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1 Introduction

To what degree is lifetime inequality due to differences across people established early in

life as opposed to differences in luck experienced over the lifetime? Among initial conditions,

individual differences established early in life, which ones are the most important?

A convincing answer to these questions is of fundamental importance. First, and most

simply, an answer serves to contrast the potential importance of the myriad policies directed

at modifying or at providing insurance for initial conditions (e.g. public education) against

those directed at shocks over the lifetime (e.g., unemployment insurance programs). Second,

a discussion of lifetime inequality cannot go too far before discussing which type of initial

condition is the most critical for determining how one fares in life. Third, a useful framework

for answering these questions should also be central in the analysis of a wide range of policies

considered in macroeconomics, public finance and labor economics.

We view lifetime inequality through the lens of a risky human capital model. Agents

differ in terms of three initial conditions: initial human capital, learning ability and financial

wealth. As agents age, they accumulate human capital by optimally dividing their available

time between market work and human capital accumulation. Human capital and labor

earnings are risky as human capital is subject to uninsured, idiosyncratic shocks each period.

We ask the model to account for key features of the earnings distribution dynamics by

cohorts. To this end, we document how mean earnings and measures of earnings dispersion

and skewness evolve for U.S. males. We find that mean earnings are hump shaped and that

earnings dispersion and skewness increase with age over most of the working lifetime.1

Our model produces a hump-shaped mean earnings profile by a standard human capital

channel. Early in life earnings are low as agents allocate time to accumulating human capital.

Earnings rise as human capital accumulates and as a greater fraction of time is devoted to

market work. Earnings fall later in life because human capital depreciates and little time is

put into producing new human capital.

Two forces within the model account for the increase in earnings dispersion. One force is

that agents differ in learning ability. Agents with higher learning ability have steeper mean

1Mincer (1974) documents related patterns in U.S. cross-section data. Deaton and Paxson (1994),
Storesletten, Telmer and Yaron (2004), Heathcote, Storesletten and Violante (2005) and Huggett, Ventura
and Yaron (2006) examine cohort patterns in U.S. repeated cross section or panel data.
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earnings profiles than low ability agents, other things equal.2 The other force is that agents

differ in idiosyncratic human capital shocks received over the lifetime.

To identify the contribution of each of these forces, we exploit the fact that the model

implies that late in life little or no new human capital is produced. As a result, moments of

the change in wage rates for these agents are almost entirely determined by shocks, rather

than by shocks and the endogenous response of investment in human capital to shocks

and initial conditions. We estimate the shock process from U.S. data using precisely these

moments. Given an estimate of the shock process and other model parameters, we choose

the initial distribution of financial wealth, human capital and learning ability across agents

to best match the earnings facts described above.3 We find that learning ability differences

are important in that they produce much of the rise in earnings dispersion over the lifetime,

given our estimates of the magnitude of human capital risk.

We use our estimates of shocks and initial conditions to quantify the importance of differ-

ent proximate sources of lifetime inequality. We find that as of a real-life age of 20 differences

in initial conditions are more important than are shocks received over the remaining lifetime

as a source of variation in realized lifetime utility, lifetime earnings and lifetime wealth.4 We

find that between 62 to 73 percent of the variation in lifetime utility and between 60 to 71

percent of the variation in lifetime earnings is due to variation in initial conditions. The

higher estimate for each statistic applies when the magnitude of shocks is set to our lowest

point estimate, whereas the lower estimate applies when the magnitude of shocks is set to

our highest point estimate. Intuitively, the greater the shock variance the smaller is the role

for initial conditions in accounting for the pattern of increasing earnings dispersion over the

lifetime.

Among initial conditions, we find that, as of age 20, variation in initial human capital is

substantially more important than variation in either learning ability or initial wealth for how

an agent fares in life. This analysis is conducted for an agent with the median value of each

initial condition. We find that a one standard deviation increase in initial wealth increases

2This mechanism is supported by the literature (see Card (1999)) on the shape of the mean age-earnings
profiles by years of education. It is also supported by the work of Lillard and Weiss (1979), Baker (1997) and
Guvenen (2006). They estimate a statistical model of earnings and find important permanent differences in
individual earnings growth rates.

3Since a measure of financial wealth is observable, we choose the tri-variate initial distribution to be
consistent with features of the distribution of wealth for young households.

4Lifetime earnings equals the present value of earnings, whereas lifetime wealth equals lifetime earnings
plus initial wealth.
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expected lifetime wealth by 3 to 4 percent. In contrast, a one standard deviation increase in

learning ability or initial human capital increases expected lifetime wealth by 9 to 10 percent

and 30 to 34 percent, respectively. We also analyze how an agent in the model values these

changes in initial conditions. Specifically, we ask what is the permanent percentage change

in consumption which is equivalent for an agent in expected utility terms to these changes

in initial conditions. We find that the equivalent percentage changes in consumption are

roughly in line with how a change in initial condition impacts, in percentage terms, expected

lifetime wealth.

A leading and alternative view of lifetime inequality to the one analyzed in this paper is

presented in Storesletten et. al. (2004). The model analyzed in that paper is a standard,

incomplete-markets model in which labor earnings over the lifetime is exogenous.5 These

authors estimate an earnings process from U.S. panel data to match features of earnings over

the lifetime. Within their model, slightly less than half of the variation in realized lifetime

utility is due to differences in initial conditions.6

We note three difficulties related to this alternative incomplete-markets view. First, the

importance of idiosyncratic earnings risk may be overstated. The reason is that all of the

rise in earnings dispersion with age is attributed to shocks and none to initial conditions. In

our model learning ability differences lead to systematic differences in earnings growth rates

across agents. Lillard and Weiss (1979), Baker (1997) and Guvenen (2006) provide evidence

for such differences in permanent earnings growth rates in male earnings data. Second,

although the incomplete-markets model with exogenous earnings produces the rise in U.S.

within cohort consumption dispersion over the period 1980-90 documented by Deaton and

Paxson (1994), the rise in consumption dispersion is substantially smaller in U.S. data over

a longer time period. Our model produces less of a rise in consumption dispersion than the

exogenous-earnings model. A key reason for this is that part of the rise in earnings dispersion

is due to initial conditions. This component is anticipated by agents and therefore reflected

in consumption dispersion early in life. Finally, the standard incomplete-market, life-cycle

model is not useful for some purposes. Specifically, since earnings are exogenous, the model

gives up on theorizing about the underlying sources of earnings inequality. Thus, the model

5Similar models have been used in the macroeconomic literature on economic inequality. Recent papers
in this literature include Huggett (1996), Castañeda, Diaz-Jimenez and Rios-Rull (2003), Krueger and Perri
(2006), Guvenen (2006) and Heathcote, Storesletten and Violante (2006), among many others.

6In the context of a career-choice model, Keane and Wolpin (1997) find a more important role for initial
conditions. They find that unobserved heterogeneity realized at age 16 accounts for about 90 percent of the
variance in lifetime utility.
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can not shed light on how policy may affect inequality in lifetime earnings or may affect

welfare through earnings. Models with exogenous wage rates (e.g. Heathcote et. al. (2006))

face this criticism, but to a lesser extent, since most earnings variation is attributed to wage

variation. In our view, it is worthwhile to pursue a more fundamental approach that in

essence endogenizes wage rate differences via human capital theory.

The paper is organized as follows. Section 2 presents the model. Section 3 documents

earnings distribution facts and estimates properties of shocks. Section 4 sets model parame-

ters. Section 5 analyzes the model. Section 6 analyzes sources of lifetime inequality. Section

7 concludes.

2 The Model

We add risky human capital to the life-cycle, permanent-income framework.7 An agent’s

preferences over consumption allocations are determined by a calculation of expected utility

as indicated below. Consumption cj(z
j) at age j is risky as it depends on the j-period history

of human capital shocks zj. The set of possible j-period histories is denoted Zj ≡ {zj =

(z1, ..., zj) : zi ∈ Z, i = 1, ..., j}, where Z is a finite set of possible shock realizations. P (zj)

denotes the probability of history zj.

E[
J∑

j=1

βj−1u(cj)] =
J∑

j=1

∑

zj∈Zj

βj−1u(cj(z
j))P (zj)

An agent solves the decision problem below, taking initial financial wealth k1(1 + r),

initial human capital h1 and learning ability a as given.

max
{cj ,lj ,kj+1}

E[
J∑

j=1

βj−1u(cj)]

subject to

(1) cj + kj+1 = kj(1 + r) + ej,∀j and kJ+1 ≥ 0

7The model generalizes Ben-Porath (1967) to allow for risky human capital. Risky human capital is
modeled by extending the two-period models of Levhari and Weiss (1974) and Eaton and Rosen (1980) to a
multi-period setting. Krebs (2004) also analyzes a multi-period model of human capital with idiosyncratic
risk. Our work differs by its focus on lifetime inequality, among other differences.
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(2) ej = RjhjLj if j < JR, and ej = 0 otherwise.

(3) hj+1 = zj+1F (hj, lj, a),∀j and Lj + lj = 1,∀j

In this decision problem an agent faces a period budget constraint in which consumption

cj plus financial asset holding kj+1 equal earnings plus the value of assets brought into the

period. Financial assets pay a risk-free, real return r. Earnings ej before a retirement age

JR equal the product of a human capital rental rate Rj, an agent’s human capital hj and

the fraction Lj of available time put into market work. Earnings are zero at and after the

retirement age JR. An agent’s future human capital is determined by an idiosyncratic shock

zj+1 multiplying the law of motion for human capital F . The law of motion F depends

upon current human capital hj, time devoted to human capital production lj and an agent’s

learning ability a, and is increasing in its three arguments.

We now comment on three key features of the model. First, while the earnings of an agent

are stochastic, the earnings distribution for a large cohort of agents evolves deterministically.

This occurs because the model has idiosyncratic but no aggregate risk.8 Second, the model

has two sources of growth in earnings dispersion within cohort - agents have different learning

abilities and different shock realizations. The next section characterizes empirically the rise

in US earnings dispersion. Third, the model implies that the nature of human capital shocks

can be identified from wage rate data, independently from all other model parameters. This

holds, as an approximation, towards the end of the working life because the model implies

that the production of human capital goes to zero. The next section develops the logic of

this point.

3 Data and Empirical Analysis

In this section we use data to address two issues. First, we characterize how mean earnings

and measures of earnings dispersion and skewness evolve with age for a cohort. Second, we

estimate a process for human capital shocks from wage rate data.

8More specifically, P (zj) is both the probability that an agent receives a j-period shock history zj and
the fraction of the agents in a cohort that receive this shock history.
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3.1 Age Profiles

The age profiles are based on earnings data from the Panel Study of Income Dynamics (PSID)

1969-2004 family files. We utilize earnings of males who are the head of the household, who

work between 520 and 5820 hours per year and who earn at least 2000 dollars (in 1968 prices).

We consider males between the ages of 21 and 62. These selection criteria are motivated by

several considerations. First, the PSID has many observations in the middle but relatively

fewer at the beginning or end of the working life cycle. By focusing on ages 21-62, we have

at least 100 observations in each age-year bin with which to calculate age and year-specific

earnings statistics. Our age bins are centered 5-year age bins. For each year we therefore

have bins for ages 23- 60. Second, near the traditional retirement age there is a substantial

fall in labor force participation that occurs for reasons that are abstracted from in the model.

This suggests the use of a terminal age that is earlier than the traditional retirement age.

Let ej,t be the mean real earnings of agents who are age j at time t.9 The earnings

data can be viewed as being generated by several factors that we name cohort, time, and age

effects. Ultimately, we are interested in the age effect. However, as described in detail below,

this measure depends on the identifying assumptions regarding cohort and time effects. To

introduce notation, we denote a birth cohort as s = t − j that is agents who were born in

year t− j. We assume that ej,t is determined by cohort effects αs, age effects βj, time effects

γt and shocks εj,t. The relationship between these variables is given below both in levels and

in logs, where the latter is denoted by a tilde. Cohort effects can be viewed as effects that

are common to all agents who were born in a particular year (e.g., those who were born in

the Great Depression may have suffered a permanent adverse shock). Time effects can be

viewed as effects that are common to all individuals alive at a point in time. An example

would be a temporary rise in the rental rate of human capital that increases the earnings of

all individuals in the period.

ej,t = αsβjγtεj,t

ẽj,t = α̃s + β̃j + γ̃t + ε̃j,t

9Real values are calculated using the CPI. To calculate ej,t we use a 5 year bin centered at age j. For
example, to calculate mean earnings of agents age j = 30 in year t = 1980 we use data on agents age 28− 32
in 1980.
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The linear relationship between time t, age j, and birth cohort s = t − j limits the

applicability of this regression specification. Specifically, without further restrictions the re-

gressors in this system are co-linear and these effects cannot be estimated. This identification

problem is well known.10 In effect any trend in the data can be arbitrarily reinterpreted as

due to year (time) effects or alternatively as due to age or cohort effects.

Given this problem, we provide two alternative measures of the age effects. These corre-

spond to the cohort effects case where we set γ̃t = 0, ∀t and the time effects case where we

set α̃s = 0, ∀s. We use ordinary least squares to estimate the coefficients. For the cohort

effects case, the regression has J×T dependent variables regressed on J +T cohort dummies

and J age dummies. T and J denote the number of time periods in the panel and the number

of distinct age groups, which in our case equal J = 60 − 23 and T = 2004 − 1969. For the

time effects case the regression has J × T dependent variables regressed on T time dummies

and J age dummies. This regression has J less regressors than the regression incorporating

cohort effects.11

In Figure 1 we graph the age effects of the levels of earnings implied by each regres-

sion. Figure 1 highlights the familiar hump-shaped profile of mean earnings. Figure 1 is

constructed by plotting βj from each regression above. The age effects βj are scaled so that

mean earnings equal 100 at the end of the working life cycle for the case of time effects.

A similar analysis is carried out to extract the age profile of measures of earnings dis-

persion and skewness. We consider two standard measures of dispersion: the variance of log

earnings and the Gini coefficient of earnings. We measure skewness by the ratio of mean

earnings to median earnings.

For each of these three statistics the procedure is the same. Let statj,t denote the earnings

statistic of interest calculated for age group j at time t.12 We then estimate the dummy

variable coefficients in the regression equation below, setting either αstat
s = 0 for the case of

time effects or γstat
t = 0 for the case of cohort effects. Figure 2 (a)-(c) plots the estimated

age dummy coefficients after normalization so that the age profile of each earnings statistic

10See Weiss and Lillard (1978) and Deaton and Paxson (1994) among others.
11A third approach, discussed in more detail in Huggett et. al. (2006), allows for age, cohort and time

effects but with the restriction that time effects are mean zero and are orthogonal to a time trend. That is
(1/T )

∑T
t=1 γ̃t = 0 and (1/T )

∑T
t=1 γ̃tt = 0. Thus, trends over time are attributed to cohort and age effects

rather than time effects. The results of this approach are effectively the same as those for cohort effects and
we therefore omit them for brevity.

12We, again, use 5-year age bins centered at age j to compute the statistic of interest at age j.
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runs through the mean value of this statistic across years at age j = 38.

statj,t = αstat
s + βstat

j + γstat
t + εstat

j,t

Figure 2 shows that both dispersion and skewness tend to increase with age in both

the time and cohort effects views. The cohort effect view in Figure 2(a) implies a rise in

the variance of log earnings of about 0.4 from age 23 to 60 whereas the time effects imply

a smaller rise of only about 0.2. The same qualitative pattern can be seen for the Gini

coefficient measure of dispersion in Figure 2(b). Figure 2(c) shows that the rise in earnings

skewness with age is also greater for the cohort effect view than for the time effects view.

We will ask the model to best match the time effects view of the evolution of all three

features (i.e mean, dispersion and skewness) of the earnings distribution. Heathcote et. al.

(2005a) present an argument for stressing the time effects view. Their argument is based

in part on the fact that within-cohort and within-age group changes in earnings and wage

dispersion vary over time but that these two changes are of similar magnitude over the

sub-periods they examine. They argue that this fact suggests that time effects are key.

3.2 Human Capital Shocks

The model implies that an agent’s wage rate, measured as market compensation per unit of

work time, equals the product of the rental rate and an agent’s human capital. The model

also implies that late in the working life cycle human capital investments are approximately

zero. This occurs as the number of working periods over which the agent can reap the returns

to these investments falls as the agent approaches retirement. The upshot is that when there

is no human capital investment over a period of time, then the change in an agent’s wage

rate is entirely determined by rental rates and the human capital shock process and not by

any other model parameters.13

This logic is restated in the equations below. The first equation indicates how the wage

wt+s is determined by rental rates Rt+s and shocks zt+s in the absence of human capital

investment. Here it is assumed that there is no human capital investment from period t to

t + s so that F (h, 0, a) = h in all periods with no investment. The second equation takes

13Heckman, Lochner and Taber (1998) use a similar line of reasoning to estimate differences in rental rates
across skill groups within a model which abstracts from idiosyncratic risk.
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logs of the first equation, where a hat denotes the log of a variable.

wt+s ≡ Rt+sht+s = Rt+szt+sF (ht+s−1, 0, a) = Rt+szt+s × ...× zt+1ht

ŵt+s ≡ log wt+s = R̂t+s +
s∑

j=1

ẑt+i + ĥt

Now let measured s-period log wage differences (denoted yt,s) be true differences plus mea-

surement error differences εt+s− εt. This is the first equation below. We assume that human

capital shocks and measurement errors (ẑt, εt) are jointly independent and are identically

distributed over time and people. We also assume that ẑt ∼ N(µ, σ2) and that V ar(εt) = σ2
ε .

These assumptions imply the three cross-sectional moment conditions below.

yt,s ≡ ŵt+s − ŵt + εt+s − εt = R̂t+s − R̂t +
s∑

j=1

ẑt+i + εt+s − εt

E[yt,s] = R̂t+s − R̂t + sµ

V ar(yt,s) = sσ2 + 2σ2
ε

Cov(yt,s, yt,r) = rσ2 + σ2
ε for r < s

To make use of these moment restrictions, one needs to be able to measure the variable

yt,s and to have individuals for which the assumption of no time spent accumulating human

capital is a reasonable approximation. The focus on older workers addresses both issues.

Wage data for younger workers are potentially problematic for both issues. Specifically, on

the first issue it may be difficult to accurately measure the wage rates emphasized in the

model when measured time at work is a mix of work time and learning time.

We calculate wages in PSID data as total male labor earnings divided by total hours for

male head of household. We impose the same selection criteria as those presented in Section

3.1 for earnings. We follow males for either three years or four years. Thus, we calculate

two log wage differences (i.e. yt,s for s = 1, 2) when males are followed for three years and

three log wage differences when males are followed for four years.14 In estimation we use

14The PSID data is not available for the years 1997, 1999, 2001, and 2003. In the years preceding those
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cross sectional variances and covariances aggregated across panel years. For each year we

generate the sample analog to the moments: µt,s ≡ 1
Nt

∑Nt

i=1 yi
t,s and 1

Nt

∑Nt

i=1(y
i
t,s − µt,s)

2

and 1
Nt

∑Nt

i=1(y
i
t,s − µt,s)(y

i
t,r − µt,r). We stack the moments across the panel years and use a

2-step GMM estimation with an identity matrix as the initial weighting matrix.

Table 1 provides the estimation results. Over the entire sample period the point estimate

of the standard deviation σ of the log shock to human capital is between 0.10 and 0.11 for

both the age group 50 − 60 and 55 − 65. This holds when we follow males for three years

(s̄ = 2) or for four years (s̄ = 3).15 This is smaller than the estimate which obtains when all

males 23− 60 are pooled together. From the point of view of human capital theory, pooling

younger and older workers will mean that the change in log wages will be determined by

shocks and by the endogenous response of human capital decisions to shocks and initial

conditions rather than by shocks alone. We note that the magnitude of the persistent wage

shocks estimated by Heathcote et. al. (2006) in PSID data when various age groups are

pooled is between our estimates for the older age groups and our estimate for the pooled

sample.

The lower part of Table 1 contains results for the period 1969-1981. The point estimates

of the shock variance is lower for each age group in this period than the estimates obtained

using the entire time period 1969-2004. This is consistent with the fact that the increase in

cross-sectional earnings inequality in the U.S. over this period occurred mainly after 1981.

Over the period 1969-1981 we find that the estimated variances for the 50-60 and the 55-65

age groups are smaller than the estimated variance when all age groups are pooled. This is

the same pattern that was found over the entire sample period.

4 Setting Model Parameters

The strategy for setting model parameters is in three steps. First, we estimate the parameters

governing human capital shocks directly. This was done in the previous section. Second,

we choose parameters governing the utility function and interest rates based upon previous

studies. Third, we set the parameters governing the distribution of initial conditions and

the parameter governing the elasticity of the human capital production function so that

years we impose that the agent is available for three consecutive years and use a two year growth rate.
15We have also analyzed several other age-panel year configurations in order to gauge the potential sensi-

tivity to proximity to retirement years and have found no material difference in the point estimates.
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the model best matches the age profiles of the evolution of the male earnings distribution

estimated in the previous section. In choosing the initial distribution and elasticity, we take

all other model parameters as given.

Model parameter values are summarized in Table 2. We set the model period to be a

year. Agents live J = 56 model periods or from a real-life age of 20 to 75. We set a retirement

age at JR = 42 or at a real-life age of 61. At the retirement period an agent can no longer

engage in market work. The real interest rate in the model is set to r = 0.042. This is the

average of the annual return to stock and long-term bonds over the period 1946-2001 (see

Siegel (2002, Table 1-1 and 1-2)). The discount factor is set to β = 1/(1 + r) so that absent

risk the consumption profile solving the model is flat.

The utility function is of the constant relative risk aversion class. The parameter ρ

governing risk aversion and intertemporal substitution is set to ρ = 2. This value lies in

the middle of the range of estimates based upon micro-level data which are surveyed by

Browning, Hansen and Heckman (1999, Table 3.1).

We set the value g governing the growth in the rental rate of human capital in the model

equal to the average growth rate of mean male earnings in US cross-section data. We calculate

that in the PSID over the period 1968-2001 the mean arithmetic growth rate of mean male

earnings equals 0.19 percent. The benchmark model, with homothetic preferences, implies

that the earnings distribution of different cohorts is proportional to the initial level of this

rental rate, other things equal. Thus, with stable demographics the average cross-sectional

earnings in the model grows at rate g.

We set the standard deviation σ of the log human capital shocks to be consistent with

the estimates in Table 1. We analyze σ = 0.088 and σ = 0.108. These are respectively the

lowest and the highest point estimates from Table 1 for the 55 to 65 age group. We set µ,

governing the mean log human capital shock, so that the model matches the average rate of

decline of mean earnings for the cohorts of older workers in US data that we documented

earlier in Figure 1. The fall in mean earnings in the model equals (1+ g)eµ+σ2/2 when agents

make no human capital investments. Thus, µ is set, given the value g and σ, so that this

holds.

We assume that the human capital production function is F (h, l, a) = h + a(hl)α, which

is the functional form analyzed in Ben-Porath (1967). We set the elasticity parameter α and

the parameters governing the initial distribution G of human capital and learning ability to

12



best match the three central features of the U.S. earnings distribution documented in section

3. The Appendix describes the distance metric between data and model statistics that we

minimize. We restrict the distribution G to lie in a parametric class. In the benchmark

model, initial assets are zero and initial human capital and learning ability are jointly log-

normally distributed so that log(x) ∼ N(µx, Σ), when x = (h1, a). We explore later in the

paper a tri-variate distribution, where the initial asset distribution matches features of net

wealth holdings for young households in the PSID.

When we examine the low shock case (i.e. σ = 0.088), we find that α = 0.675 is the

parameter value which best matches the earnings facts. For the high shock case, we find

that α = 0.625 best matches the data. We note that the parameter α has been estimated in

the human capital literature. These estimates, surveyed by Browning et. al. (1999, Table

2.3- 2.4), lie in the range 0.5 to just over 0.9. These previous estimates, however, are based

upon models that abstract from idiosyncratic risk.

We have examined the fit of the model at prespecified values of the parameter α, while

choosing the parameters of the initial distribution to best match the U.S. earnings facts. The

distance between model and data statistics displays a U-shaped pattern in the parameter

α, where the bottom of the U is the value in Table 2. This distance increases sharply for

values of α exceeding 0.80. Over this range there is a strong tension between fitting the

dispersion profile and the skewness profile. If one were to ignore the skewness profile in

choosing initial conditions, then the model would substantially overstate the rise in skewness

over the lifetime we find in U.S. data.

5 Earnings in the Model

In this section, we report on the ability of the model to reproduce the earnings facts docu-

mented in section 3.16 The analysis focuses on the benchmark model without initial wealth

differences.

16Methods used to compute solutions to the model are described in the Appendix.
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5.1 Dynamics of the Earnings Distribution

The age profiles of mean earnings, earnings dispersion and skewness produced by the bench-

mark model are displayed in Figure 3(a)-(c). The model generates the hump-shaped earnings

profile for a cohort by a standard human capital accumulation argument. Early in the work-

ing life cycle, individuals devote more time to human capital production than at later ages.

These time allocation decisions lead to a net accumulation of human capital in the early

part of the working life cycle. Thus, mean earnings increase with age as human capital and

mean time worked increase with age.

Towards the end of the working life-cycle, mean human capital levels fall. This happens as

the mean multiplicative shock to human capital is smaller than one (i.e. E[z] = eµ+σ2/2 < 1).

This corresponds to the notion that on average human capital depreciates. The implication

is that average earnings in Figure 3 fall late in life because growth in the rental rate of human

capital is not enough to offset the mean fall in human capital.

Figure 4 shows the age profile of the mean fraction of time allocated to human capital

production in the model. Approximately 25 percent of available time is directed at human

capital production early in life. After age 55 less than 5 percent of time is directed at human

capital production. Recall that for the purpose of identifying human capital shocks, we use

the assumption that time devoted to human capital production and, hence, human capital

production is negligible towards the end of the working lifetime.17

Two forces account for the rise in earnings dispersion in Figure 3. First, since individual

human capital is repeatedly hit by shocks, these shocks are a source of increasing dispersion

in human capital and earnings as a cohort ages. Second, differences in learning ability across

agents produce mean earnings profiles with different slopes. This follows since within an age

group, agents with high learning ability choose to produce more human capital and devote

more time to human capital production than their low ability counterparts. Huggett et. al.

(2006, Proposition 1) establish that this holds in the absence of human capital risk. This

mechanism implies that earnings of high ability individuals are relatively low early in life

and relatively high late in life compared to agents with lower learning ability, holding initial

human capital equal.

17Mincer (1997) reviews evidence related to time allocation decisions. He cites evidence that time directed
at skill accumulation decreases with age for U.S. males.
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5.2 Earnings Dispersion: Risk versus Ability Differences

We now try to understand the quantitative importance of risk and ability differences for

producing the increase in earnings dispersion displayed in Figure 3. We do so by alternatively

eliminating ability differences or eliminating shocks. The analysis focuses on the high shock

case where σ = 0.108.

5.2.1 Eliminating Ability Differences

We eliminate ability differences by changing the initial distribution so that all agents have

the same learning ability, which we set equal to mean ability. In the process of changing

learning ability, we do not alter any agent’s initial human capital.

Figure 5(a) shows that eliminating ability differences leads to the striking result that

the rise in earnings dispersion over the lifetime is almost completely eliminated. This result

is due to two opposing forces. First, human capital risk leads ex-ante identical agents to

differ ex-post in human capital and earnings. Second, the model has a force which leads

to decreasing dispersion in human capital and earnings with age which has received little

attention in work which interprets patterns of earnings dispersion over the lifetime. Without

risk and without ability differences, all agents within an age group produce the same amount

of new human capital regardless of the current level of human capital – see Huggett et. al.

(2006, Proposition 1). This holds for any value of the elasticity parameter α of the human

capital production function. This implies that both the distribution of human capital and

earnings are Lorenz ordered by age. Thus, measures of earnings or human capital dispersion

that respect the Lorenz order decrease for a cohort as the cohort ages.

Figure 5(a) shows that earnings dispersion increases at the end of the working lifetime.

This occurs as human capital production at the end of life goes to zero because the time

allocated to production (see Figure 4) goes to zero. This means that the opposing force

leading to convergence is gradually eliminated with age.

5.2.2 Eliminating Idiosyncratic Risk

To highlight the role of human capital risk, we eliminate idiosyncratic risk altogether by

setting σ = 0. We adjust the mean log shock µ to keep the mean shock level constant but
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maintain all other initial conditions. This analysis is used in the next section to understand

the effects we observe when we change the shocks and at the same time allow the model to

refit the initial conditions. Removing idiosyncratic risk leads to a counter-clockwise rotation

of the mean earnings profile and leads to a U-shaped earnings dispersion profile. Figure 5(b)

shows the effect on earnings dispersion of eliminating risk.

When idiosyncratic risk is eliminated, human capital accumulation becomes more at-

tractive for risk-averse agents. Thus, all else equal, agents spend a greater fraction of time

accumulating human capital early in life. The result is a counter-clockwise movement in the

mean earnings profile.18 In terms of dispersion in labor earnings, human capital shocks are

more important for agents with relatively high learning ability. These agents are the ones

who would allocate an even larger fraction of time into human capital accumulation for lower

values of the variance of idiosyncratic shocks. When human capital risk is eliminated, these

agents allocate less time to work early in life and more time to human capital accumulation.

5.3 Properties of the Initial Distribution

Table 3 summarizes properties of the distribution of initial conditions. These properties are

given both for the highest and lowest shock estimates and for the two estimated values of

the elasticity parameter α. When the shock variance increases, the initial distributions that

best reproduce the earnings facts require higher levels of mean learning ability and lower

levels of ability dispersion and human capital dispersion. A consequence of the lower levels

of ability and human capital dispersion is a reduction in the relative importance of initial

conditions for lifetime inequality. We will see this shortly in the next section of the paper.

What accounts for these changes in the initial distributions? Recall from our previous

analysis that eliminating shocks for a given initial distribution and elasticity parameter leads

to a counter-clockwise rotation of the mean earnings profile. This occurs because the time

input into human capital accumulation over the life cycle increases as human capital risk

decreases. This is consistent with the result of Levhari and Weiss (1974) whereby, in a two-

period model, risk-averse agents reduce human capital investments with human capital risk

compared to the no risk case.

18This is effectively the central result of Levhari and Weiss (1974) extended to a multi-period setting.
They showed in a two-period model that time input into human capital production is smaller with human
capital risk than without when agents are risk averse.
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Following this intuition, to produce the earnings facts as risk increases, holding the

elasticity parameter fixed, the distribution of initial conditions needs to be adjusted. A

higher mean learning ability level leads to a counter-clockwise rotation of the mean earnings

profile to counteract the clockwise rotation of the mean earnings profile produced by adding

risk to the model with fixed initial distribution. The intuition for why ability dispersion

falls as human capital risk increases is that human capital risk is itself a source of increased

earnings dispersion. Thus, greater human capital risk leaves less room for ability differences

in accounting for the rise in earnings dispersion with age.

6 Lifetime Inequality

6.1 Initial Conditions Versus Shocks

We decompose the variance in lifetime inequality into variation due to initial conditions

versus variation due to shocks. This is done for lifetime utility and lifetime earnings in

the benchmark model. Later on we also decompose the variance in lifetime wealth. Life-

time wealth equals the realized present value of earnings (i.e. lifetime earnings) plus initial

wealth.19 Such a decomposition makes use of the fact that a random variable can be written

as the sum of its conditional mean plus the variation from its conditional mean. As these

two components are orthogonal, the total variance equals the sum of the variance in the

conditional mean plus the variance around the conditional mean.

Table 4 presents lifetime inequality within the benchmark model. Lifetime inequality is

analyzed as of the start of the working life cycle, which we set to a real-life age of 20. We

find that from 62 to 73 percent of the variation in lifetime utility and from 60 to 71 percent

of the variation in lifetime earnings is due to initial conditions. For each statistic, initial

conditions have a greater role when the the magnitude of shocks is set to our lowest point

estimate.

Figure 6 describes lifetime inequality as the elasticity parameter α of the human capital

production function is varied over the interval [.5, .9]. This interval includes the values,

α = .625 and α = .675, that best match the earnings profiles in the high and low shock cases.

19Lifetime utility and lifetime wealth along a lifetime shock history zJ are defined as follows:
U(zJ ; h1, k1, a) =

∑J
j=1 βj−1u(cj(zJ ; h1, k1, a)) and W (zJ ; h1, k1, a) = k1(1+r)+

∑J
j=1 ej(zJ ; h1, k1, a)/(1+

r)j−1.
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Figure 6 shows that the fraction of the variance in lifetime utility and lifetime earnings that

is due to initial conditions falls as the elasticity parameter increases.

We now determine how the decomposition of lifetime inequality changes when we account

for variation in initial wealth found in U.S. data. To examine this issue, we use PSID net-

wealth data for households with a male head age 20 to 25.20 We express net wealth as a

ratio to mean male earnings in the age group 20 -25 in each year. We then pool these ratios

across years.

We maintain the multi-variate log-normal structure for describing initial conditions. How-

ever, we do allow for negative wealth holding. Specifically, we approximate the empirical

pooled wealth distribution with a lognormal distribution which is shifted a distance δ. We

choose δ so that 95 percent of the distribution has a wealth to mean earnings ratio above

−δ. The distribution of the wealth-earnings ratio in the model is given by ex − δ, where

x is distributed N(µ1, σ
2
1). The parameters (µ1, σ

2
1) are set equal to the sample mean and

sample variance of the log of the sum of the wealth-earnings ratio plus δ for ratios above

−δ. The median, mean and standard deviation of the wealth-earnings ratio in the model is

then (0.377, 0.778, 1.340).21 This implies that there is a substantial amount of initial wealth

dispersion within the model. Specifically, a one standard deviation change in initial wealth

is 1.34 times mean yearly earnings for young agents.

The distribution of initial wealth, human capital and learning ability is selected to best

match the earnings facts documented earlier when α is set to the corresponding value in

Table 2. The distribution is a tri-variate lognormal, where the parameters describing the

mean and variance of shifted log wealth are those calculated above in U.S. data. Thus,

wealth in the model is right skewed and mean wealth is more than double median wealth.

Table 5 analyzes lifetime inequality when initial wealth differences are set to the magni-

tudes we find in U.S. data. We find that initial conditions account for 66 to 77 percent of

the variation in lifetime utility, 61 to 72 percent of the variation in lifetime wealth and 59 to

71 percent of the variation in lifetime earnings.22 Thus, we find that when we account for

20The data is from the PSID wealth supplement for 1984, 1989, 1994, 1999, 2001 and 2003. The sample
size is 1176 when pooled across these years.

21In the PSID sample we calculate that (µ1, σ
2
1 , δ) = (−0.277, 0.849, 0.381) and that the median, mean

and standard deviation of the wealth-earnings ratio is (0.313, 0.776, 1.432).
22Our results for lifetime earnings inequality are close to some existing results that are based upon a

statistical model of earnings. Such a model does not attempt to explain how earnings arise endogenously
from optimal decisions over the life cycle. For example, Geweke and Keane (2000, Table 11) estimate such
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initial wealth differences the majority of the variation in lifetime inequality is due to initial

conditions.

6.2 How Important are Different Initial Conditions?

The analysis so far has not addressed how important variation in one type of initial con-

dition is compared to variation in other types for how an agent fares in life. We analyze

the importance of different initial conditions by asking the agents in the model how much

compensation is equivalent to starting life with a one standard deviation change in any initial

condition. We express this compensation, which we call an equivalent variation, in terms of

the percentage change in consumption in all periods that would be required to leave an agent

with the same expected lifetime utility as an agent with a one standard deviation change

in the relevant initial condition. The baseline initial condition is set equal to the mean log

values of initial human capital and learning ability and equal to the mean of the shifted

log initial wealth. The changes in initial conditions are also in standard deviations of log

variables.

The importance of changes in initial conditions, stated in terms of equivalent variations, is

presented in the upper panel of Table 6. We find that a one standard deviation movement in

log human capital is substantially more important than a one standard deviation movement

in either log learning ability or log initial wealth. A one standard deviation increase in initial

human capital is equivalent to a 31 − 34 percent increase in consumption. In contrast, a

one standard deviation increase in learning ability or initial wealth is equivalent to an 6− 8

percent and 4 − 5 percent increase in consumption, respectively. Thus, we find that an

increase in human capital leads to the largest impact, an increase in learning ability has the

next largest impact and an increase in initial financial wealth has the smallest impact on

equivalent variations.

We also analyze the importance of different initial conditions by determining how changes

in initial conditions affect an agent’s budget constraint. More specifically, we determine the

percent by which an agent’s expected lifetime wealth changes in response to a one standard

deviation change in an initial condition. The lower panel of Table 6 presents the results of

this analysis. In interpreting these results, it is useful to keep two points in mind. First, an

a model of male earnings using PSID data and find that initial conditions account for between 66 and 72
percent of the variation in the simulated present value of earnings from age 25 to 65.
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increase in human capital acts as a vertical shift of the expected earnings profile, whereas

an increase in learning ability rotates this profile counter clockwise. Second, the impact of

additional initial financial wealth is both through a direct impact on lifetime resources as

well as the indirect impact through earnings.

Broadly speaking, the lower panel of Table 6 finds that the impact on expected lifetime

wealth of changes in initial conditions are roughly in line with their impact on equivalent

variations. Thus, a one standard deviation change in initial human capital has the greatest

impact, the corresponding change in learning ability has the next biggest impact and initial

wealth changes have the least important impact on expected lifetime wealth.23 We note,

however, that the impact of a one standard deviation change in learning ability on equiva-

lent variations and lifetime wealth displays a weaker link than for other initial conditions.

Specifically, an increase in learning ability raises expected lifetime wealth substantially more

than it raises an agent’s equivalent variation. Intuitively, this occurs because higher ability

leads to higher mean earnings and a higher earnings variance later in life but lowers earnings

early in life. Thus, with incomplete insurance markets, a risk-averse agent values such an

increase in expected lifetime wealth at less than the equivalent change in current wealth.

6.3 Consumption and Social Insurance Implications

One may argue that a useful model for analyzing lifetime inequality within an incomplete-

markets framework should also be broadly consistent in terms of its implications for consump-

tion inequality. We therefore compare the model’s implications for the rise in consumption

dispersion over the lifetime with the patterns found in U.S. consumption data.

A number of studies analyze the variance of log adult-equivalent consumption in U.S.

data. These studies regress the variance of log adult-equivalent consumption for households

in different age groups on age and time dummies or alternatively on age and cohort dummies.

The coefficients on age dummies are then used to highlight how consumption dispersion varies

for a cohort with age.

Figure 7 plots the variance of log adult-equivalent consumption in U.S. data from two

23We also calculate expected lifetime wealth elasticities for an increase in each initial condition. At the
benchmark initial condition, the expected lifetime wealth elasticities are .692 to .723 for human capital, .356
to .414 for learning ability and .026 to .031 for initial wealth. For each initial condition, the larger (smaller)
elasticity corresponds to the high (low) shock case.
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such studies. Deaton and Paxson (1994) analyze U.S. Consumer Expenditure Survey (CEX)

data from 1980 to 1990. Heathcote et. al. (2005a), Slesnick and Ulker (2005) and Primiceri

and van Rens (2006) reexamine this issue using CEX data over a longer time period. All

three of these later studies find that the rise in dispersion with age is substantially smaller

than the rise in Deaton and Paxson (1994).

The exogenous earnings model analyzed in Storesletten et. al. (2004) produces the rise

in consumption dispersion documented in Deaton and Paxson (1994). This is the case when

their exogenous earnings model has a social insurance system. We analyze the consumption

implications of our benchmark risky human capital model with a social insurance system.

Specifically, we augment our benchmark model to include a social security system and

an income tax system. The model social security system features a proportional earnings

tax of 10.6 percent, which is the old-age and survivors insurance benefit tax rate in the

US social security system. The social security system has a common retirement benefit

paid to all agents after the retirement age set equal 45 percent of mean earnings in the last

period of the working lifetime. The income tax in the model captures the pattern of effective

average federal tax rates in the US documented in Congressional Budget Office (2004, Table

3A and 4A) for the tax year 2001. Effective average federal tax rates in the US rise from

approximately 0 percent for low income households to approximately 20 percent for very

high income households.24 We set the distribution of initial conditions so that the model

with social insurance and no initial wealth differences best matches the U.S. earnings facts,

setting all other model parameters to the values in Table 2.

Figure 7 shows that the rise in consumption dispersion in our model is less than the rise

in Deaton and Paxson (1994). The rise in the model from age 25 to 60 is approximately

7 log points when shocks are set to our highest point estimate and is approximately 6 log

points when shocks are set to the lowest point estimate. The rise over the life cycle found

by Primiceri and van Rens (2006), using CEX data from 1980 to 2000, is very similar to the

model results for both the high and low shock case.25

To better understand this result, we emphasize that our risky human capital model

decouples the rise in consumption dispersion from the rise in earnings dispersion. At one

24The details for implementating this income tax function within our model follows closely Huggett and
Parra (2006).

25The benchmark model without a social insurance system produces a rise of approximately 16 and 12 log
points from age 25 to 60 in the high and low shock cases, respectively.
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extreme, the model can produce the rise in earnings dispersion with no rise in consumption

dispersion when risk is absent as then initial conditions account for all the rise in earnings

dispersion. What is important for determining the rise in consumption dispersion within

the model is the magnitude of residual risk that remains after taxation and any insurance

opportunities rather than the rise in earnings dispersion.

Finally, we note that our analysis of lifetime inequality is not very sensitive to the in-

clusion of a social insurance system. In the model with social insurance, initial conditions

account for almost the same fraction of the variation in lifetime utility and lifetime earnings

as compared to the benchmark model. Furthermore, in the model with social insurance

the relative importance of variation in initial human capital compared to learning ability

still holds. Specifically, a one standard deviation increase in human capital is, as of age 20,

several times more valuable to an agent compared to a one standard deviation increase in

learning ability.

7 Conclusion

This paper analyzes the proximate sources of lifetime inequality. We find that differences

in initial conditions as of a real-life age of 20 account for more of the variation in realized

lifetime utility, lifetime earnings and lifetime wealth than do shocks over the lifetime. Among

initial conditions, a one standard deviation change in human capital is substantially more

important as of age 20 than either a one standard deviation change in learning ability or

initial wealth for how an agent fares in life. A one standard deviation increase in human

capital is equivalent to between a 31 to 34 percent increase in consumption each period,

whereas a one standard deviation increase in learning ability is equivalent to a 6 to 8 percent

increase in consumption. A one standard deviation increase in initial wealth is the least

important and is equivalent to a 4 to 5 percent increase in consumption.

Initial human capital and learning ability are positively correlated in the initial distri-

bution which best matches the earnings distribution facts. This may suggest to some that

the importance of learning ability differences relative to human capital differences would be

greater if one were to evaluate lifetime inequality at a younger age. Some intuition for this

position would be that learning ability is crystallized before age 20 and that learning ability

differences are an important source of human capital differences as of age 20. We think
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that such a line of reasoning is valuable to pursue. However, pushing back the age at which

lifetime inequality is evaluated will raise the issue of the importance of one’s family more

directly than is pursued here. The importance of one’s family and one’s environment up to

age 20 is not modeled in our work but is implicitly captured through their impact on initial

conditions: human capital, learning ability and initial wealth.

Our analysis of lifetime inequality is based upon a parsimonious model. Thus, it is easy to

think of initial differences or shocks that are not captured by the model. For example, shocks

to mortality, health and preferences or shocks leading to the formation and dissolution of

households are not captured by the model. It is not obvious to us that adding more sources

of shocks will necessarily imply a more important role for shocks. The reason is that initial

differences as of a young age may play a role in future health and preference states as well

as a role in who forms households with whom.

In our view the risky human capital framework we have analyzed is likely to be important

for the analysis of a number of economic policies and for many other issues. It has the

potential to replace the standard incomplete-markets model with exogenous earnings or

exogenous wages for both positive and normative analysis. For example, on the policy side,

the framework is ideal to study tax policy. Analyzing the replacement of progressive taxation

by flat-rate taxes in this setting would be of special interest. This follows from the role of

progressive taxes in distorting human capital decisions as well as in reducing labor market

risk, and the corresponding unexplored implications for human capital accumulation. All

these reasons suggest that future work should investigate this framework in more detail.
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A Appendix

We analyze a dynamic programming formulation of an agent’s decision problem. The dynamic

programming problem is given below, where the state is x = (h, k, a). The model implies that

the period borrowing limits should depend upon age, human capital, learning ability and the

distribution of shocks. We impose ability-specific limits k(a) and relax these limits until they are

not binding. We also directly penalize choices leading to negative consumption later in life. This

is a device for effectively imposing the endogenous limits implied by the model.

Vj(x) = max
(c,k′,L)

u(c) + βE[Vj+1(h′, k′, a)]

subject to

c + k′ ≤ RjhL + k(1 + r), h′ = z′F (h, l, a), l + L = 1, k′ ≥ k(a)

We compute solutions to this problem by backwards recursion. We use a rectangular grid on the

state variables (h, k) which is learning-ability specific. For each gridpoint and age j, we numerically

solve the maximization problem on the right-hand-side of the Bellman’s equation. Evaluating the

objective involves a bi-linear interpolation of Vj+1 across gridpoints.

To compute expectations, we follow Tauchen (1986) and discretize the shock into 5 equally-

spaced values on the log scale. Values range from minus 2 to plus 2 standard deviations from the

mean log-shock. Proceeding in this way gives a computed value function Vj(x) and decision rules

(cj(x), kj(x), Lj(x)) at gridpoints.

Given decision rules at each age, we simulate lifetime histories from the parametric distribution

G(h1, k1, a) of initial conditions described in section 4-6. To simulate histories, we put a grid on

(h1, k1, a). We draw a gridpoint (h1, k1, a) with a probability proportional to the density of the

distribution at (h1, k1, a). For any draw of an initial condition, we also draw a lifetime history of

shocks from the relevant distribution. We calculate realizations of all endogenous variables using

the computed decision rules, initial conditions and shock histories. Earnings statistics are computed

from 40, 000 draws of initial conditions and lifetime histories.26

We determine the parameters of the distribution G by minimizing the squared distance of log

model moments from log data moments. The objective of the minimization problem is

26The decomposition of lifetime inequality is computed from 120, 000 draws of initial conditions and lifetime
histories.
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JR−1∑

j=1

[(log(m1j/d1j))
2 + (log(m2j/d2j))

2 + (log(m3j/d3j))
2],

where (m1j ,m2j , m3j) denote mean earnings, earnings Gini and the mean to median earnings ratio

at age j in the model and where (d1j , d2j , d3j) are the corresponding statistics from U.S. data.

The simplex minimization routine AMOEBA, from Press et. al. (1992), is used to solve this

minimization problem.
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Table 1: Estimation of Human Capital Shocks

Min-Age Max-Age Period N σ S.E.(σ) σε S.E.(σε) s̄
55 65 1969-2004 125 0.108 (0.029) 0.153 (0.013) 2
50 60 1969-2004 223 0.110 (0.023) 0.157 (0.011) 2
23 60 1969-2004 1521 0.158 (0.010) 0.177 (0.006) 2

55 65 1969-2004 106 0.103 (0.023) 0.149 (0.012) 3
50 60 1969-2004 200 0.104 (0.019) 0.151 (0.010) 3
23 60 1969-2004 1406 0.140 (0.009) 0.178 (0.005) 3

55 65 1969-1981 119 0.088 (0.040) 0.150 (0.015) 2
50 60 1969-1981 225 0.105 (0.027) 0.146 (0.013) 2
23 60 1969-1981 1322 0.152 (0.013) 0.166 (0.008) 2

Note: The entries provide the estimates for σ and σε for various samples. The first and second

column provide the minimum and maximum respective age in the sample. The third column

refers to which PSID years are included. The column labeled N refers to the median number

of observation across panel years. Columns labeled S.E. refer to standard errors. The column

denoted s̄ refers to the maximum s value used in computing log wage differences. In estimation

all variance and covariance restrictions are always imposed.
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Table 2: Benchmark Parameter Values

Definition Symbol Value

Model Periods J J = 56

Retirement Period JR JR = 42

Interest Rate r r = 0.042

Discount Factor β β = 1.0/(1 + r)

Period Utility Function u(c) u(c) = c(1−ρ)

(1−ρ)

ρ = 2

Rental Rate Rj Rj = (1 + g)j−1

g = 0.0019

Human Capital Shocks z log(z) ∼ N(µ, σ2)

σ = 0.088, 0.108

µ = −0.029,−0.031

Law of Motion for Human Capital F (h, l, a) F (h, l, a) = h + a(hl)α

α = 0.675 when σ = 0.088

α = 0.625 when σ = 0.108

Distribution of Initial Conditions G x ≡ (h1, k1, a) ∼ G

discussed in text
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Table 3: Properties of Initial Distributions: Benchmark Model

Low Shock (σ = 0.088) High Shock (σ = 0.108)

Statistic α = 0.625 α = 0.675 α = 0.625 α = 0.675

Mean Learning Ability (a) 0.465 0.373 0.485 0.385

Coefficient of Variation (a) 0.223 0.213 0.205 0.204

Mean Initial Human Capital (h1) 114.4 116.2 113.3 116.0

Coefficient of Variation (h1) 0.439 0.432 0.391 0.387

Correlation (a, h1) 0.802 0.720 0.783 0.789

Note: Entries show the moments of the distribution of initial conditions that best match the

profiles of mean earnings, earnings dispersion and skewness, at the specified values of the shock

σ and the elasticity parameter α. The elasticity value α = 0.675 is the best estimate when

σ = 0.088, whereas α = 0.625 is the best estimate when σ = 0.108.
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Table 4: Sources of Lifetime Inequality: Benchmark Model

Low Shock High Shock

Statistic σ = 0.088 σ = 0.108

Fraction of Variance in Lifetime Utility

Due to Initial Conditions .731 .621

Fraction of Variance in Lifetime Earnings

Due to Initial Conditions .708 .596

Note: Entries show the fraction of the variance of lifetime utility and lifetime earnings accounted

for by initial conditions (initial human capital and learning ability).

Table 5: Sources of Lifetime Inequality: Model with Initial Wealth Differences

Low Shock High Shock

Statistic σ = 0.088 σ = 0.108

Fraction of Variance in Lifetime Utility

Due to Initial Conditions .770 .663

Fraction of Variance in Lifetime Earnings

Due to Initial Conditions .712 .590

Fraction of Variance in Lifetime Wealth

Due to Initial Conditions .722 .612

Note: Entries show the fraction of the variance of lifetime utility, lifetime earnings and lifetime wealth

accounted for by initial conditions (initial human capital, learning ability and initial wealth). Wealth differ-

ences are measured directly from PSID data as explained in the text.
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Table 6: Importance of Changes in Initial Conditions: Model with Initial Wealth

Equivalent Variations

Low Shock High Shock

Variable Change in Variable σ = 0.088 σ = 0.108

Human Capital + 1 st. deviation 34.1 30.7

− 1 st. deviation -25.9 -25.4

Learning Ability + 1 st. deviation 7.9 6.4

− 1 st. deviation -5.0 -7.6

Initial Wealth + 1 st. deviation 4.7 3.7

− 1 st. deviation -2.1 -3.6

Expected Lifetime Wealth

Low Shock High Shock

Variable Change in Variable σ = 0.088 σ = 0.108

Human Capital + 1 st. deviation 34.3 29.7

− 1 st. deviation -23.9 -22.4

Learning Ability + 1 st. deviation 9.9 9.0

− 1 st. deviation -5.9 -8.4

Initial Wealth + 1 st. deviation 4.1 2.5

− 1 st. deviation -1.4 -2.8

Note: The top panel states equivalent variations, whereas the bottom panel states the percent-

age change in the expected lifetime wealth associated with changes in each initial condition.

The baseline initial condition is set equal to the mean log values of initial human capital,

learning ability and wealth. Changes in initial conditions are also in log units.
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Figure 1. Mean Earnings by Age

Note: Figure 1 plots the age effects in mean earnings, after controlling for either
time or cohort effects based on data from PSID, 1969-2004.
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(a) Variance of Log Earnings
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(b) Earnings Gini
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(c) Earnings Skewness (Mean/Median)

Figure 2. Dispersion and Skewness of Earnings by Age

Note: Figure 2 plots the age effects in earnings dispersion and in a measure of
skewness after controlling for either time or cohort effects based on data from
the PSID, 1969-2004.
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(a) Mean Earnings

25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Age

 

 

σ=0.088
σ=0.108
Data

(b) Earnings Gini
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(c) Earnings Skewness (Mean/Median)

Figure 3. Earnings in Model and Data

Note: Figure 3 displays the model implications for the age profiles of mean earn-
ings, the earnings Gini coefficient and a measure of earnings skewness. The model
implications are displayed for low shock case (σ = 0.088) as well as for the high
shock case (σ = 0.108). The figure also reports the U.S. data counterpart based
on the time effects case.
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Figure 4. Mean Time in Human Capital Accumulation

Note: Figure 4 plots the age profile for the fraction of time spent in human capital
accumulation, for both specification of shocks.
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(a) Earnings Gini: Eliminating Learning Ability Differ-
ences
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(b) Earnings Gini: Eliminating Shocks

Figure 5. Earnings Dispersion: Learning Ability versus Shocks

Note: Figure 5 is based on the benchmark model with σ = 0.108. In Panel (a), all
differences in learning ability are eliminated. In Panel (b) shocks are eliminated,
but differences in learning ability and initial human capital are the same as in
the benchmark case.
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(a) Lifetime Inequality: σ = 0.088
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(b) Lifetime Inequality: σ = 0.108

Figure 6. Lifetime Inequality and the Elasticity Parameter α

Note: Figure 6 displays the fraction of the variance in lifetime earnings and utility
due to initial conditions as the elasticity parameter α varies. In each panel, the
values corresponding to the best estimate of α are highlighted.
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Figure 7. Rise in Consumption Dispersion: Model and Data.

Note: Figure 7 plots the rise in the variance of log-consumption for ages 25-60
both in U.S. data and the model. The data is based on Deaton and Paxson
(1994) and Primiceri and van Rens (2006). The model results are for the version
of the model with a social insurance system (SI)– see text for details.
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