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Lending a valuable asset such as money or a car usually exposes the lender to moral hazard, but

can also create substantial social surplus. To realize this surplus, many developed economies rely

on formal contracts enforced by the legal system. For example, in most OECD countries renting

a car is a simple process involving a temporary charge on one�s credit card. However, as Dixit

(2004) reminds us, low-cost legal contract enforcement is historically a relatively new phenomenon

and still absent in most developing countries: �In all countries through much of their history, the

apparatus of state law was very costly, slow, unreliable, biased, weak, or simply absent. In most

countries this situation still prevails.�

When legal contract enforcement is unavailable or costly, economic agents turn to informal

arrangements. As we document in Section 1, such arrangements often rely on social networks

which facilitate trust between contracting parties. For example, Singerman (1995) shows that

among the lower class of Cairo, knowing the leader of an informal savings association (called the

gam�iyyaat) is generally necessary to obtain a loan; in fact, social links are often deliberately built

through marriage to maximize access to resources. The social network can be used to secure

borrowing in advanced countries as well: the best way to �nd temporary accommodation in Paris

might be to have a friend or a friend of a friend who owns an apartment there.

These observations suggest that the structure of the social network can be an important de-

terminant of trust and economic outcomes. Our paper provides theoretical support for this view

by developing a model of informal contract enforcement in the social network. In our model, di-

rect relationships between agents generate value which can be used as social collateral to facilitate

informal borrowing arrangements. This collateral role of the social network can be interpreted as

one aspect of social capital (Coleman 1988, Putnam 2000). We de�ne trust between two agents as

the amount that they can borrow from each other, and derive a simple reduced form expression for

trust as a function of the network structure. We then use this reduced form to explain a number

of stylized facts about trust and social capital and to derive additional empirical implications.

The basic connection between the social network and enforceable borrowing arrangements can

be seen with the examples in Figure 1. In these examples, agent s would like to borrow an asset,

like a car, from agent t, in an economy with no centralized means of contract enforcement. Begin

with Figure 1a, where the network consists of three agents: s, t and their common friend u. Let

the value of the friendship between s and u be 3, and that between u and t be 4. In our model, t

will lend the car only if its value does not exceed min [3; 4] = 3, the value of the weakest link on the
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path connecting s and t. To see the logic, imagine that s chooses not to return the car. Then u will

threaten to stop providing friendship services to s. This threat can enforce a payment of up to 3,

the value of the connection between s and u. For t to receive this payment, he must have enough

leverage over u as measured by the value of their friendship, explaining the role of the weakest link

in determining the borrowing limit. Now consider Figure 1b, where agents s and t have a second

common friend v. Let the value of the friendship between s and v be 2, and that between v and t

be 1. Here, the borrowing limit increases to min [2; 1] + min [3; 4] = 4, where min [2; 1] = 1 is the

weakest link on the second path between s and t. Trust is now higher because both intermediate

agents can vouch for part of the value of the car.

Our main theoretical result is that in general networks, the level of trust equals the sum of the

weakest link values over all disjoint paths connecting borrower and lender. This quantity is called

the maximum network �ow, a well-studied concept in graph theory.1 Intuitively, the maximum

�ow is the highest amount that can �ow from borrower to lender along the edges of the network

respecting the capacity constraints given by link values. The proof of our main result builds on

the maximum �ow-minimum cut theorem (Ford and Fulkerson 1956), a famous characterization

result for network �ows. We show that network �ows can be used to characterize borrowing in two

more general environments as well: in economies with multiple borrowers and lenders, and in the

presence of cash- or time-constraints on agents�ability to make payments.

The characterization of trust in terms of network �ows provides a simple and intuitive reduced

form which we then use in three applications. First we explore the comparative statics of trust with

respect to changes in network structure. We �nd that increasing the number or strength of links

provides greater leverage between unconnected agents and hence leads to more trust, supporting

Putnam�s (1995) argument that "networks of civic engagement (...) encourage the emergence of

social trust.�We also show that greater heterogeneity in link strength leads to lower average trust.

This is because trust is determined by the value of the weakest link along certain paths, which is on

average reduced when heterogeneity increases. Our model predicts that societies with greater ethnic

or racial heterogeneity should exhibit lower trust, consistent with empirical �ndings by Alesina and

La Ferrara (2002) and others.

As a second application we explore the connection between our trust measures and standard

network statistics. When we restrict attention to informal arrangements that only involve agents

who are not too distant from the borrower in the social network, our trust measures are functions of

1See Cormen, Leiserson, Rivest, and Stein (2001) for a textbook treatment.
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three common network statistics:2 1) the number of friends of an agent; 2) the clustering coe¢ cient

of an agent, which is a measure of local network density; 3) the number of common friends of

two agents. It follows that our trust measures can be computed in many cases even with limited

network data, increasing their potential applicability in empirical work. In addition, our results can

be viewed as microfoundations for common network statistics in terms of trust and social collateral.

In a third application, we use our model to address a debate in sociology about the relative ad-

vantage of di¤erent network structures. Coleman (1988) stresses the importance of dense networks,

referred to as network closure, which can facilitate the enforcement of cooperation. In contrast,

Burt (1995) emphasizes structural holes, i.e., agents who bridge otherwise disconnected networks,

and argues and that loose networks are better because they provide greater access to information

and other resources. In our model, the relative bene�t of these network structures depends on the

type of assets borrowed. Closure is more attractive when the assets borrowed are highly valuable,

because closure maximizes the level of trust among a small number of individuals. This is in line

with Coleman�s example of diamond dealers in New York City, who exchange highly valuable stones

and form a tight network of friendship, family, and religious ties. In contrast, when the network is

mainly used to exchange assets of small value like information, large and loose neighborhoods are

better because they maximize the probability of access to these assets.

At the end of the paper, we present evidence on the relationship between network �ow measures

of trust and trusting behavior in practice. We use experimental and survey data collected from

Harvard undergraduates, and compute �ow measures of trust using self-reported data on their

social network. Adopting the approach of Glaeser, Laibson, Scheinkman, and Soutter (2000), we

measure trusting behavior by observing subjects�play in dictator game experiments. Our network-

based measures of trust are strongly correlated with trusting behavior in dictator games, even after

controlling for demographics and various proxies for social distance. These results suggest that our

measures of trust can be of additional use in applied work.

This paper builds a theory of trust that arises from contract enforcement. As Karlan, Mobius,

and Rosenblat (2006) discuss, other mechanisms can also generate trust between socially close

agents. For example, a lender might feel more altruistic towards, or know more about the type

(e.g., reliability), of a friend than a stranger. While these mechanisms are important sources of trust

in practice, we abstract away from them to better focus on trust arising from contract enforcement.

Our model is related to the literature on cooperation in repeated interactions in the absence of

2See e.g., Watts and Strogatz (1998), Glaeser, Laibson, Scheinkman, and Soutter (2000) and Jackson (2005).
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formal institutions. Kandori (1992), Greif (1993) and Ellison (1994) develop models of community

enforcement where deviators are punished by all members of society. More related is Dixit (2003),

who studies cooperation with local enforcement among agents in a �xed circle network; in contrast,

we explore the e¤ect of di¤erent network structures. In related work, Bloch, Genicot, and Ray

(2005) build a model of informal insurance in social networks. Our paper also builds on research

in economics on social capital and the measurement of trust. Glaeser, Laibson, and Sacerdote

(2002) construct an economic model of social capital but do not study networks. Glaeser, Laibson,

Scheinkman, and Soutter (2000) show using trust game experiments that trust is higher between

agents who are closer socially.

The rest of the paper is organized as follows. Section 1 collects motivating evidence on the

role of networks in informal arrangements. Section 2 develops the model and derives the reduced

form expression for trust. A reader more interested in applications might wish to skip ahead to

Section 3, where we derive comparative statics, compute trust from standard network statistics, and

address the debate on closure versus structural holes. Section 4 presents new evidence about social

collateral and trusting behavior, and Section 5 concludes. All proofs are given in the Appendix.

1 Social networks and informal arrangements: Evidence

This section presents evidence that people rely on their social network in a variety of exchanges. In

many of these exchanges, the social network provides two related services: (1) access to the asset

that is to be exchanged; (2) trust between the parties. The mechanism by which the social network

performs these services can be illustrated using an example originally due to Wechsberg (1966),

which we take from Coleman (1990). This example is about a prominent Norwegian shipowner who

was in need of a ship which had undergone repairs in an Amsterdam shipyard. However, �the yard

would not release the ship unless a cash payment was made of 200,000 pounds. Otherwise the ship

would be tied up for the weekend, and the owner would lose at least twenty thousand pounds.�

The shipowner was in trouble, because he did not have access to 200,000 pounds to be delivered

immediately in Amsterdam. To solve this problem, he called a London banker at Hambros, who

presumably had contacts in Amsterdam. After hearing the situation, �the Hambros man looked

at the clock and said, �It�s getting late but I�ll see whether I can catch anyone at the bank in

Amsterdam ... stay at the phone.�Over a second phone he dictated to a secretary in the bank

a telex message to the Amsterdam bank: �Please pay 200,000 pounds telephonically to (name)
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shipyard on understanding that (name of ship) will be released at once.�

In this example, the shipowner borrowed 200,000 pounds on immediate notice from an Amster-

dam bank that he had no direct connection with. He accomplished this using two business relations:

his connection with the London banker, and the connection between the London and Amsterdam

banks. In Coleman�s (1990) terminology, the London banker acted as a �trust intermediary�: he

provided access and created trust between two individuals who did not know each other. If the

shipowner were to default, the Amsterdam bank could ask the London banker to pay compensa-

tion or risk jeopardizing their relationship. Similarly, the London banker could presumably extract

money from the shipowner if necessary. Thus, the two business relations were used as collateral to

secure borrowing.

More generally, Table 1 documents evidence, drawn from a number of sources, that people

use their social network in many informal exchanges. In each row we report the proportion of

individuals who would or do rely on their social network in a particular exchange. Panel A focuses

on borrowing. According to the �rst row, 55% of subjects in the 1995 General Social Survey (GSS),

when asked whom they would turn to if they needed to borrow a large sum of money, chose persons

who are in their direct social network, including family members, relatives and close friends.3 The

next two rows show that in less developed countries, borrowing by small enterprises also frequently

relies on social networks.4

Panel B documents evidence of network use in the purchases of valuable assets. For such

purchases, particularly when there is asymmetric information about the good, trust between buyer

and seller can be important for a successful transaction. As the table reports, in 40% of home

purchases by subjects in the 1996 GSS, there is a direct or indirect network connection between the

buyer and either the seller or the realtor. Similarly, 44% of used car purchases involve a direct or

indirect network connection between the buyer and the seller. Finally, Panel C shows that networks

play an important role in job search: e.g., data from the 1991 and 1992 Current Population Surveys

indicates that 23% of unemployed workers used friends and relatives to search for jobs.5

Taken together, this evidence suggests that social networks matter for facilitating arrangements

and generating trust. We now develop a model where networks build trust through social collateral,

3See the data appendix for question wording and other details for all environments.
4 Indirect evidence on the use of social networks for borrowing, gifts, and transfers can be found in the literature on

consumption smoothing in developing countries, including Townsend (1994), Fafchamps and Lund (2003), Angelucci
and De Giorgi (2006) and Karlan (2006).

5 In job referrals, trust can play a role to the extent that the referring agent �vouches� for the quality of the
employee towards the employer.
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which in turn improves economic e¢ ciency.

2 Theory

This section presents a game-theoretic model of informal borrowing in social networks and shows

that the value of an asset a borrower can obtain from a lender is bounded above by the maximum

network �ow (or trust �ow) between borrower and lender. In Sections 3 and 4, where we consider

applications and evidence, we only make use of this reduced form characterization of trust.

2.1 Model setup

In our model, a borrower needs an asset of a lender to produce social surplus. The asset might

represent a factor of production, such as a farming tool, a vehicle or an animal in an agricultural

economy; it could also be an apartment, a household durable good or simply a cash payment.

In this economy, there is no formal contract enforcement that would prevent the borrower from

stealing the asset after using it. As a result, the lender will be reluctant to lend unless some

informal arrangement can be used to guarantee the return of the asset. In our model, the social

network allows agents to provide informal contract enforcement: connections in the network have

consumption value, which can be used as collateral to secure lending.

Formally, a social network G = (W;E) consists of a set W of agents (vertices) and a set E of

edges, where an edge is an unordered pair of distinct vertices. Each edge in the network represents

a friendship or business relationship between the two parties involved. We formalize the strength

of relationships using an exogenously given capacity c(u; v).

De�nition 1 A capacity is a function c : W �W ! R such that c(u; v) > 0 if (u; v) 2 E and

c(u; v) = 0 otherwise.

The capacity measures the utility bene�ts agents derive from their relationships. For ease of

presentation, we assume that the strength of relationships is symmetric, so that c (u; v) = c (v; u)

for all u and v.

Our model consists of �ve stages, as depicted in Figure 2. We begin by describing the model,

and then discuss the economic content of our modeling assumptions.

Stage 1: Realization of needs. Two agents s and t are randomly selected from the social

network. Agent t, the lender, has an asset which agent s, the borrower, desires. The lender values
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the asset at V , and it is assumed that V is drawn from some prior distribution F over [0;1). The

identity of the borrower and the lender as well as the value of V are publicly observed by all players.

Stage 2: Borrowing arrangement. At this stage the borrower publicly proposes a transfer

arrangement to all agents in the social network. The role of the transfer arrangement is to punish

the borrower and compensate the lender in the event of default; this will ensure that even in the

absence of courts the borrower returns the asset. A transfer arrangement consists of a set of transfer

payments h (u; v) for all u and v agents involved in the arrangement. Here h (u; v) is the amount

u promises to pay v if the borrower fails to return the asset to the lender. Once the borrower has

announced the arrangement, all agents involved have the opportunity to accept or decline. If all

involved agents accept, then the asset is borrowed and the borrower earns an income ! (V ), where

! (:) is a non-decreasing function with ! (0) = 0. If some agents decline, then the asset is not lent,

and the game moves on directly to stage 5.

For large social networks it can be unrealistic to expect the borrower to include socially very

distant agents in the borrowing arrangement. To formalize this, let d(u; v) denote the length of the

shortest path between u and v in the network, and de�ne the distance between an edge (u; v) and

a vertex s to be [d(u; s) + d(v; s)]=2.6 We assume that the borrower s can only propose transfers

h (u; v) for those (u; v) links that are at most distance K away from him in the network. Here K is

an exogenous parameter which we call the circle of trust. We allow K to be in�nite, in which case

the borrower can propose to all other agents in the network.7

Stage 3: Repayment. Once the borrower made use of the asset, he can either return it to

the lender or steal it and sell it for a price of V .8 If the borrower returns the asset then the game

moves to the �nal stage 5.

Stage 4: Transfer payments. All agents observe whether the asset was returned in the

previous stage. If the borrower did not return the asset, then the transfer arrangement is activated.

Each agent has a binary choice: either he makes the promised payment h (u; v) in full or he pays

nothing. If some agent u fails to make a prescribed transfer h (u; v) to v, then he loses his friendship

with agent v (i.e., the (u; v) link �goes bad�). If an (u; v) link is lost, then the associated capacity

is set to zero for the remainder of the game. We let ec (u; v) denote the new link capacities after
6With this de�nition, the distance between s and (u; v) is either an integer or an integer divided by two.
7More generally, we could assume that s can propose transfers over all links in some subgraph Gs. Under this

assumption, our main result would change in an intuitive way: the relevant maximum �ow would have to be computed
in Gs. We use the approach with K for ease of notation.

8The model can be extended to the case where the liquidation value of the asset is � � V with � � 1. We analyze
this more general model in Appendix B.
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these changes.

Stage 5: Friendship utility. At this stage, agents derive utility from their remaining friends.

The total utility enjoyed by an agent u from his remaining friends is simply the sum of the values

of all remaining relationships, i.e.,
P
v ec (u; v).

2.2 Discussion of modeling assumptions

We now turn to discuss some of the assumptions underlying our model.

Cash bonds and borrowing constraints. The model is centered around an agency problem: in

the absence of courts, the lender worries that the borrower might steal his asset. One way to

solve this agency problem is to have the borrower s post a cash bond to the lender. The lender t

returns the cash bond only if s returns the asset; otherwise the bond is kept as compensation. In

the model, we abstract away from cash bonds and pre-payments by assuming that the borrower

is initially completely cash-constrained. However, we do assume that in later stages the borrower

and other agents are able to make certain payments. This can be justi�ed if agents work or make

investments in the initial stage, and they earn wages or return on their investment in later stages.

Alternatively, payments in the game can represent in-kind transfers, e.g., helping out with the

harvest, where posting a bond may be ine¢ cient or infeasible.

Circle of trust. In the model, we parameterized the set of agents who can be involved in an

informal borrowing arrangement with K, which we call the �circle of trust.�Our motivation for this

approach comes from Granovetter (1974), who, in his in�uential book on labor market networks,

argued that job referrals typically involve less than three intermediaries. His �ndings suggest that

the empirically relevant range for our circle of trust parameter is 0 < K � 2:5.

Transfer arrangement as social norms. We think of the transfer arrangement in our model as

a means of formalizing accepted norms of behavior. While in practice agents may not explicitly

agree on transfer payments, often there is an understanding about their responsibilities in the case

of default. For example, in Wechsberg�s (1966) analysis of the prominent shipowner discussed in

Section 1, there was presumably an implicit understanding between various agents about the course

of action to take if the shipowner were to default.

Social sanctions. We model social sanctions by assuming that when an agent fails to make

a promised transfer, the associated friendship link automatically goes bad. Loss of a friendship

in this setup is not the result of a strategic decision; it is simply an assumption capturing the

idea that friendly feelings often cease to exist if a promise is broken. We use this assumption to
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simplify the exposition of the model. However, it is possible to provide precise microfoundations for

such behavior: failure to make a transfer might signal that an agent no longer values a particular

friendship, in which case the former friends might �nd it optimal not to interact with each other

in the future. Appendix B develops this idea formally, providing explicit microfoundations for loss

of friendship as a social sanction.

2.3 Equilibrium Analysis

For what values of V can borrowing be implemented in a subgame perfect equilibrium? We begin

answering this question by studying equilibria where all promises are kept, i.e., where every transfer

h (u; v) is expected to be paid if the borrower fails to return the asset. We later show that focusing on

these equilibria is without loss of generality. In any equilibrium where promises are kept, transfers

have to satisfy the capacity constraints

h (u; v) � c (u; v) : (1)

To see why, suppose that the borrower fails to return the asset, so that the transfer arrangement is

activated, and consider some (u; v) link. Agent u now has to decide whether to make the payment

h (u; v) to v. The cost of making the payment is just its dollar value, i.e., h (u; v); the cost of

not making the payment is c (u; v), because it results in losing a friendship of this value with v.

Since we are focusing on equilibria where promises are kept, u must prefer the friendship over the

monetary value of the transfer, i.e., (1) must hold.

We now turn to explore how the above capacity constraints lead to a representation of the

borrowing limit as the maximum network �ow in two simple networks.

Two-agent network. Let the social network consist of just two agents, the borrower s and the

lender t, and consider a pure strategy equilibrium implementing borrowing where promises are

kept. We �rst show that in any such equilibrium, V � h (s; t) must hold. To see why, assume that

the borrower s defaults on the equilibrium path. Then the lender receives the transfer payment

h (s; t) instead of the asset; but he must break even to lend, which yields V � h (s; t). Now suppose

instead that the borrower returns the asset on the equilibrium path. In this case, the borrower

must weakly prefer not to default, which again requires V � h (s; t).
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Now combine V � h (s; t) with the capacity constraint (1) to obtain

V � c (s; t) : (2)

This inequality characterizes the borrowing limit with the maximum network �ow in the simple two-

agent setup: borrowing can be implemented only if the asset value does not exceed the strength

of the friendship c (s; t), which also equals the maximum �ow in this network. Intuitively, the

collateral value of friendship can be used to elicit payment and solve the agency problem of lending.

Conversely, when (2) is satis�ed, it is easy to construct an equilibrium that implements borrowing:

just set h (s; t) = V .9

Four-agent network. To gain intuition about the borrowing limit in more general networks, we

next consider the network depicted in Figure 3, which consists of four players: the borrower s, the

lender t, an intermediate agent u connecting s and t, and agent v who is only connected to the

borrower s. We will refer to v as the �cousin�of s. A natural transfer arrangement that implements

borrowing in this network is where agent u acts as an intermediary who elicits and transits payments

from s to t in the case of no compliance, and gets zero net pro�ts. In this arrangement, agent v

plays no role. To formalize this arrangement, simply set h (s; u) = h (u; t) = V ; that is, in the

event of default, s is expected to pay V to u, who then transfers it on to t. For this arrangement

to be feasible, it must satisfy the capacity constraint (1) for both links involved: V � c (s; u) must

hold so that s delivers the transfer to u, and V � c (u; t) is needed to ensure that u passes on the

transfer to t. Combining these, the candidate arrangement constitutes an equilibrium if and only if

V � min [c (s; u) ; c (u; t)] : (3)

The content of this result is that the �weakest link�on the path connecting s to t determines the

maximum borrowing limit. Inequality (3) thus establishes that the maximum �ow determines the

borrowing limit for this class of transfer arrangements.

However, networks with more than two agents generally admit other transfer arrangements,

which can implement borrowing even if (3) fails. To take one example, assume that the borrower s

has a strong link to his cousin v, with a capacity value of V +1. The borrower might then propose

9 In this equilibrium, all surplus accumulates to the borrower because of our assumption that he proposes the
transfer arrangement. In a setup where bargaining power is more evenly distributed, we expect that the surplus
would be shared by the agents involved in the transfer arrangements, in a manner similar to Goyal and Vega-Redondo
(2004).
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an informal arrangement in which he promises to pay his cousin a transfer of h (s; v) = V +1 in case

he fails to return the asset. This arrangement provides the right incentives to the borrower, and is

an equilibrium even if (3) fails. To understand its logic, note that in this arrangement, the borrower

essentially makes the following proposal to the lender: �Lend me your asset; if I don�t return it

to you, my cousin will be angry with me.�As this interpretation makes it clear, this borrowing

arrangement may not be robust to joint deviations where both the borrower and his cousin depart

from equilibrium. More concretely, the borrower could circumvent the arrangement by entering a

side-deal with his cousin, in which he steals the asset and shares the proceeds with the cousin (who

in equilibrium would otherwise receive nothing). Doe to the possibility of such side-deals, we do

not �nd this equilibrium plausible.

A similar potential equilibrium is one where the intermediate agent u provides incentives to the

borrower but promises a zero transfer to the lender. In this case, the lender e¤ectively �outsources�

monitoring to the intermediate, trusting that the borrower will always return the asset rather than

pay a high transfer to u. This arrangement is again open to side-deals: here s and u can choose to

steal the asset jointly and split the proceeds, leaving the lender with nothing. As in the equilibrium

with the cousin, the possibility of a side-deal arises because nobody �monitors the monitorer�: the

lender is not fully in control of incentives. When enforcement is outsourced to either the cousin or

the intermediary, these agents can �team up�with the borrower and steal the asset.

These examples suggest that when the borrower and other agents can agree to side-deals, it

may not be in the interest of the lender to provide the asset. This motivates our focus on equilibria

that are immune to such side-deals. The requirement of side-deal proofness will ensure that the

lender always maintains full control of incentives if he agrees to lend the asset.

2.4 Side-deal proof equilibrium

Formally, a side-deal consists of an alternative transfer arrangement eh (u; v) o¤ered by s to a subset
of agents S � W . If a side-deal is accepted, agents in S make transfer payments according to eh,
while agents outside S continue to make payments described by h. In order for the side-deal to be

credible to all participating agents, it must be accompanied by a proposed path of play that these

agents �nd optimal to follow. This motivates the following de�nition.

De�nition 2 Consider a pure strategy pro�le �. A side-deal with respect to � is a set of agents

S, a transfer arrangement eh (u; v) for all u; v 2 S, and a set of continuation strategies fe�uju 2 Sg
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proposed by s to agents in S at the end of stage 2, such that

(i) Uu (e�u; e�S�u; ��S) � Uu (�0u; e�S�u; ��S) for all �0u and all u 2 S,
(ii) Uu (e�S ; ��S) � Uu (�S ; ��S) for all u 2 S,
(iii) Us (e�S ; ��S) > Us (�S ; ��S).
Condition (i) says that all agents u involved in the side-deal are best-responding on the new

path of play. This condition implies that the proposed path of play is an equilibrium for all agents

in S conditional on all others playing their original strategies ��S . Condition (ii) says that if any

agent u 2 S denies participating in the side-deal, then play reverts to the original path of play

given by �. Finally, (iii) ensures that the borrower s strictly bene�ts from the side-deal.

De�nition 3 A pure strategy pro�le � is a side-deal proof equilibrium if it is a subgame perfect

equilibrium that admits no side deals.

Side-deal proofness allows us to exclude any equilibrium for the network in Figure 3 where the

weakest-link inequality (3) fails. Our main theorem establishes this claim for general networks.10

2.5 Main theorem

We begin by formally de�ning the concept of network �ows intuitively discussed above.

De�nition 4 An s! t �ow with respect to capacity c is a function f : G�G! R which satis�es

(i) Skew symmetry: f(u; v) = �f(v; u).

(ii) Capacity constraints: f(u; v) � c(u; v).

(iii) Flow conservation:
P
w f(u;w) = 0 unless u = s or u = t.

The value of a �ow is the amount that leaves the borrower s, given by jf j =
P
w f(s; w): A

K-�ow is a �ow such that f(u; v) > 0 implies that the distance between the borrower s and the

edge (u; v) is at most K, the circle of trust. Let T stK (c) denote the maximum value among all s! t

K-�ows.11 Our main theorem extends inequalities (2) and (3) to general networks.

10Our de�nition of side-deal proof equilibrium does not require side-deals to be robust to further side-deals. This
distinction is immaterial in our model: it is easy to show that requiring side-deals to be robust to further side-deals
does not change any of the results in this paper.
11The maximum exists because �ow value is a continuous function and the set of K-�ows is a compact subset of a

�nite-dimensional Euclidean space.
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Theorem 1 There exists a side-deal proof equilibrium that implements borrowing between s and t

if and only if the asset value V satis�es

V � T stK (c): (4)

This result states that the endogenous borrowing limit equals the value of the maximum K-�ow

between borrower s and lender t. When V satis�es this inequality, a side-deal proof equilibrium is

easy to construct: by assumption, there exists an s ! t �ow with value V , and this �ow can be

used as a transfer arrangement. Flow conservation implies that all intermediate agents break even,

con�ning their role to simply extracting and transmitting the payment V from s to t in case s fails

to return the asset. Thus the lender e¤ectively controls the provision of incentives; because of this,

the equilibrium is easily seen to be side-deal proof.

To show that no side-deal proof equilibrium can implement a higher level of borrowing, we

build on the maximum �ow-minimum cut theorem (Ford and Fulkerson 1956), which states that

the maximum network �ow between borrower s and lender t equals the value of the minimum cut.

A cut is a disjoint partition of the vertices into two sets G = S [ T such that s 2 S and t 2 T , and

the value of the cut is de�ned as the sum of c (u; v) for all links such that u 2 S and v 2 T .

For any borrowing arrangement violating (4), we can construct a side-deal using the set of

agents S in a minimum cut. To see the logic, note that the amount transferred between S and T

cannot exceed the value of the cut. Given that (4) fails, this implies that it is not possible for the

full value V to �ow from S to T , and hence agents in S as a group pay less than V in the event

of default. But this means that agents in S as a group do not have the right incentives to return

the asset; as a result, they can deviate as a group, steal the asset and split the proceeds among

themselves.

2.6 Extensions: multiple loans and transfer constraints

In practice, the assumption of a single borrower and a single lender is often restrictive. Similarly,

in environments with severe credit constraints, agents might have limits on the total amount of

transfers they can make. In this section, we address these problems by considering two extensions

of the model: allowing for multiple borrowers and lenders, and introducing constraints on agents�

total transfers. We show that the concept of network �ows can be used to characterize borrowing

in both extensions: Borrowing limits can be computed as the maximum �ow in certain auxiliary
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networks. These results show that network �ows can be useful for the study of informal contract

enforcement in more realistic settings as well.

Multiple borrowers and lenders. Assume that the asset agents wish to borrow from each other is

money. Let s1, s2,..., sk be the set of borrowers, and suppose that agent si would like to borrow Vi

dollars. The set of lenders who can supply loans is t1, t2..., tm, where agent tj can lend at most Wj

dollars. Each borrower can borrow from multiple lenders if necessary, and borrowers and lenders

do not care about the identity of their counterparts as long as the get the desired loan and are

expected to be repaid.12

When can all borrowers simultaneously borrow their desired amounts? To answer this question,

we de�ne an auxiliary directed network G0, which is constructed in the following way. We start

with the network G, and replace each (u; v) link with a pair of two directed links: an u ! v link

with capacity c (u; v); and a v ! u link that also has capacity c (u; v). Next we add two new

vertices, denoted by s0 and t0; and for each borrower si, i � 1, add a directed link s0 ! si with

capacity c (s0; si) = Vi, and for each lender tj , j � 1, add a directed link tj ! t0, with capacity

c (tj ; t0) =Wj .

As we formally demonstrate in the Appendix, full borrowing can be achieved if and only if the

maximum network �ow between s0 and t0 in the directed network G0 is at least as high as the

total desired loan amount, V1 + ::: + Vk. To understand the intuition, note that the neighbors of

the new vertex s0 are the set of borrowers, and the neighbors the new vertex t0 are the set of

lenders. As a result, any s0 ! t0 �ow can be interpreted as originating in the set of borrowers and

transferring resources to the set of lenders. A maximal s0 ! t0 �ow can then be used to construct

an equilibrium implementing borrowing: The amount carried from borrower si to lender tj in the

�ow speci�es how much si will borrow from tj ; and the �ow values over links de�ne the transfer

payments analogously to the single borrower and single lender setup.

If the maximum s0 ! t0 �ow has value V1+ :::+Vk, then the above construction clearly satis�es

the aggregate demand for loans. But we still need to verify that each borrower gets his exact

desired amount, and also that the resource constraints of lenders are not exceeded. Both of these

properties follow from the construction of G0. To see why, note that the capacities of the links

originating in s0 are de�ned by the loan demands of the borrowers: link s0 ! si has capacity Vi.

This means that the links of s0 have a total capacity of V1 + ::: + Vk, and therefore any s0 ! t0

�ow that carries this amount must use each of these links at full capacity. But then our candidate

12 In this analysis, we abstract away from the restrictions imposed by the �circle of trust�by assuming that K =1.
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equilibrium allocates exactly Vi dollars to borrower si. Similarly, the capacity constraint Wj over

the tj ! t0 link for each j ensures that no lender provides loans exceeding his available funds, and

hence the candidate equilibrium satis�es all resource constraints.

Transfer constraints. We now return to the single borrower and single lender setup, but intro-

duce constraints agents�total transfers. Suppose that each agent u can transfer at most a total

of ku to others in the network, where the �transfer constraints� ku are exogenous. A natural in-

terpretation is that ku represent time constraints. If transfers are in-kind services such as helping

out, then they require time, and available time limits how much agents can transfer. Moreover,

the utility gain from an in-kind transfer cannot be easily passed on to another agent, and hence

incoming transfers need not relax the time constraint.13

How much borrowing can be implemented in this environment? As above, constructing an

auxiliary directed network G00 will help answer this question. We begin by replacing each node u

in G with a pair of two nodes, u1 and u2. Next, we replace each (u; v) link with two new directed

links: an u2 ! v1 link and a v2 ! u1 link, both with capacity equal to c (u; v). Finally, for each

agent u we create a new u1 ! u2 link with capacity equal to the transfer constraint c (u1; u2) = ku.

The idea is to duplicate all agents u, then point all incoming links of u to u1, have all outgoing

links of u originate in u2, and let the capacity of the u1 ! u2 link be determined by the transfer

constraint ku.

In the Appendix we show that in any side-deal proof equilibrium where promises are kept, the

borrowing limit in the presence of transfer constraints equals the value of the maximum s1 ! t1

�ow in G00. To understand the intuition, consider a maximal �ow. As in the basic model, the

amounts assigned to links between agents by this �ow can be interpreted as the transfer payments

in a candidate transfer arrangement. It remains to verify that in this arrangement, no agent u

exceeds his total transfer constraint ku. But this follows by construction of G00. The total amount

of transfers promised by u must be equal to the �ow leaving u2 in G00; but by �ow conservation,

this must be equal to the value carried over the u1 ! u2 link, which is bounded by the link capacity

of ku in G00.
13The ku can also be thought of as a reduced from representation of cash constraints. While incoming transfers might

relax cash constraints, an extended model where agents have limited cash and transfers fail with small probability
can lead to similar reduced form constraints.
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3 Applications

We begin with some preliminaries. Theorem 1 established that in our baseline model, the borrowing

limit equals the maximum network �ow T stK (c) between borrower s and lender t. We interpret the

borrowing limit as a measure of trust, and refer to the function T stK (c) as the trust map. To see

how the trust measure T stK (c) is related to payo¤s, let �
st
K(c) denote the expected payo¤ of s from

borrowing, conditional on the lender being agent t:

�stK(c) = �
�
T stK (c)

�
where �(z) =

Z z

0
! (v) dF (v) ; (5)

because the expected payo¤ of s is just the expectation of !(V ) over all values of V that do not

exceed the borrowing limit (4). Equation (5) shows that the expected payo¤ from borrowing is a

monotone increasing function of trust.14

We now introduce measures of trust at the level of the individual and the community. We de�ne

the level of trust enjoyed by a borrower s to be

T sK(c) =
X
t2W

T stK (c):

This measure is proportional to the average trust of s, T sK(c)=(N � 1), which has a natural inter-

pretation as the expected level of trust conditional on s being the borrower who needs the asset

of a randomly selected lender. We use the sum rather than the average for expositional reasons.

Note that T sK(c) can be large both if s has low pairwise trust with many people, and also if s

has high pairwise trust with fewer people. T sK(c) summarizes the distribution of pairwise trust

levels between s and other agents through its mean. In Section 3.3, we explore how higher order

properties of this distribution a¤ect welfare.

Analogously, de�ne the community-wide trust embedded in the social network as

TK(c) =
X
s2W

T sK(c):

Community-wide trust is proportional to the average level of trust between a randomly selected

borrower-lender pair. Using similar notation, we denote the expected payo¤ from borrowing of an

individual s by �sK(c), and the sum of expected payo¤s from loans of all agents by �K(c).

14Besides the payo¤ from borrowing �stK (c), the borrower s also derives utility from his friends. As a result, the
total utility of the borrower Us always satis�es Us � �stK (c).
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The theoretically correct measure of welfare generated by borrowing is �K(c), which summarizes

the expected utility of agents. However, the trust measure TK(c) has the advantage that it can be

computed using only network data, without knowledge of the distribution function F and the payo¤

function !. As equation (5) shows, in general there is a distinction between these measures even

at the level of borrower-lender pairs. A useful special case when the two measures are equivalent is

when the function �(z), which maps trust into payo¤s, is linear, i.e., �(z) = � � z for some � > 0.

In this linear benchmark case, trust and payo¤s are proportional both at the level of the individual

and at the level of society.15

Two additional cases of interest are when the linearity assumption is relaxed, but some restric-

tions are still placed on the on the curvature of �(z). We say that technology favors high asset

values if �(z) is convex. In this case, more weight is given to assets with relatively high value, in

the sense that either (1) they are more probable, or (2) they generate higher surplus ! (z). Con-

versely, technology favors low asset values if �(z) is concave, in which case low asset values have

relatively higher probability or associated surplus. With this classi�cation, the linear benchmark

case can be viewed as technology being neutral with respect to asset values: low asset values and

high asset values have equal weight. We will make use of this classi�cation in the analysis below.

3.1 Comparative statics

Here we explore the comparative statics of trust and payo¤s with respect to changes in the social

network. We vary the network structure by changing the capacity c which measures the strength

of links between agents. Such changes can also be interpreted as changing the underlying network,

because a link with capacity zero is equivalent to having no link at all. To formally analyze

comparative statics, let the space of all symmetric capacities on the set of agents W be denoted by

C �RW�W . Then T stK (c) can be interpreted as a map T
st
K : C ! R, which computes trust between

s and t for di¤erent networks. The following result shows that trust is a well-behaved function of

the social network.

Proposition 1 [Properties of trust map] The map T stK (c) is nondecreasing and concave in c and

nondecreasing in K.

T stK (c) is nondecreasing because a feasible �ow cannot be rendered infeasible by increasing

the capacities of some links. Concavity follows since the convex combination of feasible �ows for
15The linear benchmark can be obtained, for example, by assuming that the bene�t function ! (V ) = ! is a

constant, and that the distribution of asset values F is uniform on a [0; a] interval such that a > maxs;t T stK (c).
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di¤erent capacities is a feasible �ow under the convex combination of the capacities.

This proposition leads directly to our main comparative statics results. Before stating the

results, we introduce some terminology. We say that the network associated with capacity c1 is

more connected than the network associated with capacity c2 if no link has lower capacity under c2

than under c1: that is, c1(u; v) � c2(u; v) for all u; v 2 W . Let eC1 and eC2 be two capacity-valued
random variables, that is, two random networks. We say that eC2 is more heterogenous than eC1
if the probability distribution of eC1 second-order stochastically dominates that of eC2. To see the
intuition, note that second order stochastic dominance captures the idea of more uncertainty for

random networks the same way as it does for random scalars. In words, eC2 can be viewed as a
probability distribution with �fatter tails� that assigns greater weight to more heterogenous and

extreme networks. For example, if the capacities over links are independent, the random networkeC2 can be obtained from eC1 by adding mean-preserving spreads to the capacity of each link.
We are now ready to state our main comparative statics result.

Corollary 1 [Trust comparative statics] For every borrower s and lender t and any K,

(i) [Monotonicity] If a social network with capacity c1 is more connected than the network with

capacity c2, then both trust and payo¤s are higher: T stK (c1) � T stK (c1) and �stK(c1) � �stK(c1).

(ii) [Heterogeneity] If a random network eC1 is less heterogenous than a random network eC2,
then trust is higher: E

h
T stK (

eC1)i �EhT stK ( eC2)i. Moreover, if technology favors low asset values

(i.e., �(z) is concave) then expected payo¤s are higher as well: E
h
�stK(

eC1)i �Eh�stK( eC2)i.
This result, which follows immediately from Proposition 1, summarizes the basic comparative

statics properties of trust.16 Part (i) shows that networks with more and stronger links generate

higher levels of trust, and consequently higher payo¤s to all agents. This result supports Putnam�s

(1995) general argument about the role of social connections in increasing trust. The precise content

of part (ii) is that if a network is drawn from a distribution that assigns greater weight to more

heterogenous and extreme networks, expected trust falls. This result can be interpreted as stating

that on average, trust levels are lower in more heterogenous societies. The intuition is straightfor-

ward: in our model, trust is determined by the strength of the weakest link along certain paths.

When heterogeneity increases, the weakest link becomes weaker on average, leading to lower trust.

16 In a di¤erent setup, Galeotti, Goyal, Vega-Redondo, and Yariv (2006) explore comparative statics of equilibria
in network games where the degree distribution across networks is related by �rst order or second order stochastic
dominance.
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To connect the result about heterogeneity and trust to stylized facts, it is useful to consider a

simple model of ethnic or racial heterogeneity. Fix a social network G, and assume that all links

in the network have the same capacity 1. Now color each agent in the network independently and

with equal probabilities either black or white; and modify the capacities such that the strength

of a link between a black and a white agent is now 1 � x, while the strength of a link connecting

agents of the same color is 1+x. For each x between 0 and 1, this construction generates a random

network where the expected capacity of all links is 1. Here x can be interpreted as a measure of

heterogeneity: it is easy to see that a higher x results in a more heterogenous network according

to our de�nition. As a result, part (ii) of the Corollary can be applied to show that average trust

between two agents is monotonically decreasing in heterogeneity x. Note that trust here averages

over both pairs of agents with di¤erent color as well as pairs with the same color; any potential

increase in trust within a group is more than compensated by the loss of trust across groups.

These theoretical results about social heterogeneity and trust are consistent with existing evi-

dence. Alesina and La Ferrara (2002) show that living in a U.S. locality that is racially mixed or

displays a high degree of income disparity is correlated with low average trust.17 Putnam (2007)

shows in data from the Social Capital Benchmark Survey panel that in ethnically diverse US com-

munities there is not only lower trust between people from di¤erent backgrounds but even lower

trust between people of the same background. This �nding is compatible with our model if indi-

rect links are an important source of trust in a community. Leigh (2006) �nds similar results in

Australian survey data. Finally, Knack and Keefer (1997) show that trust is weaker in nations with

more income inequality, which is consistent with our results if income inequality results in social

strati�cation of the kind represented by the random network example of the previous paragraph.

Due to the distinction between trust and payo¤s, lower trust generated by heterogeneity does

not always translate into lower payo¤s; as the Corollary shows, for this result we need technology

to favor low asset values. Intuitively, if high asset values were relatively likely, greater heterogeneity

could increase expected payo¤s by giving rise to strong paths between borrower and lender with

small probability. An extreme example is when asset values are always higher than some threshold.

Then, a homogenous network can lead to no borrowing if the network �ow between any pair of

agents is below the threshold; but in a heterogenous network some connections might be strong

enough to make borrowing feasible.

17 In related work, Alesina and La Ferrara (2000) show that more heterogenous societies exhibit lower participation
rates in social activities.
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3.2 Simple trust measures

In this section we explicitly compute the trust �ow T stK (c) for small values of the circle of trust K,

and express the resulting simple trust measures in terms of commonly used network statistics. These

results are useful because (1) they show that our simple measures can be computed with limited

network data which is often available in existing datasets, and (2) they provide microfoundations

for standard network statistics in terms of trust and social collateral.

We begin by introducing some standard network statistics. For any agent s in the network,

denote the set of his direct neighbors by Ns and call jNsj the degree of s. Then the total number

of edges jEj can be expressed as jEj = (1=2)
P
s jNsj. The next three statistics measure the extent

to which the neighborhoods of di¤erent agents overlap. The clustering coe¢ cient �s is simply the

number of links between s�s friends divided by the maximum possible number of such links:

�s =
# of links between agents in Ns

jNsj (jNsj � 1) =2
:

This is a common measure of local network density used in diverse �elds including sociology, physics

and economics (e.g. Watts and Strogatz 1998, Albert and Barabasi 2002, Jackson 2005).18 For

any two agents s and t, let nst denote the number of common friends that they have, a statistics

used by Glaeser, Laibson, Scheinkman, and Soutter (2000) and De Weerdt (2002) to proxy for

the ability to enforce cooperative behavior. Finally, let � denote the number of triangles in the

social network, a quantity related to a measure of clustering used in sociology called the �fraction

of transitive triples�(Wasserman and Faust 1994).19

Before proceeding, we need to introduce one additional variable, that measures the degree to

which an agent�s neighborhood is interconnected through third parties. Let Isuv be an indicator

variable that equals one if u and v have a common friend who is not a friend of s. This variable

can be interpreted as measuring the presence of 4-cycles locally around agent s in the network.

The next result expresses trust �ows using the network statistics introduced above. In this

analysis, we only focus on networks where all links are equally strong, and normalize the capacity

of each link to one; this means that c (u; v) = 1 for all (u; v) 2 E.

Proposition 2 [Simple trust measures] The following are true

(i) If K = 0:5 then T stK (c) = 1ft2Nsg, T
s
K(c) = jNsj and TK(c) = 2 jEj.

18When jNsj � 1, we let �s = 0.
19A triangle is a set of three vertices u1, u2 and u3 such that there is a link between any two of them.
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(ii) If K = 1 then T stK (c) = [1 + nst] � 1ft2Nsg, T sK(c) = jNsj (1 + (jNsj � 1)�s) and TK(c) =

2 jEj+ 6 ��.

(iii) If K = 1:5 then T stK (c) = nst + 1ft2Nsg �
�
1 +

P
u2Ns I

s
ut

�
and T sK(c) =

P
t2Ns jNtj +P

u;v2Ns I
s
uv.

Part (i) states that when K = 0:5, so that the circle of trust only involves direct friends, the

trust enjoyed by s is determined by his degree jNsj, and community-wide trust is proportional to

the number of links jEj in the network. For such small K, indirect paths do not increase trust, and

the average trust of an agent is determined by his �access�measured by the number of his friends.

As we raise the circle of trust K to 1, indirect paths begin to matter. Trust between two

connected agents s and t now depends on the number of their common friends nst: each common

friend can vouch for the borrower and provide additional leverage, increasing the borrowing limit.

Trust enjoyed by an individual T sK(c) depends both on the size of his neighborhood and its density,

measured by the clustering coe¢ cient �s. A small but densely connected neighborhood can be as

bene�cial as a large number of friends who are not connected to each other. Intuitively, while the

likelihood of �nding a lender in small and dense neighborhood is low, the borrowing limit for any

potential lender is high. At the population level, trust depends both on the total number of links

jEj which measure access to resources, and on the total number of triangles � which measure the

density of connections.

When K = 1:5, all paths of length at most 2 generate one unit of trust. As a result, when s

and t are at distance two from each other, pairwise trust equals nst, the number of their common

friends. When s and t are also friends, pairwise trust increases for two reasons. First, their direct

connection adds one unit of trust; second, there may be a 4-cycle involving both s and t that further

increases trust. The latter e¤ect is captured by the Isut terms in the expression for pairwise trust.

The total trust enjoyed by s is a function of both the sizes of neighborhoods of his friends and the

degree to which these are interconnected through 4-cycles.

The Proposition show that forK small, our simple trust measures only depend on the immediate

network neighborhood around agent s. This result can be signi�cant for applied research. In

practice, complete network data is rarely available, but many existing datasets contain limited

information about the immediate network around respondents. For example, the 1985 module

of the General Social Survey (GSS) collects data about subjects� close friends and the relations

between those friends. Similarly, sociologists using the �survey-network research design� often

collect network data about direct connections and the relations between them (Granovetter 1976,
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Burt 2006). With such data, our simple trust measures can be computed for both K = 0:5 and

K = 1. This opens the possibility of exploring the relationship between our trust measures and

outcomes related to trusting behavior in practice.

The Proposition also provides foundations for common network statistics in terms of social

collateral. Our foundations can be used both to interpret and to qualify these network statistics.

For example, part (ii) of the Proposition shows that the clustering coe¢ cient �s is an imperfect

measure of social collateral. According to our model, one should augment �s with the size of the

agent�s neighborhood, because a larger neighborhood, even if it has lower clustering, can increase

access and lead to greater social collateral.

Of course, our results have limitations as well. For example, assuming that all friendship

capacities are equal might be unreasonable in some applied settings. In such environments, we

need information about the strength of relationships (perhaps proxied by the amount of time

agents spend with each other) to compute �ow measures of trust.

3.3 Closure vs. structural holes

Proposition 2 showed how to compute trust as a function of the network structure. However, as we

discussed in Section 3.2, expected payo¤s can vary even if the level of trust is held �xed. In this

section, we explore which network structures yield higher payo¤ for a given level of trust.

The sociology literature on networks has two broad views about which types of social networks

are better. One view, dating back to Coleman (1988), stresses the importance of dense networks,

referred to as network closure. A key element of Coleman�s argument is that closure provides social

capital because it facilitates sanctions that make it easier for individuals to trust each other. For

example, in his discussion of the wholesale diamond market in New York City, Coleman explains

that �If any member of this community defected through substituting other stones or stealing

stones in his temporary possession, he would lose family, religious and community ties.�His view

can be illustrated with the two network neighborhoods depicted in Figure 4, which are identical to

those used in Figure 1 of Coleman (1988). Intuitively, the neighborhood in Figure 4b has higher

closure, because t1 and t2 are connected to each other. In the context of this �gure, Coleman argues

that higher closure is bene�cial, because if the actions of s need to be constrained, in Figure 4b

agents t1 and t2 can �combine to provide a collective sanction, or either can reward the other for

sanctioning.�

In contrast, Burt (1995) emphasizes the role of structural holes, that is, people who bridge
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otherwise disconnected networks. For example, agent s is a structural hole in Figure 4a, but not

in Figure 4b. Burt�s view suggests that loose networks and wide neighborhoods, i.e., low network

closure like in Figure 4a, lead to higher performance. He argues that structural holes �broker

the �ow of information between people, and control the projects that bring together people from

opposite sides of the hole�(Burt 2000). A key part of his argument is that loose networks provide

easier access to information and other resources.

To evaluate the relative advantage of closure versus structural holes in our model, we �rst need

a measure of closure. To construct such a measure, consider Figure 4, let all links have capacity

1, and let K � 1:5. Under these assumptions, in our model both neighborhoods in the Figure

generate the same trust of 4 for agent s.20 The network in Figure 4a achieves this by providing

access to four agents, but only allows agent s to borrow �small assets�of value at most 1 from any

of them. In contrast, the network in Figure 4b generates the same trust by providing access to only

two agents, but allowing s to borrow �large assets�of value at most 2 from either of them. This

analysis suggests that holding �xed the trust of s, higher closure can be interpreted as s having

high pairwise trust with a small number of agents, while lower closure means having low pairwise

trust with a large number of agents.

We can formalize these ideas the following way. Assume that the capacity function is integer

valued, �x agent s, and consider the distribution of pairwise trust between s and all other agents

in the network. Let �s(j) denote the number of agents with whom pairwise trust equals j for

j = 1; 2; :::; N � 1. For each j, the contribution of agents with pairwise trust j to the total trust

of s is simply j � �s(j), which we denote by qs(j). With this notation, the total trust of s can be

decomposed as

T sK (c) =
X
j

qs (j) :

Holding �xed trust T sK (c), changes in the network structure around s are re�ected in changes

in the qs(j) terms. For example, the network in Figure 4a with low closure has qs(1) = 4 and

qs(2) = 0, while the network in Figure 4b with high closure has q0s (1) = 0 and q
0
s (2) = 4. Increasing

closure thus corresponds to moving weight from qs(j) terms with low j to qs(j) terms with high j,

i.e., increasing the relative contribution of agents with high pairwise trust to the total trust of s.

Viewing the qs function as a (scaled) probability density function, higher network closure can then

be interpreted as moving weight to the right of the distribution, or equivalently, an increase in the

20 In Figure 4a, pairwise trust T stiK (c) = 1 for all four ti, which adds up to T sK(c) = 4. In Figure 4b, pairwise trust
is T stiK (c) = 2 for t1 and t2 for a total of 4.
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sense of �rst order stochastic dominance. This motivates the following de�nition.

De�nition 5 The neighborhood of s has a higher closure than the neighborhood of s0 if

(i) T sK (c) = T
s0
K (c) so that both neighborhoods generate the same total trust; and

(ii) the probability distribution with density qs (j) =T sK (c) dominates the distribution with density

qs0 (j) =T
s0
K (c) in the sense of �rst order stochastic dominance.

This concept of network closure allows us to evaluate whether high closure or low closure is

associated with higher expected payo¤s in our model. The next result shows that the answer

depends on the type of assets borrowed in the social network. Recall our de�nition that technology

favors low value assets if �(z) is concave, which corresponds to assets of smaller value being more

probable or generating higher surplus. Conversely, we say that technology favors high value assets

if �(z) is convex, i.e., if high-value assets are either more likely or have greater surplus.21

Proposition 3 If the technology favors high value assets, then a neighborhood with higher closure

leads to a higher expected payo¤ to s. Conversely, if the technology favors low value assets, then a

neighborhood with higher closure leads to a lower expected payo¤ to s.

The basic intuition can be understood in terms of a trade-o¤ between access and pairwise

trust. When technology favors low asset values, the loose social network in Figure 4a is more

pro�table, because this network provides greater access to s: knowing more people directly or

indirectly increases the likelihood that he obtains a low-value asset from some other agent. This

logic is in line with Burt�s basic argument that structural holes facilitate access to relatively cheap

assets, such as information or advice.22 The result also suggests that a more dispersed social

network is more advantageous if it is mainly used to exchange small favors, which is consistent with

Granovetter�s (1973) argument about the strength of weak ties.

In contrast, when technology favors high asset values, a neighborhood like in Figure 4b leads to

higher payo¤. Here, access is reduced because the neighborhood is smaller, but this is more than

compensated for by the fact that through his dense connections s will be able to borrow even high-

valued assets, which are now relatively more attractive. This logic is in line with Coleman�s general
21 If F is di¤erentiable, then �0 (z) = f (z)! (z). If � is convex than f (z)! (z) must be increasing in z, meaning

that either f (z) or ! (z) must be larger for larger z; i.e., more valuable assets are either more likely or generate
greater surplus.
22Exchange of information is not explicitly incorporated in our model. However, providing information e.g., about

a job, is often an activity that has some small cost to the sender. Such information can be interpreted as a favor
for which the sender might expect compensation. This logic is consistent with the basic intuition underlying our
borrowing model.
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argument for network closure, and particularly his example of the wholesale diamond market in

New York City, where the exchange of highly valuable stones requires high trust between dealers.23

The results of the Proposition are related to earlier work on social capital in both sociology

and in economics. In sociology, Putnam (2000) introduced the ideas of bonding and bridging social

capital. In Putnam�s view, bonding social capital is associated with dense social networks and is

good for generating reciprocity between agents who know each other well. As an example, Putnam

cites ethnic enclaves, who, among other things, provide �start-up �nancing, markets, and reliable

labor for local entrepreneurs.� In contrast, the networks underlying bridging social capital are

�outward looking and encompass people across diverse social cleavages." Such bridging networks

are good for �linkage to external assets and for information di¤usion.�The intuition behind the

Proposition is similar to Putnam�s argument: strong links and dense networks facilitate big favors

and thus generate bonding social capital, while weak links are good for maximizing access which

creates bridging social capital. Our model can thus be interpreted as providing formal foundations

for these two aspects of social capital. In economics, Sobel (2002) made a similar point when he

argued that �widely scattered weak links are better for obtaining information, while strong and

dense links are better for collective action.�We do not formalize the exchange of information, but

the intuition behind the Proposition is similar to Sobel�s general point.

4 Social collateral and trust: Evidence from dictator games

In this section, we present new evidence consistent with the quantitative implications of our model.

Our data consists of one treatment from a larger web-based experiment with 569 Harvard under-

graduates conducted by Markus Mobius and Tanya Rosenblat, analyzed in more detail in Leider,

Mobius, Rosenblat, and Do (2006). We consider the behavior of subjects in two-player dictator

game experiments, and relate the outcomes to network �ow measures of trust.24

Background and estimation framework. In the speci�c dictator game we use, player 1, the

allocator, can choose how to distribute a limited budget of tokens between himself and player 2,

the recipient. Each token is worth three times as much to the recipient than to the allocator, which

implies that the socially e¢ cient action is to give all tokens to the recipient.

When played in isolation, the dictator game has a unique Nash equilibrium in which the allocator

23Vega-Redondo (2005) reports a similar �nding in a model of repeated games played in networks: he shows that
stability of cooperative behavior depends on a certain measure of network cohesiveness.
24Starting with Berg, Dickhaut, and McCabe (1995), there is a large experimental literature on trusting behavior

in games, including Fershtman and Gneezy (2001) and Andreoni and Miller (2002).
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keeps all tokens to himself. However, agents who trust each other could achieve a more e¢ cient

allocation: e.g., the allocator may expect compensation after the game either through monetary

payments or other favors. If agents do expect post-play compensation, then the dictator game

experiment closely corresponds to the borrowing model of this paper. The allocator plays the

role of a lender, who, by giving some tokens to the recipient, e¤ectively lends a monetary asset.

Following the game, the allocator expects compensation, just like the lender does in our model.

While the analogue with the model is incomplete in that there is no transfer arrangement signed

by the subjects, in practice we expect that social norms of engagement govern subjects�behavior

and substitute for explicit transfer arrangements.

With this interpretation, our model implies a negative relationship between the network �ow

measure of trust and the number of tokens kept by the allocator. This motivates the estimating

equation

sel�sh behaviorst = �+ � � trust �owst + controls+ "st (6)

where s denotes the recipient, t denotes the allocator, sel�sh behaviorst is a measure of the number

of tokens kept by the allocator, and trust �owst is the �ow measure of trust computed from the

social network for some value of K. The error term "st captures variation in trusting behavior that

is not related to enforcement, including altruism and information e¤ects.

Below, we provide evidence that estimating equation (6) in ordinary least squares yields � < 0

as predicted by our theory. One di¢ culty in interpreting the OLS � estimate is that the error

term "st may be correlated with trust �ow. This might happen because the network structure

is endogenous to the pair of agents s and t, and also if other mechanisms for trusting behavior,

such as altruism and information, operate more e¤ectively for individuals who are socially closer.

We try to address these endogeneity problems by �exibly controlling for demographics and various

measures of social distance to pick up other mechanisms that can generate trust. However, given

these endogeneity problems, we view the results mainly as evidence that �ow measures of trust are

related to trusting behavior in practice, and not a formal test.

Data description. In December 2003, subjects from two Harvard houses were recruited and

asked to provide information on their social network as well as basic demographic data.25 In May

2004 various dictator game treatments were run on these subjects. Within each house an equal

number of player 1�s and player 2�s were selected, with player 1�s having the role of the allocator.

25The data appendix describes the data collection procedure and experimental design in greater detail.
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Each player 1 was matched with 5 potential player 2�s: a direct friend, an indirect friend, a friend

of an indirect friend, a student in the same staircase/�oor who is at least distance 4 removed from

the student, and a randomly selected student from the same house who falls in none of the above

categories. In the dictator game, player 1 was asked to allocate 50 tokens between himself and

player 2. In the treatments we use below, players were aware of each other�s identity and actions,

and each token was worth 1 point to the allocator and 3 points to the recipient. One point equaled

10 cents for both players, and hence the maximum winnings of a player in a match were $15.

Results. Using the self-reported social network data, we computed the trust measures implied

by our model for small values of K. We made two assumptions in performing these calculations:

1) all links reported by either one of the two parties represent an actual social connection; 2) all

links in the social network have equal capacity, normalized to one.

Figure 4 summarizes graphical evidence on the relationship (6). Following Andreoni and Miller

(2002), in this �gure we measure sel�sh behavior using a binary variable which equals 1 if the

allocator chose to keep all tokens to himself, and zero otherwise. The four panels in the �gure show

the relationship between sel�sh behavior and trust �ow computed for di¤erent values of K. For

example, panel (a) uses our trust measure for K = 0:5. This measure equals 1 if the two players are

connected and zero otherwise, hence the �gure shows only two points, the average of sel�sh behavior

for pairs of individuals where the trust �ow equals 0, i.e., non-friends, and for pairs where the �ow

equals 1, i.e., friends. The other three panels are constructed analogously for K = 1, K = 1:5 and

K = 2. All four panels in the �gure con�rm the prediction of the model by documenting a negative

relationship between social collateral and sel�sh behavior.26

We evaluate the robustness of the graphical results by estimating a set of regressions augmented

with other measures of social distance. We use �xed e¤ects to control for (1) distance in the social

network (length of shortest path) between the two players; (2) the year (freshmen, sophomore,

junior, senior); (3) sex; and (4) staircase or �oor of the allocator and the recipient. In addition, we

include variables indicating whether the two players are in the same year and whether they live in

the same staircase/�oor. Table 2 reports the results. In columns 1-3, we use the binary indicator

of sel�sh behavior as our dependent variable. Since our trust measure for K = 0:5 is collinear with

the �xed e¤ect for social distance of one, we use the trust �ow for K = 1, K = 1:5 and K = 2

in these columns. Column 1 shows that the trust �ow for K = 1 has the wrong sign and is no

26Estimating equation (6) in simple speci�cations with no controls (not reported) leads to a slope coe¢ cient � that
is negative and signi�cant at the 5% level in all four cases.
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longer signi�cant, suggesting that this trust measure, which captures the number of common friends

between allocator and recipient (see Proposition 2), does not contain much additional information

beyond social distance. However, columns 2 and 3 show that trust �ow for higher values of K

predict trust even after controlling social distance. The e¤ect of trust �ow for K = 1:5 is signi�cant

at the 10% level (p-value equals 5.8%) while the e¤ect of the trust �ow for K = 2 is signi�cant at

5% (p-value of 2.9%).

These patterns are also con�rmed in columns 4-6, where we use the number of tokens kept by

the allocator as the dependent variable. As in column 1, the trust �ow for K = 1 is insigni�cant.

However, columns 5 and 6 show that the trust measures for K = 1:5 and K = 2 have a negative

e¤ect on sel�sh behavior which are both signi�cant at the 5% level (p-values are 2.2% and 0.4%).

The e¤ects documented here are not small. A one standard-deviation increase in trust for K = 2

reduces the amount kept by the allocator by about 52 cents and increases the amount that goes to

the recipient by $1:56.

To summarize, there is a strong and robust relationship between network �ow measures of trust

and trusting behavior in practice, and our measures capture variation in trust that simple proxies

for social distance do not account for. Developing more rigorous empirical applications of our model

would be an interesting direction for further research.

5 Conclusion

This paper has built a model where agents use their social connections to secure informal loans.

This function of social connections can be interpreted as one aspect of social capital, which we

call social collateral. Our model provides a �rational� theory of trust in social networks and

is therefore complementary to the growing experimental literature on trust which looks at trust

between strangers (Berg, Dickhaut, and McCabe 1995). In recent years that literature has examined

how trust varies with parties�background, including incomes, ethnic background and nationality

(Glaeser, Laibson, Scheinkman, and Soutter 2000, Fershtman and Gneezy 2001). We hope to

move in a similar direction and explore how our model explains di¤erences in trusting behavior

as a function of network structure in real-world social networks. A second interesting direction

for research is to study the interaction between formal and informal contract enforcement, like in

Kranton (1996) and Dixit (2003).
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Appendix A: Proofs

De�nition 6 A weak �ow with origin s is a function g :W �W ! R with the properties
(i) Skew symmetry: g(u; v) = �g(v; u).
(ii) Capacity constraint: g(u; v) � c(u; v).
(iii) Weak �ow conservation:

P
w g(u;w) � 0 unless u = s.

A weak �ow of origin s can be thought of as taking a certain amount from node s, and carrying
it to various other nodes in the network. By weak �ow conservation, any node other than s receives
a non-negative amount.

Lemma 1 We can decompose any weak �ow g as

g =
X
u2V

fu

where for each u, fu is an s ! u �ow, i.e.,
P
w fu(v; w) = 0 for all v 6= u, v 6= s, and moreoverP

w fu(u;w) =
P
w g(u;w) i.e., fu delivers the same amount to u that g does.

Proof. Consider vertex u such that
P
w g(u;w) < 0. By weak �ow conservation, the amount

of the �ow that is left at u must be coming from s. Hence there must be a �ow fu � g carrying
this amount from s. With fu de�ned in such a way, repeat the same procedure for the weak �ow
g� fu with some other vertex u0. After de�ning fu for all vertices u, the remainder f 0 satis�es �ow
conservation everywhere and can be added to any of the �ows.

Implicit summation notation: For a weak �ow g and two vertex sets U � W and V � W , we
use the notation that

f (U; V ) =
X

u2U , v2V
f (u; v) :

Proof of Theorem 1
Su¢ ciency. We begin by showing that when (4) holds, a side-deal proof equilibrium exists. By

assumption, there exists an s ! t �ow with value V . For all u and v, let h (u; v) equal the value
assigned by this �ow to the (u; v) link. Now consider the strategy pro�le where (1) the borrowing
arrangement h is proposed and accepted; (2) the borrower returns the asset; (3) all transfers are
paid if the borrower fails to return the asset. This strategy is clearly an equilibrium. To verify
that it is side-deal proof, consider any side-deal, and let S denote the set of agents involved. For
s to be strictly better o¤, it must be that he prefers not returning the asset in the side-deal. Now
consider the (S; T ) cut. By de�nition, the amount that �ows through this cut under the original
arrangement is V ; but then the same amount must �ow through the cut in the side-deal as well.
This means that s must transfer at least V in the side-deal, but then he cannot be better o¤. More
generally, this argument shows that any transfer arrangement that satis�es �ow conservation is
side-deal proof.

Necessity. We now show that when (4) is violated, no side-deal proof equilibrium exists. We
proceed by assuming to the contrary that a pure strategy side-deal proof equilibrium implements

29



borrowing even though (4) fails. First note that on the equilibrium path, the borrower must weakly
prefer not to default. To see why, suppose that the borrower chooses to default on the equilibrium
path. Since the lender and all intermediate agents must at least break even, this implies that
the borrower has to make a transfer payment of at least V . But then the borrower must weakly
prefer not to default, since returning the asset directly has a cost of V . This also implies that all
intermediate agents must have a zero payo¤.

By assumption, there exists an (S; T ) cut with value c (S; T ) < V . We now construct a side-deal
where all intermediate agents in S continue to get zero, but the payo¤ of s strictly increases. The
idea is easiest to understand in an equilibrium where promises are kept, i.e., when all transfers
satisfy the capacity constraint h (u; v) � c (u; v). Then, we simply construct an arrangement that
satis�es �ow conservation inside S, and delivers to the �boundary�of S the exact amount that was
promised to be carried over to T under h. More generally, when the capacity constraints fail over
some links, the deviation in the side-deal can result in some agents in S losing friendships with
agents outside S. To compensate for this loss, the side-deal must deliver to the �boundary�of S
an additional amount that equals the lost friendship value.

Formally, let g be a maximal s! t �ow, and consider the restriction of g to S. This is a weak
�ow, and by the lemma it can be decomposed as g =

P
u2S gu, where each gu is an s ! u �ow.

Now for each u 2 S, let g (u; T ) and h (u; T ) denote the amounts leaving S through u under g and
h. Moreover, for each u 2 S, let z (u; T ) denote the total friendship value lost to u in the subgame
where the borrower defaults, as a consequence of unkept transfer promises. Since g is a maximum
�ow and (S; T ) is a minimal cut, it follows that g (u; T ) � h (u; T ) + z (u; T ). This is because any
link between u and T is either represented in h (u; T ), if u pays the transfer, or z (u; T ), if u does
not pay and loses the friendship. This inequality implies that, whenever h (u; T ) + z (u; T ) > 0, we
also have g (u; T ) > 0. As a result, we can de�ne

h0 =
X
u2S

h(u; T ) + z (u; T )

g (u; T )
� gu:

Note that h0 is a weak �ow in S, and delivers exactly h (u; T ) + z (u; T ) to all agents in S. Thus
h0 satis�es �ow conservation within S and delivers to the �boundary�of S the sum of two terms:
h (u; T ), which is the precise amount to be carried over to T under h; and z (u; T ) which is the loss
of friendship u su¤ers due to not making other promised transfers. We claim that h0 is a pro�table
side-deal. First, h0 satis�es all capacity constraints by construction. Second, all agents in S break
even under h0, as they did in the original equilibrium. Third, the total value delivered by h is at
most c (S; T ) < V , which means that s pays less than V under h0, while he pays exactly V in the
original equilibrium. We have constructed a side-deal in which the borrower is better o¤ and all
other players are best-responding; hence the original equilibrium was not side-deal proof.

Proofs for Section 2.6
Multiple borrowers and lenders. We need to de�ne the transfer arrangement and equilibrium

selection in this environment. With multiple borrowers, agents have to worry about what happens
when only a subset of borrowers default. To formalize this, assume that transfer payments can be
made contingent on the set of borrowers who default. We continue to use side-deal proofness as
our selection criterion, but extend the concept of a side-deal by assuming that the deviating group
S must contain at least one borrower, and that at least one borrower in the side-deal is strictly
better o¤.

Consider the directed network G0 de�ned in the text. Note that in a directed network, the
capacity map assigns values to directed links; this means in particular that while c (s0; si) > 0,
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we have c (si; s0) = 0, because there is no si ! s0 link. The concept of a network �ow can be
straightforwardly extended to directed networks. Denote the maximum s0 ! t0 �ow in G0 by
T s0t0 (c).

Proposition 4 There exists a side-deal proof equilibrium in which the borrowing demands of all
borrowers are satis�ed if and only if

V1 + :::+ Vk � T s0t0 (c) . (7)

Proof. Su¢ ciency. Suppose that (7) holds, and let h be a maximum s0 ! t0 �ow. Like in
the basic version of the model, we use this �ow to de�ne an equilibrium transfer arrangement. The
present setting has two additional complications: we need to de�ne how much each borrower borrows
from each lender, and to ensure enforcement of all borrowing contracts, we need to introduce transfer
payments that can be contingent on the set of agents who default.

To deal with these problems, �rst note that cutting all links of s0 in G0 has value equal to
V1 + :::+ Vk, and hence h can carry at most this amount. But then inequality (7) must hold with
equality, and h must use all links originating in s0 at full capacity. Now, by the argument of Lemma
1 we can decompose the restriction of h to G as

h =
X
i;j

hij

where hij is a si ! tj �ow. Let hi =
P
j h

ij , then hi is a �ow with source si, that takes exactly
Vi and distributes it in some way across the lenders tj . Let hi (tj) be the amount that hi takes
to tj ; this is the amount that in our equilibrium borrower i will ask from lender j. Note that this
construction satis�es all resource constraints:

P
j h

i (tj) = Vi, thus the total amount that i borrows
is exactly Vi; and

P
i h
i (tj) � c (tj ; t0) = Wj , i.e., the total amount borrowed from j does not

exceed his resources Wj .
The hij decomposition can also be used to de�ne the state-contingent transfer payments. More

speci�cally, if agent i is the only person who defaults, then let the transfer payments be de�ned by
the �ow hi. If more than one agent chooses to default, then de�ne transfers to be the sum of hi

for all i who defaulted. This completes the de�nition of our candidate side-deal proof equilibrium.
Showing that this candidate is really an equilibrium admitting no side-deals is completely analogous
to the proof of Theorem 1.

Necessity. Suppose that (7) fails, and let (S; T ) be a minimum cut. Because the total value of all
links originating in s0 is V1+ :::+Vk and the minimum cut is less than this amount, the intersection
of S and the set of borrowers fs1; :::; skg is non-empty. By relabelling agents if necessary, we can
assume that borrowers s1,...,sl are in S, while borrowers sl+1,...,sk are in T . This means that the
links between s0 and sl+1,...,sk have all been cut. The value of this part of the (S; T ) cut is clearly
Vl+1 + ::: + Vk. Now consider the restriction of the (S; T ) cut to the graph G. In this restriction,
we are excluding all cut links between s0 and sl+1,...,sk, among others. As a result, the value of
the restriction of the cut to G must be less than (V1 + :::+ Vk)� (Vl+1 + :::+ Vk) = V1 + :::+ Vl.

The proof is completed by constructing a side-deal in which agents in S deviate. The idea is
simple: the total obligation of agents in S is if borrowers s1,...,sk default is limited by the value of
the (S; T ) cut restricted to G. But we have just seen that this value is strictly less than V1+ :::+Vl,
whereas joint default by s1,...,sl yields a pro�t of exactly V1+ :::+Vl. It follows that agents in S as
a group do not have the right incentives to repay the loans. The actual construction of the side-deal
is very similar to the construction used in the proof of Theorem 1, and is therefore omitted.

31



Transfer constraints. In this analysis, we use a more stringent equilibrium selection criterion:
We look for equilibria where (i) all promised transfers are paid; (ii) there are no pro�table side-deals.
In the earlier analysis, there was no need to impose (i), because the characterization results showed
that any level of borrowing that can be implemented can also be implemented using equilibria
where all transfers are paid. With transfer constraints, requiring that all promises are credible has
additional bite, because promises that are not credible can generate large punishment in the form
of loss of friendship to agents who have small ku. We �nd it plausible that such agents will not
make promises that they know they cannot keep; but instead of providing formal microfoundations
for this, we simply restrict ourselves to equilibria that are �credible�in the sense that all promises
are kept.

Consider the directed network G00 de�ned in the text, and let the maximum s1 ! t1 �ow in G00

be denoted by T s1t1K (c).

Proposition 5 There exists a side-deal proof equilibrium with credible promises that implements
borrowing if and only if

V � T s1t1K (c) : (8)

Proof. Su¢ ciency. If (8) holds, then take a �ow with value V , and let the �ow values
between di¤erent agents de�ne the transfer arrangement in our candidate equilibrium. Note that
by construction, this borrowing arrangement satis�es the borrowing constraints of all agents u.
Moreover, the promised transfers in this arrangement will be kept because they all satisfy the
capacity constraint. It remains to show that there are no pro�table side-deals; this follows from
the same argument used in the proof of Theorem 1.

Necessity. Suppose that (8) fails, and consider an equilibrium where promised transfers are
paid and borrowing is implemented. We now show that this equilibrium admits a side-deal. Our
argument is similar to the proof of Theorem 1 in that we build the side-deal using a minimum cut
on the network G0. However, the present setup has one additional di¢ culty: we need to make sure
that the side-deal emerging from the minimum cut does not separate agents from their duplicates.

Let (S0; T 0) be a minimum cut. If for some u 6= s we have u2 2 S0, then u1 2 S0 also holds,
because u2 has only one incoming link, which originates in u1. Let S be the union of s and the
collection of agents u such that u1 2 S0. We need to show that agents in S as a group do not
have the right incentive to return the asset. To see why, consider �rst an agent u 2 S such that
u2 =2 S0. It follows that the (S0; T 0) cut separated u1 from u2, by cutting the u1 ! u2 link. But
in this equilibrium, promises are kept, and hence the total obligation of u to agents outside S can
be at most ku, which is exactly the value of the cut link. Next consider an agent u 2 S such that
u2 2 S�. For this agent, the total obligations to others outside S are bounded from above by the
total value of the links originating in u2 that are cut. Summing over all u 2 S, we conclude that the
total obligation of all agents in S do not exceed the value of the (S0; T 0) cut, and hence is strictly
smaller than V . Thus S as a group has an incentive to default. The actual side-deal can now be
constructed in the same way as in the proof of Theorem 1.

Proof of Proposition 1
(i) Consider two capacities c1 � c2. Any K-�ow between s and t that is feasible under c1 is also

feasible under c2; hence the maximum K-�ow cannot be lower under c2 than under c1:
(ii) Consider two capacities c1 and c2, and let f1 and f2 be maximum K-�ows under c1 and c2.

Let c3 = �c1+(1� �) c2 where 0 � � � 1. Clearly c3 is a capacity. Consider f3 = �f1+(1� �) f2.
We argue that f3 is a feasible K-�ow under c3. First, f3 is a �ow: skew symmetry and �ow
conservation are preserved by convex combinations, and the capacity constraint f3 � c3 will be

32



satis�ed by construction. Second, since both f1 and f2 use edges that are within distance K from
s, the same holds for f3. The value of f3 is jf3j = � jf1j+ (1� �) jf2j = �T stK (c1) + (1� �)T stK (c2).
Finally, jf3j � T stK (c3) by de�nition, showing that T

ij
K is a concave function.

(iii) Consider K1 � K2. Any K1-�ow f1 is also a K2-�ow, hence the maximum K2-�ow cannot
be lower than the maximum K1-�ow.

Proof of Proposition 2
(i) If K = 0:5 then the only edges that are at most K from s are those between s and some

t 2 Ns. For all such t, we have T stK (c) = 1, hence T sK(c) = jNsj and TK(c) = 2 jEj.
(ii) Here, the set of edges that are at most K away from s include those connecting neighbors

of s. As a result, for any t 2 Ns, T stK (c) equals 1 plus the number of links between t and other
vertices in Ns. Thus T sK(c) is jNsj plus twice the number of links connecting vertices in Ns, which
can also be written as jNsj (1 + (jNsj � 1)�s). Summing over s, we count all edges twice, plus all
edges that are part of a triangle two more times, for a total of 2jEj+ 6 ��.

(iii) Suppose �rst that the distance between s and t is two. For any feasible s! t path, consider
the �nal link u! t: since K = 1:5, it must be that u 2 Ns. As a result, there exists a one-to-one
correspondence between feasible s! t paths and (u; t) links such that u 2 Ns, and the number of
such links equals nst. Next suppose that t 2 Ns. Now in addition to s ! t paths where the �nal
link u! t is such that u 2 Ns, we also have the possibility that u = s, and that u is at distance 2
from s. In the latter case, consider the second-to-last link in the path: v ! u. As before, we must
have v 2 Ns. Hence every time there is a feasible s ! t �ow where the last link runs from some
agent u =2 Ns, agent u must be connected to s on a second path of length 2 (i.e., s! v ! u). The
number of such u agents is

P
u2Ns I

s
ut.

Finally to compute T sK(c), we need to add up T
st
K (c) for all t. Adding up the terms nst+1ft2Nsg

is easily seen to give
P
t02Ns jNt0 j. Summing 1ft2Nsg �

P
u2Ns I

s
ut gives

P
u;v2Ns I

s
uv.

Proof of Proposition 3
The expected payo¤ of agent s conditional on him being the borrower can be written as

1

N

X
j

qs(j)

j
�(j) =

T sK(c)

N

X
j

qs(j)

T sK(c)
� �(j)
j

which can be viewed as the expected value of the function �(j)=j under the probability density
qs(j)=T

s
K(c). When technology favors high asset values, �(v) is convex; this, combined with the fact

that �(0) = 0 implies that �(v)=v is nondecreasing. In this case, a �rst-order stochastic dominance
increase in the probability density qs (j) =T sK(c) increases the expected payo¤ by de�nition. An
analogous argument shows that when technology favors low asset values, the same increase in the
sense of �rst-order stochastic dominance reduces the expected payo¤ of s.

Appendix B: Microfoundations for social sanctions

In this section we develop a model where punishment at the level of the link arises endogenously.
There are three key changes relative to the model presented in the main text: (1) with probability
p > 0, the asset disappears �e.g., stolen by a third party �after the borrower uses it. (2) Each link
�goes bad�with a small probability " during the model, capturing the idea that friendships can
disappear for exogenous reasons. (3) The utility of friendship is modelled using a �friendship game�
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where agents can choose to interact or stay away from each other. The payo¤s of this friendship
game depend on the capacity of the link and on whether the link has gone bad.

Model setup. This model consists of six stages, which are the following:
Stage 1: Realization of needs. Identical to stage 1 in Section 2.
Stage 2: Borrowing arrangement. In this model, there is uncertainty about whether the

asset disappears after being used. As a result, an arrangement is now a set of state contingent
payments, where the publicly observable state of the world i is either i = 0, if the asset is returned,
or i = 1 if the asset is reported stolen. A borrowing agreement consists of two parts. 1) A contract
specifying payments yi to be made by the borrower to the lender in the two states (i = 0 or 1). This
contract can be thought of as a traditional incentive contract to solve the moral hazard problem in
lending. If there was a perfect court system in the economy, then this contract would be su¢ cient
to achieve e¢ cient lending. 2) A transfer arrangement specifying payments hi (u; v) to be made
between agents in the social network if the borrower fails to make the payment yi. Here hi (u; v)
denotes a payment to be made by u to v in state i. The links for which transfers can be proposed
must be within distance K from the borrower.

Stage 3: Repayment. If an arrangement was reached in stage 2, the asset is borrowed and s
earns an income of ! (V ), where !(:) is a di¤erentiable, non-decreasing function. Following the use
of the asset, with probability p it is stolen. We assume that ! (V ) > pV for all V in the support of
F , which guarantees that lending the asset is the socially e¢ cient allocation. Even if the asset is
not stolen, the borrower may choose to pretend that it is stolen, and sell it at the liquidation value
of � � V where � < 1. The borrower then chooses whether to make the payment yi speci�ed in the
contract.

Stage 4: Bad links. At this stage, any link in the network may �go bad�with some small
probability. We think of bad links as the realization by a player that he no longer requires the
business or friendship services of his friend. As we describe below, cooperation over bad links in
the friendship game is no longer bene�cial. Therefore agents who learn that a link has gone bad will
�nd it optimal not to make a promised transfer along the link. From a technical perspective, bad
links are a tool to generate cooperation without repeated play, just like the �Machiavellian types�
in Dixit (2003) (see also Benoit and Krishna (1985)). In an equilibrium where promised transfers
are expected to be paid, failure by u to make a payment will be interpreted by v as evidence that
the link has gone bad. In this case, v will defect in the friendship phase, which reduces the payo¤
of the deviator u by c (u; v).

To formalize bad links, assume that for every link of every agent, with a small probability " > 0
independent across agents and links, the player learns that his link has gone bad at this stage.
Thus, for any link (u; v), the probability that the link has not gone bad is (1� ")2; and for any
link (u; v) where u does not learn that the link has gone bad, u still believes, correctly, that with
probability " the link has gone bad.

Stage 5: Transfer payments. If the borrower chose to make the payment yi in stage 3, then
this stage of the game is skipped, and play moves on to the friendship phase. If the borrower did
not make the payment yi, then at this stage agents in the social network choose whether to make
the prescribed transfers hi (u; v). Each agent has a binary choice: either he makes the promised
payment in full or he pays nothing.

Stage 6: Friendship game. Each link between two agents u and v has a friendship game
with an associated value c(u; v). As long as the link is good, the friendship game is a two-player
coordination game with two actions, with payo¤s as depicted below.
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C D
C c (u; v) c (u; v) 0 c (u; v) =2

D c (u; v) =2 0 �1 �1

This game has a unique equilibrium (C,C) with payo¤ c (u; v) to both parties, which represents
the bene�t from friendly interactions. A party only derives positive bene�ts if his friend chooses
to cooperate; and bene�ts are highest when there is mutual cooperation. If a link has gone bad,
cooperation is no longer bene�cial, and the payo¤s of the friendship game change as follows.

C D
C �1 �1 0 0

D 0 0 0 0

Here, mutual cooperation leads to the low payo¤ of �1, capturing the idea that parties who are
no longer friends might �nd it unpleasant to interact. If either party defects, the payo¤ of both
parties is set to zero. The payo¤s in the friendship game imply that if a player knows that a link
has gone bad with probability 1, a best response is to play D.

Model analysis. Because there is uncertainty in this model, we need to extend the concept of
side-deals to Bayesian games.

De�nition 7 Consider a pure strategy pro�le � and a set of beliefs �. A side-deal with respect to
(�; �) is a set of agents S, a transfer arrangement ehi (u; v) for all u; v 2 S, and a set of continuation
strategies and beliefs f(e�u; e�u) ju 2 Sg proposed by s to agents in at the end of stage 2, such that

(i) Uu (e�u; e�S�u; ��S j e�u) � Uu (�0u; e�S�u; ��S j e�u) for all �0u and all u 2 S,
(ii) The beliefs e� satisfy Bayes rule whenever possible if play is determined by (e�S ; ��S),
(iii) Uu (e�S ; ��S j e�u) � Uu (�S ; ��S j �) for all u 2 S,
(iv) Us (e�S ; ��S j e�u) > Us (�S ; ��S j �).
The only conceptually new condition is (ii), which is clearly needed in a Bayesian environment.

Motivated by this de�nition, our equilibrium concept will be side-deal proof perfect Bayesian equi-
librium.

Theorem 2 There exists a side-deal proof perfect Bayesian equilibrium that implements borrowing
between s and t if and only if the asset value V satis�es

V � T stK (c) �
(1� ")2

�+ p(1� �) : (9)

Proof. We begin by analyzing the optimal incentive contract in the absence of enforcement
constraints. Suppose that s makes payments xi (i = 0 or i = 1) in the two states of the world.
What values of xi guarantee that s chooses to return the asset while t breaks even? To prevent s
from stealing, the excess payment if the asset is reported stolen must exceed the liquidation value
�V :

x1 � x0 � �V: (10)

In order for the lender to break even, he has to receive at least pV in expectation:

px1 + (1� p)x0 � pV: (11)

The minimum transfers which satisfy (10) and (11) are

x0 = p(1� �)V and x1 = [�+ p(1� �)]V: (12)
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Bringing back the enforcement constraints, it is intuitive that borrowing can be implemented in
the network as long as max [x0; x1] does not exceed the maximum �ow between s and t: in that
case, the lender can just transfer xi to the borrower along the network. Since x1 > x0, this requires
that x1 does not exceed the maximum �ow, or equivalently

V � c (s; t) � (1� ")2

�+ p(1� �)

which is indeed the condition in the theorem. We now turn to the proof.
Su¢ ciency. We begin by showing that when (9) holds, a side-deal proof equilibrium exists.

Let xi be de�ned by (12) and let yi = xi. By assumption, there exists a �ow with respect to the
capacity c that carries x1= (1� ")2 from s to t. For all u and v, de�ne h1 (u; v) to be 1�" times the
value assigned by this �ow to the (u; v) link. Similarly, let h0 (u; v) be equal to 1� " times a �ow
that carries x0= (1� ")2 from s to t. Now consider the strategy pro�le in which (1) the transfer
arrangement (xi; hi) is proposed and accepted, (2) the asset is borrowed and returned unless stolen,
(3) every agent u pays every promised transfer hi (u; v) if necessary, unless he learns that his link
with v has gone bad, (4) all agents play C in the friendship game unless they learn that the link
has gone bad, in which case they play D. This strategy pro�le � generates beliefs �, and (�; �)
constitute a perfect Bayesian equilibrium. To see why, note that conditional on others making the
transfer payments, it is optimal for s to make the payments yi and not to steal the asset. Also, since
hi (u; v) � (1� ") c (u; v), all agents �nd it optimal to make the transfer payments given beliefs.
Finally, because on path play never gets to the transfers, all intermediate agents are indi¤erent
between accepting the deal and rejecting it. In fact, even if the transfers were used in one or both
states on path, intermediate agents would still break even, because hi are de�ned using �ows.

We also need to verify that the equilibrium proposed here is side-deal proof. Consider any side-
deal, and let S denote the set of agents involved. Suppose that after the side-deal, the borrower
reports that the asset is stolen with probability p0 � p. Let T be the complement of S in W ,
and consider the (S; T ) cut. By de�nition, the expected amount that �ows through the (S; T ) cut
in state i if yi is not paid equals xi. If the borrower never chooses to pay yi in the side-deal, he
will have to make sure that at least p0x1 + (1� p0)x0 gets to the cut in expectation. Because all
intermediate agents must break even in expectation, this implies that s�s expected payments must
be p0x1 + (1� p0)x0 or more. Thus the side-deal comes with a cost increase of (p0 � p) [x1 � x0].
The increase in expected cost is easily seen to be the same if the borrower chooses to pay yi in
one or both states. The expected bene�t of the side-deal is (p0 � p)�V . By equation (10) the
expected bene�t does not exceed the expected cost; the side-deal is not pro�table to s, which is a
contradiction. Hence the original arrangement was side-deal proof.

Necessity. We now show that when (9) is violated, no side-deal proof equilibrium exists. We
proceed by assuming to the contrary that a pure strategy side-deal proof perfect Bayesian equilib-
rium implements borrowing even though (9) fails. For simplicity, we assume that the equilibrium
proposed transfers hi (u; v) are expected to be paid by all agents u in stage 5 if the borrower chooses
not to pay yi directly; i.e., we only focus on equilibria where promises are kept. This condition is
not necessary to obtain the result, but simpli�es the proof somewhat. If this condition holds, then
hi (u; v) � (1� ") c (u; v) holds for all transfers proposed in equilibrium, because the amount that
u can expect to bene�t from his friendship with v is at most (1� ") c (u; v).

Let �i = 1 if in state i on the equilibrium path, s chooses not to pay yi, and let �i = 0 otherwise.
Case I: �0 = �1 = 1.
In this case, on the equilibrium path, yi are never paid, and instead the transfer arrangements

are always used. De�ne the expected transfer h = ph1 + (1 � p)h0. By the individual rationality
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of intermediate agents, h satis�es weak �ow conservation, and therefore by the Lemma can be
decomposed as

h =
X

u2V; u 6=t
fu + h

0

where fu is s ! u �ow and h0 = ft. In words, the fu �ows deliver the expected pro�ts to the
intermediate agents, while h0 is an s ! t �ow that delivers the expected payo¤ to the lender.
Denote

P
u 6=t fu = f , then f is a weak �ow delivering the payments to all intermediate agents.

Our proof strategy will be the following. First, we take out the pro�ts of all intermediate agents
from the capacity c and the transfer h, essentially creating a �reduced�problem where intermediate
agents are expected to break even. Then we construct a side-deal for this simpler case using the
maximum �ow minimum cut theorem, and �nally transform this into a side-deal of the original
setup.

Let c0 (u; v) = c (u; v)� f (u; v) = (1� ") be a capacity on G. Note that any �ow g0 under c0 can
be transformed into a �ow g = g0+f= (1� ") that satis�es the capacity constraints c. Consider the
functions h0i = hi�f . It is easy to verify that h0i= (1� ") satisfy the capacity constraints with respect
to c0, and that h0 = ph01+(1� p)h00. Let (S; T ) be a minimal cut of the directed �ow network with
capacity c0. By the maximum �ow-minimum cut theorem, there exists a maximum �ow g in the
network that uses the full capacity of this cut. By assumption, the value of the cut under h01 satis�es
h01(S; T )= (1� ") � g(S; T ) < x1= (1� ")2, which implies that (1� ") [h01(S; T )� h00(S; T )] < �V
because (1� ") jhj � pV . In words, the value �owing through the minimal cut in the two states
does not provide su¢ cient incentives to not steal the asset.

We now construct a side-deal for the reduced problem. The idea is to construct a transfer
arrangement that satis�es �ow conservation inside S, and delivers to the �boundary� of S the
exact amount that was promised to be carried over to T under h0. With such an arrangement, all
agents in S will break even in each state, and thus the incentives that applied to S as a group will
apply directly to agent s. Since S as a group did not have the right incentives, with the side-deal
s will not have the right incentives either.

Formally, using the implicit summation notation, let for each u 2 S, g(u; T ), h01(u; T ) and
h00(u; T ) denote the amounts leaving S through u via the maximum �ow g, h01, and h

0
0. Clearly,

(1� ") g(u; T ) � h01(u; T ) and (1� ") g(u; T ) � h00(u; T ). Now consider the restriction of g to the
set S. This is a weak �ow, and by the lemma it can be decomposed as g =

P
u2S gu. De�ne

h001 =
P
u2S (h

0
1(u; T )=g(u; T )) � gu and h000 =

P
u2S (h

0
0(u; T )=g(u; T )) � gu. Then h001 and h000 are both

weak �ows in S, they satisfy h00i � (1� ") c0, and deliver exactly h01(u) and h00(u) to all u 2 S.
Thus h00i satis�es �ow conservation within S, and delivers to the �boundary� of S the amount
promised to be carried over to T under h01, as desired. The total value delivered by h

00
i is the

value of the cut links under h0i; hence the amount that leaves s in the two states under h
00 satis�es

(1� ") [jh001j � jh000j] < x1 � x0, i.e., is insu¢ cient to provide incentives not to steal the asset.
Now go back to the original network, and consider a side-deal with all agents in the set S, where

these agents are promised a transfer arrangement f +h00i . This is just adding back the pro�ts of all
agents to the side-deal of the reduced problem. With this de�nition, the new side-deal satis�es the
capacity constraints f +h00i � (1� ") c because h00i � (1� ") c0 = (1� ") c� f . Second, all agents in
S will be indi¤erent, because they get the same expected pro�ts delivered by f (note that h00 is a
�ow in both states and thus nets to zero state by state). The agents who have links that are in the
cut are indi¤erent because h00 is de�ned such that its in�ow equals the required out�ow for these
agents. Third, the side-deal does not have enough incentives for s not to steal the asset, because
jh001j � jh000j < �V= (1� "). Moreover, if the original deal was bene�cial for s, then so is the new
deal. This is because the cost of the original deal was jf j + jh0j. The cost of the new deal if the
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borrower follows the honest asset-return policy is jf j+ jh00j. But both h0 and h00 are �ows, and they
are equal on the (S; T ) cut, hence they have equal values. Therefore by following an honest policy,
the borrower will have a cost equal to what he had to pay in the original deal. However, since the
incentive compatibility constraint is not satis�ed, the borrower is strictly better o¤ always stealing
the asset in the side deal. This argument shows that there exists a side-deal in which the borrower
is strictly better o¤, and all other players are best-responding; hence the original equilibrium was
not side-deal proof.

It remains to consider the cases where either �0 or �1 is equal to zero. In these cases, de�ne the
expected transfer payments as h = p�1h1+(1�p)�0h0. As above, h is a weak �ow and thus f , the
weak �ow delivering the expected pro�ts to all intermediate agents can be de�ned. Similarly, one
can de�ne c0 and h0i, and letting (S; T ) be the minimal cut of c

0, h01(S; T )= (1� ") < x1= (1� ")2
must hold.

Case II: �0 = 1 and �1 = 0.
Then h = (1� p)h0 and the decomposition h = f + h0 yields h0 = f= (1� p) + h0= (1� p) so

that h00 = h0� f = f � p= (1� p)+ h0= (1� p) is a weak �ow, because it is a sum of two weak �ows.
It follows that jh0j = jf j+ jh00j � jf j+ jh00 (S; T )j. Therefore jf j+ jh000j � jh0j because h000 is a �ow and
h000 = h

0
0 on the (S; T ) cut. Moreover, incentive compatibility requires y1 � (1� ") jh0j � �V , while

the break-even constraint of the lender means that py1 + (1� p) (1� ") [jh0j � jf j = (1� p)] � pV .
Combining these inequalities gives y1 � x1 + (1� ") jf j. Now consider the side-deal h00i + f de�ned
as above. Since jh000 + f j � jh0j � y0= (1� ") and jh001 + f j < x1= (1� ") + jf j � y1= (1� "), the
borrower will strictly prefer this arrangement to the previous one. Since all intermediate agents get
net pro�ts delivered by f in both states in the side-deal, they are indi¤erent. Thus the proposed
arrangement is indeed a side-deal.

Case III: �0 = 0 and �1 = 1.
Here h1 is a weak �ow, which must deliver less than x1= (1� ") to t because by assumption

x1= (1� ") is more than the maximum �ow. Thus incentive compatibility fails with the original
agreement; even without any side-deal, the lender is better o¤ not returning the asset.

Case IV: �0 = 0 and �1 = 0.
Here a valid side-deal is to pay y0 in state zero and propose the transfer arrangement h001 for state

1. All intermediate agents are indi¤erent since they were getting zero in the original arrangement,
and because h001 < x1= (1� ") � y1= (1� ") the expected payment in the side-deal is strictly lower
than in the original deal.

In the proof so far, we only considered the case where the borrower does not steal the as-
set on the equilibrium path. If the equilibrium is such that the borrower always steals, then
min [(1� ") jh1j ; y1] � V must hold. If �1 = 1 then h1=(1�") is a weak �ow with respect to capac-
ity c that must transfer at least V=(1�")2 to t. This leads to a condition on the maximum s! t �ow
that is stronger than (9). If �1 = 0, then a valid side-deal is to propose the transfer arrangement h001
for both states. As above, all intermediate agents are indi¤erent, and h001 < x1= (1� ") � y1= (1� ")
holds which proves that the expected payment in the side-deal is strictly lower than in the original
deal.

Appendix C: Data

Data for Table 1. Row 1 is based on the 1986 International Social Survey Programme module
on Social Support and Networks of the GSS. Question 1018 asks �Suppose you need to borrow
a large sum of money. A. Who would you turn to �rst? B. Who would you turn to second?�
Possible answers are husband/wife/partner, mother, father, daughter, son, sister, brother, other
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relative including in-laws, closest friend, other friend, neighbor and someone you work with, which
we classify as persons in the immediate social network of the respondent, as well as bank/credit
union �nancial institution, Savings&loan, employer, government or social services, other, no one,
don�t know and no answer.

Row 2 uses the Micro and Small Enterprises Survey conducted by Ageba and Amha in Ethiopia
in 2003. Enterprises were asked if they ever received credit from various sources; the proportion
of �rms who received credit from friends/relatives is reported. See Table 1 in Ageba and Amha
(2006) for details.

Row 3 makes use of survey data collected by the Regional Program for Enterprise Development
(RPED) of the World Bank for 224 manufacturing �rms in Kenya in 1993. Firms were asked how
they started their business; the proportion of �rms who used loans from friends and relatives is
reported. See Table 21 in Fafchamps, Biggs, Conning, and Srivastava (1994) for details.

Rows 4 and 5 use data from the 1996 topical module of the GSS on Markets. For example,
purchasers of cars from individuals were asked �Which of the following best describes your relation-
ship to the person who sold you the vehicle at the time of the purchase?�and purchasers of cars
from dealers were asked about �your relationship to the salesperson from whom you purchased your
car or to the owner of the auto dealership.�Respondents were asked to choose from the following
responses: a relative (including in-laws), a friend or acquaintance, a friend of a friend or relative
or a relative of a friend, not a friend, but someone with whom I had previous business dealings,
or no prior relationship. We classify all but the last of these responses as persons belonging to
the respondent�s immediate social network. Similar questions were asked for home purchases. See
Table 1 in DiMaggio and Louch (1998) for details.

Row 6 uses data from the 1991 and 1992 Current Population Surveys. The CPS asks active
jobseekers about their method of job search. Potential answers are: checked with public employment
agency, checked with private employment agency, checked with employer directly, checked with
friends or relatives, placed or answered ads, and used other search methods. We classify friends or
relatives as belonging to the immediate social network of the jobseeker. See also Table 1 in Bortnick
and Ports (1992) and also Ports (1993).

Row 7 is based on data from the 1993 Panel Study of Income Dynamics. The job search
categories in the PSID are the same as in the CPS. See appendix table 1 in Ioannides and Loury
(2004) for details.

Experimental Data for Section 4. In December 2003 Harvard undergraduate subjects were
recruited through posters, �yers and mail invitation and directed to a website. Subjects provided
their email address and were sent a password. Subjects without a valid email address were excluded.
All future earnings from the experiment were transferred to the electronic cash-card account of the
student.

Subjects who logged onto the website had to (1) report information about their social network
and (2) �ll in a questionnaire asking basic demographic information. Subjects were given incentive
to report their friends truthfully: they received 50 cents with 50 percent probability if they named
each other. The expected payo¤ of 25 cents was set to be su¢ ciently large to give subjects an
incentive to report their friends truthfully but not large enough to induce �gaming�. The random-
ization was included to help avoid disappointment if a subject is not named by enough friends. The
technique of providing monetary incentives to truthfully reveal friendships worked well. The pilot
focused on two houses with 806 students in total, of whom 569 signed up. The survey netted 5690
one-way links. Of those, 2086 links were symmetric links where both agents named each other. For
symmetric links, the two parties�assessment of the time they spend together in a typical week was
within half and hour in 80% of all cases. The social network was constructed as an OR-network
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where two subjects share a link if either of them named the other.
The total earnings of subjects in the pilot consisted of (1) a baseline compensation for completing

the full online survey and (2) the earnings from the dictator games. Subjects also entered a ra­ e
where they could win valuable prizes nine months later provided they completed the initial surveys
plus all follow-up treatments.

Treatments. In May 2004 various treatments were run to measure social preferences of the
students. Within each house an equal number of allocators (player 1) and recipients (player 2)
were randomly selected. Allocators faced �ve di¤erent recipients in a modi�ed dictator game as
described in the text, playing each of them in two situations, once anonymously and once non-
anonymously. In each pairing, the allocator made three decisions about sharing 50 tokens between
himself and the recipient. In the �rst decision the token was worth 1 point to the allocator and 3
points to the recipient; in the second decision the tokens were worth 2 points to both players; in
the third decision the tokens were worth 3 points to player 1 and 1 point to the other player. One
point equalled 10 cents. All decisions, situations and pairs were randomly presented to each player.
One of their decisions for one pair in one situation (anonymous or non-anonymous) was randomly
selected and implemented. The design ensured that each recipient was matched up with exactly
one allocator during this process.27
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Proportion who rely on
Type of exchange Country Year their social network 

A. Borrowing

1.  A large sum of money United States 1995 55%
 Authors' calculations from GSS

2.  Small enterprise borrowing Ethiopia 2003 27%
Ageba-Amha (2006)

3.  Startup capital for micro firms Kenya 1993 9%
Fafchamps et al (1994)

B. Purchases
4.  Home purchase United States 1996 40%
DiMaggio-Louch (1998)

5.  Used car purchase United States 1996 44%
DiMaggio-Louch (1998)

C. Job search

6.  Unemployed United States 1991-92 23%
Bortnick-Ports (1992), Ports (1993)

7.  On-the-job searchers United States 1993 8.5%
Ioannides-Loury (2004)

NOTE-- Table shows proportion of people who would or do rely on their immediate social network for various
transactions. Immediate social network always includes relatives and friends; in some studies it also
includes friends of relatives and friends of friends as well as business relationships. See the data appendix 
for details on each environment.

TABLE I

The use of social networks in informal exchanges



(1) (2) (3) (4) (5) (6)

Dependent var.:

Trust flow for K=1.0 0.0124 0.285
(0.0175) (0.6052)

Trust flow for K=1.5 -0.0188 -0.922
(0.0098) (0.3986)

Trust flow for K=2.0 -0.0184 -1.004
(0.0083) (0.3398)

Allocator sex -0.0137 -0.0129 -0.0172 -3.459 -3.419 -3.646
(0.0682) (0.068) (0.068) (2.719) (2.702) (2.698)

Recipient sex 0.0721 0.076 0.0742 2.116 1.293 2.236
(0.0332) (0.0327) (0.0327) (1.318) (1.316) (1.29)

Same year -0.0467 -0.0344 -0.0285 -2.251 -1.706 -1.326
(0.0369) (0.0361) (0.0368) (1.442) (1.429) (1.472)

Same entryway -0.0221 -0.0216 -0.0198 -2.032 -2.006 -1.899
(0.0261) (0 .026) (0.026) (0.933) (0.9319) (0.9124)

Social distance Yes Yes Yes Yes Yes Yes
   fixed effects
Allocator year Yes Yes Yes Yes Yes Yes
   fixed effects
Recipient year Yes Yes Yes Yes Yes Yes
   fixed effects
Allocator entryway Yes Yes Yes Yes Yes Yes
   fixed effects
Recipient entryway Yes Yes Yes Yes Yes Yes
   fixed effects

Observations 905 905 905 905 905 905

NOTE-- Heteroscedasticity robust standard errors clustered by allocator are reported in parenthesis. 
Regressions show effect of trust flow measures on selfish behavior in dictator game experiments. See the
 text for details on the experiment. Dependent variable in columns 1-3 is dummy variable for player 1 
(the allocator) keeping entire budget to himself. Dependent variable in columns 4-6 is number of tokens kept
by player 1. Allocator sex (recipient sex) equals one if allocator (recipient) is male. Year refers to year in
college of allocator or recipient. Entryway refers to staircase or floor of allocator or recipient. Social distance 
equals number of links in shortest path between allocator and recipient in social network.

TABLE II

Trust flow and selfish behavior

Indicator for selfish behavior Tokens kept by allocator



FIGURE 1
SOCIAL COLLATERAL IN SIMPLE NETWORKS
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NOTE–Figure illustrates the calculation of trust in simple networks. In both panels, agent s
wishes to borrow an asset from agent t. In panel A, the endogenous borrowing limit equals
min3,4  3, which is the value of the weakest link on the path connecting s and t. In panel B,
the borrowing limit is min3,4  min2,1  4, the sum of the weakest links on the two paths
between s and t. In general, the borrowing limit is determined by the maximum network flow
between s and t. See the text for details.



FIGURE 2
MODEL TIMELINE
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FIGURE 3
BORROWING IN A FOUR-AGENT NETWORK
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NOTE–Figure illustrates borrowing in networks with intermediaries. The arrangement favored
in our paper involves transfers flowing from s through u to t in case of default. In this
arrangement the weakest link mincs,u,cu, t is the borrowing limit. An alternative
arrangement, where cousin v promises to punish borrower s in case of default, sometimes
enforces better outcomes. However, this arrangement is not robust to “side-deals” by groups of
agents: the borrower and his cousin can jointly deviate, steal the asset and short-change the
lender. As we show in the text, all side-deal proof arrangements satisfy the “weakest link”
requirement.



FIGURE 4
NEIGHBORHOODS WITH INCREASING CLOSURE

s

t1

s

t3

t2

t4

t1 t2

A. Low closure B. High closure

NOTE–Figure shows network neighborhoods with increasing network closure. The two
neighborhoods shown are identical to neighborhoods in Coleman (1988), Figure 1. For
K ≥ 1.5 both neighborhoods generate the same total trust to agent s. When technology favors
low asset values, the neighborhood in panel A is more attractive because it provides access to
more people. When technology favors high asset values, the neighborhood in panel B is more
attractive, because closure allows for borrowing high-valued assets.



FIGURE 5
TRUST FLOW AND SELFISH BEHAVIOR

IN DICTATOR GAMES
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NOTE–Figure shows relationship between different measures of trust flow developed in the
paper and a binary indicator of selfish behavior in dictator game experiments. The four panels
correspond to four measures of pairwise trust, for K  0.5, K  1.0, K  1.5 and K  2.0.
See the text for the definition of trust measures and details about the experiment. Each panel
plots average value of selfish behavior for each possible value of trust flow as well as best fit
(OLS) line. The sample used is the same as in Table 2. In panels (b), (c) and (d), the top 1% of
observations for trust flow were excluded (less than 10 observations) because less than 3
observations fell in each trust flow bin in this range.




