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1. INTRODUCTION

Choices with uncertain outcomes, such as financial investments, career paths, and health

practices, are numerous and important to welfare. Empirical studies of these behaviors

often suffer from a common weakness — the inability to take into account heterogeneity

in preferences. In this paper, we develop a quantitative proxy for risk tolerance based on

responses from a large-scale survey to account for this heterogeneity. We then use the proxy

to study asset allocation.

Our measurement of risk tolerance is based on individuals’ responses to questions about

hypothetical risky choices. In particular, we ask them to choose between a job with a certain

lifetime income and a job with a random, but higher mean lifetime income. We show how

to translate these ordinal responses into a cardinal proxy for risk tolerance. To construct

this proxy and use it to study behavior, we confront a number of issues. First, the survey

responses about gambles over lifetime income imply a range instead of a point value for

the unobserved cardinal preference parameter. Second, the survey responses are likely to

be subject to measurement error. We develop a statistical model addressing both issues.

Multiple responses from some individuals and refinements to the survey questions isolate

the true variation in risk preferences. With the maximum-likelihood estimates, we compute

the proxy value — the expectation of risk tolerance conditional on survey responses — for

each individual. Based on a small set of survey questions, the proxy may not fully capture

the systematic variation in risk preferences. This induces a nonstandard errors-in-variables

problem in regression estimates that use the proxy as an explanatory variable. We provide

an estimator using the proxy that is consistent despite errors in variables.

The plan of the paper is as follows. Section 2 discusses the survey questions on life-

time income gambles and the distribution of responses in the Health and Retirement Study.

(See http://hrsonline.isr.umich.edu for information on the survey.) Section 3 shows how to

construct the cardinal proxy for risk tolerance from these survey responses and Section 4

addresses the presence of survey response error. Researchers will be able to use such a proxy



as an explanatory variable in studying a wide range of behaviors. In Section 5, we show

how to estimate consistently the effect of the preference parameter on behavior. Section 6

applies these procedures to study the asset allocation decision. Our results show that our

improved measure of risk preference significantly alters the estimated effects of risk tolerance

and other observable characteristics on asset allocation. The final section offers conclusions.

2. SURVEYING RISK PREFERENCES

The Health and Retirement Study (HRS) is a large-scale, biennial survey, which began in

1992 with a representative sample of individuals between ages 51 to 61 and their spouses. In

addition to detailed financial and demographic information, the study elicits risk preferences

using a battery of questions developed by Barsky, Juster, Kimball, and Shapiro (1997).

The Panel Study of Income Dynamics, National Longitudinal Study, Surveys of Consumers,

Dutch CentERpanel, and Chilean Social Security Survey have also fielded these gambles over

lifetime income. In hypothetical scenarios, respondents choose between a certain job and

a risky job. With equal chances, the risky job will double lifetime income or cut lifetime

income by a specific fraction (or downside risk). Varying the downside risk on the new job

in subsequent questions refines the measure of risk preferences.

Specifically, in 1992 the HRS poses the following scenario:

Suppose that you are the only income earner in the family, and you have a good
job guaranteed to give you your current (family) income every year for life. You
are given the opportunity to take a new and equally good job, with a 50-50
chance it will double your (family) income and a 50-50 chance that it will cut
your (family) income by a third. Would you take the new job?

Individuals accepting this new, risky job then consider one with a higher downside risk:

Suppose the chances were 50-50 that it would double your (family) income, and
50-50 that it would cut it in half. Would you still take the new job?

Those initially declining the new job consider one with a lower downside risk:
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Suppose the chances were 50-50 that it would double your (family) income and
50-50 that it would cut it by 20 percent. Would you then take the new job?

These two responses order individuals in four categories: unwilling to risk a one-fifth income

cut, willing to risk at most a one-third cut, willing to risk a one-third to a one-half cut, and

willing to risk at least a one-half cut. In 1994 a randomly selected sub-sample answered the

questions again. In 1994 and later implementations, there were additional questions about

the willingness to accept one-tenth and three-quarter cuts. With these additional gambles,

there are six distinct response categories. The first two columns of Table 1 relate these

response categories to the downside risks of the new jobs. In Section 3, we will discuss the

last two columns of Table 1 that relate the response categories to the preference parameter.

In general, the gambles over lifetime income reveal a low tolerance for risk. As reported

in Table 2, almost two-thirds of the respondents in 1992 are in the least risk tolerant category

1-2. The remaining one-third of respondents divide almost equally among the other three

categories. The distribution of risk categories in 1994 follows a similar pattern. Over 60%

of respondents fall in categories 1 or 2 with most choosing the least risk tolerant category 1.

Repeated observations from some individuals will be central to our statistical strategy for

separating signal from noise in the survey responses. Among the 693 respondents who answer

in the gambles in both the HRS 1992 and 1994, the correlation of the response categories

across the two waves is 0.27 and almost half switch response categories. Altogether, the

survey responses suggest substantial and persistent differences in risk preferences across

individuals, but also large changes in responses within individuals across surveys.

The 1998 HRS introduced a new situational frame for the income gambles to remove

the potential for status-quo bias. In the original question, individuals choose between their

current certain job and a new risky job. An unwillingness to switch jobs may reflect their

aversion to the risky income at the new job or their desire to maintain the status quo. Status

quo bias appears to be a common feature in many settings (Samuelson and Zeckhauser 1988).

In the presence of status quo bias, estimates from the original question would understate
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individuals’ true risk tolerance. Using a pilot study of undergraduates, Barsky et al. (1997)

estimate average risk tolerance to be 24% lower with responses to the original question than

with responses to an alternate question free of status quo bias. In 1998, 2000, and 2002, the

HRS fielded a status-quo-bias-free question, in which individuals choose between two new

jobs. The question wording is

Suppose that you are the only income earner in the family. Your doctor recom-
mends that you move because of allergies, and you have to choose between two
possible jobs.

The first would guarantee your current total family income for life. The second
is possibly better paying, but the income is also less certain. There is a 50-50
chance the second job would double your total lifetime income and a 50-50 chance
that it would cut it by a third. Which job would you take — the first job or the
second job?

As in the original version, follow-up questions vary the downside risk of the second job

and responses assign individuals to one of six categories. Starting in 2000, the job-related

gambles are targeted to individuals less than age 65. The final three columns of Table

2 shows the responses to the status-quo-bias-free question. In this paper, we restrict the

sample to original respondents of the HRS who answered the gambles in 1992 or 1994. The

respondents in 1998 to the new question do appear more risk tolerant with only 56.9% in

category 1-2 compared to 64.6% in 1992 and 61.5% in 1994. This difference disappears in the

last two survey waves. Nonetheless, variation in the question wording allows us to estimate

the status-quo bias and question-specific responses errors.

This approach to measuring risk preference from hypothetical gambles in the HRS differs

fundamentally from earlier survey measurement of attitudes toward risk. Other surveys

commonly use categorical responses with vague quantifiers to probe risk preferences. For

example, beginning in 1983, the Survey of Consumer Finances (SCF) asks respondents:

Which of the statements comes closest to the amount of financial risk that you
and your (spouse/partner) are willing to take when you save or make investments?
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1. take substantial financial risks expecting to earn substantial returns

2. take above average financial risks expecting to earn above average returns

3. take average financial risks expecting to earn average returns

4. not willing to take any financial risks

While intended to order respondents by their risk tolerance, the subjective wording may

generate uninterpretable variation. Since individuals must define “substantial,” “above av-

erage,” and “average” financial risks and returns, we cannot quantify differences across re-

sponses. In contrast, the income gambles on the HRS supply objective boundaries between

risk categories. In the next section, we use economic theory to map survey responses to a

cardinal proxy for risk tolerance.

Using the cardinal proxy has several advantages. First, it provides a unidimensional,

quantitative measure of risk tolerance that allows meaningful interpersonal comparisons.

Second, in many settings, such as the demand for risky assets that we study in Section

6, economic theory makes predictions that link risk preference parameters quantitatively

to economic decisions. Third, by having a quantitative measure we can correct for the

measurement error inevitable with proxies based on survey responses.

3. CONSTRUCTING A CARDINAL PROXY

Expected utility theory provides a cardinal metric for risk preference — the coefficient of

relative risk tolerance. Denote an individual’s concave utility function over original lifetime

income as U(W ). Faced with 50-50 gambles of doubling lifetime income or cutting it by

various fractions π, an individual should accept the risky job when its expected utility

exceeds the utility from the certain job — that is, if

0.5U(2W ) + 0.5U((1 − π)W ) ≥ U(W ). (1)

The greater the curvature of U , the smaller the downside risk π an individual will accept. As-

sociating gamble responses more tightly with underlying risk tolerance requires a parametric

5



utility function.

We assume that constant relative risk aversion (CRRA) well approximates individuals’

utility over lifetime income

U(W ) =
W 1−1/θ

1 − 1/θ
(2)

where the coefficient of relative risk tolerance θ may differ across individuals. This form

implies that relative risk tolerance, θ = −U ′/WU ′′ (Pratt 1964), is constant across all values

of lifetime income for a given individual. Analysis of the gamble responses with household

income and wealth supports this utility specification (Sahm 2007). We focus on relative risk

tolerance θ rather than relative risk aversion 1/θ because relative risk tolerance is linearly

related to demand for risky financial assets (Breeden 1979). While the survey does not

directly measure risk tolerance, the responses to the income gambles with this utility function

establish boundaries on the underlying preference parameter.

To illustrate how to bound risk tolerance, consider individuals in response category 3. By

accepting the risky job when the downside risk is one-fifth, but declining when the downside

risk is one-third, these individuals reveal risk tolerance between 0.27 and 0.50. Each bound

for this category equates the expected utility of a new risky job and the current certain job:

0.5
21−1/θ

3

1 − 1/θ3

+ 0.5
(4/5)1−1/θ

3

1 − 1/θ3

=
11−1/θ

3

1 − 1/θ3

→ θ3 = 0.27 (3)

0.5
21−1/θ3

1 − 1/θ3

+ 0.5
(2/3)1−1/θ3

1 − 1/θ3

=
11−1/θ3

1 − 1/θ3

→ θ3 = 0.50. (4)

Substituting the largest downside risk accepted and smallest risk rejected from Table 1,

we similarly determine the lower and upper bounds for the other categories. The last two

columns of Table 1 report the bounds for each response category. The categories exhaust

the possible range of risk tolerance.

In the next section, we consider a more general model that accounts for measurement
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error and other features of the question. To illustrate how we map the discrete responses into

a continuous distribution, assume that true risk tolerance follows a log-normal distribution,

log θ ≡ x ∼ N(µ, σ2

x). (5)

The lognormal functional form has several advantages. First, it imposes the restriction

that relative risk tolerance is nonnegative. Second, it is parsimonious and computationally

simple. Third, we are able to use the moment generating function of the normal to calculate

analytically the unconditional and conditional expectations of θ = exp(x). Finally, the

lognormal appears to fit the data well. It can capture the fact that the modal value of

relative risk tolerance is close to zero but that a substantial fraction of individuals have

higher risk tolerance.

We use standard maximum likelihood methods to estimate the mean µ and variance σ2

x

of log risk tolerance in the population. Consider first a case in which we observe one response

category c for each individual. The probability of being in category j is

P(c = j) = P(log θj < x < log θj) = Φ
(
(log θj − µ)/σx

)
− Φ

(
(log θj − µ)/σx

)
(6)

where Φ(·) is the cumulative normal distribution function. Maximizing the sample log-

likelihood of the individuals’ first gamble response, yields a mean log risk tolerance of −1.98

and a standard deviation of 1.76 as reported in the first column of Table 3. These parameters

are precisely estimated: both have an asymptotic standard error of 0.03. For the maximum-

likelihood estimation, we use the modified method of scoring where the sample average of

the outer product of the score function approximates the information matrix.

For many applications, it is valuable to assign a numerical risk tolerance proxy for each

individual conditional on his or her survey responses. Using the estimated population pa-

rameters, we can impute log risk tolerance conditional on a survey response in category j
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as

E(log θ|c = j) = µ + σx

φ
(
(log θj − µ)/σx

)
− φ

(
(log θj − µ)/σx

)

Φ
(
(log θj − µ)/σx

)
− Φ

(
(log θj − µ)/σx

) (7)

where φ(·) is the standard normal density function. Alternately, from the moment generating

function we can impute risk tolerance as

E(θ|c = j) = exp
(
µ + σ2

x/2
)Φ

(
(log θj − µ − σ2

x)/σx

)
− Φ

(
(log θj − µ − σ2

x)/σx

)

Φ
(
(log θj − µ)/σx

)
− Φ

(
(log θj − µ)/σx

) . (8)

Given the parameter estimates, the proxy, h = E(θ|c), has four values, 0.083, 0.367, 0.706,

and 3.687 for individuals in response categories 1-2, 3, 4, and 5-6. Unlike ordinal rankings,

this proxy quantifies the average difference in log risk tolerance across the risk categories.

4. ADDRESSING SURVEY RESPONSE ERROR

Responses to hypothetical income gambles likely provide a noisy signal of true risk tolerance.

Thus the risk tolerance proxy from the previous section is also error-prone. Statistical

procedures that use the risk tolerance proxy will be subject to errors-in-variables problems. In

particular, using the proxy as an explanatory variable in a regression will lead to attenuation

biases and inconsistent coefficient estimates. Since a key aim of including the risk questions

on large-scale surveys is to provide researchers with a means to control for heterogeneity in

preferences, it is critical to address and correct for the consequences of survey response error.

That some individuals give multiple responses to the risk tolerance questions provides

a lever for quantifying survey response error. By making the structural assumption that

preferences are immutable, we attribute the common component in an individual’s answers

to true preference and the changes to response error. Recall that x = log(θ) is the individual’s

true preference parameter. With two versions of the gamble question, we also incorporate a

question-specific persistent response error. The survey response error in wave w to question
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type q is a normal disturbance ǫqw added to x that leads the individual to choose the gamble

response category corresponding to the sum ξqw. The error ǫqw can be interpreted either as

an individual’s misperception of his or her risk tolerance or an error the individual makes in

calculating the bounds (θj, θj) that map preferences into the gambles. Hence

ξqw = x + ǫqw = x + bq + κq + eqw (9)

where bq is a common bias across individuals of question type q, κq is the individual’s

persistent response error for question type q, and eqw is the individual’s transitory response

error for a particular wave w and question type q. The components are distributed as

ξqw ∼ N(µ + bq, σ
2

q ), κq ∼ N(0, σ2

κq), and eqw ∼ N(0, σ2

eq) with σ2

q = σ2

x + σ2

κq + σ2

eq. The

covariance in responses across waves for different question types depends only on the variance

of true risk tolerance. For the same question type, the variance of the persistent error

also affects the covariance across waves. We assume that the survey response error is a

purely random — or “classical” — measurement error. Specifically, the response error ǫqw is

independent of an individual’s true risk tolerance and any other attributes.

We analyze the two question types, the original question o and the status-quo-bias-free

question f , so q ∈ {o, f}. In each wave, only one question type is asked. We assume that

the new version is not subject to status quo bias on average, so bf = 0 and ξfw ∼ N(µ, σ2

f ).

Identification of the parameters requires that at least some individuals answer the gambles

more than once and some of the multiple responders answer the same question type more

than once. Of the 11,616 individuals in our sample, all answer the original question at least

once and 4,244 individuals answer a status-quo-bias-free question. There are 693 individuals

who answer the original question twice. For the bias-free question, 471 individuals answer

in two surveys and 278 in three surveys.

In Section 3, we discuss how an individual with true log risk tolerance x will be assigned

to a category by responses to the survey questions. Survey response error can move the
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individual into a different category from wave to wave and affects assignment to response

categories even for those who answer only in one wave. For individuals who respond in only

one wave, the likelihood of category j is

P (cw = j) = Φ
(

log θj − µ − bq

σq

)
− Φ

(
log θj − µ − bq

σq

)
. (10)

This likelihood depends on the variance of error-prone risk tolerance, σ2

q , not that of true

risk tolerance, σ2

x. Obviously, if all individuals answered in only one wave to one question

type, the problem is under-identified.

For those answering the income gambles in both waves, the probability of observing

category j in wave w and category k in wave w′ is

P (cw = j, cw′ = k) =
−→

Φ (N jq, Nkq′ , ρ) +
−→

Φ (N jq, Nkq′ , ρ)

−−→

Φ (N jq, Nkq′ , ρ) − −→

Φ (N jq, Nkq′ , ρ) (11)

where
−→

Φ (·) is the bivariate normal cumulative distribution function, N jq = (log θj − µ −

bq)/σq, Nkq′ = (log θk−µ−b′q)/σ
′

q, N jq = (log θj−µ−bq)/σq, and Nkq′ = (log θk−µ−b′q)/σ
′

q.

When the question type is the same, that is, q = q′, the correlation, ρ, between the variables

ξqw and ξqw′ is the fraction (σ2

x +σ2

kq)/σ
2

q of the total variance of the error-prone variable due

to true log relative risk tolerance plus the question-specific persistent response error. When

the question types differ, that is, q 6= q′, the correlation is σ2

x/σqσq′ where the covariance

depends only on the variation in true log relative risk tolerance. Unlike the typical multiple

indicator solution to the errors-in-variables problem, identification here does not require

repeat observations from all individuals in the sample.

Maximizing the sample log-likelihood with respect to µ, σx, σκo, σκf , σeo, and σef yields

consistent estimates of the parameters. The second column of Table 3 reports the estimates.

The estimated mean of log risk tolerance −1.84 is somewhat higher in this model with
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multiple gamble responses and question-specific response errors. The original question type is

associated with an 11% lower reported risk tolerance. While this status quo bias is relatively

modest, it is statistically different from zero. A more substantial shift occurs in the estimated

variation of true log risk tolerance, as the estimate of the standard deviation falls to 0.73

from 1.76. Most of this decline is from modeling transitory response error using multiple

gamble responses of some individuals. The modeling of question-specific persistent response

error also lowers the estimated heterogeneity in true preferences somewhat. Together this

implies a much lower estimate of mean risk tolerance in the population: 0.21 instead of

0.65. The variability from response error greatly exceeds that from true risk tolerance. This

finding highlights the limited test-retest reliability of the gambles and the need for multiple

responses from some individuals. Nonetheless, the income gambles still convey much useful

information on preferences as the application in Section 6 validates.

Ignoring survey response error overstates the heterogeneity in risk preferences. As noted,

this causes an upward bias in estimated average risk tolerance. This effect is not dependent

on the lognormal specification. Given the nonnegativity of risk tolerance, noise will in

general shift the mean of the distribution of exp(ξ) to the right. Figure 1 illustrates the

effects of response error. The solid line is the empirical distribution of the discrete responses

in 1992 from Table 2 using the bounds (θj, θj) in Table 1. The solid curve is the fitted

lognormal distribution of true risk tolerance θ = exp(x). The dashed curve is the fitted

lognormal distribution of the true parameter plus noise, exp(x + ǫ). The figure shows how

the distribution of the true parameter moves mass away from the extremes relative to the

distribution that includes noise from response errors.

Table 4 summarizes additional features of the estimated distribution of true risk prefer-

ences based on the parameter estimates in the second column of Table 3. The first column

shows the distribution of log risk tolerance. The second column shows the distribution of the

level of risk tolerance. The estimated mode of 0.094 indicates that the bulk of respondents

have very low risk tolerance. Yet, there are enough respondents with relatively high risk

11



tolerance to pull the mean substantially above the mode. About 25% of respondents are

estimated to have risk tolerance greater than or equal to 0.259, and about 10% have risk

tolerance greater than 0.402. Yet, virtually no respondents have risk tolerance as high as

one (logarithmic utility).

For many applications — notably demand for risky assets — relative risk tolerance θ

is the relevant preference parameter (Breeden 1979; Barsky, Juster, Kimball and Shapiro

1997). But in other applications, such as the strength of the precautionary saving motive, its

reciprocal 1/θ, relative risk aversion, would be the parameter of interest (Carroll and Kimball

Forthcoming). When preferences are heterogeneous across individuals, the reciprocal of

average relative risk tolerance is not equal to the average of its reciprocal. The last column

of Table 4 gives the parameters and fractiles of the distribution of relative risk aversion. For

our parameter estimates, average relative risk tolerance is 0.206. The estimated average of

relative risk aversion is 8.2, which is far greater than 1/0.206 = 4.9. This difference between

the expectation of the reciprocal and the reciprocal of the expectation is a powerful example

of Jensen’s inequality. Jensen’s inequality gets its bite in this application from the substantial

heterogeneity in preferences, the concavity of the 1/θ function, and the concentrated mass

of the probability density near zero, where the function 1/θ is most curved.

Many researchers will want to impute risk tolerance for individuals. As our proxy for

individual risk preference, we calculate the expected risk tolerance conditional on an indi-

vidual’s responses, using the estimated distributional parameters of our statistical model.

The formula is similar to equation (8) in Section 3 except that it now accounts for question-

specific response error and multiple responses to the gamble questions. Table 5 reports the

proxy values of risk tolerance, as well as of log risk tolerance and risk aversion, for respon-

dents to one status-quo-bias-free question. The proxy of risk tolerance for response category

1 (reject job with one-tenth downside risk) is 0.153. The range of relative risk tolerance

corresponding to those preferences is from 0 to 0.13. (See Table 1.) Hence, the proxy value

for this response lies slightly higher than the range. For risk category 2, the proxy of 0.203

12



lies near the center of the range from 0.13 to 0.27. With the more risk tolerant response

categories, the proxy values are substantially lower than the range. For example, category 5

(accept a job with one-third downside risk but reject a job with one-half downside risk), the

proxy of 0.301 lies far below the low end of the range from 1.0 to 3.7. The proxy values of log

risk tolerance and risk aversion follow a similar pattern, as do the proxies from a response to

the original question type. Hence, correcting for response error shifts the proxy toward the

unconditional mean. Yet, substantial heterogeneity and meaningful quantitative differences

remain even after this correction.

For those answering in multiple waves, we use all their responses to sharpen the esti-

mate of their relative risk tolerance. These additional responses greatly widen the range

of proxy values. The lowest imputed value of risk tolerance in our sample is 0.087 and

the highest value is 0.732. When individuals give different responses across waves, we

adjust the proxy values accordingly. Table 5 contains only a small subset of the 370

unique proxy values observed in this sample. For researchers who wish to make impu-

tations based on our parameter values for any possible response to the HRS questions,

we provide a spreadsheet of all possible values of risk tolerance and risk aversion online

(http://www.umich.edu/~shapiro/data/risk_preference).

5. STUDYING BEHAVIOR WITH THE PROXY

A major application of our proxy for risk tolerance is its use as a regressor to control for

heterogeneity in preferences when studying a wide range of behaviors. The proxy h = E(θ|c)

is the conditional expectation of true risk tolerance. Hence, the deviation of the proxy from

the true variable u = θ−h is not a classical measurement error. In particular, the deviation is

correlated with the true variable, not the proxy. In this section, we discuss the non-standard

errors-in-variables problem that arises from use of the proxy and present an estimator that

addresses this problem.
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To study the effects of risk tolerance and other regressors on behavior, consider a model

y = θδθ + zδz + ν (12)

where θ is true risk tolerance and z is a 1×K vector of observables that also affect the behavior

of interest y. To simplify later analysis, all variables are expressed as deviations from their

means. We make the assumptions that, conditional on the regressors, the population error

is mean zero, E(ν|θ, z) = 0, and that the expected outer product matrix of (θ, z) has full

rank. If we observed true risk tolerance and the other regressors, OLS would consistently

estimate the population parameters, δ = (δθ, δ
′

z
)′.

Now consider the use of the proxy. Substituting the proxy h = E(θ|c) in (12), we have

y = hδθ + zδz + η (13)

where

η = uδθ + ν. (14)

The composite error term η includes an expectation error u = θ − h and the structural

error term ν. Unlike a classical measurement error, the deviation u of the proxy from the

true variable is uncorrelated with the proxy h and correlated with the true variable θ. This

implies that in a univariate linear regression of a dependent variable y on only the proxy h,

there is no attenuation bias and the OLS coefficient is consistent.

In a multivariate setting, the OLS estimator using the proxy is unlikely to provide con-

sistent estimates of the population parameters, δ = (δθ, δ
′

z
)′. The proxy of risk tolerance

h = E(θ|c) only conditions on an individual’s gamble response categories, so regressors z

that are correlated with true risk tolerance θ would also correlate with the expectation er-

ror u. For example, men may be more risk tolerant than women. Then gender would be

correlated with the expectation error. Using the proxy with a standard set of demographic
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regressors, the OLS coefficient estimate for men would mix the direct effects of gender with

the indirect effects of risk tolerance. A more general statement of the problem is that

E(z′h) 6= E(z′θ) . (15)

The lack of equality in (15) arises because of the correlation between the proxy’s expectation

error u and the regressors z, which also implies that OLS is inconsistent.

We have enough structure on the problem to derive moment conditions that will allow for

a consistent estimator using the proxy. The assumption of purely random response error and

the properties of conditional expectations imply that the proxy is uncorrelated with both

the structural error term ν and the expectation error u. This yields the following moment

condition for the proxy:

E(hη) = E(hu)δθ + E(hν) = 0 . (16)

To formulate a moment condition for the other observables, we assume that the conditional

expectation of each observable zk in the vector z is linear in risk tolerance, such that

zk = θβk + ζ (17)

where E(ζ|θ) = 0 and βk = E(θ2)−1E(θzk). The linear specification serves as a good

approximation and could be extended to a risk tolerance vector that includes higher order

terms. With purely random response error, ζ is independent of the response error ǫ, which

together with θ determines the proxy h. This implies that E(hζ) = 0. By definition, the

proxy h is also uncorrelated with the expectation error u = θ− h. Substituting the proxy in

(17), we have

zk = hβk + uβk + ζ (18)
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so the regression of zk on the proxy h consistently estimates βk, that is, βk = E(θ2)−1E(θzk) =

E(h2)−1E(hzk). We define the true-to-proxy variance ratio as

λ = E(θ2)/E(h2). (19)

It follows that

E(θzk) = βkE(θ2) = βkλE(h2) = λE(hzk) for all zk ∈ z (20)

where the first equality uses the population estimate of βk in terms of θ, the second equality

uses the definition of λ, and the third equality uses the population estimate of βk in terms

of h. We restate the model in (12) with the proxy h adjusted by λ as

y = λhδθ + zδz + ω (21)

where

ω = (θ − λh)δθ + ν. (22)

With (16) and (20), we have two sets of orthogonality conditions which identify the

model:

E(hη) = E[h(y − hδθ − zδz)] = 0 (23)

E(z′ω) = E[z′(y − λhδθ − zδz)] = 0. (24)

The second orthogonality condition effectively multiples the covariance of z with the proxy

h by the variance ratio λ to get the implied covariance of z with θ.

The estimator of δ will be based on the sample estimates of the proxy h and the true-to-

proxy variance ratio λ. We can implement this GMM estimator because we have an estimate

of λ from the maximum-likelihood estimation. This situation contrasts with standard errors-
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in-variables setting where the true-to-proxy variance ratio is unidentified. Substituting the

sample analogs into the moment conditions and solving for the estimates gives




δ̂θ

δ̂z


 =




N−1
∑

h2

i N−1
∑

hizi

N−1
∑

λzi
′hi N−1

∑
z
′

i
zi




−1



N−1
∑

hiyi

N−1
∑

zi
′yi


 . (25)

Under the conditions specified, these will be consistent estimates of δ and have a limiting

normal distribution. Note the ratio λ in the lower left block of the inverted matrix. There

are three cases in which this estimator is identical to the OLS estimator: first, when there

are no regressors other than risk tolerance; second, when none of the other regressors are

correlated with true risk tolerance; and third, when there is no expectation error for the

proxy, i.e., θ = h, so λ = 1. Taking into account that the proxy variance is attenuated with

respect to the true preference parameter is important in multivariate models with strong

correlations between the other regressors and risk tolerance.

The asymptotic distribution of the estimator in (25) is

√
N(δ̂ − δ) →D N(0,A−1

BA
−1) (26)

where

A = E

[
h2 hz

λz
′h z

′
z

]
, B = E

[( hη
z
′ω

)(
hη z

′ω
)]

. (27)

While we do not directly observe risk tolerance, we can still compute an implied R2 for

the model in (12) based on the true values of risk tolerance. The R2 as if true θ were observed

is

R2 =

δ̂′




N−1
∑

λ̂ĥ2

i N−1
∑

λ̂ĥizi

N−1
∑

λ̂zi
′ĥi N−1

∑
z
′

i
zi


 δ̂

N−1
∑

y2

i

. (28)

Using the standard R2 from a regression with the proxy would understate the explanatory
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power of the model, since the variability of the proxy understates the true variability of

risk tolerance. Table 6 shows that this understatement is substantial. The ratio λ of the

variance of the true risk tolerance to the proxy is 6.32. When the other regressors are

strongly correlated with risk tolerance, the GMM estimator in (25) and the implied R2 in

(28) will more accurately characterize the effects of risk tolerance on behavior than standard

estimators. Even in a univariate regression on risk tolerance alone, equation (28) is needed

to calculate the implied R2.

6. APPLICATION TO ASSET ALLOCATION

In this section, we apply the methods discussed above to study asset allocation. Faced with

uncertain asset returns, risk preferences should be central in allocating financial wealth be-

tween high risk and low risk assets. Individuals with greater risk tolerance should be willing

to hold a larger fraction of their wealth in risky assets, such as stocks. Under complete

markets, only risk tolerance and the distribution of risky asset returns affect allocations

(Samuelson 1969; Merton 1969). Many individuals also anticipate labor income, which they

cannot fully capitalize due to their ability to sort across contracts by their risk type (adverse

selection) and to alter their post-contract behavior (moral hazard). With market incom-

pleteness, models of asset allocation also identify a role for the determinants of future labor

income, such as age and the distribution of income shocks (Heaton and Lucas 1997). Empir-

ical studies often document substantial differences in asset allocation by gender, education,

and race. Nonetheless, much of the heterogeneity in asset allocation remains unexplained.

In contrast with other empirical studies of asset allocation, our risk tolerance proxy allows

us to control quantitatively for the effects of risk preference cross-sectionally. In this section,

using data from the HRS, we present estimates of how the share of financial wealth held

in stocks increases with risk tolerance. We also consider other regressors such as gender,

education, age, race, household income and wealth. While households typically own assets

jointly, many of these attributes are person-specific. We treat the respondent who is most
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knowledgeable about household finances as the primary decision-maker and control for his

or her attributes. We limit our analysis to households with positive financial wealth and

income. Since the HRS is a sample of older households who have often accumulated some

wealth, this selection eliminates fewer observations than it would in an age-representative

sample. Nonetheless, it does exclude approximately 20% of households. The average share of

financial wealth in stocks (excluding individual retirement accounts) is 0.16 and a significant

portion of households do not own stocks. The standard deviation of the share in stocks is

0.29, so there is considerable dispersion in stock allocations.

To demonstrate the usefulness of our risk tolerance proxy h and the true-to-proxy variance

ratio λ, we contrast our GMM estimates with the OLS estimates that use the risk tolerance

variable without taking into account response error. While focusing on the effects of risk

tolerance, we also discuss the effects of gender and education. We use the estimated effects

from these regressors to demonstrate the misleading inferences from failing to take into

account risk tolerance heterogeneity and also failing to correct for the consequences of survey

response error in the risk tolerance proxy.

As a baseline, we estimate the stock allocation model without any control for risk tol-

erance. This corresponds to the approach in most empirical studies. As reported in Table

7, the gender, education, and race of the financial respondent as well as the household’s log

income and log financial assets account for 17.0% of the variation in stock allocations. In this

specification, households with men responsible for the finances have 2.4 percentage points

more in stocks on average. Post-college education raises the share by 3.4 percentage points.

Both are statistically significant and represent 15% and 22% of the average stock allocation.

If any of these characteristics correlate with risk tolerance, then their estimated coef-

ficients also include the indirect effects of risk tolerance. One way to try to sort out the

direct effects of risk tolerance on stock holding and to study the confounding effect of gen-

der, education and other regressors is to estimate a model of asset allocation controlling

for the categorical survey responses to the income gambles. Based on their first response
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in the HRS, we assign individuals to four risk tolerance categories. This regression with

categorical controls explains 17.2% of the variation in stock allocations. Households in the

most risk tolerant category hold 2.5 percentage points more of their wealth in stocks than

those in the least risk tolerant category. But the relationship is nonlinear as households in

the second lowest risk tolerant category hold 2.6 percentage points less in stocks than those

in the least risk tolerant category. Adding the categorical controls diminishes the effect of a

male financial respondent to 2.3 percentage points and post-college education to 3.2. These

results are consistent with the Barsky et al. (1997) finding that men and the most educated

are more risk tolerant. Even partially controlling for risk preferences begins to lower the

estimated effect of these attributes on asset allocation.

The last four columns of estimates in Table 7 use different versions of the cardinal proxy

for risk tolerance and different estimators. In the third column, we use the proxy from Section

3, which ignores survey response error. All else equal, the most risk tolerant households based

on one observation (risk tolerance of 3.687) average 2.9 percentage points more in stocks than

the least risk tolerant households (risk tolerance of 0.049).

The fourth column of Table 7 uses the proxy from Section 4 that accounts for the measure-

ment error in the gamble responses but does not address the potential correlation between

the proxy’s expectation error and the other regressors discussed in Section 5. These results

show that ignoring survey response error greatly understates the marginal effect of risk tol-

erance on stock allocations. When we use the proxy values from Section 4, the coefficient

estimate for the proxy increases over ten-fold. This increase shows how attenuation bias

affects the estimates in the previous two columns that do not account for response error.

Of course, this correction mainly scales up the coefficient estimate and does not affect the

R2. The larger estimated effect of risk tolerance means that when risk tolerance is measured

more precisely with multiple responses that the predicted differences in behavior can be sub-

stantial. The most risk tolerant households based on multiple observations (risk tolerance

of 0.732) average 9.4 percentage points more wealth in stocks than the least risk tolerant
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(risk tolerance of 0.087). This difference represents 60% of the average stock share. Thus

correcting for measurement error has a substantial impact on the estimated responsiveness

of behavior to risk tolerance.

The fifth column of Table 7 uses the same proxy for risk tolerance as in the fourth column

but replaces the OLS estimator with the GMM estimator derived in Section 5. The GMM

estimates show the importance of accounting for the correlation between the expectation

error of the proxy and the other regressors. Using formula (28) for the implied R2, the

explained variation in stock allocations rises to 17.8% from 17.1%. The point estimate for the

effect of risk tolerance rises 11% to 0.162. The average difference in stock allocations of the

most and least risk tolerant households with multiple responses increases over one percentage

point to 10.5. The GMM estimator has a more pronounced effect on the coefficient estimates

for other regressors. As stressed in Section 5, the main issue is that in the OLS estimate the

other regressors will spuriously account for variation in the dependent variable to the extent

that they are correlated with risk tolerance. Having a male financial respondent now raises

stock allocations by only 1.4 percentage points and the effect of a post-college education

falls to 1.2 percentage points. These coefficient estimates are 42% and 65% lower than in

the regression with no measure of risk tolerance and are no longer statistically different from

zero at the 5% level.

As a check on the accuracy of the GMM estimator, the last column of Table 7 looks

at an alternative estimator. Instead of basing the proxy just on the gamble response cate-

gories, we also condition on the regressors in this application. Specifically, in the first-step

maximum-likelihood, we model the mean of log risk tolerance µ as a linear function of the

observables z. The estimated unconditional mean and variance of log risk tolerance from this

alternative first-step maximum-likelihood model are reported in the last column of Table 3.

The estimated distribution does not differ substantially from the model that conditions on

only the gamble responses. This is a direct approach to eliminate the correlation between

the proxy’s expectation error and the observables. Condition (15) now holds with equal-
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ity and the OLS estimator with this new proxy consistently estimates the model with true

risk tolerance. The last two columns of Table 7 are very similar. This finding implies that

the GMM approach, which does not rely on re-estimating the proxy conditional on all the

covariates in the regressions, works well.

The results in Table 7 demonstrate the importance of carefully controlling for the hetero-

geneity in preferences. Beyond using the proxy to control for heterogeneity in risk tolerance,

we show how the effect of other regressors can be overstated if no correction is made for

the fact that the proxy is imperfectly measured and the other regressors are correlated with

preferences. For researchers who want to include an individual measure of risk tolerance in

their studies of other behaviors, our maximum-likelihood estimates provide a valid proxy.

To the extent that this proxy’s expectation error is correlated with other explanatory vari-

ables of interest, the OLS estimates can be misleading. This problem can be addressed with

the GMM estimator that we derive in Section 5 or can be avoided by conditioning on the

other variables in the first-step maximum-likelihood. While the second alternative might

be the best approach, the Health and Retirement Study is currently the only data set with

a sufficient panel to correct for the survey response error in the gamble responses. When

the first-step maximum-likelihood is not possible (for example, because of having only one

response per individual), the proxy values we provide that condition only on the gamble

responses should be used with the GMM estimator to obtain consistent estimates.

7. CONCLUSION

We demonstrate the importance of carefully controlling for risk preferences when examining

asset allocation. In particular, our procedures address many issues in using survey-based

measures of risk tolerance — translation of categorical responses to a cardinal metric, survey

response error, and expectation error for the proxy. Our methods for constructing the

proxy and estimating the effects of risk tolerance on behavior have a wide range of potential

applications. A growing number of surveys including the Panel Study of Income Dynamics
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in the United States, the CentERpanel in the Netherlands, and the Social Security Survey in

Chile have fielded lifetime income gambles like those in the HRS. Our statistical procedures

for constructing the risk tolerance proxy can be applied with minimal adjustment to these

other surveys.

In studies of asset allocation (Vissing-Jorgensen 2002) and intergenerational wealth cor-

relations (Charles and Hurst 2003), researchers have used indicator variables from income

gamble responses. This approach does not fully capture the effect of heterogeneous risk

preferences. According to our empirical analysis, even if the direct effects of risk tolerance

are not central to the study, such indicator variables are unlikely to adequately control for

risk tolerance. In other words, these partial controls are not sufficient either in theory or

practice for consistent estimates of the direct effects of other variables of interest. With

survey questions and statistical techniques motivated by economic theory, we expand the

options for studying the effects of risk preferences on behavior. Using the quantitative proxy

for risk tolerance, we find a strong effect of risk tolerance on stock holding. Moreover, after

accounting for how errors in measured risk tolerance are correlated with other variables, the

estimated effects of gender and education on asset allocation are substantially reduced.
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APPENDIX 1: BOOTSTRAP

Both the OLS and GMM estimates in Table 7 use the risk tolerance proxy h, which is a

generated regressor from the first-step maximum-likelihood procedure. The variance ratio λ

is another generated regressor in the GMM estimator. While the coefficient estimates from

these second-step estimators are asymptotically consistent, the estimated standard errors do

not reflect the sampling variation in the proxy and the variance ratio. We use a bootstrap

to show this sampling variation does not qualitatively alter our inferences in Section 6.

Using a Monte Carlo experiment, we draw 199 random samples from the data and repeat

the two steps of estimation in Section 4 and Section 6. Sampling with replacement, we

maintain the distribution of respondents to the original and status-quo-bias-free questions.

We use a symmetric t-test to construct the 95% bootstrap confidence on the proxy coefficient

estimate in the asset allocation model. The OLS estimate in the fourth column of Table 7 of

0.146 has a confidence interval of 0.042 to 0.249. The GMM estimate of in the fifth column

of Table 7 0.162 has a confidence interval of 0.042 to 0.283. The OLS estimate in the sixth

column of Table 7 of 0.152 has a confidence interval of 0.044 to 0.260. In all three cases, the

estimated effect of risk tolerance on asset allocation remains statistically significant at the

5% level. As expected, sampling variation in the generated regressors has little effect on the

inference of the other controls. The moderate impact of the generated regressors reflects the

precision of the first-step maximum likelihood procedure.
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Table 1: Risk Tolerance Response Categories

Downside Risk Bounds on
Response of Risky Job Risk Tolerance
Category Accepted Rejected Lower Upper
1 None 1/10 0 0.13
2 1/10 1/5 0.13 0.27
3 1/5 1/3 0.27 0.50
4 1/3 1/2 0.50 1.00
5 1/2 3/4 1.00 3.27
6 3/4 None 3.27 ∞

NOTE: Respondents choose between a job with a certain income and a job with risky
income. With equal chances, the risky job will double lifetime income or cut it by the
specific fraction shown in the columns labelled downside risk. The largest risk accepted
and smallest risk rejected across gambles define a response category. In 1992 there are four
categories 1-2, 3, 4, and 5-6. In 1994 and later surveys, there are six response categories.
The last two columns show the bounds on relative risk tolerance consistent with these
response categories in the absence of response error.
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Table 2: Distribution of Risk Tolerance Responses

Response % by HRS Wave
Category 1992 1994 1998 2000 2002
1

64.6
43.4 37.9 46.3 44.8

2 18.1 19.0 18.4 18.6
3 11.6 13.5 17.0 14.4 15.3
4 10.9 14.5 10.8 8.1 9.6
5

12.9
6.3 8.0 7.5 6.1

6 4.2 7.3 5.3 5.6
Responses 11,592 717 796 884 3,591

NOTE: Tabulations use responses on the final release version of HRS 1992, 1994, 1998,
2000, and 2002 without sample weights. The sample for this paper includes the 11,616
original respondents in the HRS study who answer a gamble in one of the first two waves.
See Table 1 for definition of the risk tolerance response categories.

27



Table 3: Distribution of Log Risk Tolerance: Maximum Likelihood Estimates

Ignoring Modeling Including
Response Response Application

Error Error Covariates
Log Risk Tolerance

Mean µ -1.98 -1.84 -1.86
(0.03) (0.03) (0.07)

Standard Deviation σx 1.76 0.73 0.73
(0.03) (0.04) (0.04)

Status Quo Bias bo -0.11 -0.10
(0.04) (0.07)

Response Error Standard Deviation
Original Question, Transitory σeo 1.39 1.40

(0.05) (0.05)
Original Question, Persistent σκo 0.73 0.72

(0.10) (0.10)
SQB-Free Question, Transitory σef 1.43 1.42

(0.03) (0.03)
SQB-Free Question, Persistent σκf 0.60 0.61

(0.09) (0.09)
Number of Individuals 11,616 11,616 11,616
Number of Responses 11,616 17,580 17,580
Number of Parameters 2 7 19
Log-Likelihood -12073.4 -21208.3 -21121.3

NOTE: The first column estimates the model in Section 3. The second column models
survey response error, as described in Section 4. The model of log risk tolerance in the
third column includes the covariates from the application in Section 6. Asymptotic
standard errors are in parentheses.

28



Table 4: Distribution of Risk Preferences

Log Risk Risk Risk
Tolerance Tolerance Aversion

Mean -1.84 0.206 8.2
(0.03) (0.008) (0.3)

Median -1.84 0.159 6.3
(0.03) (0.005) (0.2)

Mode -1.84 0.094 3.7
(0.03) (0.004) (0.2)

Std. Dev. 0.73 0.172 6.8
(0.04) (0.018) (0.7)

Fractiles
1 -1.54 0.029 1.2
5 -1.32 0.048 1.9
10 -1.20 0.063 2.5
25 -1.01 0.097 3.9
50 -0.80 0.159 6.3
75 -0.59 0.259 10.3
90 -0.40 0.402 16.0
95 -0.28 0.523 20.8
99 -0.07 0.858 34.1

NOTE: The values are calculated from the parameter estimates in the the second column
of Table 3. Asymptotic standard errors approximated with the delta method are in
parenthesis.
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Table 5: Imputation of Risk Preference

Response Log Risk Risk Risk
Category Tolerance Tolerance Aversion
1 -2.107 0.153 10.4
2 -1.811 0.203 7.6
3 -1.693 0.228 6.7
4 -1.575 0.257 6.0
5 -1.419 0.301 5.1
6 -1.172 0.387 4.0

NOTE: The proxy values are for responses to a single SQB-free question and are based on
the estimates in the second column of Table 3. The values differ for persons answering in
multiple surveys, the original question type, or in the combined categories 1-2 and 5-6. We
provide a spreadsheet of all possible values online
(http://www.umich.edu/~shapiro/data/risk_preference).
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Table 6: True-to-Proxy Variance Ratio λ

Estimate
Variance

Risk Tolerance θ 0.030
Proxy h = E(θ|c) 0.005

True-to-Proxy Ratio λ 6.319

NOTE: The estimated variance of true risk tolerance and its proxy depend on the
estimated parameters in the second column of Table 3. Section 4 describes the relationship
between survey responses and the proxy values. The true-to-proxy variance ratio λ is an
input to the GMM estimator in (25) and the R2 in (28).
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Table 7: Effect of Risk Preferences on the Share of Financial Wealth in Stocks

Risk Tolerance Proxy
Categorical Ignoring Modeling Modeling Including

Control for Log Survey Response Response Response Application
Risk Tolerance None Response Error Error Error Covariates
Estimator OLS OLS OLS OLS GMM OLS
Category 3 -0.026

(0.010)
Category 4 0.022

(0.012)
Category 5-6 0.025

(0.011)
Proxy 0.008 0.146 0.162 0.152

(0.003) (0.054) (0.060) (0.056)
Male 0.024 0.023 0.023 0.023 0.014 0.018

(0.007) (0.007) (0.007) (0.007) (0.008) (0.008)
Education

> 16 Years 0.034 0.032 0.032 0.031 0.012 0.019
(0.012) (0.012) (0.012) (0.012) (0.013) (0.014)

13-16 Years 0.036 0.035 0.035 0.035 0.024 0.029
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

< 12 Years -0.023 -0.024 -0.023 -0.023 -0.026 -0.024
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Black -0.029 -0.029 -0.029 -0.028 -0.024 -0.027
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Hispanic -0.035 -0.036 -0.035 -0.035 -0.034 -0.038
(0.012) (0.012) (0.012) (0.012) (0.013) (0.012)

Age / 10 -0.002 -0.001 -0.001 -0.001 0.006 0.006
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Log Income 0.002 0.003 0.003 0.002 0.004 0.003
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Log Wealth 0.046 0.047 0.046 0.046 0.047 0.046
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

R2 0.170 0.172 0.171 0.171 0.178 0.177

NOTE: Regressions include 5,818 households with positive financial wealth and total
income in 1992. Individual attributes are from the household’s financial respondent. Share
of wealth in stocks has a mean of 0.158 and a standard deviation of 0.286. Asymptotic
standard errors are in parentheses. In the second to last column the GMM estimates are
based on the formula in (25) and the R2 in the last two columns is based on the formula in
(28). For the application sub-sample, the true-to-proxy variance ratio λ is 6.40. In the last
column, the proxy is constructed from a model of log risk tolerance that conditions on the
application covariates as well as the gamble responses.
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Figure 1: Distribution of Relative Risk Tolerance
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NOTE: The solid line shows the empirical distribution of the survey responses. The solid
curve shows the fitted distribution of the true level of risk tolerance: θ = exp(x) using the
model from Section 4. The dashed curved shows the fitted empirical distribution:
exp(ξ) = exp(x + ǫ).
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