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1 Introduction

In times of economic distress, the demand for liquid assets typically increases. Facing the

prospect of temporary shortfalls in revenues, agents tend to hold on to their reserves of cash,

government bonds, and other safe assets as a form of self-insurance. An observation consistent

with this type of behavior is that the precautionary motive in consumption decisions is coun-

tercyclical.1 A further symptom of a countercyclical demand for liquidity can be identified in

the path of several measures of liquidity premia.2 In extreme episodes, such as financial market

crises, this type of behavior takes the form of an outright “flight to liquidity.” What are the

aggregate implications of a countercyclical demand for liquidity? Can it amplify the response

of economic activity to exogenous shocks? In this paper, we explore these questions in a general

equilibrium model with a single liquid asset and decentralized production and exchange. We

find that the answer depends on the total supply of liquid assets. In economies where liquid

assets are relatively abundant, a negative aggregate shock leads to a mechanical reduction in

activity, but there is no additional effect due to the agents’ self-insurance motive. In economies

where, instead, liquid assets are relatively scarce, the aggregate shock has a magnified effect

on the economy, as agents reduce their consumption in an attempt to protect their reserves.

Our amplification mechanism is driven by a form of complementarity in trading decisions.

An agent is less willing to spend his liquid assets when he expects other agents to spend less.

This happens because, in that case, it is harder for him to rebuild his reserves by selling goods

to other agents. The idea that “the difficulty of coordination of trade” may contribute to

aggregate volatility goes back, at least, to Diamond (1982, 1984). The contribution of our

paper is to show that the presence of this coordination problem depends in a crucial way on

the supply of liquid assets. In particular, when they are relatively abundant, the coordination

element vanishes.

We consider a model of decentralized trade in the tradition of search models of money.

There is a large number of households, each with one consumer and one producer. Consumers

and producers from different households meet and trade in spatially separated islands. In each

island the gains from trade are determined by a local productivity shock. Agents make their

trading decisions (consumption and production) without observing the shock realized in the

island visited by their partners. Our focus is on whether trading decisions in a given island

1See Parker and Preston (2005).
2See Krishnamurthy (2002) and Longstaff (2004) and papers reviewed in Cochrane (2005).
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are affected by agents’ expectations regarding the level of trading in other islands. This is the

sense in which there is a “coordination problem” in our model.

Agents are anonymous and, thus, credit arrangements are not feasible. The government

issues a fixed supply of interest-bearing notes, “money,” which are used for transactions. These

notes pay a constant interest rate which is financed by lump-sum taxation. As we will see,

the equilibrium value of real money balances is an increasing function of the rate of return

chosen by the government. Therefore, a regime with a high rate of return, is labeled a regime

of “abundant liquidity,” while one with a low rate of return is one of “scarce liquidity.” To

derive our main analytical results, we focus on two extreme cases. In the first one, the rate of

return is equal to the inverse of the agents’ discount factor. This is a “Friedman rule” regime

and, in this case, real balances are large and the economy achieves the first-best allocation. In

the second one, the rate of return and the value of real balances are so low that agents expect

to be liquidity constrained for any realization of the idiosyncratic shocks. We refer to this case

as a “fully constrained” regime.

Our first result is that under the Friedman rule the quantity traded in each island is indepen-

dent of what happens in other islands. This result follows from an assumption of separability

in preferences and from the fact that, in the Friedman rule regime, agents are fully insured

against idiosyncratic shocks. This makes the marginal value of money constant, allowing the

consumer and the producer from the same household to make their trading decisions indepen-

dently. Away from the Friedman rule, instead, the decisions of the two agents are linked. The

consumer needs to forecast the earnings of the producer to evaluate the household’s marginal

value of money, while the producer needs to forecast the consumer’s outlays.

Next, we look at the aggregate implications of these “linkages.” We consider an aggregate

shock which shifts the distribution of island-specific productivities, reducing the probability of

low realizations and increasing that of high realizations (a first-order stochastic increase). The

aggregate shock is publicly observed. Under both regimes, there is a positive compositional

effect: as more islands have high productivity, aggregate output increases. However, in the

Friedman rule regime, there is no feedback from this aggregate increase in output to the level

of trading in an island with a given local shock. In the fully constrained regime, instead,

the linkage between the trading decisions in different islands generates an additional effect on

trading and output. A good aggregate shock increases the probability of high earnings for the

producer. This induces the consumer to increase spending and reduce the household’s liquid
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reserves. At the same time, the producer expects his partner to spend more, and this increases

his incentive to produce. These two effects imply that a higher level of aggregate activity

induces higher levels of activity in each individual island. This increase is further magnified

once we take into account general equilibrium effects. Using a simple calibrated version of our

economy, we show that this leads to a sizeable degree of amplification of aggregate shocks.

The crucial difference between the two financial regimes is the role of expectations in the

trading decisions of individual agents. To further clarify this difference, we also consider the

case where the aggregate distribution of island-specific shocks is not perfectly known at the

beginning of each period, and agents observe a public signal regarding this distribution. In the

Friedman rule regime, the public signal has no effect on aggregate activity, given that trading

decisions are solely based on local shocks, which are observable. In the fully constrained regime,

on the other hand, a favorable public signal tends to increase aggregate activity due to the

effect of the signal on agents’ expectations.

This paper is related to the vast literature on search models of money, going back to

Diamond (1984) and Kiyotaki and Wright (1989). In particular, our model allows for divisible

money and we use the Lagos and Wright (2005) approach to simplify the analysis. In Lagos

and Wright (2005) agents alternate trading in a decentralized market to trading in a centralized

competitive market. The combination of quasi-linear preferences and a periodic access to a

centralized market ensures that the distribution of money holdings across agents is degenerate

when they enter the decentralized market. Here we use these same two ingredients, with a

modified periodic structure. In our model, agents have access to a centralized market every

three periods. The extra period of decentralized trading is necessary to make the self-insurance

motive matter for trading decisions in the decentralized market of the previous period. This is

at the core of our amplification mechanism. A three-period structure is also used by Berentsen,

Camera and Waller (2005) to study the short-run neutrality of money. They show that, away

from the Friedman rule, random monetary injections can be non-neutral, since they have a

differential effect on agents with heterogeneous money holdings. Although very different in the

objective, their analysis also relies on the lack of consumption insurance. Finally, our model

is related to Rocheteau and Wright (2005) for the use of competitive pricing à la Lucas and

Prescott (1974) in a search model of money.

The paper is also related to the large literature exploring the relation between financial fric-

tions and aggregate volatility, including Bernanke and Gertler (1989), Bencivenga and Smith

3



(1991), Acemoglu and Zilibotti (1997), Kiyotaki and Moore (1997). In particular, Kiyotaki and

Moore (2001) also address this issue from the point of view of limited liquidity supply. Their

paper emphasizes a different channel by which limited liquidity can affect the transmission of

aggregate shocks, focusing on the effects on investment and capital accumulation.

The rest of the paper is organized as follows. In Section 2, we introduce our environment

and solve for the first-best allocation of resources. In Section 3, we define and characterize

the competitive equilibrium. Section 4 addresses the main question of the paper, that is, how

the economy reacts to an aggregate shock. Section 5 present some numerical exercises on the

amplification result and on the behavior of liquidity premia. Section 6 discusses the extension

with imperfect information and public signals and versions of the model with alternative sources

of liquidity supply. Section 7 concludes. The appendix contains all the proofs not in the text.

2 The Model

The economy is populated by a continuum of infinitely-lived households, composed of two

agents, a consumer and a producer. Each household has an initial endowment M of perfectly

divisible notes issued by the government, “money.” Time is discrete and each period agents

produce and consume a single, perishable consumption good. The economy has a simple

periodic structure: each time period t is divided into three sub-periods, s = 1, 2, 3. We will

call them “periods,” whenever there is no risk of confusion.

In periods 1 and 2, the consumer and the producer from each household travel to spatially

separated markets, or islands, where they interact with consumers and producers from other

households. Each island has a competitive market, as in Lucas and Prescott (1974). Trading

is characterized by anonymity, therefore the only type of trades that are feasible are spot

exchanges of goods for money. There is a continuum of islands and each island receives the same

mass of consumers and producers in both periods 1 and 2. The assignment of agents to islands

is random and satisfies a law of large numbers, so that each island receives a representative

sample of consumers and producers. The consumer and the producer from the same household

do not communicate during periods 1 and 2. However, at the end of each period, they meet

and share money holdings and information. In period 3, all consumers and producers trade in

a single centralized market.

In period 1 of time t, the producer from household j, located in island k, has access to the
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linear technology

yj1,t = θkt n
j
t

where yjt is output, n
j
t is labor effort, and θ

k
t is the island-specific productivity. The productivity

θkt is randomly drawn from a distribution with cumulative distribution function F (·) and
support Θ =

£
0, θ
¤
. It is realized after producers and consumers have reached island k and

is observed only by the agents in the island. A law of large numbers applies, so F (·) also
represents the distribution of productivity shocks across islands. It will be useful to assume

that F (·) has an atom at 0, i.e., F (0) > 0, and is continuous on (0, θ]. For the moment, we

look at an economy with no aggregate shocks. In Section 4, we will introduce aggregate shocks

by allowing for shifts in the distribution F (·).
In periods 2 and 3, the producer of household j has a fixed endowment of consumption

goods, yj2,t = e2 and yj3,t = e3. We will assume that the value of e3 is large, so as to ensure

that equilibrium consumption in period 3 is strictly positive for all households.

The household’s preferences are represented by the utility function

E

" ∞X
t=0

βt
³
u(cj1,t)− v(njt ) + U(cj2,t) + cj3,t

´#
,

where cjs,t is consumption in period (s, t) and β ∈ (0, 1) is the discount factor. The functions
u and U are increasing and strictly concave, and the function v, representing the disutility of

effort, is increasing and convex. All of them have continuous first and second derivatives. A

number of other assumptions will be useful in the analysis. Both u and U satisfy standard

Inada conditions and v satisfies the condition limn→n̄ v
0 (n) = ∞. The function u is bounded

below, with u (0) = 0, and there is a σ > 0 such that −u00 (c) c/u0 (c) ∈ [σ, 1) for all c ≥ 0.
Finally, the function U satisfies −U 00 (c) c/U 0 (c) ≤ 1 for all c ≥ 0. We will discuss the role of
these assumptions when they are needed in the analysis.

The fact that in period 3 consumers and producers trade in a centralized market and

have linear utility is essential for tractability. This allows us to derive an equilibrium with a

degenerate distribution of money balances at the beginning of period (1, t), as in Lagos and

Wright (2005).3

Finally, we need to specify the monetary regime. At the end of each period 3, the govern-

ment levies a lump-sum tax T and pays a (gross) rate of return R on the net money balances

3See Shi (1997) for a different approach to obtain a degenerate distribution of money holdings.
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held by each household. In order to focus on equilibria with stationary nominal prices, we

focus on regimes with constant money supply M . We characterize a monetary regime using

the two parameters R and M , and set T so as to satisfy the government budget constraint

M = R (M − T ) .

In this paper, we make no attempt to explain the government’s choice of the monetary regime,

but we simply explore the effect of different regimes on equilibrium behavior.

Notice that we allow for R S 1.4 The assumption of interest-paying money balances is a
general way of introducing a government-supplied liquid asset. In the case R > 1 the asset

resembles a nominal government bond, while in the case R < 1 it looks more like money

subject to a positive inflation tax. In Section 6.2, we discuss a number of alternative ways of

interpreting the liquid asset in our model.

2.1 First-best allocation

The first-best allocation provides a useful benchmark for the rest of the analysis. Consider a

social planner who can choose the labor effort and the consumption of the households. Given

that there is no capital, there is no real intertemporal link between periods. Therefore, we can

look at a static planner problem which only includes periods s = 1, 2, 3.

Each household is characterized by a pair (θ, θ̃), where the first element represents the

shock in the producer’s island and the second represents the one in the consumer’s island. An

allocation is given by consumption functions {cs(θ, θ̃)}s∈{1,2,3} and an effort function n(θ, θ̃).

The planner chooses an allocation that maximizes the ex-ante utility of the representative

household Z θ

0

Z θ

0

³
u(c1(θ, θ̃))− v(n(θ, θ̃)) + U(c2(θ, θ̃)) + c3(θ, θ̃)

´
dF (θ) dF (θ̃),

subject to the economy’s resource constraints. In period 1, there is one resource constraint for

each island θ5 Z θ

0
c1(θ̃, θ)dF (θ̃) ≤

Z θ

0
y1(θ, θ̃)dF (θ̃),

where y1(θ, θ̃) = θn(θ, θ̃). In period s = 2, 3, the resource constraint isZ θ

0

Z θ

0
cs(θ, θ̃)dF (θ) dF (θ̃) ≤ es.

4When R < 1, T is negative and corresponds to a lump-sum subsidy.
5From now on, “island θ” is short for “an island with productivity shock θ.”
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The resource constraints for periods 1 and 2 reflect the assumption that each island receives a

representative sample of consumers and producers.

The following proposition characterizes the optimal allocation.

Proposition 1 The optimal allocation in period 1 is given by n(θ, θ̃) = nFB (θ) and c1(θ̃, θ) =

y1(θ, θ̃) = yFB1 (θ) for all (θ, θ̃) ∈ Θ2, where yFB1 (θ) and nFB (θ) satisfy

θu0
¡
yFB1 (θ)

¢
= v0

¡
nFB(θ)

¢
, (1)

and yFB1 (θ) = θnFB(θ), for all θ ∈ Θ. Optimal consumption in period 2 is c2(θ, θ̃) = e2 for all

(θ, θ̃) ∈ Θ2.

Due to the separability of the utility function, the optimal labor effort of a producer located

in island θ depends only on the productivity θ and is not affected by the shock of any other

island. Furthermore, it is easy to show that output is greater in islands with larger θ. These

two results are summarized in the following lemma.

Lemma 1 The first-best level of output in island θ, yFB1 (θ), is independent of the economy-

wide distribution of productivity shocks F (·). The function yFB1 (θ) is increasing in θ.

Moreover, notice that, at the optimum, c2 is constant across households, that is, households

are fully insured against the shocks θ and θ̃. Finally, given linearity, the consumption levels

in period 3 are not pinned down, as consumers are indifferent among any profile c3(θ, θ̃), with

E[c3(θ, θ̃)] = e3.

3 Equilibrium

We turn now to the definition and characterization of the competitive equilibrium. We con-

centrate on steady-state equilibria where prices, the allocation and the distribution of money

are independent of time. Hence, from now on we drop the time index t.

We begin by characterizing optimal individual behavior for given prices. Money is the

numeraire, p1 (θ) denotes the price of goods in period 1 in island θ, and p2 and p3 denote

the prices in periods 2 and 3. Consider a household with an initial stock of money m at the

beginning of period 1. The consumer travels to island θ̃ and consumes c1(θ̃). Since money
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holdings are non-negative, his budget constraint and liquidity constraint in period 1 are

m1(θ̃) + p1(θ̃)c1(θ̃) ≤ m,

m1(θ̃) ≥ 0,

where m1(θ̃) denotes the consumer’s money holdings at the end of period 1. In the meantime,

the producer, located in island θ, produces and sells y1 (θ) = θn(θ). At the end of period 1,

the consumer and the producer get back together, and pool their money holdings. Therefore,

in period 2 the consumer’s constraints are

m2(θ, θ̃) + p2c2(θ, θ̃) ≤ m1(θ̃) + p1 (θ) θn(θ),

m2(θ, θ̃) ≥ 0,

where consumption, c2(θ, θ̃), and end-of-period money holdings, m2(θ, θ̃), are now contingent

on both shocks θ and θ̃. Finally, in period 3, the consumer and the producer are located in the

same island and the revenues p3e3 are immediately available. Moreover, the household has to

pay the nominal tax T . The constraints are now

m3(θ, θ̃) + p3c3(θ, θ̃) ≤ m2(θ, θ̃) + p2e2 + p3e3 − T,

m3(θ, θ̃) ≥ 0.

Let V (m) denote the expected utility of a household with nominal balances m at the

beginning of period 1, facing prices {p1 (θ)}θ∈Θ , p2, p3 in all periods. The household’s problem

is then characterized by the Bellman equation

V (m) = max
{cs},{ms},n

Z θ

0

Z θ

0
[u(c1(θ̃))− v (n (θ)) + U(c2(θ, θ̃)) + (2)

+c3(θ, θ̃) + βV (Rm3(θ, θ̃))]dF (θ)dF (θ̃),

subject to the budget constraints and liquidity constraints introduced above. The solution to

this problem gives us optimal quantities as a function of the initial money balances m, which

we denote by c1(θ,m), c2(θ, θ̃,m), etc.

We are now in a position to define a steady-state competitive equilibrium, where prices,

quantities and the distribution of money balances are stationary.

Definition 1 A steady-state competitive equilibrium is given by prices
©
{p1 (θ)}θ∈Θ , p2, p3

ª
,

a distribution of money holdings with c.d.f. H (·) and supportM, and an allocation {n (θ,m) ,
c1(θ,m), c2(θ, θ̃,m), c3(θ, θ̃,m),m1 (θ,m) ,m2(θ, θ̃,m),m3(θ, θ̃,m)}θ∈Θ,θ̃∈Θ,m∈M such that:
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(i) the allocation solves problem (2) for each m ∈M;

(ii) markets clear6 Z
M

c1(θ,m)dH (m) = θ

Z
M

n(θ,m)dH (m) for all θ ∈ Θ,

Z
M

Z θ

0

Z θ

0
cs(θ, θ̃,m)dF (θ̃)dF (θ)dH (m) = es for s = 2, 3;

(iii) the distribution H (m) satisfies

H (m) =

Z
M

Z θ

0

Z
{m̃:Rm3(θ,θ̃,m̃)≤m}

dF (θ̃)dF (θ)dH (m̃) .

Condition (iii) ensures that the distribution H (·) is stationary. As we will see below, we
can focus on equilibria where the distribution of money balances is degenerate at m = M .

Therefore, from now on we drop the argument m from the equilibrium allocations.

In order to characterize the equilibrium behavior, it is useful to derive the household’s

first order conditions. From problem (2) we obtain the three Euler equations (with respective

complementary slackness conditions)

u0(c1(θ̃)) ≥
p1(θ̃)

p2

Z θ

0
U 0(c2(θ, θ̃))dF (θ) (m1(θ̃) ≥ 0) for all θ̃ ∈ Θ, (3)

U 0(c2(θ, θ̃)) ≥
p2
p3

(m2(θ, θ̃) ≥ 0) for all (θ, θ̃) ∈ Θ2, (4)

1 ≥ p3βRV
0(Rm3(θ, θ̃)) (m3(θ, θ̃) ≥ 0) for all (θ, θ̃) ∈ Θ2, (5)

the optimality condition for labor supply

v0 (n (θ)) = θ
p1 (θ)

p2

Z θ

0
U 0(c2(θ, θ̃))dF (θ̃) for all θ ∈ Θ, (6)

and the envelope condition

V 0 (m) =

Z θ

0

u0(c1(θ̃))

p1(θ̃)
dF (θ̃). (7)

Our assumptions allow us to simplify the equilibrium characterization as follows. First, the

assumption that F (·) has an atom at 0, together with the Inada condition for U , implies that

m1(θ̃) > 0 for all θ̃. All consumers keep some positive money reserves in period 1, to insure

6The market clearing conditions reflect the assumption that each island receive a representative sample of
consumers and producers. Thanks to Walras’ law we can omit the market clearing conditions for the money
market.
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against the risk that their producers make zero revenues. This guarantees that condition (3)

always holds as an equality.7

Next, condition (5) shows why we obtain equilibria with a degenerate distribution of money

balances, as in Lagos and Wright (2005). Given that the supply of money is constant at M , a

steady state equilibrium with a degenerate distribution H (·) must satisfy

Rm3(θ, θ̃) =M for all (θ, θ̃) ∈ Θ2.

In equilibrium, all agents adjust their consumption in period 3, so as to reach the same level of

m3, irrespective of their current shocks. This immediately implies that m3(θ, θ̃) > 0, so that

(5) holds as an equality for all pairs (θ, θ̃). Notice that the assumptions that utility is linear

in period 3 and that e3 is large are crucial to ensure that the left-hand side of (5) is constant,

confirming that this behavior is optimal.8

This leaves us with condition (4). In general, this condition can be either binding or slack

for different pairs (θ, θ̃), depending on the parameters of the model. However, we are able to

give a full characterization of the equilibrium by looking at specific monetary regimes, namely,

by making assumptions about the rate of return R. First, we look at equilibria where the

liquidity constraint m2(θ, θ̃) ≥ 0 is never binding. We will show that this case arises when

R = 1/β, that is, in a monetary regime that follows the Friedman rule. Second, we look at

equilibria where the constraint m2(θ, θ̃) ≥ 0 is binding for all pairs (θ, θ̃). We will show that
this case arises whenever the rate of return is sufficiently low, i.e., when R ≤ R̂, for a given

cutoff R̂ ∈ (0, 1/β).
These two polar cases provide two analytically tractable benchmarks, which illustrate well

the mechanism at the core of our model. The quantitative analysis in Section 5 also considers

the case of economies with R ∈ (R̂, 1/β), where the liquidity constraint in period 2 is binding
for a subset of agents.

3.1 Unconstrained equilibrium

We begin by considering “unconstrained equilibria,” that is, equilibria where the liquidity

constraint is never binding. In this case, condition (4) always holds as an equality. Combining

7 In Section 5.2 and in Appendix B, we relax the assumption F (0) > 0.
8When R < 1/β, all steady-state equilibria are characterized by a degenerate distribution of money holdings.

One can show that, in this case, the value function V is strictly concave in any steady-state equilibrium. This,
together with (5) implies that m3 is constant across households.
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conditions (3)-(5) and (7) then gives

u0(c1(θ̃))

p1(θ̃)
= βR

Z θ

0

u0(c1(θ))

p1(θ)
dF (θ). (8)

Taking expectations with respect to θ̃ on both sides, shows that a necessary condition to

obtain an unconstrained equilibrium is βR = 1. The following proposition shows that, indeed,

βR = 1 is both necessary and sufficient for an unconstrained equilibrium. Moreover, under

this monetary regime the equilibrium achieves an efficient allocation.9

Proposition 2 An unconstrained equilibrium exists if and only if R = 1/β and achieves a

first-best allocation. In all unconstrained equilibria, the prices are

p1(θ) = κu0(yFB1 (θ)) for all θ ∈ Θ, (9)

p2 = κU 0(e2), (10)

p3 = κ, (11)

for some κ ∈ (0, κ̂], where

κ̂ ≡ M

u0(yFB1 (θ))yFB1 (θ) + U 0 (e2) e2
. (12)

To capture the logic behind the efficiency result, consider a consumer and a producer

located in island θ. Using condition (4) and market clearing, we can rewrite the consumer’s

Euler equation (3) as10

u0(y1(θ)) =
p1(θ)

p3
, (13)

and the producer’s optimality condition (6) as

v0
µ
y1 (θ)

θ

¶
= θ

p1(θ)

p3
. (14)

These two equations describe, respectively, the demand and the supply of consumption goods

on island θ, as a function of the price p1(θ). Jointly, they determine the equilibrium values of

p1(θ) and y1(θ).

Conditions (13) and (14) highlight that, under the Friedman rule, a consumer and a pro-

ducer in island θ do not need to forecast the income/spending of their partners when making

9See Rocheteau and Wright (2005) for a general discussion of the efficiency of the Friedman rule in a wide
class of search models of money.
10Whenever we look at a consumer and producer located in the same island θ, the consumer’s optimality

conditions are given by (3)-(5), with the role of θ and θ̃ inverted.
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their trading decisions, given that their marginal value of money is constant and equal to 1/p3.

This implies that trading in island θ is essentially independent of trading decisions in all other

islands. We will see that this is no longer true when we move to a constrained equilibrium.

Conditions (13) and (14) can be easily manipulated to obtain the planner’s first order condi-

tion (1).

It is possible to prove that the unconstrained equilibrium allocation is unique, but the

price levels are indeterminate, since κ in (9)-(11) can be anywhere in the interval (0, κ̂].11

This implies that the real value of the money supply M is indeterminate. However, the upper

bound κ̂ determines a lower bound for the real value of M . In particular, given our focus

on the liquidity constraint in period 2, we derive explicitly the upper bound for M/p2 in the

following corollary.

Corollary 1 In an unconstrained equilibrium M/p2 satisfies

M

p2
≥ e2 +

u0(yFB1 (θ))

U 0(e2)
y1(θ). (15)

The fact that real value of money is large in period 2 ensures that all households can afford

to consume c2(θ, θ̃) = e2, irrespective of the shocks θ and θ̃, thus achieving full insurance.

3.2 Fully constrained equilibrium

We now turn to the case where the liquidity constraint is always binding in period 2, that is,

m2(θ, θ̃) = 0 for all pairs (θ, θ̃). The following proposition shows that this type of equilibrium

arises when R is sufficiently low. We refer to it as a “fully constrained equilibrium.”

Proposition 3 There is a cutoff R̂ ∈ (0, 1/β) such that a fully constrained equilibrium exists

if and only if R ≤ R̂.

Let us illustrate the main steps of the equilibrium construction. Combining the consumer’s

budget constraints in periods 1 and 2 gives

c2(θ, θ̃) =
M

p2
− p1(θ̃)

p2
c1(θ̃) +

p1 (θ)

p2
y1 (θ) , (16)

where we use the fact that all agents begin period 1 with m = M and end period 2 with

m2(θ, θ̃) = 0. Notice that now households are not fully insured and their consumption in

period 2 depends both on the consumer’s and on the producer’s shock in period 1.
11This indeterminacy can be eliminated using a “fiscal rule” under which the government commits to set the

real value of the lump sum tax T/p3.

12



Integrating both sides of (16) over θ and θ̃, and using market clearing in periods 1 and 2,

we obtain a simple “quantity-theory” equation

p2e2 =M. (17)

It is easy to show that in any equilibrium the choice of M only affects nominal variables, but

has no real effect. Therefore, we choose the convenient normalizationM = e2, which, in a fully

constrained equilibrium, implies p2 = 1.

As in the unconstrained case, let us focus on a consumer and a producer in island θ. The

previous steps imply that we can rewrite the consumer’s Euler equation (3) as

u0(y1(θ)) = p1 (θ)

Z θ

0
U 0
³
e2 − p1 (θ) y1 (θ) + p1(θ̃)y1(θ̃)

´
dF (θ̃), (18)

and the producer’s optimality condition (6) as

v0
µ
y1 (θ)

θ

¶
= θp1 (θ)

Z θ

0
U 0
³
e2 − p1(θ̃)y1(θ̃) + p1 (θ) y1 (θ)

´
dF (θ̃). (19)

The demand and supply equations (18) and (19) correspond to (13) and (14) in the uncon-

strained case and show that the equilibrium values of p1 (θ) and y1 (θ) are now dependent

on prices and quantities in all other islands. This highlights the “linkages” between trading

decisions in island θ and trading decisions in other islands, which arise when liquidity con-

straints are binding in period 2. In this case, consumers and producers need to forecast the

level of trading in other islands to evaluate their expected marginal value of money, and thus

their willingness to trade at each price p1(θ). These linkages will play a crucial role when we

introduce aggregate shocks in the next section.

Equations (18) and (19) define two functional equations in p1 (·) and y1 (·). In the proof
of Proposition 3, we show that this pair of functional equations has a unique solution. To

do so, we define x(θ) ≡ p1(θ)y1(θ) and we analyze a fixed point problem in terms of the

function x (·). The fixed point is found using a contraction mapping argument. Here we make
use of the assumption that the elasticity of u0 (c) is bounded in [σ, 1). Proposition 3 can be

proved under weaker conditions, using a different type of fixed point theorem. However, the

contraction mapping approach laid out here will be essential in deriving our amplification result

in Section 4. An interesting corollary of Proposition 3 is that the fully constrained equilibrium

allocation is the same for all R ≤ R̂. The only equilibrium variable that changes with R is the

price level p3.
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The following lemma establishes two monotonicity results for real and nominal income in

period 1, which will be useful in studying the effects of aggregate shocks.

Lemma 2 In a fully constrained equilibrium, both y1(θ) and p1(θ)y1(θ) are monotone increas-

ing in θ.

Finally, comparing (15) and (17) shows that real money supply in period 2 is smaller in

the fully constrained equilibrium than in any unconstrained equilibrium. The intuition behind

this result is that a lower rate of return on money reduces agents’ incentive to save. This tends

to increase nominal prices and reduces the equilibrium value of real money balances. This

result also explains why we label the monetary regime with R ≤ R̂ as one of “scarce liquidity,”

and the Friedman rule regime as one of “abundant liquidity.” We will return to this issue in

Section 6.2.

3.3 Liquidity premium

Let us extend our model by introducing an illiquid asset in zero net supply. This simple

extension allows us to define a liquidity premium. The illiquid asset is traded at the beginning

of period 1, before the idiosyncratic shocks θ are realized, and it represents a claim to 1 unit

of money in period 3. It is illiquid in the sense that it cannot be carried by consumers to the

islands they visit in periods 1 and 2. Denote by q its price in terms of money (the numeraire).

Households choose illiquid asset holdings b at the beginning of period 1 and their budget

constraints in periods 1 and 3 become

m1(θ̃) + p1(θ̃)c1(θ̃) ≤ m− qb,

m3(θ, θ̃) + p3c3(θ, θ̃) ≤ m2(θ, θ̃) + p2e2 + p3e3 + b− T,

while the budget constraint in period 2 is unaffected. The optimality condition for b can be

written as

q

Z θ

0

u0(c1(θ̃))

p1(θ̃)
dF (θ̃) = βR

Z θ

0

Z θ

0
V 0 (Rm3) dF (θ)dF (θ̃).

Combining it with the envelope condition (7), we obtain

q = βR. (20)

Since the illiquid asset is in zero net supply, the equilibrium analysis is unchanged.
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Notice that the gross nominal return on money between periods 1 and 3 is 1, while that

on the illiquid asset is equal to 1/q. Hence, 1/q − 1 represents the liquidity premium in our

economy. It follows from (20) that, under the Friedman rule, q = 1 and the liquidity premium

is zero. In this case, the return on the illiquid asset is exactly the same as that of the liquid

asset because agents are perfectly insured. Whenever R < 1/β, the liquidity premium is

positive. In particular, in a fully constrained economy, the liquidity premium is above some

cutoff 1/(βR̂) − 1. Agents are all liquidity constrained in period 2 and are willing to pay a
lower price for the illiquid asset, because they are concerned about consumption volatility in

period 2, when the illiquid asset cannot be used.

4 Aggregate Shocks

We now turn to the main question of the paper: how does output respond to aggregate shocks

when liquidity is scarce or abundant? In this section, we compare analytically the effect of

an aggregate shock in the unconstrained and fully constrained regimes derived above and we

identify an amplification mechanism which is only present in the fully constrained case. In

the next section, we will present numerical examples in order to evaluate the quantitative

significance of the amplification effect and to study the intermediate cases with R ∈ (R̂, 1/β).

4.1 A decomposition

First, we introduce aggregate uncertainty in the model by introducing an aggregate shock ζt,

which is realized and publicly revealed at the beginning of each period. We assume that ζt is

i.i.d. with cumulative distribution function G(·) continuous on the support [ζ, ζ]. Conditional
on ζt, the cross-sectional distribution of the productivity shocks θ

k
t is F (·|ζt). Assume that

F (θ|ζ) is continuous and non-increasing in ζ, for each θ. This implies that a distribution with
a higher ζ first-order stochastically dominates a distribution with lower ζ.

We assume i.i.d. aggregate shocks and we focus on simple stationary equilibria, defined

along the lines of Definition 1, where the distribution of money balances at the beginning of

period 1 is degenerate. Prices and allocations now depend not only on the current idiosyncratic

shocks, but also on the current aggregate shock ζ, and are denoted by p1(θ, ζ), c1(θ, ζ), etc.

In Appendix B we present the characterization of the equilibrium with aggregate shocks. In

particular, both propositions 2 and 3 are easily extended to this case. The only noticeable
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difference is that the definition of the cutoff R̂ needs to be modified so as to ensure that in a

fully constrained equilibrium agents are constrained for all realizations of ζ.

Given that output in periods 2 and 3 is exogenous, we focus on aggregate output in period 1,

which is equal to

Y1 (ζ) ≡
Z θ

0
y1 (θ, ζ) dF (θ|ζ) . (21)

In particular, we look at the proportional response of output to a small aggregate shock,

d lnY1/dζ. This measure can be decomposed as follows

d lnY1
dζ

=

R θ
0 y1 (θ, ζ)

∂f(θ|ζ)
∂ζ dθ

Y1
+

R θ
0

∂y1(θ,ζ)
∂ζ dF (θ|ζ)
Y1

. (22)

The first member on the right-hand side represents the mechanical effect of having a larger

number of islands with high productivity. This effect is positive both in the unconstrained and

in the fully constrained economy, given that output is increasing in θ in both regimes as shown

by Lemmas 1 and 2. We call this the “own-productivity effect.” The second member captures

the endogenous response of output for each given level of θ, and is at the core of our analysis.

We call it the “expected income effect,” for reasons that will be apparent below.

4.2 The expected income effect

Consider first an unconstrained equilibrium. In this case, the economy achieves the first-best

allocation and, as we know from Lemma 1, output in island θ is independent of the economy-

wide distribution of productivity. Therefore, ∂y1 (θ, ζ) /∂ζ = 0 and the expected income effect

is absent.

Next, consider the case of a fully constrained equilibrium. The following proposition shows

that, in this case, output in each island is increasing in ζ, for any given realization of the local

productivity shock θ. This implies that the expected income effect is positive.

Proposition 4 Consider a fully constrained equilibrium of the economy with aggregate shocks.

For each θ > 0, the output y1 (θ, ζ) is increasing in ζ.

To understand the mechanism behind this effect, it is useful to consider the following

partial equilibrium exercise. Let us focus on island θ and take as given p1(θ̃, ζ) and y1(θ̃, ζ)

for all θ̃ 6= θ. Rewriting the demand and supply equations (18) and (19) for the economy with
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aggregate shocks gives

u0(y1(θ, ζ)) = p1 (θ, ζ)

Z θ

0
U 0(c2(θ̃, θ, ζ))dF (θ̃|ζ), (23)

v0
µ
y1(θ, ζ)

θ

¶
= θp1 (θ, ζ)

Z θ

0
U 0(c2(θ, θ̃, ζ))dF (θ̃|ζ), (24)

where

c2(θ̃, θ, ζ) = e2 − p1 (θ, ζ) y1 (θ, ζ) + p1(θ̃, ζ)y1(θ̃, ζ),

and the symmetric expression holds for c2(θ̃, θ, ζ). Lemma 2 shows that p1 (θ, ζ) y1 (θ, ζ) is an

increasing function of θ. It follows that U 0(c2(θ̃, θ; ζ)) is decreasing in θ̃, while U 0(c2(θ, θ̃; ζ)) is

increasing in θ̃. Hence, when ζ increases the integral on the right-hand side of (23) decreases,

while the integral on the right-hand side of (24) increases.12 On the demand side, the intuition

is that when a liquidity constrained consumer expects higher income from his partner, his

marginal value of money decreases. Then, he reduces his reserves and increases consumption

for any given price p1(θ). On the supply side, when a producer expects higher spending by his

partner, he faces a negative income effect and, hence produces more for any given p1(θ). The

first effect shifts the demand curve to the right, the second shifts the supply curve to the right.

The combination of the two implies that equilibrium output in island θ increases.

On top of this partial equilibrium mechanism, there is a general equilibrium feed-back due

to the endogenous response of prices and quantities in the islands θ̃ 6= θ. This magnifies the

initial effect. As the nominal value of output in all other islands increases, there is a further

increase in the marginal value of money for the consumers and a further decrease for the

producers, leading to an additional increase in output.

Summing up, the mechanism identified in Proposition 4 tends to magnify the output re-

sponse to aggregate shocks in a fully constrained economy. This amplification effect is driven

by the agents’ expectations regarding nominal income in other islands.

Notice that the proof of Proposition 4 is the only place where we use the assumption that

the elasticity of U 0 (c) is smaller or equal than 1. In particular, this condition is sufficient to

establish that the labor supply in each island is positively sloped, which, in turns, is sufficient

to obtain our result. When we turn to numerical examples, we will see that the result survives

for elasticities larger than 1.

12Recall that an increase in ζ leads to a shift of the distribution of θ in the sense of first order stochastic
dominance.
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Going back to equation (22), we have established that the expected income effect is zero

in the unconstrained case and positive in the constrained one. However, this is not sufficient

to establish that output volatility is greater in the constrained economy, since we have not yet

compared the relative magnitude of the own-productivity effects, which are positive in both

cases. A special example where the comparison is unambiguous is the case of a binary shock

for θ, where the own-productivity effect is identical in the two cases.

Let θ have a binary distribution on {0, θ}. Let ζ ∈ [0, 1] represent the probability of the
high realization θ. In this case, the output response to a positive aggregate shock is always

higher when liquidity is scarce.

Lemma 3 When θ has a binary distribution on {0, θ} the response of output to the aggregate
shock ζ, d lnY1/dζ, is greater in a fully constrained equilibrium relative to an unconstrained

equilibrium.

Consider first an unconstrained equilibrium and let yU1 denote output in island θ. Output

is zero in the island where θ = 0. Moreover, from Lemma 1 we know that yU is independent

of ζ. Therefore, aggregate output is equal to Y1 (ζ) = ζyU , and

d lnY1 (ζ)

dζ
=
1

ζ
. (25)

Next, consider a fully constrained equilibrium and let yC1 (ζ) denote output in island θ. Aggre-

gate output is now equal to Y1 (ζ) = ζyC1 (ζ) and we have

d lnY1 (ζ)

dζ
=
1

ζ
+

d ln yC1 (ζ)

dζ
. (26)

The second element on the right-hand side of (26) is positive by Proposition 4. Therefore,

comparing (25) and (26) immediately shows that the output response is larger in the fully

constrained economy.

Apart from specific examples, it is generally difficult to compare the relative size of the

own-productivity effect in the two regimes. In fact, it is possible to construct examples where

this effect is larger in the unconstrained economy and where it is strong enough to dominate

the expected income effect. Therefore, to evaluate the significance of the mechanism identified

in Proposition 4, we turn to a basic quantitative exercise.
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5 Numerical Examples

In this section, we present some numerical examples that show that, under reasonable para-

metrizations, the amplification effect identified above is sizeable and leads to higher volatility

in economies with lower supply of liquid assets. To compute these examples, we generalize

our theory to monetary regimes with R ∈ (R̂, 1/β), where the liquidity constraint is binding
for a subset of realizations (θ, θ̃). The characterization of the equilibrium for this intermediate

region is in Appendix B.

5.1 Parameters

We interpret each sequence of three sub-periods as a year, and set the discount factor β equal

to 0.96. The instantaneous utility functions in periods 1 and 2 are u (c) = c1−σ1/ (1− σ1)

and U (c) = c1−σ2/ (1− σ2). The disutility of labor effort is linear, v (n) = n. The island

specific shock θ has a discrete uniform distribution, with 10 equally spaced realizations on the

interval [0, θ].

Given isoelastic preferences, it is possible to show that if θ, e2, and e3 are scaled by appro-

priate factors, one obtains equilibria which are equivalent in terms of all the measures we will

look at (output volatility, nominal incomes, etc). Therefore, we normalize e2 = 1.

The coefficient of relative risk aversion σ2 is set equal to 1. The parameters σ1 and e3

are chosen to obtain a realistic economy-wide demand for the liquid asset. In particular,

we interpret the liquid asset in a narrow sense as money balances (M1, i.e., currency and

demand deposits) and match the empirical relation between money velocity and the nominal

interest rate. This approach makes our simple calibration comparable to those in Lagos and

Wright (2005) and Craig and Rocheteau (2007), which, in turns, follow Lucas (2000). In the

data, money velocity is defined as the ratio of M1 to nominal GDP and the nominal interest

rate is measured by the short-term commercial paper rate. In the model, money velocity is

measured as M/
³R θ
0 p1 (θ) y1 (θ) dF (θ) + p2e2 + p3e3

´
.13 To derive the nominal interest rate

in the model, we use a result derived in Section 6.2, which shows that our model is equivalent

to a model with non-interest-bearing money, where money growth and inflation are constant

and equal to γ. In that setup, the real rate of return on money balances is equal to R = 1/γ,

the inverse of the inflation rate, and the real rate of return on the illiquid asset (treasury

13For simplicity, we calibrate parameters using the model with no aggregate shock.
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Figure 1: Money velocity and nominal interest rates

bills) is equal to 1/β. Therefore, the nominal interest rate is equal to 1 + i = γ/β = (βR)−1.

This shows that the Friedman rule regime corresponds, as it should, to i = 0, while a fully

constrained regime corresponds to i > ı̂, where ı̂ = (βR̂)−1 − 1.14

Finally, the value of θ is chosen so that average nominal income is equal in periods 1 and

2, that is,
R θ
0 p1(θ)y1(θ)dF (θ) = p2e2, in a baseline scenario where the nominal interest rate is

i = 5%. The parameters we obtain are σ1 = 0.294, e3 = 9.021, and θ = 1.904. Figure 1 shows

the relation between money velocity and the nominal interest rate in the data (scatter plot)

and in the model (solid line).

5.2 Amplification

We can now illustrate the main result of the paper, by looking at the effect of aggregate shocks

in economies with different levels of i (or R). We consider a positive aggregate shock that

reduces the probability of θ = 0 by 0.009 and increases proportionally the probability of all

positive realizations of θ. If we interpret θ = 0 as an unemployment state, this shock reduces its

probability from 0.10 to 0.091. The size of the aggregate shock is chosen so that it increases Y1
14For each value of i in the empirical time-series, we evaluate the equilibrium value of money velocity. We

choose σ1 and e3 to minimize the quadratic distance between money velocity in the data and the model-generated
series. We use US annual data for the sample period 1900-2000, as in Lucas (2000).
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Figure 2: The aggregate output response in different regimes

by 1% under the Friedman rule. The equilibrium is computed assuming that the two aggregate

shocks have equal probability.

Figure 2 shows the proportional response of Y1 for different levels of the nominal interest

rate i. Notice that the output response is about three times larger in the fully constrained

economy, that is, when i ≥ ı̂ (R ≤ R̂), relative to the Friedman rule regime, where i = 0

(R = 1/β). In the parametrization presented, the fully constrained regime is achieved for high

levels of i, around 90%–basically an hyperinflation scenario. However, a sizeable amplification

effect is also present for moderate inflation rates. For example, when the nominal interest rate

is 15% the output response is more than 40% larger than under the Friedman rule.

Figure 3 illustrates the expected income effect identified in Proposition 4. The two panels

illustrate how output varies across islands in the two polar regimes. Under the Friedman rule,

in panel (a), output per island is independent of the aggregate shock, since the expected income

effect is absent. In the fully constrained regime, in panel (b), the output of each island θ is

greater after a high aggregate shock.15

We can then perform some simple comparative statics exercises. In particular, we look at

15To make the figure easier to read, we consider here a bigger aggregate shock, which reduces the probability
of θ = 0 by 0.09 (which generates a 10% output response in the Friedman rule regime).
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Figure 3: Island-specific output and local productivity shocks

the effect of changing σ1 and σ2 on equilibrium volatility. Figure 4 shows the proportional

output response for different values of these parameters, plotted against the nominal interest

rate i. Panel (a) shows that economies with σ1 closer to 1, display smaller aggregate volatility.

To understand the mechanism behind this figure, notice that the coefficient σ1 determines

the elasticity of demand for local goods in island θ. When σ1 is closer to 1, differences in

productivity θ have a smaller effect on nominal income, p1(θ)y1(θ), since changes in output

are compensated by close to proportional changes in prices.16 This reduces nominal income

volatility across islands, dampening the strength of the expected income effect. The effects of

changing σ2 are shown in panel (b). Increasing agents’ risk aversion in period 2 strengthens

the agents’ self-insurance motive, thus magnifying the expected income effect. Therefore, for

higher values of σ2, the amplification is more pronounced.17

As a further exercise, let us relax the assumption that the distribution of θ has positive

mass at zero. That assumption was made to ensure that money holdings are always positive

at the end of period 1, m1(θ) > 0 for all θ, so that we could focus our attention on the role of

the liquidity constraint in period 2. Consider now the case where the realizations of θ lie in the

interval
£
θ, θ
¤
, with θ > 0. The equilibrium characterization for this general case is discussed

in Appendix B. In particular, suppose θ is still a discrete uniform (with 10 realizations), but

16The presence of a positive mass of islands with θ = 0, means that some degree of income volatility is present
even in the limit case σ1 = 1.
17The example with σ2 = 2 shows that the assumption σ2 ≤ 1 is not necessary for our amplification result.

In fact, amplification is stronger for larger values of σ2.
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θ = 0.25. The remaining parameters and the form of the aggregate shock are unchanged.

Figure 5 plots the output response to a positive aggregate shock in this case. Amplification

is still present for all i > 0. The possibility of a binding liquidity constraint in period 1

generates an interesting non-monotonicity in the relation between the monetary regime and

output volatility. For low levels of i, the liquidity constraint in period 1 is not binding, and

our effect generates amplification as in the benchmark case. However, when i is high enough,

around 12%, the period 1 liquidity constraint starts to bind for consumers in islands with high

productivity. This dampens the response of consumption, since some consumers are effectively

against a cash-in-advance constraint, reducing the amplification effect. As in the baseline

model, there is a cutoff ı̂, around 65%, above which changes in i have no further effect on the

real allocation. At this point, there is still a sizable degree of amplification.18

5.3 Countercyclical liquidity premia

Next, let us look at the response of the liquidity premium to aggregate shocks. Our numerical

example shows an interesting additional implication of the model: the same mechanism behind

18 In the example presented, for i ≥ ı̂, 40% of the consumers are constrained in period 1. It is also possible
to construct examples where, for sufficiently high values of i, all consumers are constrained in period 1. In that
case, the amplification effect disappears as i becomes high enough.
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the amplification result tends to make the liquidity premium countercyclical.

Let us go back to the extended version of the model presented in Section 3.3, where we

introduced an illiquid asset, in zero net supply. Let us assume that the illiquid asset is traded

after the realization of ζ.19 Therefore, the price of the illiquid asset is a function of ζ. By

combining the appropriate optimality and envelope conditions, we obtain

q (ζ) =
βR

R ζ
ζ

R θ
0

u0(y1(θ,ζ̃))
p1(θ,ζ̃)

dF (θ|ζ̃)dg(ζ̃)R θ
0

u0(y1(θ,ζ))
p1(θ,ζ)

dF (θ|ζ)
. (27)

Consider first an unconstrained economy. An immediate extension of equation (8) shows that

q (ζ) = 1, as in the case of no aggregate shocks. Therefore, the liquidity premium is zero and is

independent of ζ. In a fully constrained economy, combining the consumers’ Euler equations

in the three periods and the envelope condition, we getZ θ

0

u0 (c(θ, ζ))

p1 (θ, ζ)
dF (θ|ζ) > βR

Z ζ

ζ

Z θ

0

u0(c(θ, ζ̃))

p1(θ, ζ̃)
dF (θ|ζ)dg(ζ̃).

This implies that the liquidity premium 1/q (ζ) − 1 is always positive and, in general, varies
with ζ. It is interesting to explore whether we can say anything about the correlation of the

liquidity premium and the aggregate shock.

Figure 6 plots the liquidity premium conditional on the two aggregate shocks, for different

values of i, and shows that the liquidity premium is countercyclical in our example.20 To

understand the underlying mechanism, notice that the liquidity premium is countercyclical

whenever the derivative of 1/q (ζ) with respect to ζ is negative. Given (27), this is equivalent

to d
hR θ
0

u0(y1(θ,ζ))
p1(θ,ζ)

dF (θ|ζ)
i
/dζ < 0. A useful decomposition is then:

d

dζ

"Z θ

0

u0 (y1(θ, ζ))

p1 (θ, ζ)
dF (θ|ζ)

#
=

Z θ

0

u0 (y1(θ, ζ))

p1 (θ, ζ)

∂f(θ|ζ)
∂ζ

dθ +

Z θ

0

∂
³
u0(y1(θ,ζ))
p1(θ,ζ)

´
∂ζ

dF (θ|ζ). (28)

When ζ increases, there are two effects on the liquidity premium, related to the two effects

on aggregate output analyzed in Section 4. On the one hand, there is an “own-productivity

effect,” represented by the first term of (28), that tends to increase the liquidity premium.

If there are more islands with higher productivity, there will be more trade on average and

19 It is easy to show that if we allow agents to trade the illiquid asset before the realization of ζ its price would
be equal to βR.
20As for Figure 3, we consider here a larger aggregate shock (which reduces the probability of θ = 0 by 0.09),

to make the figure easier to read.
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Figure 6: Liquidity premium

agents will need more liquid assets. On the other hand, there is an “expected income” effect,

represented by the second term of (28). In a given island θ, consumers expect higher income

and reduce their demand for liquidity. This increases consumption and reduces their marginal

utility in period 1, driving down the liquidity premium. Notice that the prices p1(θ, ζ) are

also adjusting when ζ changes, which makes it hard to derive unambiguous analytical results.

However, for all the parameter combinations we have tried, this second effect is positive. In

Figure 6, this effect is illustrated by the dotted line labeled “expected income effect,” and is

sufficiently strong so as to generate a countercyclical liquidity premium.

6 Extensions

6.1 News shocks

Consider now an economy where the aggregate shock ζ is not observed by the households in

period 1. Instead, they all observe a public signal ξ ∈ [ξ, ξ], which is drawn at the beginning
of each period, together with the aggregate shock ζ, from a continuous distribution with joint

density function g (ζ, ξ).

Take an agent located in an island with productivity θ, his posterior density regarding ζ
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can be derived using Bayes’ rule:

g (ζ|ξ, θ) = f (θ|ζ) g (ζ, ξ)R ζ
ζ f(θ|ζ̃)g(ζ̃, ξ)dζ̃

.

The distribution g (ζ|ξ, θ) is then used to derive the agent’s posterior beliefs regarding θ̃ in the
island where his partner is located

F (θ̃|ξ, θ) =
Z ζ

ζ
F (θ̃|ζ)g (ζ|ξ, θ) dζ.

We will make the assumption that F (θ̃|ξ, θ) is non-decreasing in ξ, for any pair (θ, θ̃). This

means, that conditional on θ, the signal ξ is “good news” for θ̃, in the sense of Milgrom (1981).

We also make the natural assumption that F (θ̃|ξ, θ) is non-decreasing in θ. In period 2, the

actual shock ζ is publicly revealed.

In this environment, we study a stationary equilibrium, along the lines of Definition 1, where

the distribution of money holdings at the beginning of period 1 is degenerate and prices and

allocations depend on idiosyncratic shocks and on the aggregate shocks ξ and ζ. In particular,

prices and quantities in period 1, p1 (θ, ξ) and y1 (θ, ξ), depend only on θ and ξ, given that ζ

is not in the information set of the households in that period. Aggregate output in period 1

becomes

Y1 (ζ, ξ) ≡
Z θ

0
y1 (θ, ξ) dF (θ|ζ) . (29)

We can now look separately at the output response to the productivity shock ζ and to the

news shock ξ. In particular, next proposition shows that the output response to ζ is positive

both in an unconstrained and in a fully constrained equilibrium, while the output response to

the signal ξ is positive only in the fully constrained case.21

Proposition 5 Consider the economy with imperfect information regarding the aggregate shock.

In an unconstrained equilibrium ∂Y1(ζ, ξ)/∂ζ > 0 and ∂Y1(ζ, ξ)/∂ξ = 0. In a fully constrained

equilibrium ∂Y1(ζ, ξ)/∂ζ > 0 and ∂Y1(ζ, ξ)/∂ξ > 0.

This result is not surprising, in light of the analysis in the previous section. Compare

the expression for aggregate output under imperfect information (29) with the correspondent

expression in the case of full information (21). By definition, the productivity shock ζ affects

21The analysis in Appendix B can be easily extended to the case of the economy with aggregate shocks and
imperfect information.
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the distribution of idiosyncratic shocks F (·|ζ) in both cases. However, the trading decisions
in island θ are affected only by the agents’ expectations about that distribution, which, in

the case of imperfect information, are driven by the signal ξ. It follows that the effect of ζ

is analogous to the own-productivity effect, while the effect of ξ is analogous to the expected

income effect. The advantage of an environment with imperfect information, is that these two

effects can be disentangled. In particular, our amplification mechanism is captured by the

output response to ξ. When liquidity is abundant, as we know from Proposition 1, output in

island θ is independent of the economy-wide distribution of productivity and does not respond

to ξ. The result that the output response to ξ is positive when liquidity is scarce is a natural

extension of Proposition 4. In island θ, trading is higher the more optimistic agents are about

trading in all other islands. The only difference is how expectations are formed. The perceived

distribution of productivities for an agent in island θ depends now on the signal ξ, instead

that on the actual ζ. A positive signal ξ makes both consumers and producers in island θ

more optimistic about trading in other islands, even if the underlying ζ is unchanged. This

highlights that expectations are at the core of our amplification result.

6.2 Alternative sources of liquidity

There are several alternative ways of introducing a liquid asset in our environment, which lead

to formally equivalent models. A sketch of these different approaches can help the interpreta-

tion of our results.

Constant money growth. Assume that money pays no interest, and there is a constant

money growth rate γ, that is,

Mt+1 = γMt.

Monetary injections take place at the end of period 3, and the government budget constraint

is now

Mt+1 =Mt − Tt,

where the lump-sum tax/subsidy Tt is time-varying. It is possible to prove that this economy

is formally equivalent, in real terms, to our baseline economy. More specifically, given an

equilibrium of the economy with interest-bearing notes, there exists an economy with constant

money growth that achieves the same equilibrium allocation in real terms. The converse also

applies. The argument for this result goes as follows. Take an equilibrium of the baseline
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economy, with rate of return R, and equilibrium prices p1(θ), p2, p3. In an economy with

constant money growth γ = R−1, we can construct an equilibrium with an identical allocation

in terms of consumption and labor supply, where the prices are time-varying and equal to

p̃1,t (θ) = γtp1 (θ), p̃2,t = γtp2, and p̃3,t = γtp3. In Appendix C, we provide further details on

how this equilibrium is constructed. Here, we just remark that the inflation rate between any

pair of periods (s, t) and (s, t+ 1) is equal to γ, so that the real rate of return on money is

equal to 1/γ and thus, by construction, to R.

Lucas trees. Consider an economy with a fixed endowment of “trees,” as in Lucas (1978),

paying a constant real dividend d > 0 in every period 3. The total supply of trees is normalized

to 1. In this case, we can derive an equivalence result with the baseline economy by restricting

R to the interval (0, 1/β]. Consider an equilibrium of the economy with interest-bearing notes.

Then, there is an equivalent Lucas tree economy where d is equal to the real value of the

tax in period 3, T/p3, and the household’s endowment in period 3 is equal to e3 − d. In

the corresponding equilibrium, consumption and labor supply are identical and the price of

trees in terms of consumption goods are given by Q1(θ) = M/p1(θ), Q2 = M/p2 and Q3 =

(M − T ) /p3. Note that the rate of return of the trees between periods (3, t) and (3, t+ 1) is

Q3 + d

Q3
=

M

M − T
,

which, by construction, is equal toR. Appendix C describes in detail the equilibrium allocation.

In the Lucas tree version of our model, the analogues of Propositions 2 and 3 can be stated

as follows.

Proposition 6 In the Lucas tree economy, there exist two cutoffs dC and dU , with dC < dU ,

such that if d ≥ dU there exists an unconstrained equilibrium and if d ≤ dC there exists a fully

constrained equilibrium.

This result gives an additional reason for labeling our two polar cases as “abundant” and

“scarce” liquidity. The unconstrained equilibrium arises when the supply of the real asset,

captured by the dividend d, is large, and the fully constrained equilibrium arises in the opposite

case. Notice that, given the model parameters, it is possible that dC ≤ 0. In this case, no
Lucas tree economy achieves a fully constrained equilibrium, given that d > 0. Whether dC is

positive or negative depends on whether R̂ is greater or smaller than 1, and, in general, both

cases are possible.
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There is a common element among the various approaches considered: the real value of

the flow of transfers associated to the liquid asset in period 3. In our baseline economy, this

corresponds to the net interest payments on the net money balances (R− 1) (M − T ) /p3,

which, by the government budget constraint, is equal to T/p3. In the constant money growth

economy, this is equal to Tt/p̃3,t and, in the Lucas tree economy, it corresponds to d. Given

that local markets are Walrasian, the essential distortion in our economy is the limited ability

of agents to do intertemporal trade. A consumer meeting a producer in periods 1 or 2 would be

willing to transfer future resources in period 3 in exchange for current consumption. However,

as credit contracts are not available, he is not able to promise repayment. The presence of the

liquid asset allows him to circumvent this problem, since he can transfer his asset holdings to

the producer. The equilibrium value of the liquid asset depends on the value of the real payoffs

associated to it. The larger this payoff, the larger the equilibrium value of the asset.22

7 Concluding Remarks

In this paper we have analyzed how different liquidity/monetary regimes affect the response of

an economy to aggregate shocks. When liquid assets are scarce and agents are more likely to be

liquidity constrained, the response of the economy is magnified. In this case, a complementarity

in agents’ trading decisions arises endogenously and amplifies the initial effect of the shock.

Our mechanism is driven by the combination of risk aversion, idiosyncratic uncertainty,

and decentralized trade. All three ingredients are necessary for the mechanism to operate.

Risk aversion and idiosyncratic risk give rise to an insurance problem. Decentralized trade,

together with the anonymity assumption, implies that agents can only self-insure using their

money holdings.23 A nice feature of our setup is that simply by changing the real rate of return

on money, we move from an environment in which idiosyncratic risk is perfectly insurable

(Friedman rule) to an environment in which idiosyncratic risk is completely uninsurable (fully

constrained regime). In this sense, the mechanism identified in this paper speaks more broadly

about the effects of uninsurable idiosyncratic risk on aggregate behavior.

If we interpret our liquid asset strictly as a monetary instrument, as we did in our quantita-

tive examples of Section 5, an immediate implication of our model is that high inflation regimes

22The idea that public liquidity allows consumers to overcome lack of commitment in financial contracts is
explored in Woodford (1990) and Holmstrom and Tirole (1998).
23Reed and Waller (2006) also point out the risk sharing implications of different monetary regimes in a model

à la Lagos and Wright (2005).
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tend to exhibit higher real volatility. Looking at the empirical relation between inflation rates

and aggregate volatility, across countries and across time, it is indeed possible to find a positive

correlation. Even though it is clearly hard to establish the direction of causality, this corre-

lation is consistent with our mechanism. Our results also show that high inflation is socially

costly because it undermines the role of monetary savings as a form of self-insurance. From

this point of view, the policy implications of our model are straightforward. Implementing the

Friedman rule is optimal and, as a side product, delivers lower aggregate volatility. Notice that

this result relies on the availability of lump-sum taxes. The study of optimal monetary policy

with distortionary taxation in our setup remains a topic for future research.24

Under a broader interpretation of liquid assets, our paper is related to the literature on the

aggregate implications of imperfect risk sharing. This literature has focused on the effects of

imperfect risk sharing for capital accumulation, asset prices, and the welfare cost of business

cycles. Our result points to a potential effect on the response of output to aggregate shocks.

It would be interesting to explore the presence and quantitative significance of our mechanism

in a Bewley (1977) type economy with aggregate shocks, such as the one studied in Krusell

and Smith (1989).25

Finally, the coordination mechanism identified in our model could have relevant implica-

tions for the study of financial markets. In particular, one could replace the trading of goods

in our model with trading of risky financial assets, as in recent search models of financial

transactions, such as Duffie, Garleanu, and Pedersen (2005) and Lagos and Rocheteau (2006).

This approach could be used to study the behavior of liquidity premia and trading volumes in

periods of financial turmoil.

24Aruoba and Chugh (2006) show that, with distortionary taxation, the Friedman rule is not optimal in a
model à la Lagos and Wright (2005).
25 In Krusell and Smith (1989) the entire capital stock of the economy is a liquid asset and the presence of

uninsurable idiosyncratic risk has minor effects on aggregate dynamics. To explore our mechanism, it would be
interesting to assume that only a fraction of capital income is liquid.
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Appendix

A. Proofs for Section 3

Proof of Proposition 1

For each θ > 0 we obtain the first order conditions

u0(c1(θ̃, θ))f (θ) = λ1 (θ) ,

v0(n(θ, θ̃))f (θ) = θλ1 (θ) ,

where λ1 (θ) is the Lagrange multipliers for the resource constraints in island θ. These conditions show
that the optimal c1(θ̃, θ) and n(θ, θ̃) are independent of θ̃. Then, by market clearing c1(θ̃, θ) = y1(θ, θ̃)
for all θ̃, and we denote this quantity yFB1 (θ). Let nFB(θ) denote n(θ, θ̃). Then, the resource constraint
in island θ becomes yFB1 (θ) = θnFB(θ). Combining it with the first order conditions above gives (1).
Moreover, the first order condition with respect to c2(θ, θ̃) gives U 0(c2(θ, θ̃)) = λ2, which implies that
c2 is constant across households. The resource constraint in period 2 requires c2(θ, θ̃) = e2.

Proof of Lemma 1

The first part is an immediate corollary of Proposition 1. The second part follows from applying the
implicit function theorem to the planner’s optimality condition

θu0(yFB1 (θ)) = v0(yFB1 (θ)/θ).

Proof of Proposition 2

We proved in the text that βR = 1 is a necessary condition for the existence of an unconstrained equi-
librium. Sufficiency will be proved as the last step. First, we prove that any unconstrained equilibrium
achieves a first-best allocation. Since (4) holds as an equality for all (θ, θ̃), it follows that c2(θ, θ̃) is
constant. Then, market clearing requires that c2(θ, θ̃) be equal to e2 for all (θ, θ̃). Substituting in (3)
(for a consumer in island θ) and (6), and given that (3) holds as an equality, we obtain

u0(c1(θ)) =
p1(θ)

p2
U 0(e2), v0 (n (θ)) = θ

p1 (θ)

p2
U 0(e2).

These two conditions, and market clearing in island θ, imply that

θu0(y1(θ)) = v0 (n (θ)) ,

where y1(θ) = θn(θ), which corresponds to the planner optimality condition (1). Therefore, labor
supply and consumption in periods 1 and 2 are first-best efficient. Since any consumption allocation in
period 3 is consistent with first-best efficiency, this completes the argument.

Next, we prove that equilibrium prices must take the form (9)-(11), with κ ≤ κ̂. The consumers’
first order conditions immediately imply that (9)-(11) must hold for some κ > 0. To show that κ
is smaller than a cutoff κ̂ and to derive the value of the cutoff, we need to complete the equilibrium
characterization, by deriving consumption in period 3 and money holdings. Substituting the prices (9)-
(11) and first-best consumption in periods 1 and 2 in the consumer’s budget constraints, and imposing
the stationarity conditions m =M and m3(θ, θ̃) =M/R, we obtain

m1(θ̃) = M − κu0(yFB1 (θ̃))yFB1 (θ̃), (30)

m2(θ, θ̃) = m1(θ̃) + κu0(yFB1 (θ))yFB1 (θ)− κU 0 (e2) e2, (31)

M/R = m2(θ, θ̃) + κU 0 (e2) e2 + κ(e3 − c3(θ, θ̃))− T. (32)
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For each pair (θ, θ̃), conditions (30)-(32), together with the government budget constraint, can be solved
to derive m1(θ̃), m2(θ, θ̃) and c3(θ, θ̃). In particular, we obtain

c3(θ, θ̃) = e3 − u0(yFB1 (θ̃))yFB1 (θ̃) + u0(yFB1 (θ))yFB1 (θ), (33)

which is independent of κ and strictly positive, given our assumption that e3 is large. It remains to
check that m1(θ̃) and m2(θ, θ̃) are non-negative for all pairs (θ, θ̃). From (30) and (31), this requires
that

κmax
θ̃

h
u0(yFB1 (θ̃))yFB1 (θ̃)

i
≤M, (34)

κmax
θ,θ̃

h
u0(yFB1 (θ̃))yFB1 (θ̃)− u0(yFB1 (θ))yFB1 (θ) + U 0 (e2) e2

i
≤M. (35)

Lemma 1 together with the assumption cu00 (c) /u0 (c) ≤ 1 guarantees that u0(yFB1 (θ))yFB1 (θ) is increas-
ing in θ. Notice that yFB1 (0) = 0 and p1 (0) = κu0(yFB1 (0)) =∞, so p1 (0) yFB1 (0) is not well defined. We
adopt the natural convention that p1(0)yFB1 (0) = 0. It follows that a necessary and sufficient condition
for (34) and (35) is κ ≤ κ̂ where κ̂ is defined in (12).

Finally, we prove that the condition R = 1/β is sufficient for an unconstrained equilibrium to exist.
To do so, we construct an equilibrium with prices (9)-(11). From the argument above, we know that
labor supply and consumption in periods 1 and 2 must be at their first-best level, and consumption in
period 3 must be equal to (33). Choosing any κ ≤ κ̂ ensures that money holdings are non-negative.
It is straightforward to check that this allocation satisfies market clearing and that it is individually
optimal, given that it satisfies the first order conditions (3)-(6).

Proof of Corollary 1

The statement follows immediately from the condition κ ≤ κ̂, the definition of κ̂ (12) and the pricing
condition (10).

Preliminary Results for Proposition 3

In order to prove Proposition 3, it is useful to prove several preliminary lemmas. These results will also
be useful to prove Proposition 4.

The following lemmas allow us to establish that the system of functional equations (18)-(19) has a
unique solution, (p1(·), y1(·)). To do so, we define a fixed point problem for the function x(·). Recall
from the text that x(θ) ≡ p1(θ)y1(θ). To save on notation, in the lemmas we drop the period index and
use p(θ) and y(θ).

Notice that, in an island where θ = 0, output is zero and, from condition (18), the price p (0) may
be infinity. Hence, nominal income in island 0 may be not well defined. The natural solution is to
set x(0) = 0. Moreover, non-negativity of consumption in period 2 requires that x (θ) ≤ e2 for all θ.
Therefore, we restrict attention to the set of measurable, bounded functions x :

£
0, θ
¤
→ [0, e2] that

satisfy x (0) = 0, which we denote by X.

Lemma 4 Given θ > 0 and a function x ∈ X, there exists a unique pair (p, y) which solves the system
of equations

u0 (y)− p

Z θ

0

U 0
³
e2 − py + x(θ̃)

´
dF (θ̃) = 0, (36)

v0
³y
θ

´
− θp

Z θ

0

U 0
³
e2 − x(θ̃) + py

´
dF (θ̃) = 0. (37)

The pair (p, y) satisfies py ∈ [0, e2].
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Proof. We proceed in two steps, first we prove existence, then uniqueness.

Step 1. Existence. For a given p ∈ (0,∞), it is easy to show that there is a unique y which solves
(36) and a unique y which solves (37), which we denote, respectively, by yD(p) and yS (p). Finding a
solution to (36)-(37), is equivalent to finding a p that solves

yD (p)− yS (p) = 0. (38)

It is straightforward to prove that yD (p) and yS (p) are continuous on (0,∞). We now prove that
they satisfy four properties: (a) pyD(p) < e2 for all p ∈ (0,∞), (b) yS (p) < θn̄ for all p ∈ (0,∞),
(c) lim supp→0 y

D (p) = ∞, and (d) lim supp→∞ pyS (p) = ∞. Notice that x (0) = 0 with positive
probability, so the Inada condition for U can be used to prove property (a). Similarly, to prove
property (b), we can use the assumption limn→n̄ v

0 (n) = ∞. To prove (c) notice that (a) implies
lim supp→0 py

D (p) ≤ e2. If lim supp→0 py
D (p) = e2, then, we immediately have lim supp→0 y

D (p) =∞.
If, instead, lim supp→0 py

D (p) < e2, then there exists a K ∈ (0, e2) and an � > 0 such that pyD (p) < K

for all p ∈ (0, �). Since U 0 is decreasing, this implies that U 0
³
e2 − pyD (p) + x(θ̃)

´
is bounded above

by U 0 (e2 −K) <∞ for all p ∈ (0, �), which implies

lim
p→0

p

Z θ

0

U 0
³
e2 − pyD (p) + x(θ̃)

´
dF (θ̃) = 0.

Using (36), this requires limp→0 u
0 ¡yD (p)¢ = 0 and, hence, limp→0 y

D (p) =∞. To prove property (d),
suppose, by contradiction, that there exist a K > 0 and a P > 0, such that pyS(p) ≤ K for all p ≥ P .

Then U 0
³
e2 − x(θ̃) + pyS (p)

´
is bounded below by U 0 (e2 +K) > 0 for all p ∈ (P,∞), which implies

lim
p→∞

p

Z θ

0

U 0
³
e2 − x(θ̃) + pyS (p)

´
dF (θ̃) =∞. (39)

Moreover, since 0 ≤ pyS (p) ≤ K for all p ≥ P , it follows that limp→∞ yS (p) = 0 and thus

lim
p→∞

v0
¡
yS (p) /θ

¢
<∞. (40)

Using equation (37), conditions (39) and (40) lead to a contradiction, completing the proof of (d).
Properties (a) and (d) immediately imply lim supp→∞

¡
pyS (p)− pyD (p)

¢
= ∞, while (b) and (c)

imply lim supp→0
¡
yD (p)− yS (p)

¢
=∞. It follows that there exists a pair (p0, p00), with p0 < p00, such

that yD (p0)− yS (p0) > 0 and yD (p00)− yS (p00) < 0. By the intermediate value theorem there exists a
p which solves (38). Property (a) immediately implies that py ∈ [0, e2], where y = yD(p) = yS(p).

Step 2. Uniqueness. Let p̂ be a zero of (38), and ŷ = yD(p̂) = yS(p̂). To show uniqueness, it is
sufficient to show that dyD (p) /dp− dyS (p) /dp < 0 at p = p̂. Applying the implicit function theorem
gives ∙

dyD (p)

dp

¸
p=p̂

=

R θ
0
U 0
¡
c̃D2
¢
dF (θ̃)− p̂ŷ

R θ
0
U 00
¡
c̃D2
¢
dF (θ̃)

u00(ŷ) + p̂2
R θ
0
U 00
¡
c̃D2
¢
dF (θ̃)

,

where c̃D2 = e2 − p̂ŷ + x(θ̃) and

∙
dyS (p)

dp

¸
p=p̂

=

R θ
0
U 0
¡
c̃S2
¢
dF (θ̃) + p̂ŷ

R θ
0
U 00
¡
c̃S2
¢
dF (θ̃)

v00 (ŷ/θ) /θ2 − p̂2
R θ
0
U 00
¡
c̃S2
¢
dF (θ̃)

.
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where c̃S2 = e2 − x(θ̃) + p̂ŷ. Using (36)-(37), the required inequality can then be rewritten as

v00 (ŷ/θ)

θ2

Ã
u0 (ŷ)

p̂
− p̂ŷ

Z θ

0

U 00
¡
c̃D2
¢
dF (θ̃)

!
− v0 (ŷ/θ)

θp̂

Ã
u00(ŷ) + p̂2

Z θ

0

U 00
¡
c̃D2
¢
dF (θ̃)

!

+p̂

Z θ

0

U 00
¡
c̃S2
¢
dF (θ̃) (u0 (ŷ) + ŷu00(ŷ)) > 0.

The first two terms on the left-hand side are positive. The assumption that u0 has elasticity smaller
than or equal to 1 implies that also the last term is positive, completing the argument.

Lemma 5 Given a function x ∈ X, for any θ > 0 let (p (θ) , y (θ)) be the unique pair solving the system
(36)-(37) and define z (θ) ≡ p (θ) y (θ). The function z (θ) is monotone increasing.

Proof. Define the two functions

h1 (z, y; θ) ≡ u0(y)y − z

Z θ

0

U 0
³
e2 − z + x(θ̃)

´
dF (θ̃),

h2 (z, y; θ) ≡ v0
³y
θ

´ y

θ
− z

Z θ

0

U 0
³
e2 − x(θ̃) + z

´
dF (θ̃),

which correspond to the left-hand sides of (36) and (37) multiplied, respectively, by y and y/θ. Lemma
4 ensures that for each θ > 0 there is a unique positive pair (z (θ) , y (θ)) which satisfies

h1 (z (θ) , y (θ) ; θ) = 0,

h2 (z (θ) , y (θ) ; θ) = 0.

Applying the implicit function theorem, gives

z0 (θ) =

∂h1
∂y

∂h2
∂θ −

∂h2
∂y

∂h1
∂θ

∂h1
∂z

∂h2
∂y −

∂h2
∂z

∂h1
∂y

. (41)

To prove the lemma it is sufficient to show that z0 (θ) > 0 for all θ ∈ (0, θ]. Using z and y as shorthand
for z (θ) and y (θ), the numerator on the right-hand side of (41) can be written as

− y

θ2

h
v0
³y
θ

´
+ v00

³y
θ

´ y

θ

i
[u0 (y) + u00(y)y] ,

and the denominator can be written, after some algebra, as

[u0 (y) + u00(y)y] z

Z θ

0

U 00
³
e2 − x(θ̃) + z

´
dF (θ̃) + (42)

+
h
v0
³y
θ

´
+ v00

³y
θ

´ y

θ

i z
θ

Z θ

0

U 00
³
e2 − z + x(θ̃)

´
dF (θ̃) +

y2

zθ2

h
u00(y)v0

³y
θ

´
θ − u0 (y) v00

³y
θ

´i
.

The assumption that u0 has elasticity smaller than 1 ensures that both numerator and denominator are
negative, completing the proof.

We can now define a map T from the space X into itself.

Definition 2 Given a function x ∈ X, for any θ > 0 let (p (θ) , y (θ)) be the unique pair solving the
system (36)-(37). Define a map T : X → X as follows. Set (Tx) (θ) = p (θ) y (θ) if θ > 0 and
(Tx) (θ) = 0 if θ = 0.
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The following lemmas prove monotonicity and discounting for the map T . These properties will be
used to find a fixed point of T . In turns, this fixed point will be used to construct the equilibrium in
Proposition 3.

Lemma 6 Take any x0, x1 ∈ X, with x1 (θ) ≥ x0 (θ) for all θ. Then
¡
Tx1

¢
(θ) ≥

¡
Tx0

¢
(θ) for all θ.

Proof. For each θ̃ ∈
£
0, θ
¤
and α ∈ [0, 1], define

x(θ̃, α) ≡ x0(θ̃) + α∆(θ̃),

where ∆(θ̃) ≡ x1(θ̃)− x0(θ̃) ≥ 0. Notice that x(θ̃, 0) = x0(θ̃) and x(θ̃, 1) = x1(θ̃). Fix a value for θ and
define the two functions

h1 (z, y;α) ≡ yu0(y)− z

Z θ

0

U 0
³
e2 − z + x(θ̃, α)

´
dF (θ̃),

h2 (z, y;α) ≡ v0
³y
θ

´ y

θ
− z

Z θ

0

U 0
³
e2 − x(θ̃, α) + z

´
dF (θ̃).

Applying Lemma 4, for each α ∈ [0, 1] we can find a unique positive pair (z (α) , y (α)) that satisfies

h1 (z (α) , y (α) ;α) = 0,

h2 (z (α) , y (α) ;α) = 0.

We are abusing notation in the definition of h1 (·, ·;α) , h2 (·, ·;α) , z (α) , and y (α), given that the same
symbols were used above to define functions of θ. Here we keep θ constant throughout the proof,
so no confusion should arise. Notice that, by construction,

¡
Tx0

¢
(θ) = z (0) and

¡
Tx1

¢
(θ) = z (1).

Therefore, to prove our statement it is sufficient to show that z0 (α) ≥ 0 for all α ∈ [0, 1].
Applying the implicit function theorem, we obtain

z0 (α) =

∂h1
∂y

∂h2
∂α −

∂h2
∂y

∂h1
∂α

∂h1
∂z

∂h2
∂y −

∂h2
∂z

∂h1
∂y

. (43)

Using z and y as shorthand for z (α) and y (α), the numerator on the right-hand side of (43) can be
written as

[u0 (y) + u00(y)y] z

Z θ

0

U 00
³
e2 − x(θ̃, α) + z

´
∆(θ̃)dF (θ̃) +

+
z

θ

h
v0
³y
θ

´
+ v00

³y
θ

´ y

θ

i Z θ

0

U 00
³
e2 − z + x(θ̃, α)

´
∆(θ̃)dF (θ̃).

The denominator takes a form analogous to (42). Again, the assumption that u0 has elasticity smaller
than 1, ensures that both the numerator and the denominator are negative, completing the argument.

Before proving the discounting property, it is convenient to restrict the space X to the space X̃ of
functions bounded in [0, z] for an appropriate z < e2. The following lemma shows that the map T maps
X̃ into itself, and that any fixed point of T in X must lie in X̃.

Lemma 7 There exists a z < e2, such that if x ∈ X then (Tx) (θ) ≤ z for all θ.
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Proof. Set x (0) = 0 and x (θ) = e2 for all θ > 0. Setting x (.) = x (.) and θ = θ, equations
(36)-(37) take the form

u0(y) = p [F (0)U 0 (e2 − py) + (1− F (0))U 0 (2e2 − py)] ,

v0
¡
y/θ

¢
= θp [F (0)U 0 (e2 + py) + (1− F (0))U 0 (py)] .

Let (p̂, ŷ) denote the pair solving these equations, and let z ≡ p̂ŷ. Since F (0) > 0 and U satisfies the
Inada condition, limc→0 U

0 (c) = ∞, inspecting the first equation shows that z < e2. Now take any
x ∈ X. Since x (θ) ≤ x (θ) for all θ, Lemma 6 implies that (Tx) (θ) ≤ (Tx) (θ). Moreover, Lemma 5
implies that (Tx) (θ) ≤ (Tx)

¡
θ
¢
= z. Combining these inequalities we obtain (Tx) (θ) ≤ z.

Lemma 8 There exists a δ ∈ (0, 1) such that the map T satisfies the discounting property: for any
x0, x1 ∈ X̃ such that x1(θ) = x0(θ) + a for some a > 0, the follow inequality holds¯̄¡

Tx1
¢
(θ)−

¡
Tx0

¢
(θ)
¯̄
≤ δa for all θ ∈

£
0, θ
¤
.

Proof. Proceeding as in the proof of Lemma 6, define

x(θ̃, α) ≡ x0(θ̃) + α∆(θ̃),

where now ∆(θ̃) = a for all θ̃. After some algebra, we obtain

z0 (α) =

³
1 + yu00(y)

u0(y)

´
A+

³
1 + nv00(n)

v0(n)

´
B³

1 + yu00(y)
u0(y)

´
A+

³
1 + nv00(n)

v0(n)

´
B + nv00(n)

v0(n) −
yu00(y)
u0(y)

a, (44)

where y and n are shorthand for y(α) and y (α) /θ and

A = −
z (α)

R θ
0
U 00
³
e2 − x(θ̃, α) + z (α)

´
dF (θ̃)R θ

0
U 0
³
e2 − x(θ̃, α) + z (α)

´
dF (θ̃)

,

B = −
z (α)

R θ
0
U 00
³
e2 − z (α) + x(θ̃, α)

´
dF (θ̃)R θ

0
U 0
³
e2 − z (α) + x(θ̃, α)

´
dF (θ̃)

.

Now, given that z (α) and x(θ̃, α) are both in [0, z] and z < e2, and given that U has continuous first
and second derivatives on (0,∞), it follows that both A and B are bounded above. We can then find a
uniform upper bound on both A and B, independent of α and of the functions x0 and x1 chosen. Let
C be this upper bound. Given that u00(y) ≤ 0, thenµ

1 +
yu00(y)

u0(y)

¶
A+

µ
1 +

nv00 (n)

v0 (n)

¶
B ≤

µ
2 +

nv00 (n)

v0 (n)

¶
C.

Therefore, (44) implies

z0 (α) ≤
µ
1 +

nv00 (n) /v0 (n)− yu00(y)/u0(y)

(2 + nv00 (n) /v0 (n))C

¶−1
a.

Recall that σ > 0 is a lower bound for −yu00(y)/u0(y). Then

nv00 (n) /v0 (n)− yu00(y)/u0(y)

(2 + nv00 (n) /v0 (n))C
≥ −yu

00(y)/u0(y)

2C
≥ σ

2C
.
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Setting

δ ≡ 1

1 + σ/ (2C)
< 1,

it follows that
z0 (α) ≤ δa

for all α ∈ [0, 1]. Integrating both sides of the last inequality over [0, 1], gives z (1) − z (0) ≤ δa. By
construction

¡
Tx1

¢
(θ) = z (1) and

¡
Tx0

¢
(θ) = z (0), completing the proof.

Proof of Proposition 3

We first uniquely characterize prices and allocations in a fully constrained equilibrium. Next, we will
use this characterization to prove our claim. The argument in the text and the preliminary results
above show that if there exists an equilibrium with m2(θ, θ̃) = 0 for all θ and θ̃, then p1(θ) and y1(θ)
must solve the functional equations (18)-(19). To find the equilibrium pair (p1 (θ) , y1 (θ)) we first find
a fixed point of the map T defined above (Definition 2). Lemmas 6 and 8 show that T is a map
from a space of bounded functions into itself and satisfies the assumptions of Blackwell’s theorem.
Therefore, a fixed point exists and is unique. Let x denote the fixed point, then Lemma 4 shows that
we can find two functions p1 (θ) and y1 (θ) that satisfy (36)-(37). Since x (θ) is a fixed point of T we
have x (θ) = p1 (θ) y1 (θ), and substituting in (36)-(37) shows that (18)-(19) are satisfied. Therefore,
in a fully constrained equilibrium p1 (θ) and y1 (θ) are uniquely determined, and so is labor supply
n(θ) = y1(θ)/θ. Moreover, from the budget constraint and the market clearing condition in period 2,
consumption in period 2 is uniquely determined by c2(θ, θ̃) = e2 − p1(θ̃)y1(θ̃) + p1 (θ) y1 (θ). The price
p2 is equal to 1, as argued in the text. From the consumer’s budget constraint in period 3 and the
government budget constraint we obtain c3 = e3. Combining the Euler equations (3) and (5) and the
envelope condition (7), p3 is uniquely pinned down by

1

p3
= βR

Z θ

0

Z θ

0

U 0(c2(θ, θ̃))dF (θ)dF (θ̃). (45)

Finally, equilibrium money holdings are m1(θ) =M − p1(θ)y1(θ), m2(θ, θ̃) = 0, and m3(θ, θ̃) =M/R.
Define the cutoff

R̂ ≡ 1

β

U 0(c2(θ, θ))R θ
0

R θ
0
U 0(c2(θ, θ̃))dF (θ)dF (θ̃)

.

The only optimality condition that remains to be checked is the Euler equation in period 2, (4). Given
the definition of c2(θ, θ̃), Lemma 5 implies that it is an increasing function of θ and a decreasing function
of θ̃. It follows that a necessary and sufficient condition for (4) to hold for all (θ, θ̃) is

U 0(c2(θ, θ)) ≥
1

p3
. (46)

Substituting the expression (45) for 1/p3 on the right-hand side, this condition is equivalent to R ≤ R̂.
Therefore, if an unconstrained equilibrium exists, since c2(θ, θ̃) is uniquely determined, condition (46)
implies that R ≤ R̂, proving necessity. If R ≤ R̂, the previous steps show how to construct a fully
constrained equilibrium, proving sufficiency.

Proof of Lemma 2

The second part of the Lemma follows immediately from Lemma 5. For the first part, we start from
the same functions h1 (z, y; θ) and h2 (z, y; θ) defined in the proof of Lemma 5 and apply the implicit
function theorem to get

y0 (θ) =
∂h2
∂z

∂h1
∂θ −

∂h1
∂z

∂h2
∂θ

∂h1
∂z

∂h2
∂y −

∂h2
∂z

∂h1
∂y

. (47)
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To complete the proof of the lemma it is sufficient to show that y0 (θ) > 0 for all θ ∈ (0, θ]. Using z and
y as shorthand for z (θ) and y (θ), the numerator on the right-hand side of (47) can be written as

y

θ2

h
v0
³y
θ

´
+ v00

³y
θ

´ y

θ

i "
z

Z θ

0

U 00
³
e2 − z + x(θ̃)

´
dF (θ̃)−

Z θ

0

U 0
³
e2 − z + x(θ̃)

´
dF (θ̃)

#
,

showing that it is negative. Finally, the denominator is equal to (42) and is negative as we have argued
in the proof of Lemma 5, completing the argument.

B. Derivations and proofs for Sections 4 and 5

Equilibrium with aggregate shocks

General characterization. In a stationary equilibrium with aggregate shocks the optimality condi-
tions (3)-(6), take the following form:

u0(c1(θ̃, ζ)) ≥
p1(θ̃, ζ)

p2 (ζ)

Z θ

0

U 0(c2(θ, θ̃, ζ))dF (θ|ζ) (m1(θ̃, ζ) ≥ 0) for all θ̃, ζ, (48)

U 0(c2(θ, θ̃, ζ)) ≥
p2 (ζ)

p3
(m2(θ, θ̃, ζ) ≥ 0) for all θ, θ̃, ζ, (49)

1 = βRp3

Z ζ

ζ

Z θ

0

u0(c1(θ, ζ̃))

p1(θ, ζ̃)
dF (θ)dG(ζ̃), (50)

v0 (n (θ, ζ)) =
θp1 (θ, ζ)

p2(ζ)

Z θ

0

U 0(c2(θ, θ̃, ζ))dF (θ̃|ζ) for all θ, ζ, (51)

where (50) is derived by substituting the envelope condition (7) in the analog of (5). Notice that
condition (50) shows that, with i.i.d. shocks, p3 is independent of the aggregate shock ζ. An equilibrium
is given by prices and allocations that satisfy (51) to (50), together with the market clearing conditions
and the budget constraints:

m1(θ̃, ζ) + p1(θ̃, ζ)c1(θ̃, ζ) =M,

m2(θ, θ̃, ζ) + p2 (ζ) c2(θ, θ̃, ζ) = m1(θ̃, ζ) + p1 (θ, ζ) y1 (θ, ζ) ,

M/R+ p3c3(θ, θ̃, ζ) = p3e3 +m2(θ, θ̃, ζ) + p2 (ζ) e2 − T.

To compute an equilibrium it is sufficient to find prices and quantities solving the system formed
by (51), the market clearing condition c1(θ, ζ) = θn(θ, ζ) for all θ, ζ, and equations

u0 (c1(θ, ζ)) = max

(
u0
µ

M

p1(θ, ζ)

¶
,
p1(θ, ζ)

p2(ζ)

Z θ

0

U 0(c2(θ̃, θ, ζ))dF (θ̃|ζ)
)
for all θ, ζ,

c2(θ, θ̃, ζ) = min

(
M

p2(ζ)
− p1(θ̃, ζ)

p2(ζ)
c1(θ̃, ζ) +

p1(θ, ζ)

p2(ζ)
c1(θ, ζ), U

0−1
µ
p2(ζ)

p3

¶)
for all θ, θ̃, ζ,

Z θ

0

Z θ

0

c2(θ, θ̃, ζ)dF (θ)dF (θ̃) = e2 for all ζ,

and
1

p3
= βR

Z ζ

ζ

Z θ

0

u0(c1(θ, ζ))

p1(θ, ζ)
dF (θ|ζ)dG (ζ) .
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This system is written in general form, allowing for cases where the constraints m1(θ, ζ) ≥ 0 and
m2(θ, θ̃, ζ) ≥ 0 are binding only for a subset of, respectively, Θ and Θ2. Therefore, we can use it
to compute equilibria for: (i) economies with R ∈ (R̂, 1/β) where the liquidity constraint in period
2 is non-binding for some pairs (θ, θ̃), and (ii) economies where the assumption F (0) > 0 is relaxed,
allowing for a binding liquidity constraint in period 1 for some θ. This system is used to compute all
the equilibria in Section 5.

Unconstrained and fully constrained equilibria. The characterization of an unconstrained
equilibrium is straightforward, thanks to Lemma 1, which shows that the first-best allocation in period
1 is independent of the distribution F (·|ζ). Let us discuss the construction of a fully constrained
equilibrium for the economy with aggregate shocks (under the usual assumption F (0|ζ) > 0). Now,
a fully constrained equilibrium is one where m2(θ, θ̃, ζ) = 0 for all θ, θ̃ and ζ . In such an equilibrium
p2 (ζ) is independent of ζ and equal to M/e2, as in the case of no aggregate shocks. Therefore, we can
define a system of functional equations analogous to (18)-(19), for each ζ. Proceeding as in the proof of
Proposition 3, we can then find equilibrium functions p1(·, ζ) and y1(·, ζ) for each value of ζ separately.
The distribution of ζ only matters for the determination of p3 and for the cutoff R̂, which is now

R̂ ≡ 1

β

minζ
©
U 0(c2(θ, θ, ζ))

ªR ζ
ζ

R θ
0

R θ
0
U 0(c2(θ, θ̃, ζ))dF (θ)dF (θ̃)dG(ζ)

,

where c2(θ, θ̃, ζ) = e2 − p1(θ̃, ζ)y1(θ̃, ζ) + p1(θ, ζ)y(θ, ζ).

Proof of Proposition 4

The proof proceeds in three steps. The first two steps prove that, for each θ, the nominal income in
island θ is increasing with the aggregate shock ζ, that is, x (θ, ζ) is increasing in ζ, where x(θ, ζ) ≡
p1(θ, ζ)y1(θ, ζ). Using this result, the third step shows that y1 (θ, ζ) is increasing in ζ. Consider two
values ζI and ζII , with ζII > ζI . Denote, respectively, by TI and TII the maps defined in Definition 2
under the distributions F (θ|ζI) and F (θ|ζII). Let xI and xII be the fixed points of TI and TII . That
is, xI(θ) ≡ x(θ, ζI) and xII(θ) ≡ x(θ, ζII) for all θ. Again, to save on notation, we drop the period
index for y1.

Step 1. Let the function x0 be defined as x0 = TIIx
I . In this step, we want to prove that

x0 (θ) > xI (θ) for all θ > 0. We will prove it pointwise for each θ. Fix θ > 0 and define the functions

h1 (z, y; ζ) ≡ yu0(y)− z

Z θ

0

U 0(e2 − z + xI(θ̃))dF (θ̃|ζ),

h2 (z, y; ζ) ≡ v0
³y
θ

´ y

θ
− z

Z θ

0

U 0(e2 − xI(θ̃) + z)dF (θ̃|ζ),

for ζ ∈ [ζI , ζII ]. Lemma 4 implies that we can find a unique pair (z (ζ) , y (ζ)) that satisfies

h1 (z (ζ) , y (ζ) ; ζ) = 0,

h2 (z (ζ) , y (ζ) ; ζ) = 0.

Once more, we are abusing notation in the definition of h1 (·, ·; ζ) , h2 (·, ·; ζ) , z (ζ) , and y (ζ). However,
as θ is kept constant, there is no room for confusion. Notice that z(ζI) = xI (θ), since xI is a fixed
point of TI , and z(ζII) = x0 (θ), by construction. Therefore, to prove our statement we need to show
that z(ζII) > z(ζI). It is sufficient to show that z0 (ζ) > 0 for all ζ ∈ [ζI , ζII ]. Applying the implicit
function theorem gives

z0 (ζ) =

∂h1
∂y

∂h2
∂ζ −

∂h2
∂y

∂h1
∂ζ

∂h1
∂z

∂h2
∂y −

∂h2
∂z

∂h1
∂y

. (52)
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Notice that xI(θ̃) is monotone increasing in θ̃, by Lemma 5, and U is strictly concave. Therefore,
U 0(e2−z+xI(θ̃)) is decreasing in θ̃ and U 0(e2−xI(θ̃)+z) is increasing in θ̃. By the properties of first-order
stochastic dominance,

R θ
0
U 0(e2− z+xI(θ̃))dF (θ̃|ζ) is decreasing in ζ and

R θ
0
U 0(e2−xI(θ̃)+ z)dF (θ̃|ζ)

is increasing in ζ. This implies that ∂h1/∂ζ > 0 and ∂h2/∂ζ < 0. Using y as shorthand for y (ζ), the
numerator on the right-hand side of (52) is, with the usual notation,

[u0 (y) + yu00(y)]
∂h2
∂ζ
− 1

θ

h
v0
³y
θ

´
+ v00

³y
θ

´ y

θ

i ∂h1
∂ζ

.

The denominator is the analogue of (42). Once more, the assumption that yu00 (y) /u0 (y) ≥ −1 ensures
that both numerator and denominator are negative, completing the argument.

Step 2. Define the sequence of functions (x0, x1, ...) in X, using the recursion xj+1 = TIIx
j . Since,

by step 1, x0 ≥ xI (where by x0 ≥ xI we mean x0 (θ) ≥ xI (θ) for all θ > 0) and, by Lemma 6, TII
is a monotone operator, it follows that this sequence is monotone, with xj+1 ≥ xj . Moreover, TII is a
contraction by Lemmas 6 and 8, so this sequence has a limit point, which coincides with the fixed point
xII . This implies that xII ≥ x0 and, together with the result in step 1, shows that xII > xI , as we
wanted to prove.

Step 3. Fix θ > 0 and, with the usual abuse of notation, define the functions

h1 (z, y; ζ) ≡ yu0(y)− z

Z θ

0

U 0(e2 − z + x(θ̃, ζ))dF (θ̃|ζ),

h2 (z, y; ζ) ≡ v0
³y
θ

´ y

θ
− z

Z θ

0

U 0(e2 − x(θ̃, ζ) + z)dF (θ̃|ζ).

Notice the difference with the definitions of h1 and h2 in step 1, now x(θ̃, ζ) replaces xI(θ̃). The
functions z (ζ) and y (ζ) are defined in the usual way. Applying the implicit function theorem, we get

y0 (ζ) =

∂h2
∂z

∂h1
∂ζ −

∂h1
∂z

∂h2
∂ζ

∂h1
∂z

∂h2
∂y −

∂h2
∂z

∂h1
∂y

.

To evaluate the numerator, notice that

∂h1
∂z

= −
Z θ

0

U 0(e2 − z + x(θ̃, ζ))dF (θ̃|ζ) + z

Z θ

0

U 00(e2 − z + x(θ̃, ζ))dF (θ̃|ζ) < 0,

∂h2
∂z

= −
Z θ

0

U 0(e2 − x(θ̃, ζ) + z)dF (θ̃|ζ)− z

Z θ

0

U 00(e2 − x(θ̃, ζ) + z)dF (θ̃|ζ) ≤

≤ −
Z θ

0

h
U 0(e2 − x(θ̃, ζ) + z) + (e2 − x(θ̃, ζ) + z)U 00(e2 − x(θ̃, ζ) + z)

i
dF (θ̃|ζ) ≤ 0,

where the last inequality follows from the assumption that U 0 has elasticity less than or equal to 1 (this
is the only place where this assumption is used). Furthermore, notice that

∂h1
∂ζ

= −z
Z θ

0

U 00(e2 − z + x(θ̃, ζ))
∂x(θ̃, ζ)

∂ζ
dF (θ̃|ζ)− z

Z θ

0

U 0(e2 − z + x(θ̃, ζ))
∂f(θ̃|ζ)
∂ζ

dθ̃ > 0

where the first element is positive from steps 1 and 2, and the second element is positive because ζ leads
to a first order stochastic increase in θ̃ and U 0(e2 − z + x(θ̃, ζ)) is decreasing in θ̃. A similar reasoning
shows that

∂h2
∂ζ

= z

Z θ

0

U 00(e2 − x(θ̃, ζ) + z)
∂x(θ̃, ζ)

∂ζ
dF (θ̃|ζ) + z

Z θ

0

U 0(e2 − x(θ̃, ζ) + z)
∂f(θ̃|ζ)
∂ζ

dθ̃ < 0.
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Putting together the four inequalities just derived shows that the numerator is negative. The denomi-
nator takes the usual form, analogous to (42), and is negative. This completes the proof.

C. Results and proofs for Section 6

Proof of Proposition 5

From expression (29) it is immediate to obtain

∂Y1 (ζ, ξ)

∂ζ
=

Z θ

0

y1 (θ, ξ)
∂f (θ|ζ)

∂ζ
dθ,

∂Y1 (ζ, ξ)

∂ξ
=

Z θ

0

∂y1 (θ, ξ)

∂ξ
dF (θ|ζ) .

In the case of an unconstrained equilibrium, with R = 1/β, the analogue of Proposition 2 can
be easily derived, showing that ∂y1(θ, ξ)/∂ξ = 0 and ∂y1(θ, ξ)/∂θ > 0. These properties imply that
∂Y1(ζ, ξ)/∂ζ > 0 and ∂Y1(ζ, ξ)/∂ξ = 0.

Consider a fully constrained equilibrium, with R < R̂. For each value of ξ, the functions p1(θ, ξ)
and y1(θ, ξ) can be derived solving the following system of functional equations, analogous to (23)-(24):

u0(y1(θ, ξ)) = p1 (θ, ξ)

Z θ

0

U 0(e2 − p1 (θ, ξ) y1 (θ, ξ) + p1(θ̃, ξ)y1(θ̃, ξ))dF (θ̃|ξ, θ),

v0
µ
y1(θ, ξ)

θ

¶
= θp1 (θ, ξ)

Z θ

0

U 0(e2 − p1(θ̃, ξ)y1(θ̃, ξ) + p1 (θ, ξ) y1 (θ, ξ))dF (θ̃|ξ, θ).

The only formal difference between these and (23)-(24) is that the distribution F (θ̃|ξ, θ) depends also
on θ. However, this does not affect any of the steps of Proposition 3 (there is only a minor difference
in the proof of the analogue of Lemma 5, details available on request). Therefore, this system has a
unique solution for each ξ. Next, following the steps of Lemma 2 and Proposition 4, we can show that
y1(θ, ξ) is increasing in θ and ξ. This implies that ∂Y1(ζ, ξ)/∂ζ > 0 and ∂Y1(ζ, ξ)/∂ξ > 0.

Mapping with alternative models of liquidity supply

Constant money growth. Let p1 (θ) , p2, p3, m1(θ),m2(θ, θ̃),m3(θ, θ̃), and c1(θ), c2(θ, θ̃), c3(θ, θ̃) be
prices, money balances, and consumption levels in a stationary equilibrium of the economy with interest-
bearing notes. To construct the corresponding equilibrium of the constant money growth economy, let
M0 =M , γ = R−1 and Tt = T/γt. As in the text, set the prices

p̃1,t (θ) = γtp1 (θ) ,

p̃s,t = γtps, for s = 2, 3.

Take the same consumption functions of the economy with interest-bearing notes and set the money
balance functions as follows

m̃1,t(θ) = γtm1(θ), m̃2,t(θ, θ̃) = γtm2(θ, θ̃), m̃3,t(θ, θ̃) =Mt+1.

The household’s budget constraints, for a household beginning with Mt on date t, are now

m̃1,t(θ̃) + p̃1,t(θ̃)c1(θ̃) = Mt,

m̃2,t(θ, θ̃) + p̃2,tc2(θ, θ̃) = m̃1,t(θ̃) + p̃1,t (θ) y1(θ),

m̃3,t(θ, θ̃) + p̃3,tc3(θ, θ̃) = p̃3,ty3 + m̃2,t(θ, θ̃) + p̃2,ty2 − Tt.
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Some algebra shows that they are satisfied. Moreover, all intertemporal prices are unchanged, as
p̃1,t (θ) /p̃2,t = p1(θ)/p2, p̃2,t/p̃3,t = p2/p3 and

p̃3,t
p̃1,t+1(θ)

=
1

γ

p̃3,t
p̃1,t(θ)

= R
p3

p1(θ)
.

Substituting these prices in the household’s first order conditions shows that the allocation is individually
optimal, completing the equilibrium construction.

Lucas trees. Starting with an equilibrium of the baseline economy, set the prices as in the text:

Q1(θ) =
M

p1(θ)
, Q2 =

M

p2
, Q3 =

M − T

p3
.

Let h1, h2 and h3 denote holdings of the real asset and set their values to

h1(θ) =
m1(θ)

M
, h2(θ, θ̃) =

m2(θ, θ̃)

M
, h3(θ, θ̃) = 1.

The household’s budget constraints, for a household beginning with 1 unit of the real asset on date t,
are:

Q1(θ̃)h1(θ̃) + c1(θ̃) = Q1(θ̃),

Q2h2(θ, θ̃) + c2(θ, θ̃) = Q2h1(θ̃) +Q2 (y1(θ)/Q1(θ)) ,

Q3h3(θ, θ̃) + c̃3(θ, θ̃) = e3 − d+ (Q3 + d) (h2(θ, θ̃) + e2/Q2).

Some algebra shows that these constraints are satisfied. Moreover, it can be checked that all the
household optimality conditions are satisfied, given that all intertemporal prices are unchanged.

Proof of Proposition 6

To prove these two results, we exploit the mapping between the baseline economy and the Lucas tree
economy derived above. Consider the baseline economy with interest-bearing notes. Let κ̂ be defined
as in Proposition 2, for a given value of T . Proposition 2 ensures that for any κ ≤ κ̂ there exists an
unconstrained equilibrium of the baseline economy with R = 1/β. Define the cutoff dU as

dU ≡ T

κ̂
.

Then, for any d ≥ dU , we can find the correspondent unconstrained equilibrium in a Lucas tree economy
with d = T/κ.

For the second part, recall that Proposition 3 ensures that we can find a fully constrained equilibrium
of the baseline economy for any R ≤ R̂. In that case, using (45) and the normalization M = e2, real
balances in period 3 are:

M

p3
= e2Rφ,

where

φ ≡ β

Z θ

0

Z θ

0

U 0(c2(θ, θ̃))dF (θ) dF (θ̃).

Notice that φ is a constant which is equal in all fully constrained equilibria (in particular, it is indepen-
dent of R). Using the government budget constraint, this implies that for each R ≤ R̂ the equilibrium
real value of the tax T is given by T/p3 = (R− 1)φe2. Define

dC ≡ (R̂− 1)φe2.
For any d ≤ dC , we can find the correspondent fully constrained equilibrium in a Lucas tree economy,
with d = (R− 1)φe2.

43



References

[1] Acemoglu, Daron and Fabrizio Zilibotti, “Was Prometheus Unbounded by Chance? Risk,

Diversification and Growth,” Journal of Political Economy, 1997, 105, 709-751.

[2] Aruoba, S. Borogan and Sanjay K. Chugh, “Optimal Fiscal and Monetary Policy When

Money is Essential,” FRB International Finance Discussion Paper No. 880, 2006.

[3] Bencivenga, Valerie and Bruce Smith, “Financial Intermediation and Endogenous

Growth,” Review of Economic Studies, 1991, 58, 195-209.

[4] Berentsen, Aleksander, Camera, Gabriele and Christopher Waller, “The Distribution Of

Money Balances And The Nonneutrality Of Money,” International Economic Review,

2005, 46, 465-486.

[5] Bernanke, Ben and Mark Gertler, “Agency Costs, Net Worth, and Business Fluctuations,”

American Economic Review, 1989, 79, 14-31.

[6] Bewley, Truman, “The Permanent Income Hypothesis: A Theoretical Formulation,” Jour-

nal of Economic Theory, 1977, 16, 252-292.

[7] Cochrane, John, “Asset Pricing Program Review: Liquidity, Trading and Asset Prices,”

Winter 2005 NBER reporter.

[8] Craig, Ben and Guillaume Rocheteau, “Inflation and Welfare: a Search Approach,” 2007,

mimeo.

[9] Diamond, Peter, “Aggregate Demand Management in Search Equilibrium,” Journal of

Political Economy, 1982, 90, 881-94.

[10] Diamond, Peter, “Money in Search Equilibrium,” Econometrica, 1984, 52, 1-20.

[11] Duffie, Darrell, Nicolae Garleanu and Lasse Heje Pedersen, “Over-the-counter markets,”

Econometrica, 2005, 73, 1815-1847.

[12] Holmstrom, Bengt and Jean Tirole, “Private and Public Supply of Liquidity,” Journal of

Political Economy, 1998, 106, 1-40.

44



[13] Krishnamurthy, Arvind, “The Bond/Old-Bond Spread,” Journal of Financial Economics,

2002, 66, 463-506.

[14] Kiyotaki, Nobuhiro and John H. Moore, “Credit Cycles,” Journal of Political Economy,

1997, 105, 211-248.

[15] Kiyotaki, Nobuhiro and John H. Moore, “Liquidity, Business Cycles and Monetary Pol-

icy,” 2001, mimeo, Princeton University.

[16] Kiyotaki, Nobuhiro and Randall Wright, “On Money as a Medium of Exchange,” Journal

of Political Economy, 1989, 97, 927-954.

[17] Krusell, Per and Anthony A. Smith, Jr., “Income and Wealth Heterogeneity in the Macro-

economy,” The Journal of Political Economy, 1998, 106, 867-896.

[18] Lagos, Ricardo and Randall Wright, “A Unified Framework of Money Theory and Policy

Analysis,” Journal of Political Economy, 2005, 113, 463-484.

[19] Lagos, Ricardo and Guillaume Rocheteau, “Search in Asset Markets,” Federal Reserve

Bank of Minneapolis Staff Report 375, 2006.

[20] Longstaff, Francis, “The Flight-to-Liquidity Premium in U.S. Treasury Bond Prices,”

Journal of Business, 2004, 77, 511-526.

[21] Lucas, Robert and Edward Prescott, “Equilibrium Search and Unemployment,” Journal

of Political Economy, 1974, 7, 188-209.

[22] Lucas, Robert, “Asset Prices in an Exchange Economy,” Econometrica, 1978, 46, 1429—

1444.

[23] Lucas, Robert, “Inflation and Welfare,” Econometrica, 2000, 68, 247-274.

[24] Milgrom, Paul, “Good News and Bad News: Representation Theorems and Applications,”

Bell Journal of Economics, 1981, 12, 380-91.

[25] Parker, Jonathan and Bruce Preston, “Precautionary Saving and Consumption Fluctua-

tions,” American Economic Review, 2005, 95, 1119-43.

[26] Reed, Robert and Christopher Waller, “Money and Risk Sharing,” Journal of Money,

Credit, and Banking, 2006, 38, 6, 1599-1618.

45



[27] Rocheteau, Guillaume and Randall Wright, “Money in Competitive Equilibrium, in Search

Equilibrium, and in Competitive Search Equilibrium,” Econometrica, 2005, 73, 175-202.

[28] Shi, Shouyong, “A Divisible Search Model of Fiat Money,” Econometrica, 1997, 65, 75-102.

[29] Woodford, Michael, “Public Debt as Private Liquidity,”American Economic Review, 1990,

77, 2, 93-98.

46




