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1 Introduction

The real interest rate and expected inflation are two key economic variables; yet, their dynamic
behavior is essentially unobserved. A large empirical literature has yielded surprisingly few
generally accepted stylized facts. For example, whereas theoretical research often assumes
that the real interest rate is constant, empirical estimates for the real interest rate process vary
between constancy as in Fama (1975), mean-reverting behavior (Hamilton (1985)), or a unit root
process (Rose (1988)). There seems to be more consensus on the fact that real rate variation,
if it exists at all, should only affect the short end of the term structure but that the variation

in long-term interest rates is primarily affected by shocks to expected inflation (see, among
others, Mishkin (1990) and Fama (1990)), but this is disputed by Pennacchi (1991). Another
phenomenon that has received wide attention is the Mundell (1963) and Tobin (1965) effect:
the correlation between real rates and (expected) inflation appears to be negative.

In this article, we seek to establish a comprehensive set of stylized facts regarding real rates,
expected inflation and inflation risk premiums, and to determine their relative importance for
determining the U.S. nominal term structure. To infer the behavior of these variables, we use a
model with three distinguishing features. First, we specify a no-arbitrage term structure model
with both nominal bond yields and inflation data to efficiently identify the term structure of
real rates and inflation risk premia. Second, our model accommodates regime-switching (RS)
behavior, but still produces closed-form solutions for bond prices. We go beyond the extant
RS literature by attempting to identify the real and nominal sources of the regime switches.
Third, the model accommodates flexible time-varying risk premiums crucial for matching time-
varying bond premia (see, for example, Dai and Singleton (2002)). These features allow our
model to fit the dynamics of inflation and nominal interest rates.

This paper is organized as follows. Section 2 develops the model and discusses the effect of
regime switches on real yields and inflation risk premia. In Section 3, we detail the specification
tests used to select the best model, analyze factor dynamics, and report parameter estimates.
Section 4 contains the main economic results, which can be summarized as follows:

1. Unconditionally, the term structure of real rates assumes a fairly flat shape around 1.3%,
with a slight hump, peaking at a 1-year maturity. However, there are some regimes in
which the real rate curve is downward sloping.

2. Real rates are quite variable at short maturities but smooth and persistent at long
maturities. There is no significant real term spread.

3. The real short rate is negatively correlated with both expected and unexpected inflation,
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but the statistical evidence for a Mundell-Tobin effect is weak.

4. The model matches an unconditional upward-sloping nominal yield curve by generating
an inflation risk premium that is increasing in maturity.

5. Nominal interest rates do not behave pro-cyclically across NBER business cycles but our
model-implied real rates do.

6. The decompositions of nominal yields into real yields and inflation components at various
horizons indicate that variation in inflation compensation (expected inflation and inflation
risk premia) explains about 80% of the variation in nominal rates at both short and long
maturities.

7. Inflation compensation is the main determinant of nominal interest rate spreads at long
horizons.

Finally, Section 5 concludes.

2 A Real and Nominal Term Structure Model with Regime
Switches

2.1 Decomposing Nominal Yields

The nominal yield on a zero-coupon bond of maturityy;’, can be decomposed into a real
yield, g3, and inflation compensationy,,. The real yield represents the yield on a zero-coupon
bond perfectly indexed against inflatibnlnflation compensation reflects expected inflation,
Ei(7t+0.n), @and an inflation risk premiung, ,, (ignoring Jensen’s inequality terms):
yio= U+ T,
= 9 + E(Tpnn) + Ot (1)

whereE; (7,1, ,,) is expected inflation fromto ¢ + n:

Et(Tt4nn) = EEt(Wt—H + 4 T,

! Since real interest rates can be defined as real returns on investment, an alternative literature estimates real
interest rates by using models of capital and productivity. However, this approach produces very imprecise
estimates of real rates with substantial measurement error and often still uses interest rate data to help identification
(see Laubach and Williams (2003)).



andm,. is one-period inflation fromto ¢ + 1.

The goal of this article is to achieve this decomposition of nominal yieftisnto real and
inflation componentsi’, E;(7:1...,), andey, ,,) for U.S. data. Unfortunately, we do not observe
real rates for most of the U.S. sample. Inflation-indexed bonds (the Treasury Income Protection
Securities or TIPS) have traded only since 1997 and the market faced considerable liquidity
problems in its early days (see Roll (2004)). Consequently, our endeavor faces an obvious
identification problem as we must estimate two unknown quantities — real rates and inflation
risk premia — from only nominal yields. We obtain identification by using a no-arbitrage term
structure model that imposes restrictions on the nominal term structure. That is, the movements
of long-term nominal yields are linked both to the dynamics of short-term nominal yields and
inflation. These pricing restrictions, together with standard parameter identification restrictions,
uniquely identify the dynamics of real rates and inflation risk premiums using data on inflation
and nominal yields. To pin down the average level of real rates, we further restrict the one-
period inflation risk premium to be zero.

The remainder of this section sets up the model to identify the various components of
nominal yields. Section 2.2 presents the technical details of the term structure model, while
at the same time discussing the economic background of the term structure factors and our
parametric assumptions. The model must be flexible, yet remain identifiable from a finite set
of nominal yields. Importantly, both the empirical literature and economic logic suggests that
the process generating inflation and real rates may undergo discrete shifts over time, which we
model using a RS model following Hamilton (1990). We present solutions to bond prices in
Section 2.3 and discuss how regime switches affect our decomposition in Section 2.4. Section
2.5 briefly covers econometric and identification issues. Finally, Section 2.6 discusses how our
work relates to the literature.

2.2 The Model
State Variable Dynamics

We employ a three-factor representation of yields, which is the number of factors often used
to match term structure dynamics in the finance literature (see, for example, Dai and Singleton
(2000)). We incorporate an observed inflation factor, denoted, pywhich switches regimes.

The other two factors are unobservable term structure factors. One factepresents a latent

RS term structure factor. The other latent factor is denoteg] bypd represents a time-varying,

but regime-invariant, price of risk factor, which directly enters into the risk prices (see below).
The factorg; plays two roles. First, it helps generate realistic and plausible time-variation in
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expected excess returns on long-term bonds, demonstrated by Dai and Singleton (2002).
Second,q; also accounts for part of the time-variation of inflation risk premia, as we show
below.
We stack the state variables in tBex 1 vector X; = (q; f; m¢)’, which follows the RS
process:
Xipr = pse1) + Xy + B(sp41)e041, (2)

wheres;,; indicates the regime prevailing at time- 1 and

Hq Py 0 0 o 0
plse) = | pp(se) | @=1| @pp By 0 |, Blse)=| 0 op(st) 0O - (3)
:uﬂ'(st> (1)7rq (PT('f ¢7r7r 0 0 O-W(St)
The regime variable represents different regimes,s; = 1,..., K, and follows a Markov

chain with transition probability matrikl = {p;; = Pr(s;+1 = j|s: = i)}. These regimes are
independent of the shocksg, ; in equation (2). We specify all the transition probabilities to be
constang

In equation (3), the conditional mean and volatility ffand r; switch regimes, but the
conditional mean and volatility of, do not. The feedback parameters for all variables in the
companion formd also do not switch across regimes. These restrictions are necessary to permit
closed-form solutions for bond prices.

We order the factors so that the latent factors appear first. As a consequence, expected
inflation depends on lagged inflation, other information captured by the latent variables, as well
as a nonlinear drift term. The inflation forecasting literature strongly suggests that expected
inflation depends on more than just lagged inflation (see, for example, Stockton and Glassman
(1987)). In addition, by placing inflation last in the system, the reduced-form process for
inflation involves moving average terms. This is important because the autocorrelogram of
inflation is empirically well approximated by a low-order ARMA process.

2 Fama and Bliss (1987), Campbell and Shiller (1991), Bekaert, Hodrick and Marshall (1997), and Cochrane
and Piazzesi (2005), among many others, document time-variation in expected excess holding period returns of

long-term bonds.
3 Transition probabilities must be constant under the risk-neutral measure to obtain closed-form solutions for

bond prices. A price of RS risk can only be identified if the transition probabilities vary through time. Dai,
Singleton and Yang (2006) allow transition probabilities to vary under the real measure, and then define the price of
RS risk to perfectly offset the time-varying component of the probability to obtain a constant transition probability
under the risk-neutral measure. It is hard to motivate this assumption with an equilibrium model. In contrast, our
model can be supported by a representative agent economy with a utility function with habit, and a RS endowment
process.



Real Short Rate Dynamics

We specify the real short ratg, to be affine in the state variables:
e = 0o + 01 X5 4)

For reference, we let, = (J, 0, 9,)". The real rate process nests the special cases of a constant
real rate §; = 03.1) advocated by Fama (1975) and mean-reverting real rates within a single
regime ¢; = 6. = 0) following Hamilton (1985). Allowing non-zeré; or ¢, causes the real

rate to switch regimes. i, # 0, then the time-varying price of risk can directly influence the
real rate, as it would in any equilibrium model with growth. In general, it£ 0, then money
neutrality is rejected, and real interest rates are functions of inflation.

The model allows for arbitrary correlation between the real rate and inflation. To gain some
intuition, we compute the conditional covariance between real rates and actual or expected
inflation for an affine model without regime switches. Fitgtprimarily drives the covariance
between real rates and unexpected inflation. That is{&qy, m;.1) = d,02. Second, without
regimes, the covariance between expected inflation and real rates is given by:

COVy(Frs1, B (Mip2)) = 04 Prg0; + 6 Prjos + 6, P o

The Mundell-Tobin effect predicts this covariance to be negative, whereas an activist Taylor
(1993) rule would predict it to be positive, as the monetary authority raises real rates in response
to high expected inflation (see, for example, Clarida,j@atl Gertler (2000)). Clearly, the sign
of the covariance is parameter dependent, and a negati@es not suffice to obtain a Mundell-
Tobin effect.

To compare the conditional covariance between real rates and expected inflation in our
model with regimes, we derive cdv; 1, E; 1 (m2)|s; = i) for K = 2 regimes to be:

COVy(Tyt1, Eprr (mpo)|se = 1) = 5q(1>7rq03

[ 2
+ 65D,y sz‘j%%(j) + pupia (e (1) — p15(2))?
Lj=1 |

[ 2
+ 57rq)7r7r Zpljagr(]) +pi1pi2(”7r(1> - “7?(2))2

Lj=1

+ 0707 P rnpirpinl (1 (1) = p1(2)) (11 (1) = 15 (2))]-

Relative to the one-regime model, the contribution of the factor variances for the RS factors
now depends on the regime prevailing at timand has two components: an average of the
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two regime-dependent factor variances and a term measuring the volatility impact of a change
in the regime-dependent drifts. In addition, there is a new factor contributing to the covariance
coming from the covariance between these regime-dependent driffsdndr;.

Pricing Kernel and Prices of Risk

We specify the real pricing kernel to take the form:

~ — . 1
miy1 = log My = -7 — EAt(StJrl),)\t(StH) - )\t(3t+1)/5t+1 (5)

where the vector of time-varying and RS prices of risks; 1) is given by:

Ai(se1) = (0 A(se41)")s

where\(s;11) is @2 x 1 vector of RS prices of risR(s;11) = (Af(se41) Ar(se1)) and the
scalary, takes the form:

Y=Y + Mg = Y0 + et X, (6)

wheree; represents a vector of zeros with a 1 in ttleposition. In this formulation, the prices
of risk of f, andx; change across regimes. The variafpleontrols the time-variation of the
price of risk associated with; in equation (6) but does not switch regimes. Allowifgto
switch across regimes results in the loss of closed-form solutions for bond prices.

We formulate the nominal pricing kernel in the standard way/as, = ]\ZHPt/BH:

. 1
M1 = log My = —7 — §>\t(3t+1)//\t(5t+1) — M(St41) €141 — €5 X411 (7)

Real Factor and Inflation Regimes

We introduce two different regime variables, € {1,2}, affecting the drift and variance of

the f; process, and] € {1, 2}, affecting the drift and variance of the inflation process. Since
both thef; andr, factors enter the real short rate in equation (4), the real short rate contains
both f; andx; regime components. This modeling choice accommodates the possibili@fthat
captures changes of regimes in real factors. Sjp@mters the conditional mean of inflation in
equation (2), the; regime also potentially affects expected inflation and can capture nonlinear
expected inflation components not directly related to past inflation realizations.

The model withs{ and s can be rewritten using an aggregate regime variaplec
{1,2,3,4} to account for all possible combinations{of , s7} = {(1,1),(1,2),(2,1),(2,2)}.
Hence, our model has = 4 regimes. To reduce the number of parameters id thétransition
probability matrix, we consider three restricted models of the correlation betvieand sy
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Case A represents the simplest case of independent regimes. In Cases B ansi[@nﬁh@
regimes are correlated.

In Case B, the current regime depends on the contemporaneous realization of the inflation
regime and on the pagt_; regime. Nevertheless, the future inflation regime only depends on
current inflation. Case B could represent a reduced-form description of a monetary authority
changing real rates, through the latent fagtoin response to inflation shocks. We describe this
case more fully in Appendix A. However, one shortcoming of Case B is that it cannot capture
periods where aggressive real rates, through a regime withfhiglould successfully stave off
a regime of high inflation.

In Case C, the inflation regime &at+ 1 depends on the stance of tlfie; regime as well as
the previous inflation environment, but we restrict futfire regimes to depend only on current
f: regimes. This leads to the following conditional transition probability:

PT(S{H =i St = k|5{ =m,s{ =n)
= Pr(s{,, = k:|s{+1 = j, sl =m,sT =n) x Pr(s{Jrl = jlsi =m,sT =n)
= Pr(syy = Klsiyy = j.s7 =n) x Pr(siyy = jlst =m), ®)
where we assume tha‘t’r(sLl]s{H,sf,s?) = Pr(s?+1|s{+1,sf) and Pr(sfﬂlsf,s?) =
Pr(sl,,|s]). We denotePr(s/,, = 1|s/ = 1) = p/ and Pr(s/,, = 2|s] = 2) = ¢/ and
parameterize’r(s7,, = k|s] = m, sf = n)asp"™"", where:
1 s — o —
: A sy = sy =1
J = .

The “|"-component captures (potentially positive) correlation betweenfttand =; regimes.
The “m”- component captures persistencerjmegimes:

A ifsf=1
B if s] =2.

This formulation can capture instances where a high real rate regime, as capturedfby the
regime, contemporaneously influences the inflation regime. Using the notation introduced
above, the transition probability matrik for Case C takes the form:

[st41 =1] [st41 =2 [st41 =3 [st41 = 4]
[s¢ = 1] p/ptt p! (1-p*?) (1—p/) (1 —pB) | (1—p/)pPA
=2 [P | ) () (L) [ ()™
[se =3] | (1—¢f)p?* | (1—¢) (1—p**) ¢/ (1—pP?) q'pP4
[se =4] | (1—¢%)p?*P | (1—¢ ) (1—p*P) ¢/ (1—pPB) q/pBP
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This model has four additional parameters relative to the model with independent real and
inflation regimes. We can test Case C against the null of the independent regime Case A by
testing the restrictions:

HO :pBA -1 _pAA andeB -1 _pAB.

We find evidence to reject the case of independent regimes in favor of Case C with a p-value of
0.033. Thus, our benchmark specification uses the probability transition matrix of Case C.

2.3 Bond Prices

Our model produces closed-form solutions for bond prices, enabling both efficient estimation
and the ability to fully characterize real and nominal yields at all maturities without discretiza-
tion error.

Real Bond Prices

In our model, the real zero coupon bond price of maturitgonditional on regimes; = i,
ﬁ"(st = 1), is given by:

~

Py'(i) = exp(A, (i) + B, X)), 9)

whereﬁn(z') is dependent on regime = i, En isal x N vector andN is the total number
of factors in the model, including inflation. The expressionsjg(z') and B, are given in
Appendix B. Since the real bond prices are given by (9), it follows that the real yi¢lds

conditional on regime are affine functions of,:*

~

= — (A, (i) + B, X,). (10)

_10g<Ptn)
n

gi (i) =

S

While the expressions fo@n(z’) andﬁn are complex, some intuition can be gained on how
the prices of risk affect each term. The prices of fjsland\(s;) enter only the constant term in
the yieldsfln(st), but affect this term in all regimes. More negative valuesbr \(s;) cause
long maturity yields to be, on average, higher than short maturity yields. In addition, since the
A(s;) terms differ across regimes(s;) also controls the regime-dependent level of the yield
curve away from the unconditional shape of the yield curve. Thus, the model can accommodate
the switching signs of term premiums documented by Boudoukh et al. (1999). The prices of

4 The technical innovation in deriving (9) is to recognize thatEheparameter does not switch for two reasons.
First, ® remains constant across regimes. Second, the time-varying price of risk parapredter does not switch
across regimes. If these parameters become regime dependent, closed-form bond solutions are no longer possible.



risk affect the time-variation in the yields through the parameteiThis term only enters the
B, terms. A more negative; means that long-term yields respond more to shocks in the price
of risk factorg;,.

The pricing implications of (10), together with the assumed dynamics;ah (2), imply
that the autoregressive dynamics of inflation and bond yields are constant over time, but the
drifts vary through time, and shocks to inflation and real yields are heteroskedastic. Hence,
our model is consistent with the macro models of Sims (1999, 2001) and Bernanke and
Mihov (1998), who stress changing drifts, for example induced by changes in monetary policy,
and heteroskedastic shocks. On the other hand, Cogley and Sargent (2001, 2005) advocate
models with changes in the feedback parameters, for example induced by changes in systematic
monetary policy, which we do not accommodate.

Nominal Bond Prices

Nominal bond prices take the form:
P/(i) = exp(A,(i) + B, X}) (11)

for P}*(i), the zero-coupon bond price of a nominaperiod bond conditional on regimieThe
scalarA, (i) is dependent on regime = i and B,, is an1 x N vector. It follows that the
nominaln-period yield conditional on regime y;*(i), is an affine function ofX;:
"y log( P/ 1 ,
ity = 22— Loa i)+ B, 12
Appendix C shows that the only difference betweenﬁl;;ei) andl?n terms for real bond prices
and theA, (i) and B,, terms for nominal bond prices are due to terms that select inflation from

X;. Positive inflation shocks decrease nominal bond prices.

2.4 The Effect of Regime Switches

The key ingredient differentiating our model from the standard affine term structure paradigm
is the presence of regimes. In this section, we develop intuition on how regimes affect the
decomposition of nominal rates into real rate and inflation components.

Expected Inflation

In our model, one-period expected inflatidf)(m, ), takes the form:

Ei(mialse = i) = esBlu(si)|se = 1] + e3@X,
K
= <Zpij Mw(ﬁ) +e3D X (13)
j=1

9



This process is only different from a simple linear process because of the nonlinear drift,
which can accommodate sudden discrete changes in expected inflation. Because expected
inflation depends oif, andr,, the contemporaneoué ands] regimes also both affect expected
inflation.

Inflation Compensation

With only one regime, one-period inflation compensatigh), = yl — 74, is given by:

1
Wf}l = (,u7r - 503 - 0'7T>\7r) + e3P X,

With regimes, inflation compensation is more complex:

+ GééXt, (14)

2 (1) = — log [sz-j exp (=) + 50200) + DAL )

The last term in the exponential represents the one-period inflation risk premium, which is zero
by assumption in our model. Ti‘@ﬁ(]’) term is the standard Jensen’s inequality term, which
now becomes regime dependent. Fhe, (s;) term represents the nonlinear, regime-dependent
part of expected inflation. The last tersfhd X; represents the time-varying part of expected
inflation, which does not switch across regimes, and is the only term that is the same as in the
affine model.

In comparing expected inflation in equation (13) with inflation compensation in equation
(14), we see that the constant terms 49y andE;(m;.1]s,) are different. The constants in the
inflation compensation expression (14) reflect both a Jensen’s inequality%bé;rm) and a
nonlinear term, driven by taking the log of a sum, weighted by transition probabilities. Because
exp(.) is a convex function, Veronesi and Yared (1999) call this effect a “convexity bias.” Like
the Jensen’s term, this also makgs < E¢(m1). In our estimations, both the Jensen’s term
and the convexity bias amount to less than 1 basis point, even for longer maturities.

Real Term Spreads

The intuition for how regimes affect real term spreads can be readily gleaned from considering
a two-period real bond. We first analyze the case of the real term spgiead;;, in an affine
model without regime switches:

o .1 . . 1 . 1 . .

g == (Ee(Per) — 7¢) — Jvan (Per1) + 5COV (M1, Fryn) - (15)
The first term(E,(7,,1) — 7¢) IS an Expectations Hypothesis (EH) term, the second term
var, (7,11) is a Jensen’s inequality term and the last term, @y, 1, 7;1), iS the risk premium.
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In the single-regime affine setting, the last term is given by:

COV,(Myt1, Pr41) = —Y00q — AfOf — V104G:- (16)

Hence, the price of risk fact@t determines the time variation in the term premium.

The RS model has a more complex expression for the two-period real term spread:

9. .1 R ) R 1
yf(z) — T :§(Et(7“t+1\3t =1) —17) — ) (70% + ”YquQt)

~ S log (ip exp| =01 (1)) = B lu(se1)ls = 1))

DS+ M) ), )

for K regimes. First, the term spread now switches across regimes, explicitly shown by the
dependence of?(i) on regimes; = i. Not surprisingly, the EH terniE; (7, 1|s; = i) — ;)

now switches across regimes. The time-varying price of risk ter@(,%o—q + 110,4:), 1S the

same as in (16) because the processjfatoes not switch regimes. The remaining terms in
(17) are nonlinear, as they involve the log of the sum of an exponential function of regime-
dependent terms, weighted by transition probabilities. Within the nonlinear expression, the
term %612(3’)2(3’)’51 represents a Jensen’s inequality term, which is regime-dependent, and
Ar(7)o(j) represents a RS price of risk term. Thus, the average slope of the real yield curve can
potentially change across regimes and produce a variety of regime-dependent shapes of the real
yield curve, including flat, inverse-humped, upward-sloping or downward-sloping yield curves.
A new term in (17) that does not have a counterpart in (16)05 () — E [t (S¢41) |s¢ = 1),
reflecting the “jump risk” of a change in the regime-dependent drift.

Inflation Risk Premia

The riskiness of nominal bonds is driven by the covariance between the real kernel and inflation:
if inflation is high (purchasing power is low) when the pricing kernel realization (marginal
utility in an equilibrium model) is high, nominal bonds are risky and the inflation risk premium
is positive. It is tempting to conclude that the sign of the inflation risk premium determines
the correlation between expected inflation and real rates. For example, a Mundell-Tobin
effect implies that when a bad shock is experienced (an increase in real rates), the holders
of nominal bonds experience a countervailing effect, namely a decrease in expected inflation,
which increases nominal bond prices. This intuition is not completely correct as we now
discuss.

Consider the two-period pricing kernel, which depends on real rates both through its
conditional mean and through real rate innovations. Interestingly, the effects of these two
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components are likely to act in opposite directions. High real rates decrease the conditional
mean of the pricing kernel; but, if the price of risk is negative, positive shocks to the real rate
should increase marginal utility. We first focus on the affine model. By splitting inflation into
unexpected and expected inflation, we can decompose the two-period inflation risk premium,
¢ 2, INto four components (ignoring the Jensen’s inequality term):

[—COVy(Pyp1, Ep1 (e42)) — COV(Tpp1, Tes1)

DO | —

Pt2 =

+C0V; (M1, Beqr (mry2)) + COVe(Mipra, mer1)]  (18)

The first two terms reveal that a negative correlation between real rates and both expected
and unexpected inflation actually implies a positive risk premium. Nevertheless, a Mundell-
Tobin effect does not necessarily imply a positive inflation risk premium because of the last two
terms, which involve the innovations of the pricing kernel. In the affine model equivalent of
our RS model, the last term is zero by assumption, but the third term is not and may swamp the
others. In particular, for the affine specification:

1
$t2 = _5[57T0-72r(1 + @rr) + (I)wq(gg + Y104G:) + ®Wf<0]2‘ + Arog)l. (19)

Hence, the time-variation in the inflation risk premium dependsggnand the mean
premium depends on parameters that also determine the correlation between real rates and
inflation. In particular, if the correlation between real rates and inflation is zero (requiring
O = &rq = Oy = 0), then the inflation risk premium is also zero. Note that the price of
risk A plays a role in determining the inflation risk premium whereas it does not play a role in
determining the correlation between real rates and expected inflation.

Naturally, the RS model has a richer expression for the inflation risk premium than equation
(19). Conditional ors; = 1, the two-period inflation risk premium in our model is given by:

ouali) = ——{prK §)+ 6otin (5) + A?())x
((1 + @) i (4) + ijkﬂﬂ + Orppiy (ﬁ)]
| (0 s+ 20 >)] x

Lj=1

K
Zpij ( 1 + (I)mr H’ﬂ + ijk,uﬂ + (I)Wf#f (]))]

Lj=1
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The time-varying inflation risk term involving, is the same as the affine model, but the other
terms become regime dependent and nonlinear. The inflation risk premium is affected by regime
switches both through the RS price of risk;(s:+1), and also through the regime-dependent
means. The effects of the RS drifts impart considerable flexibility to introduce nonlinear
movements in the risk premium, especially the ability to induce sudden shifts due to changing
inflation environments.

2.5 Econometrics and Identification

We derive the likelihood function of the model in Appendix D. The likelihood is not simply the
likelihood of the yields measured without error multiplied by the likelihood of the measurement
errors, which would be the case in a standard affine model estimation. Instead, the regime
variables must be integrated out of the likelihood function. Our model implies a RS-VAR for
inflation and yields with complex cross-equation restrictions imposed by the term structure
model.

Since the model has latent factors, identification restrictions must be imposed to estimate
the model. We also discuss these issues in Appendix D. An important identification assumption
is that we set the one-period inflation risk premium equal to 2er0s;. 1) = 0. This parameter
identifies the average level of real rates and the inflation risk premium, and is very hard to
identify without using real yields in the estimation. This restriction does not undermine the
ability of the model to fit the dynamics of nominal interest rates and inflation well, as we show
below. Models with non-zera,. give rise to lower and more implausible real rates than our
estimates imply and have a poorer fit with the data.

Finally, we specify the dependence of the prices of risk for thand r; factors ons;.
Because we set, = 0, we only need to model;(s,1). In general, there are four possible
A; parameters across the fosy,; regimes. This potentially allows real and nominal yield
curves to take on different unconditional shapes in different inflationary environments. When

51n particular, in the RS model, the term Go®;. 1, 7. 1) iS not zero even though we assume= 0, but this
term is less than 1 basis point in our estimation.
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estimating a model wherg(s, ;) varies over all regimes, a Wald test on the equalitx@f. 1)
acrosssy, ; regimes is strongly rejected with a p-value less than 0.001, while a Wald test on the
equality of\(s;41) across;@1 regimes is not rejected at the 5% level. Hence, in our benchmark
model, we consider prices gfrisk to vary only across inflation regimesg, ;.

2.6 Related Models

To better appreciate the relative contribution of the model, we link it to three distinct literatures:
(i) the extraction of real rates and expected inflation from nominal yields and realized inflation
or inflation forecasts, (ii) the empirical RS literature on interest rates and inflation, and (iii) the
theoretical term structure literature and equilibrium affine models in finance.

Time-Series Models

An earlier literature uses neither term structure data, nor a pricing kernel to obtain estimates
of real rates and expected inflation. Mishkin (1981) and Huizinga and Mishkin (1986) simply
project ex-post real rates on instrumental variables. This approach is sensitive to measurement
error and omitted variable bias. Other authors, such as Hamilton (1985), Fama and Gibbons
(1982), and Burmeister, Wall and Hamilton (1986), use low-order ARIMA models and identify
expected inflation and real rates using a Kalman filter, under the assumption of rational
expectations. The time-series processes driving real rates and expected inflation, with rational
expectations, remain critical ingredients in our approach, but we use inflation data and the
entire term structure to obtain more efficient identification. In addition, our approach identifies
the inflation risk premium, which this literature cannot do.

Empirical Regime-Switching Models

Many articles document RS behavior in interest rates (see, among many others, Hamilton
(1988), Gray (1996) Sola and Driffill (1994), Bekaert, Hodrick and Marshall (2001), and Ang
and Bekaert (2002a)) without analyzing the real and nominal sources of the regimes. Evans
and Wachtel (1993) and Evans and Lewis (1995) document the existence of inflation regimes,
whereas Garcia and Perron (1996) focus on real interest rate regimes. Our model simultaneously
identifies inflation and real factor sources behind the regime switches and analyzes how they
contribute to nominal interest rate variation.

Term Structure Models

Relative to the extensive term structure literature, our model appears to be the first to identify
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real interest rates and the components of inflation compensation in a model accommodating
regime switches, while still admitting closed-form solutions. Most of the articles using a
pricing model to obtain estimates of real rates and expected inflation have so far ignored RS
behavior. This includes papers by Pennacchi (1991), Boudoukh (1993) and Buraschi and Jiltsov
(2005) for U.S. data and Barr and Campbell (1997) and Evans (1998) for U.K. data. This is
curious, because the early literature implicitly demonstrated the importance of accounting for
potential structural or regime changes. For example, the Huizinga-Mishkin (1986) projections
are unstable over the 1979-1982 period, and the slope coefficients of regressions of future
inflation onto term spreads in Mishkin (1990) are substantially different pre- and post-1979,
which is also recently confirmed by Goto and Torous (2003).

The articles that have formulated term structure models accommodating regime switches
mostly focus only on the nominal term structure. Articles by Hamilton (1998), Bekaert, Hodrick
and Marshall (2001), Bansal and Zhou (2002), and Bansal, Tauchen and Zhou (2004) allow for
RS in mean reversion parameters which we do not, but their derived bond pricing solutions,
using discretization or linearization, are only approximate. None of these models features a
time-varying price of risk factor likg; in our model. Naik and Lee (1994) and Lard(2000)
present models with closed-form bond prices, but these models feature constant prices of risk
and only shift the constant terms in the conditional mean.

The RS term structure model by Dai, Singleton and Yang (2006) incorporates regime-
dependent mean reversions and state-dependent probabilities under the real measure, while
still admitting closed-form bond prices. However, under the risk-neutral measure, both the
mean reversion and the transition probabilities must be constants, exactly as in our formulation.
Dai, Singleton and Yang allow for only two regimes, while we have a much richer RS
specification. Another point of departure is that in their model, the evolution of the factors
and the prices of risk depend aprather thans,, ;. In contrast, our model specifies regime
dependence using ,; as in Hamilton (1989), implying that the conditional variances of our
factors embed a jump term reflecting the difference in conditional means across regimes.
This conditional heteroskedasticity is absent in the Dai-Singleton-Yang parameterization. Our
results show that the conditional means of inflation significantly differ across regimes, while
the conditional variances do not, making the regime-dependent means an important source of
inflation heteroskedasticity.

There are two related articles that use a term structure model with regime switches to
investigate real and nominal yields. The first specification by Veronesi and Yared (1999) is
quite restrictive as it only accommodates switches in the drifts. The second paper by Evans
(2003) is most closely related to our article. He formulates a model with regime switches for
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U.K. real and nominal yields and inflation, but he does not accommodate time-varying prices
of risk. Evans incorporates switches in mean-reversion parameters, but does not separate the
sources of the regime switches into real factors and infl&tion.

Final Comments

While the model is quite general, it has two main caveats. First, Gray (1996) and Bekaert,
Hodrick and Marshall (2001), among others, show that mean-reversion of the short rate is
significantly different across regimes. Evans and Wachtel (1993) and Evans and Lewis (1995)
also present some evidence for state-dependent mean reversion in inflation. Second, Ang
and Bekaert (2002b) show that only time-varying transition probabilities can reproduce the
nonlinearities in the short rate drift and volatility functions documented iySahalia (1996)

and others. If we relax either of these constraints, we can no longer derive closed-form bond
prices. While these are important concerns, the numerical difficulties in computing bond prices
for these more complex specifications are formidable and the use of term structure information
is critical in identifying both the inflation and real rate components in nominal interest rates.
Moreover, our model with a latent term structure factor and a time-varying price of risk,
combined with the RS means and variances, is very rich and cannot be identified from inflation
and short rate data alone. Despite these two caveats, we show below that our model provides a
good fit with the data in terms of matching data moments.

3 Model Estimates

3.1 Data

We use 4-, 12- and 20-quarter maturity zero-coupon yield data from CRSP and the 1-quarter
rate from the CRSP Fama risk-free rate file as our yield data. We compute inflation from the
Consumer Price Index — All Urban Consumers (CPI-U, seasonally adjusted, 1982:Q4=100),
from the Bureau of Labor Statistics. Our data spans the sample from 1952:Q2 to 2004:Q4.
Using monthly CPI figures creates a timing problem because prices are collected over the course

6 Evans (2003) claims to derive an exact, closed-form bond pricing formula that switches in the mean-reversion
term, but his claim is erroneous. On p378 of his article, Evans defﬁtfggﬂo be a vector that does not depend on
the regimes;, but this should be a matri@;t(é, s), representing values for all transitions betweemands; ;.
Dai and Singleton (2003) show that whénbecomes state-dependent, the bond prices are given by a solution to
a series of coupled partial differential equations. This reduces to our differential equation solutions (see below)
only for the case whem is not regime dependent. Whéenis regime dependent under the risk-neutral measure,
closed-form solutions can no longer be obtained.
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of the month and monthly inflation data is seasonal. Therefore, similar to Campbell and Viceira
(2001), we sample all data at the quarterly frequency. For the benchmark model, we specify the
1-quarter and 20-quarter yields to be measured without error to extract the unobserved factors
(see Chen and Scott (1993)). The other yields are specified to be measured with error and
provide over-identifying restrictions for the term structure mddel.

3.2 Model Nomenclature

In Table 1, we describe the different term structure models we estimate. The top row represents
models with the three facto(g; f; m;)’. In the bottom row, we list alternative models that add

an unobserved factor representing expected inflation, which we denatg Wich generalize
classic ARMA-models of expected inflation. We describe these models in Appendix E.

To gauge the contribution of regime switches, we estimate single-regime counterparts to the
benchmark and unobserved expected inflation models. The single regime meael$, are
simply affine models. Modadl is the single regime counterpart of the benchmark RS mbidel
described in Section 2. Modé], is similar to the model estimated by Campbell and Viceira
(2001), except that Campbell and Viceira assume that the inflation risk premium is constant,
whereas in all our models the inflation risk premium is stochastic. We specifically contrast
real rates and inflation risk premia from Modg] with the real rates and inflation risk premia
implied by our benchmark model below.

The remaining models in Table 1 are RS models. Modéland/,, contain two regimes
wheres{ = s7. Two regime models are the main specifications used in the empirical and term
structure literature (see, for example, Bansal and Zhou (2002)). Mddetonsiders a similar
model but the regime variable can take on three values. MBdekepresents the benchmark
model, which has four regimes, with the different cases describing the correlationaﬁfahd
the s] regimes (Cases A, B, and C as described in Section 2.2). MoHebntains two regimes
for s/ which are independent of the three regimessfor

3.3 Specification Tests

We report two specification tests of the models, an unconditional moment test and an in-sample
serial correlation test for first and second moments in scaled residuals. The former is particularly
important because we want to decompose the variation of nominal yields into real and expected

"We estimate several of our models using alternative schemes where other yields are assumed to be measured
without error and find that the results are very similar.
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inflation components. A well-specified model should imply unconditional means, variances and
autocorrelograms of inflation and yields close to the sample moments. We outline these tests in
Appendix F.

Table 2 reports the results of these specification tests. Panel A focuses on matching inflation
dynamics, while Panel B focuses on matching the dynamics of yields. Of all the models, only
Model IV¢ passes the inflation residual tests and fits the mean, variance, and autocorrelogram
of inflation (using autocorrelations of lags 1, 5, and 10). About half of the models fail to match
the autocorrelogram of inflation. Inflation features a relatively low first-order autocorrelation
coefficient with very slowly decaying higher-order autocorrelations. Generally, the presence of
regimes and the additional expected inflation factor help in matching this pattern. However,
most of the models with the-factor fail to match the mean and variance of inflation. While
Model V' I passes all moment tests, both residual tests reject strongly at the 1% level, eliminating
this model. The match with inflation dynamics is extremely important as the estimated inflation
process not only identifies expected inflation but also plays a critical role in identifying the
inflation risk premium. This makes Modél’“ the prime candidate for the best model.

Panel B reports goodness-of-fit tests for two sets of yield moments: the mean and variance
of the spread and the long rate (all models fit the mean of the short rate by construction in the
estimation procedure) and the autocorrelogram of the spread. Only four models fit the moments
of yields and spreads!, /11, IV4, andIV®. Unfortunately, apart from moddlV ¢, these
other models fail to match the inflation moments in Panel A.

We also report the residual test for the short rate and spread equations in Panel B. With the
exception of modeldVVZ and VI, most models produce reasonably well-behaved residuals.
While modelI V¢ nails the dynamics of inflation in Panel A and closely matches term structure
moments, the model’s residual tests for short rates and spreads are significant at the 5% level,
but not at the 1% level. Thus, there is some serial correlation and heteroskedasticity that remains
present in the residuals. Consequently, the unconditional moments of unobserved real rates and
inflation risk premia produced by mod&V ¢ will imply nominal rates and inflation behavior
close to that in data, but the conditional dynamics of real short rates and inflation risk premia
may be slightly more persistent or heteroskedastic than our estimates suggest.

3.4 Model Estimates

We focus on the benchmark modBV©, which is the model that best fits the inflation and
term structure datd.We discuss the parameter estimates, the implied factor dynamics, and the

8 Estimates of other models are available upon request.
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identification and interpretation of the regimes.
Parameter Estimates

Table 3 reports the parameter estimates. Inflation enters the real short rate equation (4) with
a highly significant, negative coefficient 6f = —0.49. In the companion fornmb of the

VAR, the term structure latent factogs and f; are both persistent, with correlations of 0.97

and 0.76, respectively. Their effects on the conditional mean of inflation and thus on expected
inflation is positive with coefficients of 0.62 and 0.95, respectively. However, the coefficient on
f+ is only borderline significant with a t-statistic of 1.85. Not surprisingly, lagged inflation also
significantly enters the conditional mean of inflation, with a loading of 0.54. A test of money
neutrality ¢, = ¢, , = ®. y = 0) rejects with a p-value less than 0.001.

The conditional means and variances of the factors reveal that the/first 1 regime
is characterized by a low; mean and low standard deviation. Both the mean and standard
deviations are significantly different across the two regimes at the 5% level. For the inflation
process, the conditional mean of inflation is significantly different acrossjtihegimes, with
s7 = 1 being a relatively high inflation environment. However, there is no significant difference
across regimes in the innovation variances. This does not mean that inflation is homoskedastic
in this model. The regime-dependent meang;ohduce heteroskedastic inflation across the
factor regimes.

Table 3 also reports that the price of risk for thefactor is negative but imprecisely
estimated. The prices of risk for thé factor are both significantly different from zero and
significantly different across the two regimes. Moreover, they have a different sign in each
regime, which may induce different term structure slopes across the regimes.

The transition probability matrix shows that theregimes are persistent with probabilities
Pr(sl,, = 1|s] = 1) = 0.93 and Pr(s{,, = 2|s] = 2) = 0.77. The probabilityp** =
Pr(sf,, = 1|sf+1 = 1,s7 = 1) is estimated to be one. Conditional on a period with a negative
f: and relatively high inflation (regime 1), we cannot transition into a period of lower expected
inflation unless thef; regime also shifts to the higher mean regime. Thus, the model assigns
zero probability from transitioning frorg, = 1 = (s/ = 1,57 = 1) to s, = 2 = (s, =
1,s7,., = 2). Similarly, starting in regime 3; = 3 = (s/ =2,sT = 1), we can transition into
the low inflation regime {{,, = 2) only with a realization ofsf+1 = 2, wheref; is high and
volatile. We demonstrate below that this behavior has a plausible economic interpretation.

Factor Behavior

Table 4 reports the relative contributions of the different factors driving the short rate, long
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yield, term spread, and inflation dynamics in the model. The price of risk facterelatively
highly correlated with both inflation and the nominal short rate, but shows little correlation with
the nominal spread. In other wordgcan be interpreted as a level factor. The RS term structure
factor f; is highly correlated with the nominal spread, in absolute valug; soa slope factor.

The factorf; is also less variable and less persistent tharConsequentlyf; does not play a
large role in the dynamics of the real rate, only accounting for 9% of its variation. The most
variable factor is inflation and it accounts for 51% of the variation of the real rate. Inflation is
negatively correlated with the real short rate, at -34%, as a result of the ne@ative-0.49
coefficient, whileg, is positively correlated with the real short rate (44%). The model produces
a 69% (-44%) correlation between inflation and the nominal short rate (nominal 5-year spread),
which matches the data correlation of 68% (-37%) very closely.

Panel A also reports how the different factors contribute to the expected inflation dynamics.
The latent factor components play an important role in the dynamics of expected inflation, with
q; and f; accounting for 37% of the variance of expected inflation. Inflation itself accounts
for is 62% of the variance of inflation. Expected inflation also has a nonlinear RS component.
We calculate the contribution of regimes to the variance of expected inflation by computing
the variance of expected inflation assuming we never transition from regime 1, relative to the
variance of expected inflation from the full model. Unconditionally, RS accounts for 12% of the
variance of expected inflation. We also show later that regimes are critical for capturing sudden
decreases in expected inflation occurring occasionally during the sample.

The implied processes for expected inflation and actual inflation are both very persistent.
The first-order autocorrelation coefficient of one-quarter expected inflation is 0.89, which
implies a monthly autocorrelation coefficient of 0.96 under the null of an AR(1). The
autocorrelations decay slowly to 0.51 at 10 quarters. Fama and Schwert (1977) also note the
strong persistence of expected inflation using time-series techniques to extract expected inflation
estimates. For actual inflation, the first-order autocorrelation implied by the model is 0.76 and
it is 0.35 at 10 quarters, matching the data almost perfectly at 0.72 and 0.35, respéclivsly.
this very persistent nature of inflation that many of the other models cannot match. For example,
in model/,, similar to Campbell and Viceira (2001), the autocorrelations of actual inflation are
0.48 and 0.20 at one and 10 lags, respectively.

Because the factors are highly correlated with inflation, the nominal short rate and the
nominal spread, these three variables should capture a substantial proportion of the variance
of expected inflation in our model. To verify this implication of our model with the data, we

9 The autocorrelations of inflation only modestly vary across regimes, with the first-order autocorrelation of
inflation being highest in regime = 1 at 0.77 and lowest in regimg = 4 at 0.74.
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project inflation onto the short rate, spread, and past inflation both in the data and in the model.
Panel B of Table 4 reports these results. When the short rate increases by 1%, the model signals
an increase in expected inflation of 39 basis points. A 1% increase in the spread predicts an 8
basis point decrease in expected inflation. These patterns are consistent with what is observed
in the data, but the response to an increase in the spread is somewhat stronger in the data. Past
inflation has a coefficient of 0.52, matching the data coefficient of 0.49 almost exactly.

The model also matches other predictive regressions of future inflation. For example,
Mishkin (1990) regresses the difference between the futyperiod inflation rate and the one-
period inflation rate onto the the-quarter term spread. In the data, this coefficient takes on
a value of 0.98 with a standard error of 0.36 for a horizon of one year. The model-implied
coefficient is 0.97. Thus, we are confident that the model matches the dynamics of expected
inflation well.

Regime Interpretation

How do we interpret the behavior of the regime variable in economic terms? In Table 5, we
describe the behavior of real short rates, one-quarter ahead inflation compensation (which
is virtually identical to one-period expected inflation except for Jensen’s inequality terms),
and nominal short rates across regimes. This information leads to the following regime

characterization:
Real Short Rates  Inflation % Time
ss=1 s/ =1,sT=1 LowandStable  Highand Stable 72%
ss=2 sl =1,sT=2 HighandStable Low and Stable 4%
s;=3 s/ =2,sT=1 Lowand\olatile High and Volatile 20%
st =4 s{ =2,s7 =2 Highand Volatile Low and \olatile 4%

All the levels (low or high) and variability (stable or volatile) are relative statements, so caution
must be taken in the interpretation. The last column lists the proportion of time spent in each
regime in the sample based on the population stable probabtfti@$he means of both real
rates and inflation are driven mostly by thferegime, while their volatilities are driven by the
s/ regime.

The first regime is a low real rate-high inflation regime, where both real rates and inflation
are not very volatile. We spend most of our time in this regime. As we will see, it is better

101f we identify the regimes through the sample by using the ex-post smoothed regime probabilities, then
we spend less time in regimg = 1 in sample than the population frequency. Unlike traditional two-regime
estimations, like Gray (1996) and Bansal and Zhou (2002), this is not caused purely by switchingott of
during the monetary targeting period of 1979-1982. In contrast, our model produces more recurring switches into
regimess; = 2 ands; = 4 also occur during the early 1990s and early 2000s, which we discuss below.
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to characterize the relatively high inflation regime as a “normal regime” and the low inflation
regime as a “disinflation regime.” The volatilities of real short rates, inflation compensation,
and nominal short rates are all lowest in regime 1. The regime with the second largest stable
probability is regime 3, which is also a low real rate regime. In this regime, the mean of inflation
compensation is highest. Thus, in population we spend around 90% of the time in low real rate
environments. Regimes 2 and 4 are characterized by relatively high and volatile real short rates.
The inflation compensation in these regimes is relatively low. Table 5 shows that these regimes
are also associated with downward sloping term structures of real yields. Consequently, the
transition probability estimates imply that passing through a downward sloping real yield curve
is necessary to reach the regime with relatively low inflation. Finally, regime 4 has the highest
volatility of real rates, inflation compensation, and nominal rates.

Regimes Over Time

In Figure 1, we plot the short rate, long rate, and inflation over the sample in the top panel and
the smoothed regime probabilities in the bottom panel over the sample period. From 1952 to
1978, the estimation switches betwegn= 1 ands; = 3. Recall that these regimes feature
relatively low real rates and high inflation. In regime 3, inflation has its highest mean and is
guite volatile, leading to high and volatile nominal rates. These regimes precede the recessions
of 1960, 1970 and 1975.

Post-1978, the model switches between all four regimes. The period around 1979-1982 of
monetary targeting is mostly associated with regime 4, characterized by the highest volatility of
real rates and inflation and a downward sloping real yield curve. Before the economy transitions
to regimes; = 2 in 1982, with high real rates and low and more stable inflation, there are a few
jumps into the higher inflation regime 3.

Post-1982, the regimes 2 and 4, with lower expected inflation, occur regularly. These
regimes are associated with rapid decreases in inflation and downward sloping real yield curves.
From a Taylor (1993) rule perspective, these regimes may reflect periods where an activist
monetary policy of raising real rates, especially through actions at the short-end of the yield
curve, achieved disinflation. There are several features of the occurrence of these regimes
consistent with this interpretation. First, transitioning into regimes 2 and 4 requires high real
rates. Second, these regimes only occur after the Volcker period, which is consistent with the
economic arguments of Nelson (2004) and Meltzer (2005), who argue that only after 1979,
US monetary authorities had sufficient credibility to change inflation behavior. Third, it also
consistent with the econometric analysis of the Taylor rule in Bikbov (2005), Boivin (2006), and
Cho and Moreno (2006), among others, who document a structural break from accommodating
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to activist monetary policies around 1980.

Towards the end of the 1980s we transition back to the normal regime 1, but just before the
1990-1991 recession, the economy enters into regime 4, followed by regime 2, which lasts until
1994. During the late 1990s, the normal regispe= 1 prevails with normal, stable inflation
and low real rates. During the early 2000s, quarter-on-quarter inflation was briefly negative,
and the model transitions to the disinflation regimes- 2 ands;, = 4 around the time of the
2001 recession. At the end of the sample, December 2004, the model seems to be transitioning
back to the normad; = 1 regime.

In Figure 2, we sum the fow; regimes into theirs{ ands] sources. In the top panel, we
graph the real short and long 20-quarter real rates, together with one-period expected inflation
and long-term inflation compensation for comparison. The real short rate exhibits considerable
short-term variation, sometimes decreasing and increasing sharply. There are sharp decreases
of real rates in the 1958 and 1975 recessions and after the 2001 recession. Real rates are
highly volatile around the 1979-1982 period and increase sharply during the 1980 and 1983
recession$! Consistent with the older literature like Mishkin (1981), real rates are generally
low from the 1950s until 1980. The sharp increase in the early 1980s up to above 7% was
temporary, but it took until after 2001 before real rates reached the low levels common before
1980. Over 1961-1986, Garcia and Perron (1996) find three non-recurring regimes for real
rates: 1961-1973, 1973-1980, and 1980-1986. In Figure 2, these periods roughly align with
low but stable real rates, very low to negative and volatile real rates, and high and volatile real
rate periods. We generate this behavior with recursi,ﬁgnd st regimes. The Garcia-Perron
model could not generate the gradual decrease in real rates observed since the 1980s. The long
real rate shows less time variation, but the same secular effects that drive the variation of the
short real rate are visible.

In the middle panel of Figure 2, we plot the smoothed regime probabilities for the regime
s{ = 1, which is the low volatility f, regime associated with relatively high nominal term
spreads. The high variabilitg{ = 2 regime occurs just prior to the 1960 recession, during the
OPEC oil shocks of the early 1970s, during the 1979-1982 period of monetary targeting, during
the 1984 \Volcker disinflation, in the 1991 recession, briefly in 1995, and in 2000.

In the bottom panel of Figure 2, the smoothed regime probabilitie$ twfok very different
from the regime probabilities osff, indicating the potential importance of separating the real
and inflation regime variables. We transition b = 2, the disinflation regime, only after
1979 with the 1979-1982 period featuring some sudden, short-lived transitiefis{@. The

11 The 95% standard error bands computed using the delta method are very tight and well within 20 basis points,
so we omit them for clarity.
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second inflation regime also occurs after 1985, during a sustained period in the early 1990s, and
after 2000. In this last recession, there were significant risks of deflation. Clearly, the model
accommodates rapid decreases in inflation by a transition to the second tégime.

Standard two-regime models of nominal interest rates (both empirical and term structure
models), predominantly pick up the late 1970’s and early 80’s as one regime change. These
two-regime models identify the pre-1979 period and the period after the mid-1980s as a low
mean, low volatility regime (see, for example, Gray (1996), Ang and Bekaert (2002a), and
Dai, Singleton and Yang (2006)). Our regimes for real factors and inflation have more frequent
switches than two-regime models. In fact, the famous 1979-1982 episode is a period of both
high real rates and high inflation in the late 1970s (regime 3), combined with high real rates
and a transition to the second inflation regime caused by a dramatic decrease in inflation in the
early 1980s (regime 4). Hence, our regime identification does not seem to be driven by a single
period, but rather reflects a series of recurring regimes.

4 The Term Structure of Real Rates and Expected Inflation

We describe the behavior of real yields in Section 4.1. Section 4.2 discusses the behavior of
expected inflation and inflation risk premia. Combining real yields with expected inflation and
inflation risk premia produces the nominal yield curve, which we discuss in Section 4.3, before
turning to variance decompositions in Section 4.4.

4.1 The Behavior of Real Yields
The Real Term Structure

We examine the real term structure in Figure 3 and Table 6. Figure 3 graphs the regime-
dependent real term structure. Every point on the curve for regimpresents the expected

real zero coupon bond yield conditional on regimé&|[j*|s, = i]).!* The unconditional real

yield curve is graphed in the circles, which shows a slightly humped real curve peaking around a
1-year maturity before converging to 1.3%. Panel A of Table 6 reports that in the normal regime

12The inflation regime identifications of Evans and Wachtel (1993) and Evans and Lewis (1995) are not directly
comparable as their models feature a random walk component in one regime (with no drift) and an AR(1) model

in the other.
13 Appendix G details the computation of these conditional moments. It is also possible to compute the more

extreme cas&[y;'|s: = i, Vt], that is, assuming that the process never leaves regiffieese curves have similar
shapes to the ones shown in the figures but lie at different levels.
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(s; = 1), the long-term rate curve assumes the same shape but is shifted slightly downwards,
ranging from 1.14% at a 3-month horizon to 1.29% at a 5-year horizon.

In regimes 2 and 4, real rates start just below 2% at a 1-quarter maturity and decline to
1.59% for regime 2 and 1.52% for regime 4 at a 20-quarter maturity. Finally, regime 3, a low
real rate-high inflation and volatile regime, has a humped, nonlinear, real term structure. This
real yield curve peaks at 1.54% at the 1-year maturity before declining to the same level as the
unconditional yield curve at 20 quarters. Thus, we uncover our first claim:

Claim 1 Unconditionally, the term structure of real rates assumes a fairly flat shape around
1.3%, with a slight hump, peaking at a 1-year maturity. However, there are some regimes in
which the real rate curve is downward sloping.

Panel A of Table 6 also reports that while the standard deviation of real short rates are
lowest in regime 1 at 1.40%, the standard deviations of real long rates are approximately the
same across regimes, at 0.55%. We compute unconditional moments of real yields in Panel
B, which shows that the unconditional standard deviation of the real short rate (20-quarter real
yield) is 1.46% (0.55%). These moments solidly reject the hypothesis that the real short rate is
constant, but at long horizons real yields are much more stable and persistent. This is reflected
in the autocorrelations of the real short rate and 20-quarter real rate, which are 60% and 94%,
respectively. The mean of the 20-quarter real term spread is only 7 basis points. The standard
error is only 28 basis points, so that the real term structure cannot account for the 1.00% nominal
term spread in the data. Hence:

Claim 2 Real rates are quite variable at short maturities but smooth and persistent at long
maturities. There is no significant real term spread.

The Correlation of Real Rates and Inflation

Panel C of Table 6 reports conditional and unconditional correlations of real rates and inflation.
At the 1-quarter horizon, the conditional correlation of real rates with actual inflation is negative
in all regimes and hence also unconditionally. The negative estimate foostly drives this

result. The correlations with expected inflation are smaller in absolute value, but still mostly
negative. However, the differences across regimes are not large in economic terms and the
correlations are overall not significantly different from zero. Consequently, we do not find
strong statistical evidence for a Mundell-Tobin effect:

Claim 3 The real short rate is negatively correlated with both expected and unexpected
inflation, but the statistical evidence for a Mundell-Tobin effect is weak.
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This negative correlation between real rates and inflation is consistent with earlier studies
such as Huizinga and Mishkin (1986) and Fama and Gibbons (1982), but their analysis
implicitly assumes a zero inflation risk premium so their instrumented real rates may partially
embed inflation risk premiums. The small Mundell-Tobin effect we estimate is consistent with
Pennachi (1991), who uses a two-factor affine model of real rates and expected inflation, but
opposite in sign to Barr and Campbell (1997), who use U.K. interest rates and find that the
unconditional correlation between real rates and inflation is small but positive. As each regime
records a negative correlation between real rates and inflation, we do not find any evidence
that the sign of the correlation has changed over time, unlike what Goto and Torous (2006) find
using an empirical model that does not employ term structure information or preclude arbitrage.

The correlations between real yields and actual or expected inflation robustly turn positive
atlong horizons. Some of these correlations are statistically significant, although most are again
not precisely estimated. The positive signs at long horizons result from the positive feedback
effect of thed coefficients dominating the negative effect of thecoefficient in the short rate
equation. This indicates that the Mundell-Tobin effect is only a short-horizon phenomenon.
Over long horizons, real yields and inflation are positively correlated.

A commonly-imposed restriction in structural models on the relation between inflation and
real rate is that the effect of inflation on real rates is relatively short lived. Figure 4 graphs
impulse responses of one- and 20-quarter real yields to factor shgcksandr). The impact
of inflation shocks on both the short and the long real rate dies out quickly, while shocks to the
price of risk factorg, and the real rate factof, have more persistent effects. In particular, the
effect of an inflation shock on real yields lasts less than a year.

The Effect of Regimes on Real Rates

Introducing regimes allows a further nonlinear mapping between latent factors and nominal
yields not available in a traditional affine model, so that the dynamics of real long yields are
not just linear transformations of nominal yield factors. To compare the effect of incorporating
regimes, we contrast our model-implied real yields with those implied by migddFigure 5
plots real yields from modelg, and/V ¢ and we characterize the differences between the real
yields from each model in Table 7.

Panel A of Table 7 reports the population moments of real yields from mdgelad/V“.
The mean real short rate in modelis 1.42%, very close to the 1.39% mean of the one-quarter
real yield for a similar model estimated by Campbell and Viceira (2001). This is slightly higher,
but very similar to the mean level of short rates from our mddéf, at 1.24%. The standard
deviations of real short rates are also similar across the two models, at 1.59% and 1.46%, for
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models/,, and IV ¢, respectively. However, Moddl,’s real short rates are somewhat more
persistent, at 0.72, than the autocorrelation of short rates from niddelat 0.60. There are
bigger differences for population moments for real long yields between the models. The real
long-end of the yield curve for modé), is, on average, 40bp higher than for mod®l“ and

twice as variable, with standard deviations of 1.04% and 0.55%, respectively. The correlation
between short and long real rates is higher for mdgeht 0.79, than for modelV ¢, at 0.64.

Thus, the addition of regimes has important consequences for inferring long real rates.

Figure 5 plots the real short and long yields over the sample from the two models. The
top panel shows that the real short rates from modgland /V¢ follow the same secular
trends, but the correlation between the two model implied real rates is only 0.57. The main
difference occurs during the late 1970s. Mod&l® documents that real short rates were fairly
low during this period, consistent with the early estimates of Mishkin (1981) and Garcia and
Perron (1986). In contrast, modg/'s real rates are much higher during this period. To quantify
these differences, Panel B of Table 7 reports summary statistics on the difference b&gtween
from modell,, and#, from model/V°. The largest difference of 6.01% occurs during the 1974
recession. In the bottom panel of Figure 5, we graph the real long yield from the two models.
While the higher variability of thé€,-implied real long yield is apparent, the two models clearly
share the same trends. In fact, the real long rates from the two models have a 0.95 correlation.

In a traditional affine model, there is a direct linear mapping between the latent factors and
nominal yields, which may imply that real rates, which are linear combinations of the latent
factors, are highly correlated with nominal yields. This is the case for mdelhe bottom
panel of Figure 5 shows that real long yields from mobtestart from below zero in 1952 and
reach close to 5% in 1981, before declining to 30bp in 2005. These long real rates are highly
correlated with long nominal rates, with a correlation coefficient of 0.98. Incorporating regimes
in model/V ¢ reduces the correlation between real and nominal long rates to 90%. In contrast to
modell,,, real long yields implied by modél’¢ are more stable and have never been negative.
This appears a more economically reasonable characterization of real long yields.

4.2 The Behavior of Inflation and Inflation Risk
The Term Structure of Expected Inflation

Table 8 reports some characteristics of inflation compensatigp; expected inflation,
Ei(7t+0.n); @and the inflation risk premiumy, ,,. We focus first on the inflation compensation
estimates. The most striking feature in Table 8 is that the term structure of inflation
compensation slopes upwards in all regimes. Regime 1 is the normal regime and in this
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regime, the inflation compensation spreadfis, —;, = 1.17%, very close to the unconditional
inflation compensation spread of 1.14%. In regimes 2 ands; = 4, inflation compensation

starts at a lower level because these are the regimes with downward sloping real yield curves
and a disinflationary environment. However, the inflation compensation spreads are roughly
comparable to the unconditional compensation spread, at 1.34% and 1.16% for rggines

ands; = 4, respectively. We report the term structure of expected inflation in the second panel
of Table 8. Expected inflation always approaches the unconditional mean of inflation as the
horizon increases in all regimes, because inflation is a stationary process.

The Inflation Risk Premium

Since the term structure of inflation compensation is upward sloping but expected inflation
converges to long-run unconditional expected inflation, the increasing term structure of inflation
compensation is due to an inflation risk premium:

Claim 4 The model matches an unconditional upward-sloping nominal yield curve by generat-
ing an inflation risk premium that is increasing in maturity.

The third panel of Table 8 reports statistics on the inflation risk premgym In the normal
regimes;, = 1 and unconditionally, the five-year inflation risk premium is around 1.15%, which
is almost the same magnitude as the 5-year term spread generated by the model of 1.21%. The
inflation risk premium is higher in regimeg = 3 with higher and more variable inflation than in
regimes, = 1. In the high real rate regimes = 2 ands, = 4, the inflation risk premium is less
than 55 basis points. In regimg = 4, the inflation risk premium is not statistically different
from zero. In Campbell and Viceira’s (2001) one-regime setting, is approximately 0.42%,
accounting for about half of their model-implied 40-quarter nominal term spread of (:88%.
We obtain inflation risk premiums of this low magnitude only in high real rate regimes, and in
normal times assign almost all of the positive nominal yield spread to inflation risk premiums.

Figure 6 provides some intuition on which parameters have the largest effect on the
unconditional 20-quarter inflation risk premium. The risk premium is not very sensiti¥ge to
or ®,,. However, increasing the persistence of the inflation process either thiigyghr @,
considerably increases ,,. Increasing these parameters would also turn the slightly negative

4 Campbell and Viceira (1996) report that the difference in expected holding period returns on ten-year nominal
bonds over nominal 3-month T-bills in excess of the expected holding period returns on ten-year real bonds
over the real 3-month short rate is approximately 1.1% and define this to be the inflation risk premium. In
our model, the corresponding number for this quantity at a 20-quarter matutitylis( P, /P?°) — y{] —

B[ (P, P2) = ] = 1.46%.
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correlation between expected inflation and real rates into a positive correlation. The effect of
persistence is also stronger than the effect of the price of\igk’ ). Making the price of risk

more negative naturally increases the inflation risk premium, but this would cause the model to
grossly over-estimate the nominal term spread.

The time variation of the inflation risk premium is correlated with the time variation of the
price of risk factory,, but the correlation of the inflation risk premium wighis small, at 9.5%
for a 20-quarter maturity. To calculate the proportion of the variancg,af due to regime
changes, we compare the unconditional varianceg,ef varying across all four regimes with
the variance o o if the model never switched from = 1. We find that a significant fraction,
namely 40%, of the variation af, 5 is due to regime changes.

Figure 7 graphs the 20-quarter inflation risk premium over time and shows that the inflation
risk premium decreased in every recession. During the 1981-83 recession, the inflation premium
is very volatile, increasing and decreasing by over 75 basis points. The general trend is that the
premium rose very gradually from the 1950s until the late 1970s before entering a very volatile
period during the monetary targeting period from 1979 to the early 1980s. It is then that the
premium reached a peak of 2.04%. While the trend since then has been downward, there have
been large swings in the premium. From a temporary low of 50 basis points in the mid-1980s
it shot above 1%, coinciding with the halting of the large dollar appreciation of the early 1980s.
The inflation premium dropped back to around 50 basis points after the 1987 stock market crash
and reached a low of 0.38% in 1993. The sharp drops in the inflation risk premium coincide
with transitions to regimes with high real short rates. During 1994, the premium shot back up
to 1.37% at the same time the Federal Reserve started to raise interest rates. During the late
1990s bull market inflation risk premiums were fairly stable and declined to 0.15% after the
2001 recession when there were fears of deflation. At the end of the sample in December 2005,
the inflation risk premium started to increase again edging close to 1%.

4.3 Nominal Term Structure

Figure 8 graphs the average nominal yield curve. The unconditional yield curve is upward
sloping, with the slope flattening out for longer maturities. The benchmark model produces a
nominal term spread of° — y; = 1.21%, well inside a one standard error bound of the 1.00%
term spread in data. Strikingly, in no regime does the benchmark model generate a conditional
downward sloping nominal yield curve. In regimes= 2 ands; = 4, the real rate term
structure is downward sloping, but the upward sloping term structure of inflation risk premiums
completely counteracts this effect. Thus, regimes are important for the shape of the real, not
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nominal yield curve.

The first regime (low real rate-normal inflation regime) displays a nominal yield curve that
almost matches the unconditional term structure. In the second regime, the yield curve is shifted
downwards but is more steep because rates are lower than in the first regime due to lower
expected inflation and inflation risk. In the third regime, the term structure is steeply upward
sloping at the short end but then becomes flat and slightly downward sloping for maturities
extending beyond 10 quarters. Nominal interest rates are the highest in this regime because in
this regime, expected inflation is high and the level of real rates is about the same as in regime
1. In regime 4, the real interest rate curve is downward sloping starting at a high level. Inflation
compensation, however, is low in this regime (resulting in nominal yields of an average level),
and is upward sloping, making the nominal yield curve upward sloping on average. Yet, in
both regimes 2 and 4, a slight J-curve effect is visible at short maturities with nominal rates
decreasing slightly before starting to increase.

Interest rates are often associated with the business cycle. The business cycle dates reported
by the NBER are regarded as benchmark dates by both academics and practitioners. According
to the conventional wisdom, interest rates are pro-cyclical and spreads counter-cyclical (see,
for example, Fama (1990)). Table 9 shows that this is incorrect when measuring business
cycles using NBER recessions and expansions. Interest rates are overall larger during NBER
recessions. However, when we focus on real rates, the conventional story is right:

Claim 5 Nominal interest rates do not behave pro-cyclically across NBER business cycles but
our model-implied real rates do.

This can only be the case if expected inflation is counter-cyclical. The table shows that this is
indeed the case, with inflation compensation being strongly counter-cyclically, averaging 4.73%
in recessions but only 3.57% in expansions. Veronesi and Yared (1999) also find that real rates
are pro-cyclical in a RS model. In contrast, the real rates implied by mQdate actually
counter-cyclical, averaging 1.58% (1.80%) across NBER expansions (recessions). Thus, the
presence of the regimes helps to induce the pro-cyclical behavior of real rates. Finally, Table 9
also illustrates that recessions are characterized by more volatility in real rates, nominal rates,
and inflation.

4.4 Variance Decompositions

Table 10 reports the population variance decomposition of the nominal yield into real and
inflation compensation. The conditional variance decompositions are very similar across the
regimes and so are not reported. The results show that
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Claim 6 The decompositions of nominal yields into real yields and inflation components at
various horizons indicate that variation in inflation compensation (expected inflation and
inflation risk premia) explains about 80% of the variation in nominal rates at both short and
long maturities.

This is at odds with the folklore wisdom that expected inflation primarily affects long-term
bonds (see, among others, Fama (1975) and Mishkin (1981)). The single-regime ipodel
attributes even less of the variance of long-term yields to inflation components: at a 20-quarter
maturity variation in real yields account for 37% of movements in nominal rates compared to
28% at a 1-quarter maturity. This may be caused by the poor match of inflation dynamics
using an affine model calibrated to inflation data. Pennachi’s (1991) affine model identifies
expected inflation from survey data and finds that expected inflation and inflation risk shows
little variation across horizons. Table 10 also reports that the inflation risk premium accounts
for 10% of the variance of a 20-quarter maturity nominal yield.

In Table 11, we decompose the variation of nominal term spreads into real rate, expected
inflation, and inflation risk premium components. Unconditionally, inflation components
account for 49% of the 4-quarter term spread and 80% of the 20-quarter term spread variance.
For term spreads, inflation shocks only dominate at the long-end of the yield curve. In the
regimes with relatively stable real rates (regimes 1 and 2), inflation components acount for over
100% of the variance of long-term spreads. In regimes 3 and 4, real rates are more volatile, and
expected inflation accounts for approximately 35% of the variation in the 4-quarter term spread,
increasing to over 70% for the 20-quarter term spread. Hence, the conventional wisdom that
inflation is more important for the long end of the yield curve holds, not for the level of yields,
but for term spreads:

Claim 7 Inflation compensation is the main determinant of nominal interest rate spreads at
long horizons.

The intuition behind this result is that the long and short end of nominal yields have large
exposure to common factors, including the factors driving inflation and inflation risk. It is only
after controlling for an average effect, or by computing a term spread, that we can observe
relative differences at different parts of the yield curve. Thus, only after computing the term
spread do we isolate the factors differentially affecting long yields controlling for the short
rate exposure. The finding that inflation components are the main driver of term spreads is
not dependent on having regimes in the term structure model. Mishkin (1990, 1992) finds
consistent evidence with simple regressions using inflation changes and term spreads, as do
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Ang, Dong and Piazzesi (2006) in a single-regime affine model. In mdéhe attribution of
the unconditional variance the 20-quarter term spread to the variation in inflation compensation
is also close to 100%.

5 Conclusion

In this article, we develop a term structure model that embeds regime switches in both real and
nominal factors, and incorporates time-varying prices of risk. The model that provides the best
fit with the data has correlated regimes coming from separate real factor and inflation sources.

We find that the real rate curve is fairly flat but slightly humped, with an average real
rate of around 1.3%. The real short rate has an unconditional variability of 1.46% and has
an autocorrelation of 60%. In some regimes, the real rate curve is downward sloping. In
these regimes, expected inflation is low. The term structure of inflation compensation, the
difference between nominal and real yields, is upward sloping. This is due to an upward sloping
inflation risk premium, which is unconditionally 1.14% on average. We find that expected
inflation and inflation risk account for 80% of the variation in nominal yields at both short and
long maturities. However, nominal term spreads are primarily driven by changes in expected
inflation, particularly during normal times.

Itis interesting to note that our results are qualitatively consistent with Roll’'s (2004) analysis
on TIPS data, over the very short sample period since TIPS began trading. Consistent with our
results, Roll also finds that the nominal yield curve is more steeply sloped than the real curve,
which is also mostly fairly flat over our over-lapping sample periods. Roll also shows direct
evidence of an inflation premium that increases with maturity.

Our work here is only the beginning of a research agenda. In future work, we could
use our model to link the often discussed deviations from the Expectations Hypothesis (see,
for example, Campbell and Shiller (1991)) to deviations from the Fisher hypothesis (Mishkin
(1992)). Although we have made one step in the direction of identifying the economic sources of
regime switches in interest rates, more could be done. In particular, a more explicit examination
of the role of business cycle variation and changes in monetary policy as sources of the regime
switches is an interesting topic for further research.
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Appendix

A Modeling Separate f and m Regimes: Case B
For completeness, we first state the case of independent regimesaods™ as Case A. In this case,
Pr(s{+1 = J, 5141 = k:|3{ =m,sy =n)= Pr(s{c_s_1 = j\s{ =m) X Pr(sf,, = kls{ =n). (A-1)

DenotingPr(s{H = 1‘5{+1 =1) =p/, Pr(sf, = 1|sf,, = 1) = pT, Pr(s{+1 = Z\S{H =2) = ¢/, and
Pr(sf, , = 2[sf,; = 2) = ¢" gives rise to a restricted transition probability mafiix

[St+1 = 1] [st41 = 2] [st41 = 3] [st41 = 4]
(st = 1] p'p" p (1-p7) A-pN)p™ [O-p)A-p)
[s¢ = 2] P (1—q7) plq" (1-p/)(1—q") (1-p")q" (A-2)
se=31| (I-¢D)p™ [(A-¢5)Q-p") ¢/ p ¢/ (1—p")
[se=4] | (1-¢/) (01 —q") (1-¢/)q" ¢/ (1—4q") a’q"

In Case B of Section 2.3,{ ands] are correlated and we decompose the joint transition probabilifyawid
T regimes as:
P foo_ s k f_ T _
r(3t+1 JsSt+1 |s; =m,s{ =n)

= Pr(stf+1 =jlsi = k7stf =m,s; =n)x Pr(sf,, = k|stf =m,s; =n)

= Pr(sl,y = jlste = kysl = m) x Pr(sTyy = k|s] =n) (A-3)
In the last line, we assume that the past inflation regime does not determine the contemporaneous correlation of the
f: and ther, regime. Mathematically, we assume tht(s/, | = j|s7. = k,s{ = m,sT =n) = Pr(s], =

Jlste = k,s{ = m). We also assume thdtr(s7,, = k|s] = n, s =m) = Pr(sf,, = k|sf =n), or that the
past real ratg; factor regime does not influence future inflation regime realizations.
In equation (A-3), we parameterizer(s{, | = j|s7,; = k,s{ =m)asp™/">""", where:

A s =8, =1
T7Y B itsl, =s7, =2

A ifsl =1
B ifs; =2.

With this notation, the transition probability matikassumes the form:

[st41 = 1] [st41 = 2] [st41 = 3] [st41 = 4]
[se=1][  pp7 A-p"A-pn) [ (A-p*)p" [p"A(1—p")
[se=2] | p* (1 —q") 1-p" g™ [ (A-p*)(1-q¢") [ p"q¢" (A-4)
[se=3] | p"Pp" [ (A-p"P)(1-p) | (1-p*)p" [pPF(A-p")
[se =4] [ PP (1—q7) 1-p"P)g" [ (A-p"")(A-q) [ p""¢"

This model has four additional parameters relative to the benchmark model. We can test the null of independent
real rate and inflation regimes versus correlated regimes by:

HO :pBA =1 _pAA andeB =1 _pAB.

In our estimation, we reject the null of independent regimes in equation (A-1) against the alternative of Case B,
but this model provides a worse fit to the data than Case C.
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B Real Bond Prices

Let N; be the number of unobserved state variables in the maddel=£€ 3 for the stochastic inflation model,
N; = 2 otherwise) andV = Nj + 1 be the total number of factors including inflation. The following proposition
describes how our model implies closed-form real bond prices.

Proposition B.1 Let X; = (¢ fim) or Xy = (q; fr wem) follow (2), with the real short rate (4) and real
pricing kernel (5) with prices of risk (6). The regimgsfollow a Markov chain with transition probability matrix

IT = {p;;}. Then the real zero coupon bond price for periodonditional on regime, 13t"(st = 1), is given by:
Py (i) = exp(A, (i) + Bu Xy). (B-1)

The scalarﬁ (i) is dependent on regimg = i and Bn isal x N vector that is partitioned aﬁn = [Bnq Bm}

whereB,, nq COrresponds to the variable andB,,, corresponds to the other variables . The coefficientsl,, (1)

and B, are given by:

Ay (i) = — (50 + B;qu'quO) + IOgZsz exp (A\n (4) + Bnp (4)
J

N}

N , 1~ A
B, (HAG) + Bzumwm)
B =— &+ B,® — Enqoqvlel, (B-2)

wheree; denotes a vector of zero’s with a 1 in tite place and>, (¢) refers to the lowetV; x N; matrix of of
¥(z) corresponding to the nog, variables inX,. The starting values foA,, (i) and B,, are:

Ay (1) = =do
By = 4. (B-3)
Proof:
We first derive the initial values in (B-3):
Pl(i) = ZpijEt {Z\Z+1|St+1 = j}

J

- pr exp (Tt - *)\t( ) A () — A (j)/€t+1>

J
exp (—dy — 61 X¢) (B-4)

Hence: R R R
Ptl (i) = exp(A1(i) + B1Xy),

whereA, (i) andB; take the form in (B-3).
We prove the recursion (B-2) by induction. We assume that (B-1) holds for matuaityl examine?" ™ (i):

Bt (i) = pijEeexp [—Tt - *)\t( ) At (5) = M (5) €1 + An () + BuXegr |
J

1 . . . ~ .
=2kﬂmmﬂm—&&—2&muan—&m%m+Auﬁ

+Ba (1 (4) + X0+ B () )] (B-5)
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Evaluating the expectation, we have:
n 1 . N T B .
Pt )=3p exp[ = 81X = 52 () M () + Au () + Bunt (5)

B0+ 3 (B2 0) - A 0)) (B2 ) -2 ()|
=exp [—60 + (gn@ — (53) Xt}

xzpuexp[ D4 Bun) - BEGNG) 4 3BEOSWE] @

But, we can write:

~

= Brgoq (0 + vlelXt) naYa () A () - (B-7)

Then, expanding and collecting terms, we can write:
PP (i) = exp(An(i) + Ba Xy),

whereﬁn(z‘) and]§n take the form of (B-2)

C Nominal Bond Prices

Following the notation of Appendix B, le¥; be the number of unobserved state variables in the médeK 3
for the stochastic inflation modely; = 2 otherwise) andV = N; + 1 be the total number of factors including
inflation. The following proposition describes how our model implies closed-form nominal bond prices.

Proposition C.1 Let X; = (¢ fi m)" or Xy = (q; fi wy )" follow (2), with the real short rate (4) and real
pricing kernel (5) with prices of risk (6). The regimesfollow a Markov chain with transition probability matrix
IT = {p;;}. Then the nominal zero coupon bond price for periodonditional on regime, P;*(s; = i), is given

by:
P['(i) = exp(A, (i) + B Xy), (C-1)

where the scalad,, (i) is dependent on regimg = i and B,, isan N x 1 vector:
An-&-l(i) = (50 + B,:an'q’yo) + log Zpij exp (An (J) + (Bn - 3?\/) w (])
j
. . 1 . .
— (Bas = €h) S (DAG) + 5 (Ba — ) () S 0) (B — k')
Bpy1=—01+ (B, —€y) P — Bnqcrq'ylel, (C-2)

wheree; denotes a vector of zero’s with a 1 in tfth place,A(i) is a scalar dependent on regimmg= i, B, is a
row vector, which is partitioned aB,, = [B,,, B,,|, whereB,,, corresponds to the variable andX, (:) refers to
the lowerN; x N; matrix of ofX(¢) corresponding to the nog; variables inX,. The starting values foA,, (4)
and B,, are:

Ax () = b 108 iy exp s () + 3RS (VS ) e+ ¢4, 2 A )

By = — (6] + ey ®). (C-3)
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Proof:

We first derive the initial values (C-3) by directly evaluating:

Py (i) = ZpijEt [1\/4\:5+1|St+1 =]
J

.. , ) ) )
= pijexp (—Tt — gt () A (7) = Ae (5) €1 — ey (1 () + X, + 2 (j) €t+1)>
J
=exp (—50 — (%Xt — 6?\{‘I’Xt)

. . 1 . . .
X Y Pij exp <—e§vu(3) — B () e = A () A () = A (J)I€t+1)
j
=exp (—dp — 6 Xy — ey ®Xy)

by exp (—e’Nu () + 5D Z ) en + S ()N (j)) : (C-4)

Note thate’y X (5) A (j) = ey, 2 (7)A(4). Hence:
P! (i) = exp (A1 (i) + B1 X;)
whereA; (i) and B, are given by (C-3).
To prove the general recursion we use proof by induction:

. 1 . . .
P (i) = E pij By [exp (—Tt - 5)% () A () = A (§) g1 — €§vXt+1)
J

exp (An (]) + BnXt-‘rl):l

1 . . . .
= i {GXP (—50 — 0 X =g () At (G) = At (5) €41 + An ()

J

(B — ) (1) + DX, + 2 () e141) ]

1. _ . .
= pijexp (—50 -0 X — SN () A () + A (§) + (Bn — €)1 ()
J

+(By — ely) 2X, + % (Bn =€) 2 () = A (5)') (B = ev) 2() = A (j)’)’)

= exp (o + (B — )~ 51) X) Y piy e (An () + (Bu — ) n (5)

~(Ba = SO AG) + 5 (Ba = k) S0 E0) (B~ ) ()

Now note that:

(Bn =€) S () A () = (Br — €y) { " (Qj (?)Vifall)X ! ]

5.2 || e EnG |

= Bnqa-q (’YO + 'yle&Xt) + (an - 69\[1) Zw (.]) )‘(j) (C'6)

whereB,, = [B,4 Bz
Hence, collecting terms and substituting (C-6) into (C-5), we have:

PP (i) = exp [An+1 (1) + Bup1 Xd]
where: A, (i) andB,, are given by (C-2)H
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D Likelihood Function and Identification

Likelihood Function

We specify the set of nominal yields without measurement errdf 26N, x 1) and the remaining yields &%;
(N5 x 1). There are as many yields measured without error as there are latent fackqrsTihe complete set of
yields are denoted a5 = (Y7, Y3,)’ with dimensionM x 1, whereM = N; + N,. Note that the total number of
factors inX; is N = N; + 1, since the last factor, inflation, is observable.

Given the expression for nominal yields in (11), the yields observed without error and inflétien(Y7, =)',

take the form:
Zy = Ai(s¢) + Bi1 Xy, (D-1)

where:
Ay (s1) = {A”ést)} B = {Bn] , (D-2)

€N
where A, (s;) is the N, x 1 vector stacking the-A,,(s;)/n terms for theN; yields observed without error, and

B, is aN; x N matrix which stacks the- B,, /n vectors for the two yields observed without error. Then we can

invert for the unobservable factors:
X = Bil(Zt — Al(St)) (D'S)

Substituting this into (D-1) and using the dynamicsgfin (2), we can write:
Zy = (s, 5e—1) + W21 + Q(sy)ey, (D-4)
where:
c(st,80-1) = A1(se) + Bip(se) — Bi®By M Ay (si-1)

U =B,eB !
Q(St) = Blz(st)

Note that our model implies a RS-VAR for the observable variables with complex cross-equation restrictions.
The yieldsY>; observed with error have the form:

Yoy = Aa(st) + Ba Xy + uy, (D-5)

where A; and Bz (s;) follow from Proposition C.1 and is the measurement errar; ~ N(0,V'), whereV is a
diagonal matrix. We can solve fay. in equation (D-5) using the inverted factor process (D-3). We assumethat
is uncorrelated with the erroes in (2).

Following Hamilton (1994), we redefine the stat€sto count all combinations of; ands;_;, with the
corresponding re-defined transition probabilitigs= p(s;,, = i|s; = j). We re-write (D-4) and (D-5) as:

Zy = o)) + UZiy + QsD)er, (D-6)
Yor = Aa(s}) + Bo Xy + wy.

Now the standard Hamilton (1989, 1994) and Gray (1996) algorithms can be used to estimate the likelihood
function. Since (D-6) gives us the conditional distributifr,, Y,!|s; = i, I;_1), we can write the likelihood as:

L = HZf(ﬂ't;YltaY2t|5I7It—1)P7"(52<|It—1)

t s}
11D. r(Zulst, ia) f (Yaulme, Yan, 87, Te—a) Pr(s; | T—1) (D-7)
t s}

where:
F(Zils; Tioy) = (2m)~NED21Q(s7)Q(s7) |2

exp (—§<zt — e(s}) = WZe 1) [9()s]) ] (Var — e(s7) — \PZH))
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is the probability density function of, conditional ons; and

f(Y2t|7TtaY1t;5:aIt71) =

1
(2m) V] e (5 (V= Aa(s]) = BaXe) V7 Ve = Aa(e) - BaXo )

is the probability density function of the measurement errors conditionsj.on
The ex-ante probability’r(s; = i|I;—1) is given by:

Pr(s; =illi1) = > _pjPr(si_; = j|li-1), (D-8)
J

which is updated using:

f(Zs,s7 = jlIi-1)

F(Zi| 1)
__f&ls; =5, L) Pr(si = jlIi-1)
Y f(Zilsp =k, Li—y) Pr(s; = k|L,_1)

An alternative way to derive the likelihood function is to substitute (D-3) into (D-5). We then obtain a RS-VAR
with complex cross-equation restrictions for all variables in the sy$#&H7,)’. Note that unlike a standard affine
model, the likelihood is not simply the likelihood of the yields measured without error multiplied by the likelihood
of the measurement errors. Instead, the regime variables must be integrated out of the likelihood function.

Pr(s; = j|I) =

Identification

There are two identification problems. First, there are the usual identification conditions that must be imposed to
estimate a model with latent variables, which have been derived for affine models by Dai and Singleton (2000).
In a single-regime Gaussian model, Dai and Singleton show that identification can be accomplished by setting the
conditional covariance to be a diagonal matrix and letting the correlations enter through the feedbaclkdatrix (
which is parameterized to be lower triangular, which we do here.

The RS model complicates identification relative to an affine model. The parameterization in equations (2)-
(7) already imposes some of the Dai and Singleton (200) conditions, but some further restrictions are necessary.
Sinceq; and f, are latent variables, they can be arbitrarily scaled. Weiset (§,0;0-) = (116:)" in (4).
Settingd, andd; to be constants allows, ando(s.+1) to be estimated. Becausgis an unobserved variable,
estimatingu,, in (3) is equivalent to allowingy, in (6) or d, in (4) to be non-zero. Hence, must have zero mean
for identification. Therefore, we set, = 0, sinceg; does not switch regimes. Similarly, because we estimate
Ar(si+1), we constrainf, to have zero mean.

The resulting model is theoretically identified from the data, but it is well known that some parameters that
are identified in theory can be very hard to estimate in small samples. This is especially true for price of risk
parameters. Because we using four nominal yields, we should be able to identify all three prices of risk. However,
Dai and Singleton (2000) note that it is typically difficult to identify more than one constant price of risk. Hence,
we sety, = 0 in (6) and instead estimate the RS price of thsKs;1).

We also setb;, = 0 in equation (3). With this restriction, there are, in addition to inflation factors, two
separate and easily identifiable sources of variation in interest rates: a RS factor and a time-varying price of risk
factor. Identifying their relative contribution to interest rate dynamics becomes easy with this restriction and it is
not immediately clear how a non-zero coefficient would help enrich the model.

As ¢q; and f; are zero mean, the mean level of the real short rate in (4) is determined by the mean level of
inflation multiplied byé,. and the constant terdy. We setj, to match the mean of the nominal short rate in the
data, similar to Ang, Dong and Piazzesi (2006) and Dai, Singleton and Yang (2006).

Finally, we set the one-period price of inflation risk equal to zards; 1) = 0. Theoretically, this parameter
is uniquely identified, but in practice the average level of real rates and the premium is largely indeterminate
without further restrictions. It turns out that the first-order effechpfon real rates and the inflation risk premium
is similar and of opposite sign. Because of this, the parameter is not only hard to pin down, but also essentially
prevents the identification of the average level of real rates and the average level of the inflation risk premium.
Models with a positive one-period inflation risk premium will imply lower real rates and higher inflation premiums
than the results we report.
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E A Regime-Switching Model with Stochastic Expected In-
flation

In a final extension, motivated by the ARMA-model literature (see Fama and Gibbons, 1982; Hamilton, 1985), we
allow inflation to be composed of a stochastic expected inflation term plus a random shock:

T
Ti4+1 — Wy -+ U‘n’£t+17

wherew; = E,; [m.41] is the one-period-ahead expectation of future inflation. This can be accomplished in our
framework by expanding the state variablesX¥p = (g f; w¢ m;)" which follow the dynamics of equation (2),
except now:

g d, 0O 0 0
_ | mr(se) | Prq P4y O 0 .
M(St) o Mo (St) ’ ¢ = (I)wq (bwf (I)ww (buﬂr ’ (E 9)
0 0 0 1 0

andX(s;) is a diagonal matrix wit{o, of(s:) 0w (s¢) ox(s¢))’ on the diagonal. Note that both the variance of
inflation and the process of expected inflation are regime dependent. Moreover, past inflation affects current
expected inflation througfh,, ..

The real short rate and the regime transition probabilities are the same as in the benchmark model. The real
pricing kernel also takes the same form as (5) with one difference. The regime-dependent part of the prices of risk

in equation (6) is now given by:
A@E) = (Ap (i) A (i) Ax (i)',

but we set\,,(¢) = 0 for identification.

F Specification Tests
Moment Tests

To enable comparison across several non-nested models of how the moments implied from various models compare
to the data, we introduce the point statistic:

H = (h—h)S; (h— h), (F-1)

whereh are sample estimates of unconditional momehtaye the unconditional moments from the estimated
model, and,, is the covariance matrix of the sample estimates of the unconditional moments, estimated by GMM
with four Newey-West (1987) lags. In this comparison, the moments implied by various models are compared
to the data, with the data sampling eridy, held constant across the models. The moments we consider are
the first and second moments of term spreads and long yields; the first and second moments of inflation; the
autocorrelogram of term spreads; and the autocorrelogram of inflation.

Equation (F-1) ignores the sampling error of the moments of the model, implied by the uncertainty in the
parameter estimates, making our moment test informal. However, this allows the same weighting matrix, computed
from the data, to be used across different models. If parameter uncertainty is also taken into account, we might
fail to reject, not because the model accurately pins down the moments, but because of the large uncertainty in
estimating the model parameters.

Residual Tests

We report two tests on in-sample scaled residealsf yields and inflation. The scaled residuajsare not the

same as the shocksin (2). For a variable,, the scaled residual is given by= (z; — E;_1(x¢))/+/van_1(x¢),
wherez; are yields or inflation. The conditional moments are computed using our RS model and involve ex-ante
probabilitiesp(s; = i|I;—1). Following Bekaert and Harvey (1997), we use a GMM test for serial correlation in
scaled residuals;:

E[Gt Et—l] =0. (F'Z)
We also test for serial correlation in the second moments of the scaled residuals:
E[((e)* = 1) ((er-1)* = 1)] = 0. (F-3)
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G Computing Moments of the Regime-Switching Model

The formulae given here assume that therefareegimess; = 1,... K. Timmermann (2000) provides explicit
formulae for a similar formulation of (2), except that the conditional meaki,qf, depends op(s;+1) + ®(X; —
w(sy)) rather than omu(s;+1) + @X;. In Timmermann’s set-u(X,|s,) is trivially u(s;), whereas in our model
the computation is more complex.

Conditional First Moments E(X;|s;)

Starting from (2), and taking expectations conditionakgpn,, we have:

E(Xep1lsir1) = B(p(sern)]se41) + PE(X¢[s111) (G-1)
To evaluateéE( X, |s;+1) we use Bayes Rule:

K

B(Xylsi11 =1) = > B(Xilsy = j)Pr(s; = jlsip1 = i) (G-2)
j=1

The probabilityPr(s; = j|s;+1 = 7) is the transition probability of the ‘time-reversed’ Markov chain that moves
backward in time. These backward transition probabilities are given by:

. . Uy
Pr(s; = jlses1 = 1) = by = pji (;) ,
1

wherep;; = Pr(s;+1 = i|s; = j) are the forward transition probabilities ang = Pr(s, = 4) is the stable
probability of regimei. Denote the backward transition probability matrixs= {b;; }
Using the backward transition probabilities, (G-1) can be rewritten:

K
B(Xlsipr =) = p(i) + @ > B(X]s = j)bji- (G-3)
j=1

Assuming stationarity, that I8(X:11]s:+1 = 7) = E(X¢|s: = i), and defining thé{ x 1 vectors:

E(Xifse = 1) (1)
: ] and ji(sy) = { : ] ,
)

E(thst) = :
E(X¢|st = K n(K)

we can write: . ~
E(Xt‘St) == [j(st) + q)E(Xt|St)B/

Hence, we can solve fdt(X,|s;) as:

Vqu(Xt|st)} = (I — B® o) 'vedji(s;)] (G-4)

Conditional Second MomentsE(X; X/|s;)

Starting from (2), we can write:

Xer1Xip1 = ((se41) + PXp + D(se1)ee41) (1(se41) + PXp + B(se41)er41), (G-5)

and taking expectations conditional en 1, we have:

E(Xi1 Xty lser1) = plsern)p(se1)" + 2(se41) 2 (5641)
+ p(se41)E(Xe|s141)'®" + PE(X¢[si 1) pu(s141) + PE(X; X¢|s141)®".  (G-6)
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We can evaluate the terB( X;|s;+1) from (G-2). Hence, we can define &hx N matrix G(3):
G(i) = p(i)u()) + (O + p()B(Xe|se 1 = ) @ + PE(Xy|se 1 = i)u(i)'. (G-7)

Substituting (G-7) into (G-6) and using Bayes’ Rule, we have:

E(Xip1 X[ lse =4) = GG+ Y BEXX{|s; = ) Pr(s; = jlsip1 = 1))@’
K
= G(i)+ > by ®B(X:X{|s; = )’
j=1

Taking vec’s of both sides, we obtain:

K
VedB(X; 11 X[, [si11 = 1)) = VedG(i) + (2 @ @) Y vedB(Xy 1 X[, [se1 = 4))bi; (G-8)
=1

If we define thelX N2 x 1 vectors:

Ve E(X 41X [se41 = 1)) veqG(1))
E(X, X{|s;) = : and G = :
vedE(Xi 1 XG4 [si41 = K)) veqG(K))
we can write (G-8) as:
E(X,X]|s,) = G+ (2 ® ®)E(X, X[|5:) B’
Hence, we can solve fdt(X,X/|s;) as
vedE(X, X}|s;)] = (Ixn> — B® (& @ ®))"'vedd]. (G-9)

Unconditional Moments

The first unconditional momefit(X,) is solved simply by taking unconditional expectations of (2), giving

E(X,) = Z mip(i (G-10)

To solve the second unconditional moment(V&y), we use:
var(Xy) = BE(X:X ) E(X )E(Xt)/

= Zm{var Xi|se = 1) + E(Xy|sy = 0)E(Xy|sy = 0)'} — E(Xy) E(Xy) (G-11)

i=1

Moments of Yields

Bond yields are affine functions of;, from Propositions B.1 and C.1. Hence, they can be writtely;as-
A(S;) + BX, for some choice ofi(.S;) andB. Then, regime-dependent moments’pfre given by:

E(Yils:) = A(S:) + BE(Xi|s:)
var(Yy|s;) = Bvar(X;|s;)B', (G-12)
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and the unconditional moments Bf are:

K
EY;) = ZME(YtM:i)
var(y;) = Ef(YtY) E(Y,)E(Y;)'
= E(EMWY/]S:)) — E(Y)E(Y,)
K
- Zw,{varYf|St + E(Y;|S)E(Y:]S:)'} — E(Y)E(Y,) (G-13)
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Table 1: Nomenclature of Models

Regime-Switching Models

Affine Two Regimes Three Regimes Four Regimes Six Regimes

3-Factor Models I II III IVAIVE 1vC VI

4-Factor Models I, II, - IVA IVE TVE -

This table summarizes the models estimated. The affine models are single regime models. In the two and three

regime models, the real rate factor and inflation share the same regimes=sd = s7, which take values
from {1,2} or {1, 2, 3}, respectively. In the four and six regime models, the regimesflect switches in

boths! ands?. In the four-regime modek! € {1,2} ands7 € {1, 2}, and the probability transition matrix
can be one of three cases, independent (Case A) and correlated cases B and C, which are outlined in Section

2.4. In the six-regime modet/ € {1,2} andsT € {1,2,3}, ands! andsT are independent. The three-factor
models contain the factols; = (g¢: f: m)’ with ¢; a time-varying price of risk factof; is a latent RS term
structure factor, and, is inflation. The dynamics ok are outlined in Section 2.2. The models denoted with

w subscripts also contain an additional factor representing expected inflation. These models are described in
Appendix E.
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Table 2: Specification Tests

Panel A: Matching Inflation Dynamics

Moment Tests

Mean/ Auto- Residual
Model Variance correlogram Tests

I 0.00*  0.02* 0.00**
0.08
I, 0.08 0.00** 0.02*
0.09
II 0.00**  0.01* 0.10
0.17
II, 0.00**  0.16 0.03*
0.31
IIT 0.02* 0.02* 0.67
0.22
Iv4  0.15 0.04* 0.16
0.12
IVB  0.09 0.03* 0.01*
0.01*
IVSe  0.60 0.08 0.21
0.10
IvA  0.00% 027 0.26
0.26
vB 000 017 0.01**
0.36
¢  0.00% 0.8 0.22
0.27
VI 0.50 0.13 0.00**
0.00**
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Table 2 Continued

Panel B: Matching Yield Dynamics

Moment Tests Residual Tests
Mean/Var Spread Short
Model Long Rate/Spread Autocorrelogram Rate Spread
1 0.78 0.14 0.19 0.14
0.27 0.22
I, 0.00** 0.26 0.47 0.34
0.15 0.29
I 0.61 0.01** 0.05 0.65
0.02* 0.15
11, 0.00** 0.01* 0.52 0.48
0.01* 0.34
IIT 0.12 0.09 0.05 0.05
0.04* 0.05
w4 0.37 0.33 0.02* 0.96
0.04* 0.08
IvEB 0.00** 0.00** 0.01** 0.00**
0.00** 0.00**
e 0.63 0.39 0.02* 0.34
0.04*  0.03*
VA 0.00% 0.06 0.31 0.11
0.08 0.35
e 0.00** 0.10 0.81 0.56
0.16 0.12
e 0.00** 0.24 0.33 0.07
0.12 0.30
VI 0.04* 0.00** 0.01* 0.01*

0.01** 0.00**

This table reports moment and residual tests of inflation (Panel A) and of yields (Panel B), which are outlined
in Appendix F. In the columns titled “Moment Tests,” we report the p-values of goodnessydftéists for

various moments implied by the different models. In Panel A, the first moment test matches the mean and
variance of inflation, whereas in Panel B, the first moment test matches the mean and variance of the long
rate and the spread jointly. The long rate refers to the 20-quarter nominaj*faéed the spread refers to

y20 —yi, for y} the 3-month short rate. The second autocorrelogram moment test matches autocorrelations at
lags 1, 5, and 10. The columns titled “Residual Tests” report p-values of scaled residual tests for the different
models. The first entry reports the p-value of a tesiGf.e;—1) = 0 and the second row reports the p-value

of a GMM-based test oE[(¢? — 1)(e7_, — 1)] = 0, wheree, is a scaled residual. P-values less than 0.05
(0.01) are denoted by * (**). Table 1 contains a nomenclature of the various models.
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Table 3: Benchmark ModdlV ¢ Parameter Estimates

Short Rate Equation;, = dp + 87 X

01
do q f s
0.008 1.000 1.000 -0.488
(0.001) - - (0.056)
Companion Fornd
q / m
q 0.975 0.000 0.000
(0.014) - -
I 0.000 0.762 0.000
- (0.012) -
m 0.618 0.954 0.538
(0.164) (0.516) (0.064)

Conditional Means and Volatilities

P-value

Regime1l] Regime?2 Test of Equality

s (s x 100 -0.010 0.034 0.037
(0.005)  (0.016)

L (ST) % 100 0.473 0.248 0.002
(0.082)  (0.110)

o4 % 100 0.094 -

(0.011)

or(s) x 100 0.078 0.175 0.000
(0.019)  (0.047)

ox(sT) x 100 0.498 0.573 0.249

(0.028)  (0.063)

Prices of Risk\(s7) = (y1q: Af(s7) 0)

Ar(s7)

P-value
o4l Regime 1 Regime?2 Test of Equality

171 -0.613 0.504 0.000
(15.7)  (0.097)  (0.151)
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Table 3 Continued

Transition Probabilitie$I

Sir1=1 s41=2 511 =3 541 =4

s;=1  0.930 0.000 0.065 0.005
(0.025)  (0.008)  (0.020)  (0.002)
ss=2  0.125 0.804 0.019 0.052
(0.030)  (0.029)  (0.007)  (0.016)
ss=3 0228 0.000 0.716 0.056
(0.047)  (0.002)  (0.045)  (0.024)
s;=4  0.031 0.197 0.205 0.567
(0.010)  (0.041)  (0.039)  (0.064)

o 0.930 ¢ 0.772
(0.021) (0.047)

pAA 1.000 pAB 0.135
(0.009) (0.031)

pAB 0.865 pBE 0.735
(0.031) (0.055)

Std Devx 100 of Measurement Errors

vi v’

0.050  0.024
(0.003)  (0.001)

The table reports estimates of the benchmark RS mbidél with correlateds! ands7 regimes outlined in
Section 2. The stable probabilities of regime 1 to 4 are 0.725, 0.039, 0.197, and 0.038, with standard errors
of 0.081, 0.029, 0.052, and 0.018, respectively. We reject the null of independent regimes (Case A) with a
p-value of 0.033 using a likelihood ratio test.
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Table 4: Factor Behavior

Panel A: Moments of Factors

Correlation with

Contribution

Contribution  to Expected Nominal Real
to Real Rate Inflation Short Nominal  Short Real
Stdev Auto Variance Variance Inflation Rate Spread Rate  Spread
q 1.70 0.98 0.51 0.28 0.61 0.90 -0.20 0.44 -0.09
(0.55) (0.01) (0.35) (0.08) (0.12) (0.05) (0.07) (0.21) (0.02)
f 0.68 0.74 0.09 0.09 0.24 0.43 -0.99 0.19 -0.24
(0.20) (0.02) (0.10) (0.05) (0.07) (0.11) (0.02) (0.17) (0.17)
T 3.50 0.76 0.40 0.6 1.00 0.69 -0.44 -0.34 0.59
(0.42) (0.05) (0.36) (0.08) - (0.08) (0.06) (0.29) (0.12)
Datar 3.16 0.72 0.68 -0.37

Panel B: Projection of Inflation on Lagged Instruments

Nominal
Short Nominal
Inflation Rate Spread
Model 0.52 0.39 -0.08
(0.06) (0.07) (0.127)
Data 0.49 0.29 -0.39
(0.06) (0.07) (0.15)

The table reports various unconditional moments of the three factors: the time-varying price of riskfactor

the RS factorf, and inflationr,, from the benchmark modélV“. The short rate refers to the 1-quarter
nominal yield and the spread refers to the 20-quarter nominal term spread. The row labelled*Data
refers to actual inflation data. The numbers between parentheses are standard errors reflecting parameter
uncertainty from the estimation, computed using the delta method. The variance decomposition of the real
rate is computed as cOy, z;) /var(r;), with z, respectivelyy,, f; andd, ;. The variance decomposition of
expected inflation is computed as ¢By[m11], ) /var(E,[m;+1]), with z, respectively®, g1, @ f, and

o, m;. Panel B reports multivariate projection coefficients of inflation on the lagged short rate, spread and
inflation implied by the model and in the data. Standard errors in parenthesis are computed using the delta
method for the model-implied coefficients and are computed using GMM for the data coefficients.
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Table 5: Real Rates, Inflation Compensation, and Nominal Rates Across Regimes

Regime

St:1 St:2 St:?) St:4

Real Short Raté; Mean 1.14 1.98 1.34 1.97
(0.39) (0.53) (0.35) (0.45)

StdDev  1.40 1.55 1.55 1.68

(0.22) (0.29) (0.25) (0.29)

Real Term Sprea¢?® —7;  Mean 0.15 -0.39 -0.03 -0.45
(0.31) (0.21) (0.28) (0.16)

StdDev  1.12 1.26 1.31 1.42

(0.17) (0.25) (0.22) (0.25)

Inflation Compensationf; Mean 3.92 2.46 4.43 3.20
(0.38) (0.79) (0.39) (0.67)

StdDev  2.75 2.95 3.01 3.13

(0.50) (0.51) (0.48) (0.49)

Nominal Short rate, Mean 5.06 4.45 5.77 5.17
(0.08) (0.38) (0.17) (0.34)

Std Dev  3.04 3.12 3.47 3.50

(0.74) (0.73) (0.65) (0.65)

We report means and standard deviations for real short ratethe 20-quarter real term spreagf’ — 7,
1-quarter ahead inflation compensatief, ; and nominal short rates;, implied by modell V¢ across each

of the four regimes. The regime = 1 corresponds t¢s/ = 1,s7 = 1), s, = 2to(s/ = 1,57 =2),5, = 3

to (s =2,sT =1)ands; = 4to (s{ = 2,sT = 2). Standard errors reported in parentheses are computed
using the delta method.
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Note to Table 6

The table reports various moments of the real rate, implied from middel Panel A reports the conditional

mean and standard deviation of real rates of various maturities in quarters across regimes. Panel B reports the
unconditional mean, standard deviation and autocorrelation of real yields. Panel C reports the correlation
of real yields with actual and unexpected inflation implied from the model. We report the conditional
correlation of real yields with actual inflation c@§f’,,,m1]s¢), and the conditional correlation of real

yields with expected inflation cdf?’, |, E¢11(m¢4+14n.n)|5¢). Standard errors reported in parentheses are
computed using the delta method.
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Table 7: Effect of Regimes on Real Rates

Panel A: Real Yield Characteristics

ModelI,, Model IV¢

Real Short Raté; Mean 1.42 1.24
(0.31) (0.38)

St Dev 1.59 1.46

(0.29) (0.23)

Auto 0.72 0.60

(0.09) (0.08)

Real Long Ratg?° Mean 1.69 1.32
(0.30) (0.40)

St Dev 1.04 0.55

(0.34) (0.32)

Auto 0.96 0.94

(0.02) (0.05)

Correlations,, §2° 0.79 0.64
(0.08) (0.06)

Panel B: Comparisons ofl,, and IV ¢ over the Sample

Real Short Raté, Differences Std Dev 1.40
Min -2.61
Max 6.01

Real Long Ratg?° Differences  Std Dev 0.54
Min -1.06
Max 1.85

The table reports various characteristics of real yields from maglean affine model similar to Campbell

and Viceira (2001), and our modg&l’“. In Panel A, we report population means, standard deviations, and
autocorrelations of real one-quarter short rates and real 20-quarter long yields, together with their correlation.
Standard errors reported in parentheses are computed using the delta method. In Panel B, we report statistics
on the differences between the real yields implied by mdgeind modell V¢ over the sample.
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Table 8: Inflation Compensation, Expected Inflation, and Inflation Risk Premiums

Uncondi-
Qrs s =1 =2 s =3 s =4 tional

Inflation Compensationy ,

1 3.92 246 443  3.20 3.94
(0.38) (0.78) (0.39) (0.67)  (0.38)
4 420 249 495 3.34 4.25

(0.34) (0.70) (0.39) (0.59)  (0.35)
20 509 380 545 4.36 5.08
(0.41) (0.45) (0.43) (0.42)  (0.38)

Expected InflatiorE, (745,»,)

1 3.93 247 444 321 3.94
(0.38) (0.79) (0.39) (0.67) (0.38)
4 3.80 263 448 347 3.94

(0.38) (0.73) (0.41) (0.65) (0.38)
20 391 339 420 382  3.94
(0.38) (0.49) (0.39) (0.46) (0.38)

Inflation Risk Premiump; ,,

4 031 -014 047 -013 031
(0.09) (0.06) (0.15) (0.09)  (0.10)
20 118 042 125 055 1.14
(0.36) (0.23) (0.42) (0.31)  (0.36)

The table reports means of inflation compensation, the difference between nominal and real yields; expected
inflation; and the inflation risk premium implied from the benchmark mdd&t. Standard errors reported
in parentheses are computed using the delta method.
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Table 9: Conditional Moments Across NBER Business Cycles

Mean Std Dev
Maturity
Qtrs Expansion Recession Expansion Recession
Real Rateg} 1 1.45 1.23 1.30 2.06
(0.20) (0.20) (0.04) (0.08)
20 1.33 1.43 0.65 0.87
(0.38) (0.38) (0.18) (0.25)
Nominal Rateg 1 5.03 5.95 2.59 4.07
(0.09) (0.14) (0.27) (0.41)
20 6.05 6.85 2.46 3.71
(0.20) (0.22) (0.26) (0.38)
Inflation Compensationf, 1 3.57 4.73 2.23 3.62
(0.19) (0.17) (0.18) (0.28)
20 4.72 5.42 1.89 2.93
(0.37) (0.39) (0.38) (0.57)

The table reports various sample moments of real rates, nominal rates and inflation compensation from the
benchmark model V¢, conditional on expansions and recessions as defined by the NBER. Standard errors
reported in parentheses are computed using the delta method on sample moments.

Table 10: Unconditional Variance Decomposition of Nominal Yields

Maturity Real Expected Inflation

Qtrs Rates Inflation Risk

1 0.20 0.80 0.00
(0.09) (0.09) (0.00)

20 0.20 0.71 .
(0.09) (0.09) (0.08)

The table reports unconditional variance decompositions of nominal yigfdsinto real rate, expected
inflation, and inflation risk premium components, denoted/pyE; (), andy; ., respectively, implied
by modelIVC. This is done using the equation:

= vy i) _ cov(gi, yi') + COME(mi,n), yi') + COV(@rn, Y1)

var(yy')

var(y;')

Standard errors reported in parentheses are computed using the delta method on population moments.
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Table 11: Unconditional Variance Decomposition of Nominal Yield Spreads

Panel A: Unconditional

Maturity Real Expected Inflation

Qtrs Rates Inflation Risk
4 0.38 0.49 -0.01

(0.14) (0.14) (0.00)
20 0.20 0.88 -0.05

(0.19)  (0.19)  (0.02)

Panel B: Conditional on Regime

Maturity Real Expected Inflation Real Expected Inflation
Qtrs Rates Inflation Risk Rates Inflation Risk
Regimes; = 1 Regimes; = 2
4 0.14 0.87 -0.01 0.08 0.93 -0.01
(0.19) (0.19) (0.00) (0.22) (0.22) (0.00)
20 0.04 1.03 -0.08 -0.02 1.07 -0.05
(0.20) (0.20) (0.03) (0.22) (0.22) (0.03)
Regimes; = 3 Regimes; = 4
4 0.69 0.32 -0.00 0.64 0.36 -0.00
(0.12) (0.12) (0.00) (0.13) (0.13) (0.00)
20 0.31 0.71 -0.02 0.29 0.73 -0.02
(0.16) (0.16) (0.01) (0.17) (0.17) (0.01)

The table reports unconditional variance decompositions of nominal yield sprgadsy;, into real rate,
expected inflation, and inflation risk premium components, denotegf'by 7, E;(m; ,,) — E¢(m4+1), and
©1.n, respectively, implied by modélV ©. This is done using the equation:

var(y” — yt, ur — ui)
var(yy — yi)
cov(9p — e, yit — yi) 4+ COM(Ei (e ) — By (mt1), y5 — yi) + €OVt n, U1 — Yt )
var(yy — yi)

Standard errors reported in parentheses are computed using the delta method on population moments.
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Figure 1: Smoothed Regime Probabilities: All Regimes
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The top graph plots the nominal short rate (1-quarter yield) and nominal long rate (20-quarter yield) together
with quarter-on-quarter inflation. The top pane)sxis units are annualized and are in percentages. In the
bottom graph, we plot the smoothed probabilities of each of the four regifi€s; = i|Ir), conditioning

on data over the entire sample, from the benchmark mbidél. NBER recessions are indicated by shaded
bars.
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Figure 2: Smoothed Regime Probabilities
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The top panel graphs the real short ratg,real long ratej2°; one-quarter expected inflatiof (7 1);

and long-term inflation compensation ,,, implied from modelIV°. The top panel'y-axis units are
annualized and are in percentages. The middle and bottom panels plot smoothed regime probabilities using

information from the whole sample. The middle panel shows the smoothed probatstiities = 1|1;) of
the f factor regimes;;{. The bottom panel graphs the smoothed probabilfiessT = 1|I1) of the inflation

factor regimes7. NBER recessions are indicated by shaded bars.
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Figure 3: Real Term Structure
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We graph the real yield curve, conditional on each regime and the unconditional real yield curve implied from
model IV . Thez-axis displays maturities in quarters of a year. Thaxis units are annualized and are in
percentages.

61



0.12

0.1
0.08
0.06
0.04

Percentage

0.02

-0.02
0

0.08

0.06

0.04

0.02

Percentage

-0.02
0

The figure plots impulse responses (IRs) of 1- and 20-quarter real yields (solid lines), together with two
standard errors bands (dashed lines), as implied by middel All IRs are computed using a one standard

Figure 4: Impulse Responses of Real Yields
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deviation shock. The units on theaxis are in annualized percent.
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Figure 5: Comparing Benchmark ModgV © Real Yields with Modell,,
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The figure compares the 1-quarter real short rate (5-year real long yield) of the benchmark Wodeid
modelr,, in the top (bottom) panel over the sample period.
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Figure 6: Comparative Statics of the Long-Term Inflation Risk Premium
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In each plot, we show the unconditional 20-quarter inflation risk premigyag, as a function of various
parameters of the benchmark mod&“. The units on thej-axis are annualized and are in percentage
terms, and we alter the value of each parameter on-#es by up tot4 standard errors of the estimates of
each parameter. The circle represents the baseline case at the estimated parameter value, of 1.14%.
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Figure 7: Inflation Risk Premiums
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The figure graphs the time-series of the 20-quarter inflation risk premjymy, with two standard error
bounds, implied from moddlV’ . NBER recessions are indicated by shaded bars.
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Figure 8: Nominal Term Structure
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The figure graphs the nominal yield curve, conditional on each regime and the unconditional nominal yield
curve from the benchmark mode&V ¢ . Thez-axis displays maturities in quarters of a year. Fhaxis units

are annualized and are in percentages. Average yields from data are represented by 'x’, with 95% confidence
intervals represented by vertical bars.
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