portfolios of each bin are then calculated.

To explain these returns I use three risk factors individually. These are:

� the log-growth rate of real per capita consumption of nondurables and services, which
I will refer to from now on as �consumption growth�

� the log-growth rate of the real stock of consumer durables, which I will refer to from
now on as �durables growth�

� the �market premium�; i.e. the di¤erence between the return to a value-weighted
portfolio of all US stocks and the risk free rate, denoted Rm-Rf, from the Fama-French

database.

Apart from these individual risk factors, I also consider three groupings of risk factors from

the literature:

� consumption growth and durables growth, which I refer to as the �Consumption Fac-
tors,�

� consumption growth, durables growth, and Rm, the market return, as in Yogo (2006)
and LV, which I refer to as the �Yogo Factors,�

� Rm-Rf, SMB (the return di¤erential between small cap and big cap equities) and HML
(the return di¤erential between high book-to-market and low book-to-market equities)

from the Fama and French (1993) database. I refer to these as the Fama-French factors.

Tables 1 and 2 and Figures 1 and 2 present the empirical results for these data.

4.1.1 Results with Individual Factors

The top half of Table 1 shows point estimates, measures of �t and test statistics obtained

using the a-normalization, while the top half of Table 2 shows results obtained using the

�-normalization. Figure 1 plots average returns for the individual portfolios against the

model-predicted expected returns, based on the second stage GMM estimates. The �rst
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stage estimates for the �-normalization are numerically identical to estimates obtained using

the two-pass method without a constant in the cross-sectional regression.5

Consumption Growth For consumption growth, the results are dramatically di¤erent,

in qualitative terms, depending on which of the two normalizations is used. In particular,

when the a-normalization is used, b̂� = 48:8 and is highly signi�cant, with a t-statistic of

11:3. The estimated factor risk premium is �̂f = 4:3 and is signi�cant at the 5 percent level.

The cross-sectional R2 measure is 0:87. The good �t of the model can be seen in Figure 1(a),

which show the model�s predicted expected returns plotted against the actual mean returns

observed in the data for the eight portfolios. Finally, the model easily passes a test of the

over-identifying restrictions.

In contrast, when the �-normalization is used, the estimate of b� is much less precise,

though it remains signi�cant at the 5 percent level in the second stage of GMM. The esti-

mated factor risk premium is �̂f = 1:5, which is much smaller than when the a-normalization

is used, though it remains signi�cant at the 5 percent level. Figure 1(b) shows that the cross-

sectional �t of the model is very poor. The R2 measure is 0:06 at the second stage of GMM.

The over-identifying restrictions are rejected at the 3 percent level of signi�cance.

Durables Growth A similar story holds for durables growth. When the a-normalization

is used, the estimate of b� is positive, large and highly signi�cant. The cross-sectional R2

measure at the second stage of GMM is 0:81. The good �t of the model can also be seen in

Figure 1(c). The model easily passes the test of the over-identifying restrictions. In contrast,

when the �-normalization is used, the estimate of b� is much less precise, though, again, it

remains signi�cant at the 5 percent level in the second stage of GMM. Figure 1(d) shows

that the cross-sectional �t of the model is very poor, with the R2 measure being �0:13 after
the second stage of GMM. The over-identifying restrictions are rejected at the 5 percent

level.

The Market Premium The results are also quite striking for the market excess return.

Using the a-normalization, the estimate of b� is positive and signi�cant, the R2 of the model

is 0:45, and the model is not rejected at the 5 percent level. However, when one turns to the

5See the appendix of Burnside (2007b) for a detailed discussion of the equivalence between GMM and
the two-pass method.
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�-normalization, the estimate of b� is insigni�cant, the estimate of �f shrinks by a factor of

eight, the R2 of the model is close to zero, and the over-identifying restrictions are strongly

rejected.

4.1.2 Results with Groups of Risk Factors

When we turn to groups of risk factors, the most striking statistical sensitivity of the results

to the normalization pertains to the R2 statistics and the tests of the over-identifying restric-

tions. Estimates of the factor risk premia shrink in magnitude in all three cases, though their

signi�cance is not dramatically a¤ected. Results for the a-normalization are in the bottom

half of Table 1. Results for the �-normalization are in the bottom half of Table 2. Figure

2 plots average returns for the individual portfolios against the model-predicted expected

returns.

Consumption Factors Consider, �rst the model that uses the two consumption factors.

This speci�cation corresponds to a linearized version of a consumption-based asset pricing

model in which households have expected utility preferences and derive utility from non-

durables and services and the stock of durable goods. The apparent �t of the model based

on the a-normalization is very good, while the �t of the model based on the �-normalization

is quite poor. Using the a-normalization the R2 measure of cross-sectional �t suggests that

the model can explain at least 81 percent of the variation in expected returns and the model

easily passes the test of the over-identifying restrictions. With the �-normalization, however,

rather than being close to 1, both R2 measures are close to zero. Figures 2(a) and 2(b) paint

a similar picture. They plot the sample values of �Re against the model predicted valuesDT b̂
�,

for the second stage of GMM. For the a-normalization, the model easily passes the test of

the over-identifying restrictions. For the �-normalization, the over-identifying restrictions

are rejected at the 3 percent level.

Yogo Factors Next, consider the linear factor model from Yogo (2006) and LV, which uses

consumption growth, durables growth and Rm as the factors. This is a linearized version of

a consumption-based asset pricing model in which households have Epstein and Zin (1989)

preferences and derive utility from nondurables and services and the stock of durable goods.

While the model based on the a-normalization appears to have nearly perfect �t, with an

R2 of between 0:89 and 0:95, the �t of the �-normalization is far from the mark, with the R2
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measure being 0:34 at the �rst stage, and �0:08 at the second stage of GMM. This despite
the fact that three risk factors are being used to explain the returns to only eight portfolios.

Figures 2(c) and 2(d) paint a similar picture. The apparent �t of the model based on the

a-normalization is very good, while the �t of the model based on the �-normalization is quite

poor. The tests of the over-identifying restrictions are also somewhat di¤erent across the

two cases. For the a-normalization the model passes with �ying colors (the p-value for the

test is 0:86), while for the �-normalization the p-value on the J-statistic falls to 0:15.

Fama-French Factors Finally, consider the three risk factors proposed by Fama and

French (1993). In this case, the results are dramatically di¤erent across the two normal-

izations. The signs of the coe¢ cients on the three risk factors �ip in moving from one

normalization to the other, and the signi�cance of the Rm-Rf and HML factors is lost when

moving to the �-normalization. The R2 measure of �t falls from between 0:27 and 0:56 for

the a-normalization to close to zero when the �-normalization is used. The model fails the

test of the over-identifying restrictions at below the 5 percent level with the �-normalization,

but easily passes the test for the a-normalization.

4.2 Fama-French 25 Portfolios

I examine the real excess returns to the FF25 portfolios at the quarterly frequency over the

period 1949Q1�2005Q4. To explain these returns I use the same risk factors as mentioned

above, except that the data are measured at the quarterly frequency. Tables 3 and 4 and

Figures 3 and 4 show the results for these data.

4.2.1 Results with Individual Factors

The top halves of Tables 3 and 4 show the results from estimating a linear factor model using

each of the scalar risk factors. Figure 3 plots average returns for the individual portfolios

against the model-predicted expected returns.

Consumption Growth For consumption growth, the results are dramatically di¤erent,

in qualitative terms, depending on which of the two normalizations is used. In particular,

when the a-normalization is used, b̂� = 143 and is highly signi�cant, with a t-statistic of 14,

while �̂f = 1:38 and is highly signi�cant. The cross-sectional R2s at the �rst and second

stages of GMM are 0:81 and 0:51, respectively. The good �t of the model can also be seen in
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Figure 3(a), which shows the model�s predicted expected returns plotted against the actual

mean returns observed in the data for the 25 portfolios. The model passes the test of the

over-identifying restrictions, given a p-value of 0:18.

In contrast, when the �-normalization is used, b̂� is a large positive number, but only has

a t-statistic of 2, being much less precisely estimated than b̂�. The factor risk premium is

much smaller, �̂f = 0:38, but remains signi�cant at the 5 percent level. The cross-sectional

R2, however, is negative at both stages of GMM. The model�s bad �t is also seen in Figure

3(b). The model still passes the test of the over-identifying restrictions, but narrowly, with

a p-value of 0:051.

Durables Growth For the growth rate of the stock of durables, b̂� is positive, large

and highly signi�cant using the a-normalization, while it is e¤ectively zero using the �-

normalization. So, the a-normalization leads us to conclude that durables growth helps price

the returns, while the �-normalization leads us to the opposite conclusion. The �t of the

model appears to be quite good using the a-normalization, but not with the �-normalization,

as can be seen in Figures 3(c) and 3(d). In neither case is �f estimated to be signi�cant, nor

are the over-identifying restrictions rejected.

The Market Premium The results for the market premium are less striking. The sign

and statistical signi�cance of b̂� and b̂� are similar. The same is true for the factor risk

premia. The R2 measures are negative in both cases. Figures 3(e) and 3(f) show that, if

anything, the �t of the model is somewhat better with the second stage estimates of the �-

normalization, rather than the a-normalization. The over-identifying restriction are rejected

at very low signi�cance levels in both cases.

4.2.2 Results with Groups of Risk Factors

The results are very dramatic when we turn to groups of risk factors. Results for the a-

normalization are in the bottom half of Table 3. Results for the �-normalization are in the

bottom half of Table 4. Figure 4 plots average expected returns for the individual portfolios

against the model-predicted expected returns.

Consumption Factors Consider, �rst a model that uses the two consumption factors.

Using the a-normalization, both elements of b̂� are positive and signi�cant. The factor risk
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premia are positive but are not individually signi�cant. The R2 measure of cross-sectional �t

suggests that the model can explain at least 96 percent of the variation in expected returns.

The model also easily passes a test of the over-identifying restrictions.

With the �-normalization the results are dramatically di¤erent. Neither of the b coef-

�cients is signi�cant, while the factor risk premia are both small and insigni�cant, at the

second stage of GMM. Rather than being close to 1, both R2 measures are negative. Fig-

ures 4(a) and 4(b) paint a similar picture. The apparent �t of the model based on the

a-normalization is very good, while the �t of the model based on the �-normalization is very

poor. The model still passes a test of the over-identifying restrictions, but at a much lower

level of signi�cance.

Yogo Factors Next, consider the linear factor model from Yogo (2006) that uses con-

sumption growth, durables growth and Rm as the factors. Using the a-normalization the b

parameters on consumption growth and durables growth are positive and signi�cant. The

factor risk premia are positive but not individually signi�cant. The R2 measures suggest

that the model can explain at least 97 percent of the variation in expected returns. The

model also easily passes a test of the over-identifying restrictions.

With the �-normalization the results are dramatically di¤erent. The b coe¢ cients on

consumption and durables growth remain large but no longer have any statistical signi�cance.

The factor risk premia are much smaller in magnitude and remain insigni�cant, except for

the market return, which actually becomes signi�cant. Rather than being close to 1, both

R2 measures are negative. Figures 4(c) and 4(d) paint a similar picture. The apparent �t

of the model based on the a-normalization is very good, while the �t of the model based

on the �-normalization is very poor. The model still passes the test of the over-identifying

restrictions, but at a slightly smaller level of signi�cance.

The parameters and degree of �t obtained under the a-normalization are qualitatively

similar to the results obtained by Yogo (2006). However, he uses the �-normalization rather

than the a-normalization to estimate the model. In section 4.4, I suggest that Yogo�s partic-

ular choice of estimator is the main explanation for his positive assessment, despite his use

of the �-normalization.

Fama-French Factors Finally, consider the three Fama-French factors. Here the results

are roughly robust across the two normalizations. The signs and degree of signi�cance of the
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coe¢ cients and risk premia are invariant to the choice of normalization. The model fails the

J-test using both normalizations. But in both cases the model has quite good �t, at least

at the �rst stage of GMM.

4.3 Accounting for the Findings Using the Two Normalizations

Recall that the two normalizations are equivalent in the following sense. Under the null

hypothesis that the true SDF is given by (1), m�
t and m

�
t are proportional to one another

when evaluated at the true parameter values. We have seen several cases, however, where

the signi�cance of the b coe¢ cients, the apparent �t of the model, and the estimated risk

premia, di¤er dramatically for the two normalizations. What might explain this apparent

lack of equivalence?

One possibility is that there are severe small sample problems in estimating the models.

The Monte Carlo simulation experiments in section 6 suggest that this is not the case. The

explanation that I focus on, instead, is the possibility that one or more of the risk factors, or

some linear combination of the risk factors, is uncorrelated with the returns. I explore this

possibility in detail in section 5. Here I provide a quick sketch in the case of a single factor

model.

Suppose that E(Reit) 6= 0 for at least one element of Ret . Suppose, also, that ft is a

spurious factor, so that cov(Ret ; ft) = 0. This means the SDF in (1) cannot be the true

SDF because ft cannot price the elements of Reit with non-zero means. Consider the moment

condition (7). Under the assumptions just given, it can be rewritten

E(Ret )[1� E(ft)b
�] = 0: (29)

Notice that if E(ft) 6= 0 the unique solution to (29) is b� = 1=E(ft). Now consider the

moment conditions (9). Under the assumptions just given they can be rewritten as

E (ft)� � = 0 E(Ret ) f1� [E(ft)� �] b�g = 0 (30)

Since E(Reit) 6= 0 for at least one element of Ret , there is no solution for (b�; �). Not surpris-
ingly, as sections 6 and 7 demonstrate, a GMM estimator based on (7) provides misleadingly

favorable inference about the SDF. GMM estimators based on (9) encounter their own dif-

�culties, but these do not arise because there is a spurious solution to (9).

There is another, more limited, sense in which a factor can be spurious. Suppose that ft

is panel spurious in that the covariance between Reit and ft itself does not vary with i. That

16



is, cov(Ret ; ft) = c�, where � is an n � 1 vector of ones, and c 6= 0 is some scalar constant.
With these assumptions, if the SDF were true then it would follow that E(Reit) = cb� for

i = 1, : : : , n. So if E(Reit) 6= E(Rejt) for at least one pair of assets, i and j, i 6= j, the SDF

must be false. Sections 6 and 7 also explore the consequences of panel spuriousness for GMM

estimates based on the two normalizations.

When the risk factors are known to be highly correlated with the individual asset returns

being studied, and the covariance varies across assets, the spuriousness hypothesis is implau-

sible. To show that spuriousness is a plausible explanation of the results obtained with the

LV and FF25 data, I now present evidence on the covariance between the returns and risk

factors.

First, I directly estimate the covariances, ci, between the risk factors and the asset returns

using GMM by exploiting the moment restrictions

E(ft � �) = 0 (31)

E[Reit(ft � �)� ci] = 0; i = 1; 2; : : : ; n: (32)

To test for spuriousness I test the null hypothesis that ci = 0 for all i. To test for panel

spuriousness I test the null hypothesis that ci = c for all i.

Second, I estimate the factor betas, �i = ci=�
2
f , by GMM using the following moment

restrictions:

E(Reit � ai � �ift) = 0; i = 1; 2; : : : ; n: (33)

E[(Reit � ai � �ift)ft] = 0; i = 1; 2; : : : ; n: (34)

To test for spuriousness I test the null hypothesis that �i = 0 for all i. To test for panel

spuriousness I test the null hypothesis that �i = � for all i.

Table 5 presents the covariances and betas for the LV data. Notably only one portfolio�s

return, #2, is signi�cantly correlated with consumption growth. The covariance for this

portfolio is signi�cant at the 10 percent level, while the factor beta is signi�cant at the 5

percent level. A joint test of the null hypothesis that ci = 0 for all i has a p-value of 0:447,

while the p-value associated with the null hypothesis that �i = 0 for all i is 0:048. Which

test result is more plausible? Using Monte Carlo simulation, Burnside and Eichenbaum

(1996) show that GMM-based Wald tests have excessive size in small samples. Therefore

Table 5 also presents small-sample p-values for the joint tests computed using Monte Carlo
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simulations described in Appendix C. These p-values are 0:618 for the covariance-based test

and 0:334 for the beta-based test.

A similar story holds for durables growth. The covariance for Portfolio #7 is statistically

signi�cant at the 10 percent level, while the factor beta for Portfolio #7 is signi�cant at the

5 percent level. The joint tests do not reject that ci = 0 and �i = 0 for all i at conventional

signi�cance levels.

The market return is not signi�cantly correlated with any of the portfolio returns, and

the joint tests do not reject that ci = 0 and �i = 0 for all i at conventional signi�cance levels.

Table 6 presents the covariances and betas for the FF25 returns. For consumption growth,

most of the covariances and betas are signi�cant at the 5 percent level, and all are signi�cant

at the 10 percent level. Indeed, when I test the null hypothesis that �i = 0 for all i, it is

rejected at the 0:001 percent level of signi�cance, although the null hypothesis that ci = 0 for

all i is only rejected at the 8:5 percent level of signi�cance. P-values based on Monte-Carlo

simulations are larger, but some doubt is cast on the notion that consumption growth is a

spurious factor. It is striking, however, that the regression coe¢ cients and covariances are

quite similar in value across the returns. The standard deviation of �̂i across i is just 0:76,

while the average standard error of �̂i is nearly twice as large at 1:39. This suggests that

cov(Reit; ft) does not vary very much across i. Indeed, when I test the null hypothesis that

ci = c for all i, the p-value is 0:29. On the other hand, when I test the null hypothesis that

�i = � for all i, the asymptotic p-value is 0:009, though the small sample p-value based

on Monte Carlo experiments is 0:172. I conclude that it is reasonable to hypothesize that

consumption growth is a panel spurious factor for the FF25 returns based on this somewhat

mixed evidence.

Turning to durables growth, the evidence suggests that it is spurious. None of the individ-

ual regression coe¢ cients and covariances is signi�cant at the 5 percent level. Furthermore,

the null hypothesis that ci = 0 for all i is not rejected at conventional signi�cance levels.

When I test the null hypothesis that �i = 0 for all i, the asymptotic p-value is 0:115, while

the small sample p-value based on Monte Carlo experiments is 0:461.

Finally, consider the market excess return. Here there is no evidence of either form of

spuriousness. All of the regression coe¢ cients and covariances are signi�cant at the 1 percent

level. All joint hypothesis tests lead to overwhelming rejection of both types of spuriousness.
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4.4 Robustness

In Appendix D, I explore the robustness of my �ndings. In particular, I compute long-

run covariance matrices using HAC estimators rather than using the VARHAC procedure

of den Haan and Levin (2000). Following Cochrane (2005), I use an alternative weighting

matrix at the second stage of GMM when estimating the �-normalization. I also consider

iterated GMM, where the weighting matrix is recomputed multiple times until approximate

convergence of the parameter estimates. Mimicking Parker and Julliard (2005) I introduce a

common pricing error parameter, akin to the constant sometimes used in the cross-sectional

regression of two-pass procedures used to estimate the beta representation of the model. In

no case do any of these changes a¤ect my qualitative conclusion that the �t of the esti-

mated models is relatively poor and the statistical signi�cance of the estimated parameters

is relatively weak, when using the �-normalization.

As a �nal check on robustness I adopt a variant of the �-normalization used by Yogo

(2006). In this variant, all information about � that is available in the moment restrictions

is used to estimate it. In the benchmark approach the GMM estimator sets a�Tg
�
T = 0 and

a�T is designed so that �̂ = �f . But there is information about � in the moment condition

E(Retm
�
t ) = 0 because m

�
t = 1� (ft��)0b�. Because Yogo�s approach takes this information

into account, �̂ will not, in general, be equal to �f . With this variant of the �-normalization

I �nd that the models perform better overall because the estimated means of the factors

move substantially to �t the asset pricing conditions. But this depends critically on how

the weighting matrix is speci�ed in the �rst stage of GMM. For the LV data the �t of the

models is poor at the second stage of GMM, while parameter estimates are insigni�cant at

the �rst stage of GMM. For the FF25 data, Yogo�s multi-factor model �ts considerably better

than in my benchmark case. However, again, I �nd this to be highly dependent on how the

weighting matrix is set at the �rst stage of GMM. If further GMM iterations are performed,

this sensitivity to the initial weighting matrix vanishes, and the results are similar to those

for my benchmark approach.6

5 Large Sample Properties of the GMM Estimators

In this section I explore the asymptotic properties of the GMM procedures described above.

6I explore the Parker and Julliard (2005) and Yogo (2006) approaches in more detail in a related paper,
Burnside (2007a).
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Assumption 1 Let the true SDF be given by (1) and let the true values of the parameters

a and b be denoted a0 and b0. Let the true values of b�, b� and � be denoted b�0 = b0=a0,

b�0 = b0=(a0 � �00b0) and �0 = E(ft).

Assumption 2 Let E(Retf
0
t) and cov(R

e
t ; f

0
t) have full column rank.

Assumption 3 Assume that DT
a:s:! D0 = E(Retf

0
t), dT

a:s:! d0 = cov(Ret ; ft), W
�
T
a:s:! W �

0

and W �
T
a:s:! W �

0 , with W
�
0 and W

�
0 positive de�nite.

For compactness of notation let �� = (b�; �) and ��0 = (b
�
0; �0). De�ne

��0 = E

�
@u�t (b

�
0)

@b�

�
= �E(Retf 0t) = �D0

and

��0 = E

�
@u�t (�

�
0)

@��

�
=

�
� cov(Ret ; ft) E(Ret )b

�0
0

0 �Ik

�
=

�
�d0 E(Ret )b

�0
0

0 �Ik

�
Let S�0 = E

hP+1
j=�1 u

�
t (b

�
0)u

�
t�j(b

�
0)
0
i
and S�0 = E

hP+1
j=�1 u

�
t (�

�
0)u

�
t�j(�

�
0)
0
i
. De�ne a�0 =

D0
0W

�
0 and

a�0 =

�
d00W

�
0 0

0 Ik

�
:

Theorem 1 Suppose assumptions 1� 3 are satis�ed. Under additional regularity condi-

tions provided in Hansen (1982) b̂� a:s:! b�0, �̂
�
0
a:s:! �̂

�
0,
p
T (b̂� � b�0)

d! N(0; V �
b ) and

p
T (�̂

� �
��0)

d! N(0; V �
� ) with V �

b = (a�0�
�
0)
�1a�0S

�
0a
�0
0 (�

�0
0 a

�
0)
�1 and V �

� = (a�0�
�
0)
�1a�0S

�
0a
�0
0 (�

�0
0 a

�
0)
�1.

Also, R2�
a:s:! 1 and R2�

a:s:! 1. The statistics J� and J� both converge in distribution to �2

random variables with n� k degrees of freedom.

The proof of Theorem 1 is provided in Appendix A. The interpretation of Theorem 1 is that

when the model is true (Assumption 1), and when the moment conditions are informative

about the risk factors (Assumption 2), both approaches to estimation work well.

Next I turn to a situation where the model remains true, but the returns in the data

being studied do not fully shed light on the relevance of the risk factors.

Assumption 2a Let cov(Ret ; f
0
t) have rank r < k.

Notice that if we maintain assumption 1, that the model is true, then E(Ret ) = cov(R
e
t ; f

0
t)b0

and E(Retf
0
t) = cov(R

e
t ; f

0
t)[Ik + b0E(f

0
t)]. Hence E(R

e
tf
0
t) has rank less than or equal to r.
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Theorem 2 Suppose assumptions 1, 2a and 3 are satis�ed. It follows that neither b� nor

b� is asymptotically identi�ed. Nonetheless, R2�
a:s:! 1 and R2�

a:s:! 1.

The proof of Theorem 2 is provided in Appendix A. The interpretation of Theorem 2 is

that even though the model is true (Assumption 1), the moment conditions are insu¢ ciently

informative about the risk factors (Assumption 2a), and neither approach to estimation

will work well in large samples. Presumably the lack of asymptotic identi�cation would be

manifested in large standard errors for b̂� and b̂� in �nite samples. While the parameters of

the SDF are not identi�ed, this is because there are multiple values of b� and b� that satisfy

the moment conditions asymptotically. As a result the measures of �t limit to 1.

Next I turn to a situation where the model is false.

Assumption 1b Assume that the true SDF is not given by (1) so that, in general, E(Ret ) 6=
cov(Ret ; ft)b for the particular vector ft being studied.

Assumption 2b Let E(Ret ; f
0
t) have rank k but cov(R

e
t ; f

0
t) have rank k � 1.

Assumption 2b is feasible because we are no longer maintaining assumption 1. The matrix

E(Retf
0
t) can have full column rank, even when the matrix cov(R

e
t ; ft) has less than full

column rank.

Theorem 3 Suppose assumptions 1b, 2b and 3 are satis�ed. Under additional regularity

conditions provided in Hansen (1982) b̂� a:s:! b�s = x=[x0E(ft)], where x is the unique element

of the nullspace of cov(Ret ; ft) whose elements sum to 1, and R2�
a:s:! 1. At least one element

of b�s is non-zero. In contrast b
� is not asymptotically identi�ed.

The proof of Theorem 3 is provided in Appendix A. Since the model is not true, the parameter

vector b�s has no interpretation as the �true�value of b
�. Rather b�s is a degenerate value of

b� for which the moment condition (6) holds, even though (1) is not the true SDF. The sum

of the elements of b�s is 1=[x
0E(ft)] which is the inverse of a weighted average of the means

of the risk factors.

Before turning to the asymptotic distributions of b̂� and J� it is helpful to de�ne the

following notation. Let S�s = E
P+1

j=�1 u
�
t (b

�
s)u

�
t�j(b

�
s)
0 and V �

s = E[u�t (b
�
s)u

�
t (b

�
s)
0]. In general

S�s 6= V �
s under Assumption 1b. Let A

�
0 = In � ��0(a

�
0�
�
0)
�1a�0 and de�ne V

�
g = A�0V

�
s A

�
0
0 and
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V �
0 = A�0S

�
sA

�
0
0. Finally, diagonalize V �

0 as V
�
0 = P0�0P

0
0 where the columns of P0 are the

orthonormal eigenvectors of V �
0 and �0 is a diagonal matrix with the eigenvalues of V

�
0 on

the diagonal. Let ~V �
0 = P0�

1=2
0 so that ~V �

0
~V �0
0 = V �

0 .

Theorem 4 Under the assumptions of Theorem 3,
p
T (b̂� � b�s)

d! N(0; V �
b ) with V

�
b =

(a�0�
�
0)
�1a�0S

�
sa
�0
0 (�

�0
0 a

�
0)
�1. If S�s = V �

s , J
� d! �2n�k. When S

�
s 6= V �

s , J
� d!

Pn�k
i=1 �iz

2
i where

z1, z2, : : : , zn�k are mutually independent standard normal random variables and �1, �2,

: : : , �n�k are the non-zero eigenvalues of the matrix ~V �0
0 (V

�
g )
+ ~V �

0 .

The proof of Theorem 4 is provided in Appendix A. Some examples are helpful in interpreting

Theorems 3 and 4.

Single Factor Model With a Spurious Factor In a single factor model k = 1 so

Assumption 2b implies that cov(Ret ; ft) = 0 and, since E(Retft) has rank 1, that D0 =

E(Retft) = E(Ret )E(ft) 6= 0. In this case b�s = 1=E(ft). A researcher testing the model

under the null would compute an inconsistent estimate of V �
b that would converge, instead,

to (a�0�
�
0)
�1a�0V

�
s a

�0
0 (�

�0
0 a

�
0)
�1. Nonetheless, because this matrix is �nite, the t-statistic for b̂�

would diverge to +1 if E(ft) > 0 or �1 if E(ft) < 0. The predicted expected returns,

DT b̂
�, would converge almost surely to D0b

�
s = E(Ret ). Therefore R

2
�
a:s:! 1. Thus, in large

samples a researcher testing the model using the a-normalization would conclude that the

factor ft prices the returns (due to the statistical signi�cance of b̂�) and that the model�s

�t is perfect. A researcher testing the over-identifying restrictions using, say, a 5 percent

critical value from the �2n�1 distribution would only reject the model about 5 percent of the

time in repeated large samples if S�s = V �
s . It is unclear what would happen in the more

general case when S�s 6= V �
s .

For the �-normalization, Hansen�s identi�cation condition requires that there should be

a unique b� that solves (d00W
�
0 d0) b

� = d00W
�
0E(R

e
t ). Clearly any value of b

� will work when

d0 = 0.

Multi-factor Model with a Single Spurious Factor In a multi-factor model k > 1.

Without loss of generality, let cov(Ret ; fkt) = 0. In this case, the vector x referred to in the

statement of Theorem 3 has a 1 as its kth element and zeros elsewhere. So b�s = x=[x0E(ft)]

has 1=E(fkt) as its kth element and zeros elsewhere. Oddly enough, a researcher testing the

model using the a-normalization and a large sample of data would conclude that the factor
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fkt prices the returns and that the other factors are irrelevant, even though they are the

only ones correlated with Ret . As in the previous example, R
2
�
a:s:! 1. A researcher testing the

over-identifying restrictions using a 5 percent critical value from the �2n�k distribution would

only reject the model about 5 percent of the time in repeated large samples if S�s = V �
s .

As in the previous example, for the �-normalization, the identi�cation condition is not

satis�ed because there is no unique b� that solves (d00W
�
0 d0) b

� = d00W
�
0E(R

e
t ). When the

last column is d0 is zero, but the rest of the matrix has full column rank, it is b�k that is

unidenti�ed asymptotically. The rest of the parameter vector b� is identi�ed. If it is also

true that m�
t = 1 � (ft � �)0b� but b�k = 0, so that the proposed SDF nests the true SDF,

the components of b̂� other than b̂�k will converge in probability to their true values. For

more general forms of misspeci�cation these components of b̂� will converge in probability,

although the probability limits will not be interpretable as true values.

Multi-factor Model with Multicollinearity Among the Factors Now consider the

more general case where k > 1, where cov(Ret ; ft) has no zero columns, but cov(R
e
t ; ft) has

rank k�1. In this case, no one factor is spurious, but there is an identi�cation problem akin to
multicollinearity. But this identi�cation problem only arises when using the �-normalization.

Using the a-normalization, b̂� a:s:! b�s = x=[x0E(ft)] and R2�
a:s:! 1. Remarkably, the estimated

model puts all its weight on an irrelevant linear combination of the risk factors because

cov(Ret ; f
0
tb
�
s) = d0x=[x

0E(ft)] = 0:

Any elements of b̂� that correspond to non-zero elements of b�s will be found to be signi�cantly

di¤erent from zero in large samples. A researcher testing the over-identifying restrictions

using a 5 percent critical value from the �2n�k distribution would only reject the model about

5 percent of the time in repeated large samples if S�s = V �
s .

Greater Numbers of Spurious Factors Theorems 3 and 4 relied on the assump-

tion that only one linear combination of the risk factors is spurious, in the sense that

rank[cov(Ret ; f
0
t)] = k � 1. If rank[cov(Ret ; f 0t)] = k � r, r > 1, then b� is asymptotically

unidenti�ed because there will be many b� such that a�0[E(R
e
t ) � D0b

�] = 0. All these b�,

however, share the property that E(ft)0b� = 1 and E(Ret ) = D0b
�. Presumably the lack

of asymptotic identi�cation would be manifested in large standard errors for the individual
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elements of b̂�, but the particular linear combination E(ft)0b̂� would have a small standard

error, and would be centered around 1. Also, the measure of �t, R2�, would be roughly 1.

More Asymptotic Properties of the �-Normalization To this point we have only

been able to show lack of asymptotic identi�cation of the �-normalization when the rank

condition on cov(Ret ; f
0
t) fails. Although b

� is unidenti�ed asymptotically, and does not have

a well de�ned probability limit, it is still possible, under additional regularity conditions, to

derive the asymptotic distributions of b̂�, its associated t-statistic, the model�s R2 and the

J-statistic used to test the over-identifying restrictions. Here I consider only the case of a

single factor model with the returns and factors being iid and independent of each other. The

more general case of a multifactor model with persistent returns or factors can be worked

out, but at the cost of algebraic complexity.

Theorem 5 Make the assumptions of Theorem 3. Let Ret and ft be iid over time and

mutually independent, and let k = 1. Let �R = E(Ret ), �R = var(Ret ), � = E(ft) and

�2f = var(ft). De�ne the random variables X � N(0; �2f�R), Z = (X 0�R)=(X
0X) and

~Z = (X 0��1R �R)=(X
0��1R X). Then T 1=2dT

d! X. It follows that at the �rst stage of GMM

T�1=2b̂�
d! Z, t(b̂�) d! (X 0�R)=[�

2
fZ

2(X 0�RX)]
1=2 and R2�

d! 1 � (�0RM�R)=(�
0
RM��R),

where M = In � X(X 0X)�1X 0, M� = In � ��0=n and � is an n � 1 vector of ones. At
the second stage of GMM T�1=2b̂�

d! ~Z, t(b̂�) d! (X 0��1R �R)=[�
2
fZ

2(X 0��1R X)]1=2 and

R2�
d! 1 � (�0R

~M 0 ~M�R)=(�
0
RM��R), where ~M = In � X(X 0��1R X)�1X 0��1R , and J

d!
(�0R

~M 0��1R
~M�0R)=(�

2
fZ

2).

The proof of Theorem 5 is provided in Appendix A.7 Interpreting Theorem 5 in general terms

is di¢ cult because of the dependence of the asymptotic distributions on �R and �R. The

distribution of b̂� will spread out as the sample size increases at a rate of T 1=2. The t-statistic

for b̂� has a well-de�ned asymptotic distribution at both stages of GMM, so the probability of

�nding b̂� to be signi�cantly di¤erent from zero will converge to a number generally not equal

to zero. Similarly, the J statistic used to test the over-identifying restrictions has a well-

de�ned asymptotic distribution, so the probability of rejecting the model will converge to a

number generally not equal to zero nor one. When we explore the small sample properties

7Similar asymptotic properties are derived in Kan and Zhang (1999a, 1999b) for the case where ft is zero
mean or, equivalently, has a known mean.
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of GMM in section 6 using calibrated examples, we will use the expressions in Theorem 5 to

derive the limiting distributions of b̂�, t(b̂�), R2� and J as T !1.

Approximate Failure of the Rank Condition The assumption that the rank condition

literally does not hold may seem extreme. In single factor models it requires that cov(Ret ; ft)

is exactly zero. A standard device in the theory of weak instruments and unit root testing

is also useful when it is preferable to assume that cov(Ret ; ft) is small and asymptotically

vanishing but not literally zero. Mimicking Hall�s (2005) discussion of Staiger and Stock

(1997), in the single factor case we might suppose that Ret = �R + cT (ft � �) + ut where ut

is an n� 1 vector that is uncorrelated with ft and cT = T�1=2c where c is a n� 1 vector of
constants. Working with this alternative assumption, however, does not change the result

stated in Theorem 5 that T 1=2dT
d! N(0; �2f�R) nor does it change the fact that �R

e p! �R.

As a consequence, the results in Theorem 5 go through unchanged.

Panel Spuriousness We have not yet considered the case where a factor is panel spurious,

that is, cov(Ret ; ft) = c�, where � is an n�1 vector of ones, and c 6= 0 is some scalar constant.
Suppose this is the case and the model being tested is a single factor model.

First, assume that the model is true, or, in other words, maintain Assumptions 1� 3.

Obviously this implies that E(Reit) = cb�0 for all i = 1, : : : , n. Then Theorem 1 applies. Both

normalizations produce GMM estimates with standard, desirable, asymptotic properties.

Now, assume, instead that the model is false. This means replacing Assumption 1 with

Assumption 1b, so that, in general, E(Ret ) 6= cov(Ret ; ft)b. De�ne !�0 = [(D0
0W

�
0 �)=D

0
0W

�
0D0] c

and !�0 = �0W �
0E(R

e)=(�0W �
0 �).

Theorem 6 Suppose assumptions 1b, 2 and 3 are satis�ed. Assume, also, that k = 1

and cov(Ret ; ft) = c�. Under additional regularity conditions provided in Hansen (1982)

b̂�
a:s:! b�s = (1�!�0)=E(ft), and the predicted expected returns of the a-normalization converge

almost surely to

D0b
�
s =

�
E(Re) +

c

E(f)
�

�
(1� !�0) :

Also b̂� a:s:! b�s = !�0=c, and the predicted expected returns of the �-normalization converge

almost surely to d0b�s = �!�0.

The proof of Theorem 6 is provided in Appendix A. It is clear that in a su¢ ciently large
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sample the model will be rejected using either normalization because the limit of the predicted

expected returns, in general, is not E(Re). For small c, however, it is clear that the a-

normalization will imply good �t since for c �= 0, b�s �= 1=E(ft) and D0b
�
s
�= E(Re). The �t

of the �-normalization in large samples, in contrast, is independent of c and is very poor.

In the �rst stage of GMM, W �
0 = In so that !�0 =

Pn
i=1E(R

e
it)=n, the cross-sectional mean

of the elements of E(Re). So at the �rst stage of GMM, R2�
a:s:! 0. At the second stage of

GMM, !�0 is a weighted average of the elements of E(R
e). So at the second stage of GMM,

plimR2� � 0.

Inference Regarding Risk Premia I now turn to the issue of estimating and testing for

the statistical signi�cance of risk premia. As described earlier, in section 3, the estimates

�̂
�
f and �̂

�
f are obtained by adding appropriate moment restrictions and standard errors

are obtained by the delta method. When Assumptions 1� 3 standard asymptotic theory

described in more detail in Appendix A goes through. My main concern, here, is with the

properties of risk premia estimated using the a-normalization when the model is false and a

linear combination of the risk factors is spurious (under Assumptions 1b, 2b and 3). Recall

that the estimate of �f based on the a-normalization is given by (18), �̂
�
f = Sf b̂

�=(1� �f 0b̂�),

where �f and Sf are, respectively, the sample mean and covariance matrix of ft. Under

assumptions 1b, 2b and 3 plimSf b̂� = �fb
�
s = �fx=[x

0E(ft)], but 1 � �f 0b̂�
a:s:! 0. Since,

in general, �fb�s 6= 0, this implies that in large samples, the risk premia emerging from

estimates of the a-normalization will diverge to �1 with probability 1. Would a researcher

implementing the a-normalization �nd these estimates to be statistically signi�cant if he

computed the t-statistic for �̂
�
f?

Theorem 7 Under the assumptions of Theorem 3, each element of the vector of squared

t-statistics for �̂
�
f converges in distribution to cz

2 where c is a scalar and z2 � �21. If the

lag restrictions imposed in computing the long-run covariance matrix of the GMM errors are

valid, c = 1.

The proof of Theorem 7 is provided in Appendix A. The lag restriction imposed in computing

the long-run covariance matrix of the GMM errors is that u�t (b
�) = Ret (1�f 0tb�) is orthogonal

to lagged information. If this restriction is valid, or if it not imposed on the computation of

the long-run covariance matrix, the t-statistics will indicate signi�cance of �̂
�
f in only a small
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fraction of repeated large samples when the model is false.

A Simple Diagnostic Test We have seen that when the assumptions 1b, 2b and 3 are

satis�ed the probability limit of b̂� is b�s = x=[x0E(ft)]. This implies that in the limit, the

mean of the �tted SDF, m̂�
t = 1 � f 0t b̂

�, is zero. A simple test for this outcome can be

performed by testing the null hypothesis that �0b� = 1. Equivalently the mean of the SDF

and the standard error of its mean can be calculated. If the null hypothesis that the mean

of the SDF is zero cannot be rejected there is good reason to doubt favorable results based

on the a-normalization.

Table 7 shows results corresponding to the estimates of the a-normalization that were

presented in Tables 1 and 3 for the LV and FF25 data. For the LV data the mean of the

estimated SDF is only signi�cantly di¤erent from zero for the single factor model that uses

the market premium as the risk factor. The other estimated SDFs are all approximately

mean zero. These results are not unexpected given that we found the factor betas to be

jointly statistically insigni�cant in section 4.

For the FF25 data the mean of the SDF is signi�cantly di¤erent from zero for the single

factor models with consumption growth and the market premium as the risk factors, as well

as for the multi-factor model that uses the Fama-French factors. This is not unexpected,

because we found consumption growth to be signi�cantly correlated with the FF25 returns,

and it is well known that the Fama-French factors are also correlated with them. On the

other hand, for any model that includes durables growth as one of the factors the mean of

the estimated SDF is small and statistically insigni�cant. This is not surprising given that,

as we in saw in section 4, durables growth is approximately uncorrelated with the FF25

returns.

Direct Tests of the Rank Condition An alternative to estimating the mean of the SDF

is to directly test the rank condition on cov(Ret ; ft). To do this I estimate the n�k matrix of
factor betas, �f , using GMM and the moment restrictions (33) and (34). Let B = vec(�f )

and let V (B̂) be a consistent estimator for the asymptotic covariance matrix of
p
T (B̂�B0),

where B0 is the true value of B. Following Cragg and Donald (1997) and Wright (2003), to

test the null hypothesis that the rank of �f is r < k I form the statistic

L(r) = min
P2
r

T [B̂ � vec(P )]0V (B̂)�1[B̂ � vec(P )]
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where 
r is the set of all n�k matrices with rank r. If the true rank of B0 is r, L(r)
d! �2n�r.

For single factor models k = 1 and the relevant hypothesis is that r = 0. In this case the

L(r) statistic is equivalent to testing that all the factor betas are zero.

Table 8 shows results for the rank tests corresponding to the models estimated in Tables

1�4 for the LV and FF25 data. For the single factor models, the test statistics and p-values

correspond to the ones show in Table 6. For the LV data, it is only for the single factor

model based on consumption-growth that we can reject the null of insu¢ cient rank, and this

rejection is marginal. For all the other models, we cannot reject the null hypothesis that the

matrix of factor betas has less than full column rank.

For the FF25 data we can reject the null hypothesis that cov(Ret ; ft) has less than full

column rank for the single factor consumption growth model, the single factor CAPMmodel,

and the three factor Fama-French model. But for the durables growth model, the consump-

tion factors model, and the Yogo factors model it is di¢ cult to reject the null that cov(Ret ; ft)

has rank k � 1. This, presumably, re�ects the inclusion of durables growth in these models.

6 Small Sample Properties of the GMM Estimators

To further demonstrate the sensitivity of empirical results to the choice of normalization in

the presence of a spurious risk factor, I conduct three sets of Monte Carlo experiments. In

the �rst set of experiments I see how the GMM procedures perform when I confront them

with arti�cial spurious risk factor data in combination with either the LV or FF25 returns. I

generate random data for an arti�cial factor that mimics US consumption data� in terms of

mean and standard deviation� yet is either globally spurious or panel spurious. I show that

a researcher draws dramatically di¤erent conclusions about the model depending on which

normalization is used in estimating the model.

In the second set of experiments I generate data from arti�cial economies. These arti�cial

economies bear some resemblance to the US economy, in that the consumption and returns

series share some of the statistical properties of their US counterparts. Here, however, the

simulated risk factors price the returns by construction. I generate spurious factors in parallel

with the true factors and the returns. I then confront the GMM procedures with either the

true risk factors or a set of alternative risk factors that include a spurious risk factor. I

�nd that the two normalizations perform similarly when the researcher estimates the model

using the true risk factor(s). However, when one of the risk factors in the proposed SDF is
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spurious the researcher draws dramatically di¤erent conclusions about the model depending

on which normalization is used in estimation.

6.1 Experiments Based on US Data

6.1.1 An Experiment Based on the Lustig-Verdelhan Data

LV�s data consist of 50 annual observations on US consumption between 1953 and 2002.

Accordingly, with MATLAB�s random number generator, I create 10000 samples, each of

length T = 50, for an arti�cial risk factor ft, whose law of motion is

ft = �(1� �) + �ft�1 + �t (35)

with �t � Niid(0; �2). The parameters in (35) are set so that ft has the same mean (0:0156),

standard deviation (0:0147) and serial correlation coe¢ cient (0:292) as the consumption

growth series in the LV database. For each sample the factor pricing model is estimated

using GMM and each of the two normalizations, m�
t = 1� ftb

� and m�
t = �[1� (ft � �)b�].

The results are presented in Table 9.

The two normalizations perform very di¤erently in �nite samples. As Table 9 indicates,

the median value of the R2 measure of �t is just over 0:7 at the �rst and second stages

of GMM for the a-normalization. In contrast,for the �-normalization the median value of

the R2 is less than 0:07 at both stages of GMM. The distribution of b̂� is almost entirely

to the right of 35 at the second GMM stage, and b̂� is found to be signi�cant at the 5

percent level in 99:9 percent of the samples, indicating that the researcher using the a-

normalization would almost always conclude that the spurious factor prices the portfolios.

On the other hand, a researcher using the �-normalization would �nd b̂� centered around

0, and would �nd it signi�cant at the 5 percent level in only 25 percent of the samples.

So he would usually conclude that the spurious factor was unhelpful in pricing the assets.

Using the a-normalization the over-identifying restrictions are rejected only 9 percent of the

time with size set to 5 percent, while rejections occur in 81 percent of the samples using the

�-normalization.

There is less contrast between the results for the factor price of risk. For the a-normalization,

the distribution of �̂
�
f is mainly to the right of zero, but has very fat tails to the right and

left. Using a two-sided test, �̂
�
f is statistically signi�cant at the 5 percent level in 32 percent

of the samples, at the second stage of GMM. For the �-normalization �̂
�
f is centered around

0 and is only signi�cant in 24 percent of the samples.
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The simulations with spurious factors can rationalize our �ndings with US consumption

growth used as the risk factor. As Table 1 indicates, when using the a-normalization we

found b̂� = 48:6 and �̂
�
f = 4:20 at the �rst stage of GMM, and b̂

� = 48:8 and �̂
�
f = 4:28 at the

second stage of GMM. These values lie at the 62nd, 57th, 50th and 58th percentiles of the

analog empirical distributions in the Monte Carlo experiments. Table 1 reports R2� = 0:87 at

both stages of GMM, and J = 5:1. These values lie, respectively, at the 82nd, 84th and 17th

percentiles of the analog empirical distributions in the Monte Carlo experiments. In Table

1, the t-statistics for b̂� and �̂
�
f are, respectively, 4:67 and 1:05 at the �rst stage of GMM

and 11:3 and 2:61 at the second stage of GMM. The �rst stage values are at the 63rd and

43rd percentiles of the analog empirical distributions in the Monte Carlo experiments, while

the second stage values lie at the 98th and 90th percentiles of their respective empirical

distributions. It is only these last two statistics that seem at odds with the notion that

consumption growth is a purely spurious factor. This may be due to the simulations not

capturing speci�c features of the US data that matter in constructing the weighting matrix

for the second stage of GMM.

A researcher using the a-normalization would obviously improve his chances of rejecting

a proposed SDF based on a spurious factor if he tested for the statistical signi�cance of �̂
�
f .

As Table 9 indicates, however, he would still �nd �̂
�
f to be signi�cant at the 5 percent level

in 32 percent of the repeated samples at the second stage of GMM. He could also test for

the statistical signi�cance of Em�, but as Table 9 indicates, it would be signi�cant at the 5

percent level in 46 percent of the repeated samples at the second stage of GMM. The two

statistics are highly correlated with each other, so a joint test would be no more e¤ective.

Testing for the signi�cance of �̂
�
f at the �rst stage of GMM would be e¤ective, because

�̂
�
f is only signi�cant at the 5 percent level in 8 percent of the repeated samples. While this

suggests that an e¤ective way of testing for a spurious factor is to test for the signi�cance of

�̂
�
f , this is only true for single factor models. For multi-factor models, as we will see, rejecting

a model only on the basis of the statistical signi�cance of �̂
�
f would lead to over-rejection of

the true model.

The most e¤ective test for detecting spurious factors appears to the direct test for the

rank of the �f matrix. Table 9 shows results from testing the null hypothesis that the rank

of �f is zero. The L statistic exceeds its 5 percent critical value in only 21 percent of the

samples. As a result, the test would have a 79 percent success rate in detecting failure of
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the rank condition if the size of the test was set at 5 percent.

6.1.2 An Experiment Based on the Fama-French Data

When using the FF25 data, above, I set the sample period to 1949Q1�2005Q4. Accordingly, I

create 10000 samples, each of length T = 228, for an arti�cial risk factor ft. This experiment

is more complicated than the previous one, however, because the random factor is designed

to be panel spurious so that it mimics the properties of US consumption growth. In each

random sample I set ft = �+c
�
Ret � �Re

�0
�̂�1R �+�t where �Re and �̂R are the sample mean and

covariance matrix of the vector of excess returns in the FF25 data, and �t is �t � Niid(0; �2).

Across repeated samples cov(ft; Rt) = c�, by construction. I set � = 0:0051 to match the

mean of consumption growth in the US data, c = 7:49 � 10�5 to match the cross-sectional
average of the covariance between consumption growth and the FF25 returns, and � = 0:005

so that the standard deviation of ft equals the standard deviation of consumption growth in

the data. I do not attempt to replicate the serial correlation properties of US consumption

growth in the randomly generated factor. For each sample I estimate the model using both

the a and � normalizations.

Recall that when the �Consumption growth�model was estimated with actual US data

we found b̂�, �̂
�
, b̂� and �̂

�
to be statistically signi�cant (see Tables 3 and 4), though only

marginally so for the �-normalization. The main di¤erences across normalizations were that

the R2 was large and positive for the a-normalization, but negative for the �-normalization,

at both stages of GMM. The model passed the test of the over-identifying restrictions in

both cases but only marginally for the �-normalization.

A similar pattern emerges when the model is estimated using panel spurious factors in

repeated samples. The results are presented in Table 10. It indicates that b̂� and �̂
�
f are

statistically signi�cant in nearly 100 percent of the repeated samples at the second stage

of GMM. In contrast, for the �-normalization, b̂� and �̂
�
f are statistically signi�cant in a

little over 60 percent of the repeated samples. Here only the R2 measure of �t for the �-

normalization provides a strong test of the model�s ability to explain the returns. While R2�
exceeds 0:64 in 50 percent of the samples, R2� is negative in 98 percent of the samples at the

second stage of GMM.
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6.2 Experiments with an Arti�cial Model

6.2.1 A Single Factor Model

In this set of experiments I generate arti�cial data from a single-factor model. The SDF

is given by mt = a � ftb where a = 1:42, b = 27:7 and ft follows the law of motion

ft � Niid(�; �2), with � = 0:0156 and � = 0:0147. This ensures that ft has the same mean

and standard deviation as consumption growth in the LV database. Given that the true

value of � is 0:0156 this means that b� = 19:5, b� = 28, �f = 0:68 (expressed in percent) and

Em� = 0:70.

I construct an n�1 (with n = 8) vector of arti�cial excess returns with the law of motion
Ret = �R + �(mt � �m) + 	�t, where �R is an n � 1 vector , �m = a � �b, � is an n � 1
vector, 	 is an n� n diagonal matrix, and �t � Niid(0; In) and is independent of ft. Given

this de�nition for Ret , it follows that the variance of R
e
it is �

2
Ri = �2i�

2
m +  

2
i with �

2
m = �2b2.

Let �i = ��m�Ri=(�m�Ri), for i = 1, : : : , n. Setting �i = �i�Ri=�m implies that the ith

element on the diagonal of � is  i = (1 � �2i )
1=2�Ri and that E(Reitmt) = 0. So that the

model returns share some of the characteristics of the LV returns, I set �Ri and �
2
Ri equal to

their sample equivalents in the LV data, and thereby determine the values of �i, �i and  i,

for i = 1, : : : , n.

In these experiments the SDF, mt, prices the returns. In large samples GMM estimators

based on the two normalizations deliver consistent parameter estimates and lead to correct

inference about the model. To check small sample performance I simulate 10000 samples

of 50, 250 and 1000 observations each from the model, and estimate the model using both

normalizations.

The results of the experiments with the true risk factor, ft, and the a-normalization are

summarized in Table 11. The distributions of the parameter estimates are centered near

their true values, and in 96 percent of the samples of 50 observations the estimates of b� are

found to be statistically signi�cant at the 5 percent level (90 percent for ��f) at the second

stage of GMM. These percentages rise to 100 percent in the larger samples. There is a slight

tendency to under-reject the over-identifying restrictions, but size approaches asymptotic

size as T increases. The median R2 in a sample of 50 observations is 0:83, and this rises to

0:96 in samples of 250 observations, and 0:98 in samples of 1000 observations.

The results of the experiments with the true risk factor, ft, and the �-normalization

are summarized in Table 12. Once again, the distributions of the parameter estimates are
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centered near their true values, and in 73 percent of the samples of 50 observations the

estimates of b� are found to be statistically signi�cant at the 5 percent level (75 percent

for ��f) at the second stage of GMM. These percentages rise to 100 percent in the larger

samples. Here there is a slight tendency to over-reject the over-identifying restrictions, but

size approaches asymptotic size as T increases. The median R2 in a sample of 50 observations

is 0:66, and this rises to 0:92 in samples of 250 observations, and 0:98 in samples of 1000

observations. Overall, the �-normalization has a tendency to be less enthusiastic about the

true model than the a-normalization, but both normalizations perform well in su¢ ciently

large samples.

To examine the performance of the GMM estimators when the rank condition fails, I

generate a globally spurious factor xt � Niid(�; �2), which is orthogonal to Ret and ft, and

estimate the model with xt replacing ft. The results of the experiments with the spurious

risk factor, xt, are summarized in Table 13 for the a-normalization. Consider, �rst, samples

of 50 observations. With the a-normalization the model is rejected at the 5 percent level

in only 2 percent of the samples and the median values of R2� are 0:79 and 0:81 at the two

stages of GMM. The estimates of b̂� are statistically signi�cant at the 5 percent level in 93

and 96 percent of the samples. Thus, a researcher using only the a-normalization would

almost always conclude that the spurious factor helps to price the assets. The factor risk

premium, �̂
�
f , is signi�cant less often, but a researcher would not necessarily reject the model

on this basis.8 As we will see later, rejecting a model based on lack of signi�cance of �̂
�
f can

lead to a lot of Type I errors. The predictions of Theorem 4 are borne out in the simulations.

As the sample size increases the distribution of b̂� tightens and is nearly centered around

1=E(f) = 64:2. The J statistic rejects the model based on the spurious factor about as often

as it would if the model were true. But, as Theorem 7 predicts, �̂
�
f is signi�cant at the 5

percent level in roughly 5 percent of the samples.

In Section 5 I proposed a simple diagnostic test based on an estimate of Em� given by

1 � �̂0b̂�. Suppose the researcher rejects the model whenever the estimate of Em� is not

signi�cantly di¤erent from zero at the 5 percent level. The results in Table 13 suggest that

he would reject the false model 72:7, 89:2, and 94:1 percent of the time in samples of 50,

250 and 1000 observations based on the �rst stage of GMM. This is a reasonable degree of

power. The results in Table 11 suggest that he would make no Type I errors when the model

8The standard deviation of �̂
�
f is very large, as Table 12 indicates, but this is due to a small number of

extreme observations in the tails of its distribution.
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is true.

Turning to the �-normalization (Table 14), we can see that in samples of 50 observations

the researcher would rarely be misled into thinking that the model based on the spurious

factor �ts the data. This would not, however, be the result of rejecting the model on the

basis of the J statistic. This would only happen 18:3 percent of the time for a test with 5

percent asymptotic size. Here b̂� and �̂
�
f are rarely statistically signi�cant, and the estimates

are centered approximately around zero. Also, the R2 measure of �t takes on a median value

of just 0:10 at the �rst stage of GMM, and 0:05 at the second stage. Unfortunately, to some

extent the �-normalization performs less well in large samples. At the �rst stage of GMM,

the frequency with which b̂� and �̂
�
f are statistically signi�cant at the 5 percent level rises to

50 percent in samples of 1000 observations. For the second stage of GMM, this is only true

in about 15 percent of the samples. The distribution of R2� is roughly invariant to the sample

size. The test of the over-identifying restrictions becomes more powerful as the sample size

increases, although it rejects the model only 56:1 percent of the time in samples of 1000

observations.

The direct test of the rank of �f proves to be a useful diagnostic. Suppose the researcher

rejects the model whenever the test statistic, L, does not exceed the 5 percent critical value

of the relevant �2 distribution. The results in Table 14 imply that he would reject the false

model 65, 90, and 94 percent of the time in samples of 50, 250 and 1000 observations based

on the �rst stage of GMM. This is a reasonable degree of power. The results in Table 12

suggest that he would make no Type I errors when the model is true.

Overall, my results suggest that when the model is true there is little to choose between

the normalizations. However, the results with spurious factors suggest that a researcher

must interpret his results carefully. The �-normalization is less likely to deliver misleadingly

favorable inference about the model than the a-normalization, but at the �rst stage of GMM

even the �-normalization has low power. The test of Em� = 0, which is based on the

a-normalization, and the direct test based on the rank of �f , both appear to be useful

diagnostics for failure of the rank condition, in that they have a reasonable degree of power,

and lead to no Type I errors in my simulations.

As a �nal check on the Monte Carlo simulations with spurious factors, Figures 5 and 6

illustrate the frequency distributions of b̂�, b̂�, their respective t-statistics t(b̂�) and t(b̂�), R2�,

R2�, J� and J�. For the a-normalization, the distribution of the t-statistic diverges so it is
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scaled by a factor of T�1=2. For the �-normalization, the distribution of b̂� diverges, so it

is scaled by a factor of T�1=2. For both normalizations, the distributions across the Monte

Carlos experiments converge to their respective probability limits or limiting distributions

as T !1.

6.2.2 A Multi-Factor Model

In this set of experiments I generate arti�cial data from a multi-factor model. The SDF is

given by mt = a � f 0tb where a is a scalar, ft and b are k � 1 vectors, and ft follows the
law of motion ft � Niid(�;�f ). I set k = 3, a = 1:166 and b = ( 4:50 �0:12 6:78 )0.

I set � and �f equal to the sample mean and covariance matrix of the Rm-Rf, SMB and

HML factors from the Fama-French database. It follows that b� = ( 3:86 �0:10 5:82 )0,

b� = ( 4:51 �0:12 6:80 )0 and �f = ( 1:92 0:53 1:32 )0, expressed in percent. The model

for the true SDF mimics the �rst stage GMM estimates for the Fama-French 3-factor model

shown in Table 4.

I generate an n�1 (with n = 25) vector of arti�cial excess returnsRet = �R+�(ft��)+	�t
where �R is an n� 1 vector, � is an n�k matrix, 	 is an n�n lower triangular matrix, and
�t � Niid(0; In) and is independent of ft. Given this de�nition for Ret , it follows that the

covariance matrix of Ret is �R = ��f�
0+		0. So that the model shares some characteristics

with actual data, I set �R equal to its sample equivalent in the FF25 data. I set � equal to

the matrix of factor betas for the FF25 returns regressed on Rm-Rf, SMB and HML. I set

	 equal to the Cholesky decomposition of the covariance matrix of the residuals from those

regressions. From the assumptions above we have

E(Retmt) = E f[�R + �(ft � �) + 	�t] (a� f 0tb)g

= (a� �0b) [�R � ��fb=(a� �0b)] : (36)

To ensure that the model satis�es the asset pricing restrictions I set �R = ��fb=(a � �0b).

This means that the model expected returns correspond to the model-predicted expected

returns for the �rst stage Fama-French model shown in Table 4.

In these experiments the SDF, mt, prices the returns. In large samples GMM estimators

based on the two normalizations deliver consistent parameter estimates and lead to correct

inference about the model. To check small sample performance I simulate 10000 samples

of 228 observations (the size of quarterly US sample used early) each from the model, and

estimate the model using both normalizations.
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I perform four sets of experiments. In the �rst experiment, the true model is tested by

making the proposed SDF a linear function of ft. In the second experiment, a false model

with a single relevant factor is tested. Here the proposed SDF is a linear function of just

f1t, the �rst element of ft. In the third experiment, a false model with a single relevant,

but panel spurious, factor is tested. In the fourth experiment, a false multi-factor model

is tested. Here the proposed SDF is a linear function of a panel relevant factor, a panel

spurious factor, and a purely spurious factor.

Results for the True Model Table 15 shows the results from the �rst set of experiments

with the true model. The results highlight an important fact: even in a sample of 228

observations, the estimated parameters of the true SDF can be statistically signi�cant in a

relatively small fraction of the samples. The coe¢ cient on the second factor, which mimics

the SMB factor, is only signi�cant in around 10 percent of the samples. The factor risk

premium, �̂f , for the second factor is also only signi�cant in about 30 to 50 percent of the

samples. For the a-normalization, the test of the over-identifying restrictions has size less

than asymptotic size, while for the �-normalization the two are approximately equal.

Results for a Single Relevant Factor Table 16 shows results for the second set of

experiments where a model based on a single relevant factor is estimated. The single factor

is x1t = f1t, the �rst factor in the true model. Not surprisingly, the estimates of b�, b�, �
�
f

and ��f are statistically signi�cant in nearly every sample. For both normalizations, the low

values of the R2 and the large values of the J-statistic both act as reliable signals that there

is a missing factor.

Results for a Single Panel-Spurious Factor Table 17 shows results for the third set

of experiments with a panel spurious factor. Here the proposed SDF is a linear function of

a factor,

x2t = �x2 + c�0��1R (Ret � �R) + u2t;

where c is a scalar, � is an n � 1 vector of ones, and u2t � Niid(0; �2u2) is independent of

Ret and u1t. I set �x2 equal to the sample mean of quarterly US consumption growth in the

period 1949Q1�2005Q4. I set c equal to the cross-sectional average of the sample covariance

between US consumption growth and the FF25 returns over the same period. I set �2u2 so

that the variance of x2t equals the sample variance of US consumption growth over the same
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period. As Table 17 indicates, the a-normalization provides very misleading inference about

the model. The estimates of b�, �f and Em� are signi�cant in almost every sample at the

second stage of GMM. This is not unexpected. After all, x2t is a relevant factor that is

correlated with Ret . But the model also has good �t in many samples, with the median R
2

being 0:79 and 0:58 at the �rst and second stages of GMM, and the J-statistic leading to

very few rejections of the over-identifying restrictions.

A very di¤erent picture emerges when the model is estimated using the �-normalization.

Once again the estimates of the model parameters, in this case b� and �f , are often statisti-

cally signi�cant due to the relevance of the risk factor. The model is also rarely rejected on

the basis of the test of the over-identifying restrictions. But here, the low R2 values reliably

signal that the model has poor �t.

Results for a False Multi-Factor SDF Table 18 shows results for the fourth set of

experiments with a false proposed SDF that is a linear function of a relevant factor, a panel

spurious factor, and a third, purely spurious factor. In this way, this experiment is meant

to mimic the �Yogo Factors� case in Tables 3 and 4. As we saw in section 4, the market

premium factor appears to be relevant, but the evidence from the factor betas suggests that

consumption growth is panel spurious for the FF25 returns, and durables growth is purely

spurious.

The trio of factors, xt, consists of x1t and x2t (de�ned above), as well as x3t = �x3 + u3t

where u3t � Niid(0; �2u3) is independent of R
e
t , u1t and u2t. I set �

2
u3 equal to the sample

variance of US durables growth over the period 1949Q1�2005Q4.

The results for the a-normalization follow the predictions of Theorem 4. The estimates

of b�3, the coe¢ cient on the spurious factor, are nearly always found to be statistically sig-

ni�cant. In contrast, the estimates of b�1, the coe¢ cient on the most relevant factor for the

cross-sectional distribution of the returns, is nearly always found to be statistically insigni�-

cant. The cross-sectional R2 measures are also very high and the test of the over-identifying

restrictions rarely leads to the model being rejected. Some doubt is cast on the model by

the fact that some elements of �̂
�
f are signi�cant in relatively few samples, but as we saw

above, this also occurs when the model being tested is the true model. A researcher aware

of this fact would be hesitant to reject the model on this basis.

The test for Em� = 0 at the �rst stage of GMM provides reliable evidence against model,

as Em� is found to be statistically di¤erent from zero at the 5 percent level in just 11 percent
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of the samples. As Table 15 indicates, using the 5 percent critical value as a threshold for

rejection of the model would not lead to Type I errors as the estimate of Em� is signi�cant

in every sample for the true model.

The test of the rank of �f also provides reliable evidence against model. The statistic L

is found to be statistically di¤erent from zero at the 5 percent level in just 14 percent of the

samples. As Table 15 indicates, using the 5 percent critical value as a threshold for rejection

of the model would not lead to Type I errors as L is statistically signi�cant in every sample

for the true model.

7 Conclusion

We have seen that standard GMM-based tests based on the a-normalization have very low

power to reject proposed SDFs when they are false and the covariance matrix between the

returns and the proposed risk factors has less than full column rank. This �nding is relevant

for tests of consumption-based asset pricing models, because some consumption-related risk

factors display little covariance with the returns being priced. Estimates of consumption-

based models based on the a-normalization are misleading because parameter estimates

are statistically signi�cant and R2s are close to 1 despite the lack of signi�cant covariance

between the returns and speci�c risk factors in the models.

The �-normalization, which speci�es the SDF in terms of demeaned risk factors, generally

performs better in small samples, but even then the power to reject a false model can be

surprisingly low. In Burnside (2007a) I show that there are related small sample problems

with the variants of the �-normalization used by Parker and Julliard (2005) and Yogo (2006).

The challenge is to �nd tests that reliably detect failure of the rank condition. Tests

based on the statistical signi�cance of factor risk premia lead to many Type I errors in

�nite samples. Tests based on the statistical signi�cance of an estimate of Em� display a

reasonable amount of power and lead to very few Type I errors. So do direct tests of the

column rank of the matrix of factor betas. Given the problematic nature of the small and

large sample properties of GMM when the rank condition fails, these diagnostics are useful

tools for researchers working with macroeconomic factor models.
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TABLE 1: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Data, a-Normalization

First Stage Second Stage
Risk factor or factors b� �f R2 b� �f R2 J

Consumption growth 48.6 4.20 0.87 48.8 4.28 0.87 5.1
(10.4) (4.01) (4.3) (1.64) (0.645)

Durables growth 20.2 2.65 0.84 24.3 5.51 0.81 4.8
(3.7) (1.63) (1.7) (4.41) (0.683)

Rm-Rf 5.5 29.1 0.46 6.5 39.1 0.45 10.2
(2.3) (18.8) (1.7) (17.5) (0.175)

Consumption Factors
Consumption growth 40.1 3.64 0.87 -5.5 1.86 0.81 2.7

(56.0) (1.86) (27.9) (1.98) (0.847)
Durables growth 3.7 3.64 26.2 4.81

(28.0) (1.95) (13.5) (3.48)

Yogo Factors
Consumption growth 9.6 2.76 0.95 2.3 3.43 0.89 1.9

(30.7) (2.06) (21.9) (3.41) (0.860)
Durables growth 14.2 2.91 22.0 5.96

(17.1) (2.74) (11.0) (6.21)
Rm 2.4 33.4 1.1 12.1

(1.7) (27.7) (0.9) (23.2)

Fama-French Factors
Rm-Rf 6.0 31.3 0.56 7.6 92.8 0.27 5.3

(3.4) (30.2) (2.5) (91.4) (0.384)
SMB -5.3 -12.7 -4.5 -17.5

(5.7) (22.1) (4.2) (39.6)
HML 4.1 12.3 6.5 45.7

(3.9) (19.7) (2.8) (50.7)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of b�, from the SDF
mt = 1 � f 0tb�, obtained using the moment restriction E(Retmt) = 0, where Ret is an 8 � 1 vector of excess
returns of equally-weighted portfolios of short-term foreign-currency denominated money market securities
sorted by their interest di¤erential with the US, and ft is a scalar or vector of risk factors. The factors are
real per household consumption (nondurables & services) growth, real per household durable consumption
growth, and the following variables from the Fama-French data: the real value weighted US stock market
excess return over the risk free rate (Rm-Rf ), the gross return to the same portfolio (Rm), and the SMB
and HML portfolio excess returns [see Lustig and Verdelhan (2007)]. Estimates of the factor risk premium
�̂f = Sf b̂

�=(1 � �f 0b̂�) are also reported (in percent), where �f and Sf are the sample mean and covariance
matrix of ft. GMM-VARHAC standard errors are reported in parentheses for b̂� and �̂f . The table reports
the R2 measure of �t between the sample mean of Ret and the predicted mean returns, given by DT b̂

�, where
DT = 1

T

PT
t=1R

e
tf
0
t . Tests of the overidentifying restrictions are also reported. The test statistic, J , is

asymptotically distributed as a �28�k, where k is the number of risk factors. The p-value is in parentheses.
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TABLE 2: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Data, �-Normalization

First Stage Second Stage
Risk factor or factors � b� �f R2 b� �f R2 J

Consumption growth 0.016 45.1 0.95 0.10 72.3 1.52 0.06 15.6
(0.003) (74.7) (1.48) (31.4) (0.73) (0.029)

Durables growth 0.034 20.8 0.87 0.16 48.0 2.01 -0.13 14.3
(0.007) (29.2) (1.15) (23.4) (0.82) (0.047)

Rm-Rf 0.070 1.8 5.97 0.02 1.4 4.72 0.02 22.0
(0.025) (3.6) (11.8) (2.4) (7.76) (0.003)

Consumption Factors
Consumption growth 0.016 -8.7 0.26 0.16 -10.8 0.74 -0.11 14.1

(0.003) (56.9) (0.80) (40.6) (0.69) (0.028)
Durables growth 0.034 23.6 0.82 50.8 1.92

(0.007) (39.0) (1.05) (28.6) (0.84)

Yogo Factors
Consumption growth 0.016 -22.0 0.59 0.34 -4.9 1.26 -0.08 8.2

(0.003) (63.6) (1.18) (48.3) (1.14) (0.146)
Durables growth 0.034 45.5 1.10 65.4 2.40

(0.007) (51.0) (1.78) (34.7) (1.64)
Rm 0.070 5.2 11.7 3.3 5.02

(0.025) (3.0) (9.42) (2.7) (7.80)

Fama-French Factors
Rm-Rf 0.070 1.5 7.07 0.08 -0.4 1.07 0.05 17.7

(0.025) (4.3) (11.4) (3.5) (9.51) (0.003)
SMB 0.024 1.7 4.08 2.2 3.79

(0.020) (4.6) (7.06) (3.9) (6.04)
HML 0.057 -2.8 -5.91 -2.5 -4.80

(0.020) (5.1) (8.78) (4.0) (7.23)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1� (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 3: GMM Estimates of Linear Factor Models
Fama-French 25 Data, a-Normalization

First Stage Second Stage
Risk factor or factors b� �f R2 b� �f R2 J

Consumption growth 126.3 0.94 0.81 142.8 1.38 0.51 30.2
(23.6) (0.49) (10.1) (0.36) (0.179)

Durables growth 111.1 -2.48 0.89 93.3 11.0 0.43 15.5
(18.3) (2.84) (7.2) (44.9) (0.906)

Rm-Rf 3.3 2.31 -0.55 4.7 3.40 -3.55 65.5
(0.9) (0.57) (0.8) (0.59) (0.000)

Consumption Factors
Consumption growth 54.0 2.83 0.98 49.3 1.93 0.96 17.2

(33.8) (4.86) (13.8) (2.03) (0.800)
Durables growth 64.4 4.24 64.8 3.15

(20.4) (8.01) (8.3) (3.24)

Yogo Factors
Consumption growth 41.0 2.10 0.98 38.5 1.47 0.97 17.3

(32.5) (3.76) (16.6) (1.57) (0.748)
Durables growth 69.9 4.21 68.7 3.02

(18.1) (7.19) (8.8) (2.57)
Rm 0.2 2.33 0.4 2.96

(0.5) (3.42) (0.4) (3.28)

Fama-French Factors
Rm-Rf 3.9 1.92 0.75 5.0 2.53 -0.20 47.8

(0.9) (0.64) (0.8) (0.70) (0.001)
SMB -0.1 0.52 -0.5 0.58

(1.2) (0.36) (1.1) (0.37)
HML 5.9 1.35 7.2 1.69

(1.1) (0.49) (0.9) (0.63)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of b�, from the
SDFmt = 1�f 0tb�, obtained using the moment restriction E(Retmt) = 0, where Ret is a 25�1 vector of excess
returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value ratio, and
ft is a scalar or vector of risk factors. The factors are real per capita consumption (nondurables & services)
growth, real per capita durable consumption growth, and the following variables from the Fama-French data:
the real value weighted US stock market excess return over the risk free rate (Rm-Rf ), the gross return to
the same portfolio (Rm), and the SMB and HML portfolio excess returns (see Appendix B). Estimates of
the factor risk premium �̂f = Sf b̂

�=(1� �f 0b̂�) are also reported (in percent), where �f and Sf are the sample
mean and covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for b̂� and
�̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted mean returns,
given by DT b̂�, where DT = 1

T

PT
t=1R

e
tf
0
t . Tests of the overidentifying restrictions are also reported. The

test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk factors. The p-value
is in parentheses.
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TABLE 4: GMM Estimates of Linear Factor Models
Fama-French 25 Data, �-Normalization

First Stage Second Stage
Risk factor or factors � b� �f R2 b� �f R2 J

Consumption growth 0.0051 335.4 0.89 -0.44 141.9 0.38 -5.93 36.3
(0.0005) (164.5) (0.46) (70.7) (0.17) (0.051)

Durables growth 0.0104 -554.0 -1.92 -2.46 -2.2 -0.01 -16.8 2.9
(0.0012) (534.1) (1.89) (121.5) (0.42) (1.000)

Rm-Rf 0.0197 3.5 2.30 -0.77 3.1 2.04 -0.97 69.8
(0.0054) (1.1) (0.57) (1.0) (0.54) (0.000)

Consumption Factors
Consumption growth 0.0051 370.3 0.99 -0.42 130.2 0.35 -6.83 28.2

(0.0005) (166.6) (0.46) (82.3) (0.20) (0.210)
Durables growth 0.0104 64.9 0.31 6.6 0.05

(0.0012) (165.2) (0.56) (73.8) (0.25)

Yogo Factors
Consumption growth 0.0051 271.6 0.76 -0.33 24.7 0.09 -1.61 20.2

(0.0005) (177.6) (0.45) (83.0) (0.21) (0.571)
Durables growth 0.0104 136.4 0.53 40.2 0.14

(0.0012) (136.2) (0.48) (63.4) (0.23)
Rm 0.0224 1.5 2.18 2.7 1.76

(0.0054) (2.4) (0.73) (1.8) (0.88)

Fama-French Factors
Rm-Rf 0.0197 4.5 1.92 0.66 4.4 1.75 0.49 53.7

(0.0054) (1.2) (0.63) (1.1) (0.63) (0.000)
SMB 0.0063 -0.1 0.53 -0.6 0.36

(0.0036) (1.4) (0.36) (1.3) (0.35)
HML 0.0119 6.8 1.32 6.9 1.37

(0.0036) (1.4) (0.49) (1.3) (0.50)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1� (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 5: Diagnostics for Spurious Factors, Lustig-Verdelhan Data

(a) Covariance with Factor (b) Factor Beta
Portfolio Consumption Durables Market Consumption Durables Market

Growth Growth Return Growth Growth Return

1 0.22 1.00 -16.3 0.10 0.24 -0.05
(1.66) (3.01) (15.0) (0.53) (0.43) (0.05)

2 1.60 2.04 -7.74 0.76 0.49 -0.02
(0.88) (1.40) (19.0) (0.38) (0.31) (0.06)

3 0.55 2.66 1.62 0.26 0.64 0.00
(1.61) (2.79) (11.8) (0.82) (0.53) (0.05)

4 0.38 3.72 -29.8 0.18 0.89 -0.09
(2.31) (3.48) (20.9) (1.09) (0.54) (0.06)

5 1.34 2.30 4.14 0.63 0.55 0.01
(1.43) (2.31) (20.7) (0.65) (0.54) (0.06)

6 0.55 2.90 2.70 0.26 0.69 0.01
(1.75) (2.53) (20.2) (0.83) (0.57) (0.06)

7 2.32 5.42 -12.4 1.10 1.30 -0.04
(1.72) (2.81) (21.1) (0.72) (0.55) (0.06)

8 0.18 2.82 17.4 0.09 0.68 0.05
(2.50) (2.70) (33.1) (1.43) (1.05) (0.10)

Joint-tests
All = 0 7.87 5.69 7.52 15.6 10.0 7.6

(0.447) (0.682) (0.481) (0.048) (0.265) (0.475)
[0.618] [0.791] [0.663] [0.334] [0.603] [0.771]

All = constant 5.40 2.82 7.16 11.92 7.49 7.56
(0.611) (0.901) (0.412) (0.103) (0.380) (0.373)
[0.731] [0.932] [0.572] [0.369] [0.629] [0.664]

Note: Annual data, 1953�2002. The portfolios are equally-weighted groups of short-term foreign-currency
denominated money market securities sorted according to their interest di¤erential with the US (i�� i). The
risk factors are real per household consumption (nondurables & services) growth, real per household durable
consumption growth, and the real value weighted US stock market return from the Fama-French data [see
Lustig and Verdelhan (2007)]. Part (a) reports the sample covariance between the excess return to portfolio
i and each risk factor. Part (b) reports the slope coe¢ cient from an OLS regression of the excess return to
portfolio i on a constant and each risk factor. GMM (VARHAC) standard errors are reported in parentheses.
The bottom of the table reports �2 test statistics for two tests. The �rst test is of the hypothesis that the
covariances (or betas) with the factor are equal to 0 for all portfolios. The second tests is of the hypothesis
that the covariances (or betas) with the factor equal a common value. GMM (VARHAC)-based p-values are
reported in parentheses. Small sample p-values computed using a Monte Carlo experiment described in the
text are reported in square brackets.
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TABLE 6: Diagnostics for Spurious Factors, Fama-French 25 Data

(a) Covariance with Factor (b) Factor Beta
Portfolio Consumption Durables Market Consumption Durables Market

Growth Growth Return Growth Growth Return

1,1 1.10 -0.62 100.98 4.14 -1.78 1.55
(0.49) (0.61) (12.18) (1.98) (1.70) (0.08)

1,2 1.30 -0.68 88.22 4.91 -1.95 1.36
(0.42) (0.66) (10.70) (1.69) (1.43) (0.07)

1,3 0.80 -0.56 74.91 3.03 -1.62 1.15
(0.37) (0.63) (9.39) (1.53) (1.35) (0.06)

1,4 0.89 -0.45 71.47 3.36 -1.31 1.10
(0.36) (0.64) (9.09) (1.49) (1.25) (0.06)

1,5 0.97 -0.49 75.94 3.68 -1.41 1.17
(0.42) (0.72) (9.88) (1.72) (1.45) (0.07)

2,1 0.80 -0.58 95.70 3.01 -1.67 1.47
(0.42) (0.64) (11.11) (1.72) (1.55) (0.06)

2,2 0.78 -0.56 80.56 2.96 -1.61 1.24
(0.37) (0.60) (9.68) (1.49) (1.27) (0.05)

2,3 0.80 -0.30 70.88 3.04 -0.87 1.09
(0.32) (0.59) (8.71) (1.33) (1.13) (0.05)

2,4 0.73 -0.59 68.40 2.77 -1.71 1.05
(0.33) (0.61) (8.46) (1.38) (1.12) (0.06)

2,5 0.91 -0.39 72.69 3.44 -1.13 1.12
(0.34) (0.72) (9.18) (1.66) (1.47) (0.07)

3,1 0.73 -0.52 88.47 2.75 -1.50 1.36
(0.37) (0.50) (10.18) (1.51) (1.31) (0.04)

3,2 0.69 -0.62 73.09 2.60 -1.78 1.12
(0.31) (0.57) (8.51) (1.26) (1.05) (0.04)

3,3 0.71 -0.44 65.65 2.67 -1.28 1.01
(0.31) (0.54) (7.96) (1.26) (1.00) (0.05)

3,4 0.71 -0.41 64.44 2.67 -1.19 0.99
(0.31) (0.61) (7.78) (1.31) (1.07) (0.05)

3,5 0.80 -0.14 67.65 3.04 -0.41 1.04
(0.32) (0.73) (8.62) (1.55) (1.41) (0.07)

Table continues on following page

Note: Quarterly data, 1949�2005. The portfolios are the Fama-French 25 portfolios of US stocks sorted on
size and the book-to-market value ratio. The risk factors are real per capita consumption (nondurables &
services) growth, real per capita durable consumption growth, and the real value weighted US stock market
return from the Fama-French data (see Appendix B for more details). Part (a) reports the sample covariance
between the excess return to portfolio i and each risk factor. Part (b) reports the slope coe¢ cient from an
OLS regression of the excess return to portfolio i on a constant and each risk factor. GMM (VARHAC)
standard errors are reported in parentheses.
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TABLE 6 (continued): Diagnostics for Spurious Factors, Fama-French 25 Data

(a) Covariance with Factor (b) Factor Beta
Portfolio Consumption Durables Market Consumption Durables Market

Growth Growth Return Growth Growth Return

4,1 0.58 -0.36 82.24 2.20 -1.04 1.26
(0.35) (0.55) (9.40) (1.38) (1.18) (0.04)

4,2 0.56 -0.50 69.14 2.12 -1.43 1.06
(0.28) (0.49) (8.17) (1.16) (1.03) (0.04)

4,3 0.53 -0.37 64.00 2.02 -1.07 0.98
(0.29) (0.59) (7.47) (1.19) (1.01) (0.04)

4,4 0.64 -0.29 62.69 2.43 -0.83 0.96
(0.31) (0.55) (7.22) (1.27) (1.04) (0.05)

4,5 0.91 -0.22 68.85 3.43 -0.62 1.06
(0.34) (0.71) (8.19) (1.59) (1.33) (0.06)

5,1 0.63 -0.22 66.63 2.39 -0.63 1.02
(0.26) (0.48) (8.16) (1.05) (0.95) (0.03)

5,2 0.43 -0.31 59.36 1.62 -0.88 0.91
(0.24) (0.44) (6.83) (0.97) (0.87) (0.03)

5,3 0.44 -0.12 51.60 1.65 -0.34 0.79
(0.22) (0.48) (6.07) (0.93) (0.83) (0.03)

5,4 0.50 -0.09 52.94 1.88 -0.27 0.81
(0.26) (0.49) (6.14) (1.07) (1.13) (0.04)

5,5 0.78 -0.35 57.95 2.94 -1.00 0.89
(0.29) (0.58) (6.86) (1.23) (1.17) (0.05)

Joint-tests
All = 0 35.2 12.3 108 52.3 33.7 24079

(0.085) (0.984) (0.000) (0.001) (0.115) (0.000)
[0.179] [0.972] [0.000] [0.084] [0.461] [0.000]

All = constant 27.3 11.7 66 43.4 33.4 193
(0.290) (0.983) (0.000) (0.009) (0.096) (0.000)
[0.436] [0.963] [0.000] [0.172] [0.402] [0.000]

Note: Quarterly data, 1949�2005. The portfolios are the Fama-French 25 portfolios of US stocks sorted on
size and the book-to-market value ratio. The risk factors are real per capita consumption (nondurables &
services) growth, real per capita durable consumption growth, and the real value weighted US stock market
return from the Fama-French data (see Appendix B for more details). Part (a) reports the sample covariance
between the excess return to portfolio i and each risk factor. Part (b) reports the slope coe¢ cient from an
OLS regression of the excess return to portfolio i on a constant and each risk factor. GMM (VARHAC)
standard errors are reported in parentheses. The bottom of the table reports �2 test statistics for two
tests. The �rst test is of the hypothesis that the covariances (or betas) with the factor are equal to 0 for
all portfolios. The second tests is of the hypothesis that the covariances (or betas) with the factor equal
a common value. GMM (VARHAC)-based p-values are reported in parentheses. Small sample p-values
computed using a Monte Carlo experiment described in the text are reported in square brackets.
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TABLE 7: Means of Estimated SDFs

(a) Lustig-Verdelhan Data (b) Fama-French 25 Data
First Stage Second Stage First Stage Second Stage

Consumption growth 0.243 0.240 0.357 0.274
(0.221) (0.132) (0.115) (0.067)

Durables growth 0.319 0.184 -0.156 0.029
(0.188) (0.163) (0.192) (0.116)

Rm-Rf 0.617 0.546 0.935 0.907
(0.181) (0.169) (0.034) (0.040)

Consumption Factors 0.251 0.205 0.056 0.075
(0.161) (0.162) (0.100) (0.077)

Yogo Factors 0.204 0.148 0.060 0.081
(0.139) (0.156) (0.105) (0.082)

Fama-French Factors 0.477 0.213 0.854 0.820
(0.271) (0.184) (0.040) (0.043)

Note: Part (a) of the table displays the sample means of the estimated SDFs corresponding to the parameter
estimates in Table 1. Part (b) of the table displays the sample means of the estimated SDFs corresponding
to the parameter estimates in Table 3. GMM (VARHAC) standard errors are reported in parentheses.
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TABLE 8: Tests of the Rank Condition

LV Data FF25 Data

Consumption growth 15.6 52.3
(0.048) (0.001)

Durables growth 10.0 33.7
(0.265) (0.115)

Rm-Rf 7.58 24079
(0.475) (0.000)

Consumption Factors 8.17 23.6
(0.318) (0.487)

Yogo Factors 4.26 12.9
(0.642) (0.954)

Fama-French Factors 3.03 7102
(0.805) (0.000)

Note: This table presents test statistics pertaining to the rank of cov(Ret ; ft). P-values for the statistics are
in parentheses. Under the null hypothesis that rank[cov(Ret ; ft)] = k� 1, where k is the number of factors in
the candidate SDF, the statistic shown is distributed as a �2n�(k�1) where n is the dimension of R

e
t . For the

LV data, Ret is an 8� 1 vector of excess returns of equally-weighted portfolios of short-term foreign-currency
denominated money market securities sorted by their interest di¤erential with the US, and ft is a scalar or
vector of risk factors. The factors are real per household consumption (nondurables & services) growth, real
per household durable consumption growth, and the following variables from the Fama-French data: the real
value weighted US stock market excess return over the risk free rate (Rm-Rf ), the gross return to the same
portfolio (Rm), and the SMB and HML portfolio excess returns For the FF data, Ret is a 25 � 1 vector of
excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value
ratio, and ft is a scalar or vector of risk factors. The factors are real per capita consumption (nondurables
& services) growth, real per capita durable consumption growth, and the following variables from the Fama-
French data: the real value weighted US stock market excess return over the risk free rate (Rm-Rf ), the
gross return to the same portfolio (Rm), and the SMB and HML portfolio excess returns.
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TABLE 9: Monte-Carlo Experiments with the Lustig-Verdelhan Returns

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b� 1 25.1 29.9 44.8 62.1 68.2 45.5 13.2 96.3 93.7
�f 1 -7.64 0.83 2.77 10.18 18.00 1.68 213 18.9 8.2
Em� 1 -0.01 0.06 0.29 0.56 0.64 0.30 0.20 52.0 40.8
R2 1 0.28 0.40 0.73 0.90 0.93 0.69 0.20 � �

b� 2 36.2 38.4 48.7 64.0 69.6 50.3 10.5 100.0 99.9
�f 2 -7.66 1.82 3.83 11.98 20.50 3.95 117.28 46.5 31.5
Em� 2 -0.01 0.05 0.24 0.41 0.46 0.23 0.14 56.7 46.0
R2 2 0.14 0.32 0.71 0.90 0.93 0.65 0.25 � �
J 2 3.29 4.16 8.40 13.68 15.24 8.72 3.67 18.8 8.6

�-Normalization
� 1/2 0.0110 0.0120 0.0155 0.0191 0.0201 0.0156 0.0027 100.0 99.9
b� 1 -67.0 -49.1 -0.5 47.7 66.6 -0.1 41.2 3.4 1.2
�f 1 -1.34 -0.98 -0.01 0.97 1.33 0.00 0.83 3.9 1.5
R2 1 -0.01 0.00 0.06 0.28 0.36 0.10 0.12 � �

b� 2 -82.8 -62.4 0.4 61.2 82.5 0.3 51.6 35.0 25.1
�f 2 -1.66 -1.26 0.01 1.26 1.65 0.01 1.03 34.3 23.7
R2 2 -0.23 -0.13 0.02 0.23 0.32 0.04 0.17 � �
J 2 8.18 11.05 18.81 21.68 22.61 17.52 4.39 87.3 80.6

L (Rank-test) 3.3 4.3 9.7 20.1 24.5 11.3 7.0 28.7 21.0

Note: The table reports results from 10000 Monte Carlo experiments described in the main text. Each
experiment uses a sample of 50 observations. In each experiment Ret , t = 1, : : : , 50, is the 8 � 1 vector
of excess returns from the Lustig-Verdelhan data (the returns do not vary across experiments). In each
experiment a random risk factor, ft, is generated using MATLAB�s random number generator (so the risk
factor varies across experiments). The process for ft is a Gaussian AR(1) with mean, variance and �rst order
serial correlation equal to the sample mean, variance and �rst order serial correlation of US consumption
growth in the Lustig-Verdelhan data. For each experiment the model is estimated using the a-normalization
and the �-normalization.
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TABLE 10: Monte-Carlo Experiments with the Fama-French 25 Returns

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b 1 101 106 127 157 169 130 21 100.0 100.0
�f 1 0.56 0.61 0.94 1.89 2.65 1.15 7.1 70.6 51.3
Em� 1 0.15 0.21 0.35 0.46 0.48 0.34 0.1 85.3 78.8
R2 1 0.55 0.62 0.80 0.91 0.93 0.78 0.12 � �

b 2 115 118 131 147 152 132 11 100.0 100.0
�f 2 0.77 0.82 1.04 1.43 1.60 1.09 0.29 99.9 99.6
Em� 2 0.23 0.26 0.33 0.40 0.42 0.33 0.06 100.0 99.9
R2 2 -0.39 -0.06 0.64 0.86 0.90 0.50 0.45 � �
J 2 18.2 20.5 29.1 38.8 41.7 29.4 7.1 28.9 16.4

�-Normalization
� 1/2 0.0045 0.0047 0.0051 0.0055 0.0056 0.0051 0.0003 100.0 100.0
b� 1 199 219 335 580 686 371 178 73.9 50.7
�f 1 0.53 0.58 0.88 1.51 1.78 0.97 0.45 75.4 53.6
R2 1 -5.86 -3.20 -0.54 0.25 0.39 -1.30 2.59 � �

b� 2 53.0 76.8 146 218 240 146 57.2 71.6 61.5
�f 2 0.14 0.20 0.39 0.57 0.62 0.38 0.15 73.8 64.8
R2 2 -14.8 -13.0 -5.9 -1.3 -0.6 -6.6 4.4 � �
J 2 9.2 12.2 26.8 43.3 47.5 27.4 12.0 32.0 23.6

L (Rank-test) 30.0 34.2 51.1 74.3 81.5 53.0 16.4 89.6 83.5

Note: The table reports results from 10000 Monte Carlo experiments described in the main text. Each
experiment uses a sample of 228 observations. In each experiment Ret , t = 1, : : : , 228, is the 25 � 1
vector of excess returns from the Fama-French data (1949�2005). Panel spurious risk factors are generated
using MATLAB�s random number generator by setting ft = � + c

�
Ret � �Re

�0
�̂�1R � + �t where �Re and �̂R

are the sample mean and covariance matrix of Ret , and �t is �t � Niid(0; �2). Across repeated samples
cov(Ret ; ft) = c�, by construction. So that ft mimics US consumption growth in the period 1949�2005, I
set � = 0:0051, c = 7:49 � 10�5, and � = 0:005. This implies that across repeated samples E(ft), var(ft)
and cov(Ret ; ft) match the corresponding sample moments in US data. For each experiment the model is
estimated using the a-normalization and the �-normalization.
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TABLE 11: Monte-Carlo Experiments with Arti�cial Annual Data
Estimated Model uses the True Risk Factor and the a-Normalization

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

T = 50
b� 1 10.2 12.7 20.6 27.0 28.7 20.2 5.7 90.8 86.7
�f 1 0.25 0.33 0.63 0.95 1.04 0.64 0.24 85.4 76.9
Em� 1 0.49 0.53 0.68 0.83 0.87 0.68 0.12 100.0 100.0
R2 1 0.33 0.52 0.86 0.96 0.97 0.79 0.22 � �

b� 2 14.5 17.0 24.0 29.7 31.1 23.6 5.1 97.4 95.7
�f 2 0.38 0.47 0.79 1.13 1.23 0.80 0.26 94.4 89.4
Em� 2 0.45 0.49 0.62 0.77 0.82 0.63 0.11 100.0 100.0
R2 2 0.15 0.38 0.83 0.95 0.97 0.73 0.28 � �
J 2 2.4 3.1 6.2 10.5 11.8 6.5 2.9 4.4 1.2

T = 250
b� 1 15.3 16.4 19.7 22.7 23.6 19.6 2.5 100.0 100.0
�f 1 0.42 0.46 0.60 0.73 0.77 0.60 0.11 100.0 100.0
Em� 1 0.61 0.63 0.69 0.76 0.78 0.69 0.05 100.0 100.0
R2 1 0.89 0.91 0.96 0.99 0.99 0.95 0.04 � �

b� 2 16.5 17.5 20.5 23.3 24.1 20.5 2.3 100.0 100.0
�f 2 0.47 0.50 0.63 0.76 0.80 0.63 0.10 100.0 100.0
Em� 2 0.60 0.62 0.68 0.75 0.76 0.68 0.05 100.0 100.0
R2 2 0.87 0.90 0.96 0.99 0.99 0.95 0.04 � �
J 2 2.2 2.8 6.3 11.7 13.5 6.9 3.5 8.9 3.9

T = 1000
b� 1 17.4 17.9 19.5 21.1 21.5 19.5 1.2 100.0 100.0
�f 1 0.50 0.52 0.59 0.66 0.68 0.59 0.05 100.0 100.0
Em� 1 0.65 0.66 0.70 0.73 0.74 0.70 0.03 100.0 100.0
R2 1 0.98 0.98 0.99 1.00 1.00 0.99 0.01 � �

b� 2 17.8 18.3 19.8 21.2 21.6 19.7 1.1 100.0 100.0
�f 2 0.52 0.54 0.60 0.66 0.68 0.60 0.05 100.0 100.0
Em� 2 0.65 0.66 0.69 0.72 0.73 0.69 0.03 100.0 100.0
R2 2 0.97 0.98 0.99 1.00 1.00 0.99 0.01 � �
J 2 2.1 2.9 6.3 11.8 13.8 6.9 3.7 9.4 4.6

Note: The table reports results from 10000 Monte Carlo experiments with sample sizes T = 50, T = 250
and T = 1000. The true risk factor, ft � Niid(�; �2) with � and �2 equal to the sample mean and variance
of US consumption growth in the LV data. The SDF is given by mt = a � ftb, with a = 1:42, b = 27:72.
I generate Ret = �R + �(mt � �m) + 	�t where �R and � are 8 � 1 vectors, �m = a � �b, 	 is an 8 � 8
diagonal matrix, and �t � Niid(0; In) and is independent of ft. The parameters in �R, � and 	 are set so
that E(Reitmt) = 0, and the means and variances of the elements of Ret are equal to their sample equivalents
in the LV data. The model is estimated by GMM using the a-normalization. The parameters�true values
are b� = 19:5, �f = 0:678 (expressed in percent) and Em� = 0:70.
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TABLE 12: Monte-Carlo Experiments with Arti�cial Annual Data
Estimated Model uses the True Risk Factor and the �-Normalization

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

T = 50
� 1/2 0.012 0.013 0.016 0.018 0.019 0.016 0.002 100.0 100.0
b� 1 8.5 12.4 26.7 45.1 51.1 27.9 13.1 73.6 59.4
�f 1 0.18 0.26 0.55 0.85 0.94 0.55 0.23 77.0 66.1
R2 1 0.10 0.27 0.68 0.88 0.91 0.62 0.25 � �

b� 2 9.9 13.3 27.6 46.3 52.4 28.9 13.2 82.0 72.5
�f 2 0.21 0.28 0.57 0.87 0.96 0.57 0.23 83.1 74.9
R2 2 0.04 0.22 0.66 0.87 0.90 0.59 0.27 � �
J 2 2.6 3.3 7.2 13.2 15.1 7.8 3.9 14.5 7.5
L (Rank-test) 406 469 807 1384 1632 885 394 100.0 100.0

T = 250
� 1/2 0.014 0.014 0.016 0.017 0.017 0.016 0.001 100.0 100.0
b� 1 19.0 20.8 27.7 35.3 37.7 27.9 5.7 100.0 100.0
�f 1 0.41 0.45 0.58 0.71 0.75 0.58 0.11 100.0 100.0
R2 1 0.795 0.837 0.925 0.970 0.977 0.911 0.060 � �

b� 2 19.9 21.5 28.0 35.2 37.5 28.2 5.3 100.0 100.0
�f 2 0.43 0.46 0.59 0.71 0.75 0.59 0.10 100.0 100.0
R2 2 0.78 0.82 0.92 0.97 0.98 0.90 0.07 � �
J 2 2.2 2.9 6.5 12.3 14.4 7.2 3.8 10.8 5.6
L (Rank-test) 1985 2127 2691 3400 3636 2741 507 100.0 100.0

T = 1000
� 1/2 0.015 0.015 0.016 0.016 0.016 0.016 0.000 100.0 100.0
b� 1 23.4 24.4 27.9 31.6 32.7 28.0 2.8 100.0 100.0
�f 1 0.50 0.52 0.59 0.66 0.67 0.59 0.05 100.0 100.0
R2 1 0.952 0.960 0.980 0.992 0.994 0.978 0.014 � �

b� 2 23.8 24.7 27.9 31.5 32.4 28.0 2.6 100.0 100.0
�f 2 0.51 0.53 0.59 0.65 0.67 0.59 0.05 100.0 100.0
R2 2 0.95 0.96 0.98 0.99 0.99 0.98 0.02 � �
J 2 2.1 2.9 6.3 11.9 14.0 7.0 3.7 9.8 4.9
L (Rank-test) 8584 8874 10003 11257 11631 10043 932 100.0 100.0

Note: The table reports results from the Monte Carlo experiments described in Table 11. In this table the
results are GMM estimates of the �-normalization. The parameters�true values are b� = 28, �f = 0:678
(expressed in percent) and � = 0:0156.
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TABLE 13: Monte-Carlo Experiments with Arti�cal Annual Data
Estimated Model uses a Spurious Risk Factor and the a-Normalization

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

T = 50
b� 1 27.3 33.3 49.7 69.6 77.6 50.6 15.8 95.7 93.2
�f 1 -19.9 -8.2 3.1 14.6 27.9 8.2 499.1 12.5 4.9
Em� 1 -0.16 -0.06 0.22 0.49 0.59 0.22 0.23 36.6 27.7
R2 1 0.25 0.42 0.81 0.94 0.96 0.74 0.23 � �

b� 2 27.4 31.6 44.7 59.8 65.5 45.4 12.1 97.2 95.6
�f 2 0.1 1.0 2.8 8.8 14.7 2.5 164.4 37.6 22.9
Em� 2 0.00 0.08 0.30 0.52 0.60 0.30 0.19 61.9 52.3
R2 2 0.22 0.39 0.78 0.93 0.95 0.71 0.24 � �
J 2 2.4 3.0 6.3 10.8 12.2 6.7 3.0 5.5 1.7

T = 250
b� 1 47.4 50.0 60.3 74.2 79.1 61.4 9.8 100.0 100.0
�f 1 -64.5 -30.3 6.3 35.6 66.0 4.7 757.7 9.6 4.4
Em� 1 -0.21 -0.14 0.06 0.21 0.25 0.05 0.14 15.0 9.9
R2 1 0.82 0.87 0.95 0.98 0.99 0.93 0.06 � �

b� 2 44.3 46.9 55.6 66.8 70.8 56.3 8.1 100.0 100.0
�f 2 -35.9 -14.2 6.5 25.8 45.9 2.8 605.2 21.9 12.2
Em� 2 -0.09 -0.03 0.13 0.27 0.31 0.12 0.12 32.9 24.3
R2 2 0.79 0.84 0.94 0.98 0.98 0.92 0.07 � �
J 2 2.2 2.8 6.1 11.3 13.2 6.7 3.5 7.8 3.7

T = 1000
b� 1 55.3 57.0 63.3 70.9 73.5 63.7 5.5 100.0 100.0
�f 1 -128.1 -63.5 10.2 68.7 133.8 -650.1 95362.6 9.8 4.8
Em� 1 -0.13 -0.10 0.01 0.11 0.13 0.01 0.08 10.8 6.0
R2 1 0.96 0.97 0.99 0.99 1.00 0.98 0.01 � �

b� 2 54.4 55.9 61.5 68.1 70.4 61.9 4.9 100.0 100.0
�f 2 -111.9 -53.5 13.3 62.7 123.9 13.3 756.3 13.9 7.6
Em� 2 -0.09 -0.06 0.04 0.12 0.15 0.04 0.07 17.6 11.0
R2 2 0.96 0.96 0.98 0.99 1.00 0.98 0.01 � �
J 2 2.2 2.9 6.3 11.7 13.7 6.9 3.6 9.0 4.4

Note: The table reports results from the Monte Carlo experiments described in Table 11. Here the asset
returns and true risk factor are generated in the same way, but I report results from experiments in which
the proposed SDF is m�

t = 1� xtb� and xt is a spurious factor. I assume that xt � Niid(�; �2) with � and
�2 equal to the sample mean and variance of US consumption growth in the Lustig-Verdelhan data, and xt
is independent of the true risk factor, ft. The model is estimated by GMM using the a-normalization.
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TABLE 14: Monte-Carlo Experiments with Arti�cial Annual Data
Estimated Model uses a Spurious Risk Factor and the �-Normalization

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

T = 50
� 1/2 0.012 0.013 0.016 0.018 0.019 0.016 0.002 100.0 100.0
b� 1 -101.7 -78.9 -0.1 77.9 100.6 0.0 64.0 16.7 6.2
�f 1 -2.05 -1.59 0.00 1.57 2.00 0.00 1.29 19.9 8.6
R2 1 -0.11 -0.05 0.10 0.52 0.63 0.17 0.24 � �

b� 2 -74.1 -55.3 -0.4 56.7 76.4 0.2 47.3 20.7 12.2
�f 2 -1.52 -1.13 -0.01 1.15 1.53 0.00 0.95 22.1 13.4
R2 2 -0.20 -0.12 0.05 0.45 0.57 0.10 0.24 � �
J 2 3.0 3.9 9.2 16.5 18.7 9.8 4.8 30.5 18.9
L (Rank-test) 3.9 5.2 12.3 26.6 32.4 14.5 9.4 44.7 35.3

T = 250
� 1/2 0.014 0.014 0.016 0.017 0.017 0.016 0.001 100.0 100.0
b� 1 -185.7 -152.4 1.5 151.3 186.9 0.4 121.1 49.3 27.6
�f 1 -3.88 -3.16 0.03 3.16 3.88 0.01 2.53 50.6 29.6
R2 1 -0.02 0.00 0.15 0.58 0.68 0.22 0.23 � �

b� 2 -112.2 -86.7 -1.0 86.6 113.4 0.1 70.3 20.0 10.3
�f 2 -2.34 -1.81 -0.02 1.81 2.36 0.00 1.47 21.0 11.2
R2 2 -0.06 -0.03 0.08 0.47 0.61 0.16 0.21 � �
J 2 2.9 4.1 14.1 35.3 40.7 17.3 12.2 56.4 50.1
L (Rank-test) 3.0 3.8 8.0 15.3 18.1 9.0 4.8 16.1 9.5

T = 1000
� 1/2 0.015 0.015 0.016 0.016 0.016 0.016 0.000 100.0 100.0
b� 1 -353.4 -291.9 -4.1 296.8 360.7 -0.4 233.8 68.9 49.8
�f 1 -7.42 -6.13 -0.09 6.24 7.55 -0.01 4.92 69.3 50.4
R2 1 -0.01 0.00 0.17 0.59 0.69 0.24 0.23 � �

b� 2 -201.7 -157.0 -1.6 158.0 205.6 -0.7 125.9 25.2 15.4
�f 2 -4.22 -3.28 -0.03 3.34 4.29 -0.01 2.65 25.5 15.6
R2 2 -0.03 -0.02 0.09 0.49 0.61 0.17 0.21 � �
J 2 2.8 4.0 17.1 99.7 121.1 34.1 37.8 60.6 55.6
L (Rank-test) 2.8 3.6 7.6 13.8 16.0 8.2 4.1 11.2 5.8

Note: The table reports results from the Monte Carlo experiments described in Table 11. Here the asset
returns and true risk factor are generated in the same way, but I report results from experiments in which
the proposed SDF is m�

t = 1� (xt��)b� and xt is a spurious factor. I assume that xt � Niid(�; �2) with �
and �2 equal to the sample mean and variance of US consumption growth in the Lustig-Verdelhan data, and
xt is independent of the true risk factor, ft. The model is estimated by GMM using the �-normalization.
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TABLE 15: Monte-Carlo Experiments with Arti�cial Quarterly Data, T = 228
Estimated Model Uses the True Risk Factors

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b�1 1 2.49 2.80 3.87 4.91 5.21 3.86 0.83 99.7 99.3
b�2 1 -2.28 -1.79 -0.09 1.61 2.10 -0.09 1.32 11.0 5.3
b�3 1 3.96 4.37 5.83 7.24 7.63 5.81 1.12 99.9 99.8
�f1 1 1.02 1.21 1.92 2.61 2.80 1.92 0.54 97.2 94.1
�f2 1 -0.06 0.07 0.53 1.00 1.14 0.53 0.36 42.5 31.1
�f3 1 0.70 0.83 1.31 1.79 1.92 1.31 0.37 97.3 94.4
Em� 1 0.77 0.79 0.85 0.90 0.91 0.85 0.04 100.0 100.0
R2 1 0.84 0.87 0.94 0.97 0.98 0.93 0.05 � �

b�1 2 2.83 3.17 4.34 5.49 5.81 4.34 0.91 99.9 99.8
b�2 2 -2.50 -1.95 -0.06 1.83 2.35 -0.08 1.47 17.2 10.5
b�3 2 4.46 4.91 6.53 8.06 8.48 6.51 1.22 100.0 99.9
�f1 2 1.17 1.40 2.21 3.03 3.26 2.21 0.63 98.2 96.4
�f2 2 -0.06 0.09 0.62 1.16 1.32 0.62 0.42 52.1 40.4
�f3 2 0.80 0.95 1.49 2.04 2.20 1.50 0.42 98.3 96.6
Em� 2 0.75 0.77 0.83 0.88 0.90 0.83 0.05 100.0 100.0
R2 2 -0.50 -0.10 0.64 0.91 0.94 0.49 0.53 � �
J 2 13.1 14.7 21.8 30.2 32.9 22.2 6.1 8.6 3.8

�-Normalization
�1 1/2 0.0108 0.0127 0.0197 0.0266 0.0285 0.0197 0.0054 97.9 95.6
�2 1/2 0.0005 0.0018 0.0063 0.0109 0.0122 0.0063 0.0035 55.7 43.0
�3 1/2 0.0059 0.0072 0.0118 0.0164 0.0177 0.0118 0.0036 95.1 90.9
b�1 1 2.78 3.17 4.55 6.08 6.54 4.60 1.14 99.7 99.2
b�2 1 -2.72 -2.11 -0.09 1.90 2.49 -0.10 1.56 9.8 4.6
b�3 1 4.41 4.92 6.84 8.94 9.62 6.90 1.58 99.9 99.8
�f1 1 1.02 1.21 1.91 2.61 2.80 1.92 0.54 97.3 94.1
�f2 1 -0.06 0.08 0.53 1.00 1.14 0.53 0.36 42.8 31.3
�f3 1 0.69 0.83 1.30 1.77 1.91 1.30 0.37 97.1 94.2
R2 1 0.80 0.83 0.92 0.96 0.96 0.90 0.06 � �

b�1 2 2.79 3.15 4.53 6.12 6.58 4.60 1.16 99.8 99.3
b�2 2 -2.66 -2.08 -0.09 1.92 2.50 -0.10 1.56 12.1 6.2
b�3 2 4.39 4.89 6.86 9.02 9.69 6.92 1.62 99.9 99.8
�f1 2 1.00 1.19 1.91 2.63 2.85 1.92 0.56 96.9 93.8
�f2 2 -0.07 0.07 0.53 1.01 1.15 0.53 0.37 44.2 32.3
�f3 2 0.69 0.82 1.30 1.79 1.93 1.31 0.38 97.2 94.7
R2 2 0.45 0.59 0.85 0.93 0.94 0.79 0.18 � �
J 2 13.5 15.3 23.0 32.5 35.6 23.5 6.8 13.7 7.3

L (Rank-test) 7678 8154 10345 13231 14086 10571 2003 100.0 100.0

Note: The note to Table 15 is on the following page.
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Note to Table 15 : The table reports results from 10000 Monte Carlo experiments with sample size T =
228. The true risk factors, ft � Niid(�;�f ) with � and �f equal to the sample mean and covariance
matrix of the Fama-French factors (1949Q1�2005Q4). The SDF is given by mt = a � f 0tb, with a = 1:166,
b = ( 4:50 �0:12 6:78 )0. I generate Ret = �R + �(ft � �) + 	�t, where �R is a 25 � 1 vector, � is an
25 � 3 matrix, 	 is a 25 � 25 lower triangular matrix, and �t � Niid(0; In) and is independent of ft. The
elements of � and 	 so that the model-implied var(Ret ) and cov(R

e
t ; ft) are equal to their sample equivalents

for the FF25 portfolios and Fama-French factors (1949Q1�2005Q4). The vector �R is set to ensure that
E(Retmt) = 0. The model is estimated by GMM using the a- and �-normalizations. The parameters�true
values are �1 = 0:0197, �2 = 0:0063, �3 = 0:0119, b

�
1 = 3:86, b

�
2 = �0:10, b�3 = 5:82, b�1 = 4:51, b�2 = �0:12,

b�3 = 6:80, �f1 = 1:92, �f2 = 0:53, �f3 = 1:32.and Em
� = 0:86.
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TABLE 16: Monte-Carlo Experiments with Arti�cial Quarterly Data, T = 228
Estimated Model Uses a Single Relevant Factor

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b� 1 2.01 2.29 3.33 4.34 4.61 3.32 0.79 99.1 98.2
�f 1 1.35 1.56 2.31 3.07 3.28 2.31 0.58 99.1 98.0
Em� 1 0.87 0.89 0.93 0.97 0.98 0.93 0.03 100.0 100.0
R2 1 -1.09 -0.89 -0.41 0.01 0.15 -0.43 0.39 � �

b� 2 2.27 2.62 3.86 5.03 5.34 3.85 0.94 99.5 99.1
�f 2 1.53 1.79 2.71 3.64 3.89 2.71 0.72 99.5 99.0
Em� 2 0.85 0.87 0.92 0.97 0.97 0.92 0.04 100.0 100.0
R2 2 -3.18 -2.43 -0.83 -0.17 -0.02 -1.13 1.17 � �
J 2 28.7 31.5 42.6 54.8 58.1 42.9 9.0 86.2 76.0

�-Normalization
� 12 0.0108 0.0127 0.0197 0.0266 0.0285 0.0197 0.0054 97.9 95.6
b� 1 2.04 2.35 3.54 4.84 5.22 3.58 0.97 99.0 97.8
�f 1 1.35 1.55 2.29 3.05 3.26 2.29 0.58 99.1 97.9
R2 1 -1.45 -1.19 -0.60 -0.17 -0.03 -0.65 0.45 � �

b� 2 1.64 1.92 3.05 4.31 4.69 3.10 0.94 97.8 95.0
�f 2 1.07 1.26 1.98 2.72 2.94 1.99 0.57 98.0 95.4
R2 2 -2.10 -1.78 -0.99 -0.51 -0.37 -1.08 0.56 � �
J 2 29.2 32.3 44.0 57.3 61.1 44.5 9.7 88.2 79.1

L (Rank-test) 25259 27305 34312 43574 46898 35047 6588 100.0 100.0

Note: The table reports results from Monte Carlo experiments described in Table 15. The proposed SDF is
a single factor model that uses a fully relevant risk factor, x1t, which is equal to the �rst true risk factor, f1t
(described in Table 15). The model is estimated by GMM using the a- and �-normalizations.
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TABLE 17: Monte-Carlo Experiments with Arti�cial Quarterly Data, T = 228
Estimated Model Uses a Single Factor that is Panel Spurious

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b� 1 91.4 99.0 126.4 159.8 171.3 128.4 24.7 100.0 99.9
�f 1 0.44 0.52 0.93 2.03 2.91 1.26 18.89 71.2 54.1
Em� 1 0.14 0.19 0.35 0.50 0.54 0.35 0.12 85.7 79.7
R2 1 0.46 0.56 0.79 0.91 0.93 0.75 0.18 � �

b� 2 98.0 102.8 119.4 137.4 143.1 119.9 13.7 100.0 100.0
�f 2 0.53 0.58 0.80 1.17 1.32 0.85 0.26 99.8 99.3
Em� 2 0.27 0.30 0.39 0.48 0.51 0.39 0.07 99.9 99.8
R2 2 -1.14 -0.49 0.58 0.85 0.89 0.31 0.87 � �
J 2 16.5 18.7 26.8 36.2 39.0 27.2 6.8 18.7 9.5

�-Normalization
� 12 0.0045 0.0047 0.0051 0.0055 0.0056 0.0051 0.0003 100.0 100.0
b� 1 148.6 183.2 329.2 614.8 742.3 367.6 210.4 75.0 53.9
�f 1 0.40 0.48 0.87 1.60 1.92 0.96 0.54 76.0 56.1
R2 1 -7.88 -4.18 -0.51 0.29 0.43 -1.70 4.23 � �

b� 2 16.2 34.3 96.9 163.7 182.9 97.6 51.5 44.7 32.5
�f 2 0.04 0.09 0.25 0.43 0.48 0.26 0.14 47.4 36.3
R2 2 -27.7 -22.0 -8.7 -2.0 -1.1 -10.9 9.2 � �
J 2 5.4 7.2 17.4 32.1 36.9 18.7 9.8 8.5 5.2

L (Rank-test) 30.1 33.8 51.9 74.8 83.0 53.7 16.9 88.8 83.3

Note: The table reports results from Monte Carlo experiments described in Table 15. The proposed SDF is
a single factor model that uses a panel spurious factor. This factor, x2t, is generated according to the law of
motion

x2t = �x2 + c�
0��1R (Ret � �R) + u2t

where c is a scalar, � is an n � 1 vector of ones, �R and �R are the mean and covariance matrix of the
vector of returns described in Table 15, and u2t � Niid(0; �2u2) is independent of Ret and x1t (described in
Table 16). I set �x2 equal to the sample mean of US consumption growth in the period 1949Q1�2005Q4.
I set c equal to the cross-sectional average of the sample covariance between US consumption growth and
the FF25 returns over the same period. I set �2u2 so that the variance of x2t equals the sample variance of
US consumption growth over the same period. The factor x2t is panel spurious because cov(Ret ; x2t) = �c,
by construction. The model is estimated by GMM using the a- and �-normalizations.
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TABLE 18: Monte-Carlo Experiments with Arti�cial Quarterly Data, T = 228
Estimated Model Has Three Factors, One of Which is Spurious

Percentiles Percent Signi�cant at
GMM 5 10 50 90 95 Mean Std. Dev. 10% level 5% level
Stage

a-Normalization
b�1 1 -1.22 -0.97 -0.17 0.61 0.82 -0.18 0.63 8.4 3.5
b�2 1 -17.0 -4.6 35.8 75.1 87.8 35.5 32.2 36.5 26.3
b�3 1 43.7 51.1 73.7 97.2 104.8 73.9 18.8 97.2 95.6
�f1 1 -2.10 0.00 2.03 4.20 6.18 2.06 31.4 42.5 34.9
�f2 1 -6.18 -2.61 0.70 3.74 6.59 0.65 34.2 5.8 2.4
�f3 1 -18.18 -8.48 1.90 9.62 17.78 0.77 152.1 7.1 2.5
Em� 1 -0.11 -0.07 0.06 0.16 0.20 0.05 0.09 17.5 10.6
R2 1 0.93 0.94 0.98 0.99 0.99 0.97 0.03 � �

b�1 2 -0.89 -0.70 -0.05 0.58 0.77 -0.06 0.51 12.4 6.9
b�2 2 9.0 15.6 37.6 59.4 66.3 37.6 17.6 73.2 64.6
b�3 2 49.3 53.1 66.1 79.2 83.2 66.2 10.4 100.0 99.9
�f1 2 -0.33 0.43 1.94 3.53 4.42 1.81 13.6 49.2 39.5
�f2 2 0.04 0.26 0.76 2.07 3.26 0.94 17.0 37.0 22.9
�f3 2 0.67 0.90 1.77 4.85 7.76 1.99 49.3 52.1 37.2
Em� 2 0.01 0.04 0.12 0.20 0.22 0.12 0.06 62.6 52.4
R2 2 0.66 0.76 0.93 0.98 0.98 0.89 0.12 � �
J 2 10.7 12.2 18.6 26.5 28.9 19.1 5.6 2.6 1.0

�-Normalization
�1 12 0.0108 0.0127 0.0197 0.0266 0.0285 0.0197 0.0054 97.9 95.6
�2 12 0.0045 0.0047 0.0051 0.0055 0.0056 0.0051 0.0003 100.0 100.0
�3 12 0.0098 0.0099 0.0104 0.0109 0.0111 0.0104 0.0004 100.0 100.0
b�1 1 -3.00 -1.91 1.59 5.19 6.44 1.64 2.92 23.9 16.6
b�2 1 -203.6 -101.1 184.3 386.5 446.2 161.2 197.4 43.7 27.2
b�3 1 -393.4 -321.2 0.3 318.9 380.9 0.4 245.0 37.3 18.5
�f1 1 1.21 1.42 2.21 3.00 3.24 2.21 0.61 97.5 94.5
�f2 1 -0.48 -0.22 0.49 1.00 1.15 0.43 0.49 48.0 32.4
�f3 1 -1.34 -1.09 0.01 1.09 1.31 0.00 0.84 38.9 20.2
R2 1 -0.66 -0.45 0.21 0.64 0.72 0.14 0.44 � �

b�1 2 0.32 0.85 2.53 4.24 4.74 2.54 1.34 39.3 26.6
b�2 2 -65.3 -39.5 43.9 123.7 148.1 42.8 64.7 11.6 5.9
b�3 2 -111.1 -84.4 1.3 83.8 106.3 0.2 66.2 6.7 2.9
�f1 2 0.90 1.12 1.93 2.74 2.97 1.93 0.63 74.9 62.1
�f2 2 -0.14 -0.08 0.13 0.34 0.40 0.13 0.16 16.0 8.9
�f3 2 -0.38 -0.29 0.01 0.28 0.37 0.00 0.23 7.6 3.5
R2 2 -3.19 -2.44 -0.85 -0.08 0.09 -1.10 1.08 � �
J 2 6.4 7.5 13.6 26.2 31.6 15.5 8.0 5.6 3.8

L (Rank-test) 14.8 17.2 26.1 37.2 41.4 26.8 8.1 23.4 14.3

Note: The note to Table 18 is on the following page.
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Note to Table 18 : The table reports results from Monte Carlo experiments described in Table 15. The
proposed SDF is a three factor model that uses a relevant factor, x1t, a panel spurious factor, x2t, and a
purely spurious factor, x3t. The factors x1t and x2t are described in Tables 16 and 17, while x3t is generated
according to the law of motion x3t = �x3 + u3t, where u3t � Niid(0; �2u3) is independent of R

e
t , u1t and

u2t (de�ned in Tables 16 and 17). I set �x3 equal to the sample mean of durables growth in the period
1949Q1�2005Q4. I set the variance of u3t equal to the sample variance of durables growth in the period
1949Q1�2005Q4:The model is estimated by GMM using the a- and �-normalizations.
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FIGURE 1

Actual Expected Returns and Predicted Expected Returns for Single Factor Models
Lustig-Verdelhan Data
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Note: The �gures present scatter plots of �Re against the model-predicted expected return for the single
factor models presented in Tables 1 and 2. For the a-normalization the model predicted expected return is
DT b̂

�, while for the �-normalization it is dT b̂�.
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FIGURE 2

Actual Expected Returns and Predicted Expected Returns for Multi-Factor Models
Lustig-Verdelhan Data
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Note: The �gures present scatter plots of �Re against the model-predicted expected return for the multi-factor
models presented in Tables 1 and 2. For the a-normalization the model predicted expected return is DT b̂�,
while for the �-normalization it is dT b̂�.
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FIGURE 3

Actual Expected Returns and Predicted Expected Returns for Single Factor Models
Fama�French 25 Data
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Note: The �gures present scatter plots of �Re against the model-predicted expected return for the single
factor models presented in Tables 3 and 4. For the a-normalization the model predicted expected return is
DT b̂

�, while for the �-normalization it is dT b̂�.
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FIGURE 4

Actual Expected Returns and Predicted Expected Returns for Multi-Factor Models
Fama-French 25 Data
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Note: The �gures present scatter plots of �Re against the model-predicted expected return for the multi-factor
models presented in Tables 3 and 4. For the a-normalization the model predicted expected return is DT b̂�,
while for the �-normalization it is dT b̂�.

65



FIGURE 5

Monte-Carlo Experiments with Arti�cial Data
Frequency Distributions of First Stage GMM Estimators
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Note: The experiments are described in the notes to Tables 11�14. Statistics are presented for the �rst stage
of GMM when the proposed SDF is constructed from the spurious risk factor. The frequency distributions
are computed using 100 points over the indicated range on the x-axis. For T =1, if the distribution limits
to a singleton a vertical red line is used to indicated the probability limit.
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FIGURE 6

Monte-Carlo Experiments with Arti�cial Data
Frequency Distributions of Second Stage GMM Estimators
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Note: The experiments are described in the notes to Tables 11�14. Statistics are presented for the �rst stage
of GMM when the proposed SDF is constructed from the spurious risk factor. The frequency distributions
are computed using 100 points over the indicated range on the x-axis. For T =1, if the distribution limits
to a singleton a vertical red line is used to indicated the probability limit.
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