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1 Introduction

“... Policy practitioners operating under a risk-management paradigm may, at

times, be led to undertake actions intended to provide insurance against especially

adverse outcomes...... When confronted with uncertainty, especially Knightian

uncertainty, human beings invariably attempt to disengage from medium to long-

term commitments in favor of safety and liquidity.... The immediate response on

the part of the central bank to such financial implosions must be to inject large

quantities of liquidity...” Alan Greenspan (2004).

Flight to quality episodes are an important source of financial and macroeconomic insta-

bility. Modern examples of these episodes in the US include the Penn Central default of 1970;

the stock market crash of 1987; the events of the Fall of 1998 beginning with the Russian

default and ending with the bailout of LTCM; as well as the events that followed the attacks

of 9/11. Behind each of these episodes lies the specter of a meltdown that may lead to a

prolonged slowdown as in Japan during the 1990s, or even a catastrophe like the Great De-

pression.1 In each of them, as hinted at by Greenspan, the Fed intervened early and stood

ready to intervene as much as needed to prevent a meltdown.

In this paper we present a model to study the benefits of central bank actions during

flight to quality episodes. Our model has two key ingredients: capital/liquidity shortages and

Knightian uncertainty. The capital shortage ingredient is a recurring theme in the empirical

and theoretical literature on financial crises and requires little motivation. Knightian uncer-

tainty is less commonly studied, but practitioners perceive it as a central ingredient to flight

to quality episodes (see Greenspan’s quote).

Most flight to quality episodes are triggered by unanticipated or unexpected events. In

1970, the Penn-Central Railroad’s default on prime rated commercial paper caught the market

by surprise and forced investors to re-evaluate their models of credit risk. The ensuing dynam-

ics temporarily shut out a large segment of commercial paper borrowers from a vital source

of funds. In October 1987, the speed of the stock market decline took investors and market

markers by surprise, causing them to question their models. Investors pulled back from the

market while key market-makers widened bid-ask spreads. In the fall of 1998, the comovement

1See Table 1 (part A) in Barro (2005) for a comprehensive list of extreme events in developed economies

during the 20th century.
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of Russian government bond spreads, Brazilian spreads, and U.S. Treasury bond spreads was

a surprise to even sophisticated market participants. These high correlations rendered stan-

dard risk management models obsolete, leaving financial market participants searching for

new models. Agents responded by making decisions using “worst-case” scenarios and “stress-

testing” models. Finally, after 9/11, regulators were concerned that commercial banks would

respond to the increased uncertainty over the status of other commercial banks by individually

hoarding liquidity and that such actions would lead to gridlock in the payments system.2

The common aspects of investor behavior across these episodes – re-evaluation of models,

conservatism, and disengagement from risky activities – indicate that these episodes involved

Knightian uncertainty and not merely an increase in risk. The emphasis on tail outcomes and

worst-case scenarios in agents’ decision rules suggests uncertainty aversion rather than simply

risk aversion. It is also noteworthy that when it comes to flight to quality episodes, history

seldom repeats itself. Similar magnitudes of commercial paper default (Mercury Finance in

1997) or stock market pullbacks (mini-crash of 1989) did not lead to similar investor responses.

Today, as opposed to in 1998, market participants understand that correlations should be

expected to rise during periods of reduced liquidity. Creditors understand the risk involved

in lending to hedge funds. While in 1998 hedge funds were still a novel financial vehicle,

the recent default of the Amaranth hedge fund barely caused a ripple in financial markets.

The one-of-a-kind aspect of flight to quality episodes supports the view that uncertainty is an

important ingredient in these episodes.

Section 2 of the paper lays out a model of financial crises based on liquidity shortages

and Knightian uncertainty. We analyze the model’s equilibrium and show that an increase

in Knightian uncertainty or decrease in aggregate liquidity can reproduce flight to quality

effects. Knightian uncertainty leads agents to make decisions based on worst-case scenarios.

When the aggregate quantity of liquidity is limited, the Knightian agent grows concerned that

he will be caught in a situation where he needs liquidity, but there is not enough liquidity

available to him. In this context, agents react by shedding risky financial claims in favor

of safe and uncontingent claims. Financial intermediaries become self-protective and hoard

liquidity. Investment banks and trading desks turn conservative in their allocation of risk

capital. They lock up capital and become unwilling to flexibly move it across markets.

The main results of our paper are in Sections 3 and 4. As indicated by Greenspan’s

2See Calomiris (1994) on the Penn-Central default, Melamed (1988) on the 1987 market crash, Scholes

(2000) on the events of 1998, and Stewart (2002) or Ashcraft and Duffie (2006) on 9/11.
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comments, the Fed has historically intervened during flight to quality episodes. We analyze

the macroeconomic properties of the equilibrium and study the effects of central bank actions

in our environment. First, we show that Knightian uncertainty leads to a collective bias

in agents’ actions: Each agent covers himself against his own worst-case scenario, but the

scenario that the collective of agents are guarding against is impossible, and known to be

so despite agents’ uncertainty about the environment. We show that agents’ conservative

actions such as liquidity hoarding and locking-up of capital are macroeconomically costly as

they exacerbate the aggregate shortage of liquidity. Central bank policy can be designed

to alleviate the over-conservatism. We show that a lender of last resort (LLR), even one

facing the same incomplete knowledge that triggers agents’ Knightian responses, can unlock

capital and improve outcomes. It does so by committing to intervene during extreme events

when agents’ liquidity is depleted. Importantly, because these extreme events are unlikely,

the expected cost of this intervention is minimal. If credible, the policy derives its power from

a private sector multiplier: each pledged dollar of public intervention in the extreme event is

matched by a comparable private sector reaction to free up capital. In this sense, the LTCM

bailout was important not for its direct effect, but because it served as a signal of the Fed’s

readiness to intervene should conditions worsen. The signal unlocked private capital markets.

The value of the LLR facility is usually analyzed in terms of Diamond and Dybvig’s (1983)

model of bank runs. The LLR rules out the “bad” run equilibrium in their model. While our

environment is a variant of Diamond and Dybvig’s, it does not include the sequential service

constraint that leads to a coordination failure and informs their discussion of policy. The

benefit of the LLR in our model derives from a different mechanism, which is the collective bias

in agent decisions caused by an increase in Knightian uncertainty. Our model also provides a

clear presciption to central banks on when to intervene in financial markets: The benefit of the

LLR is highest when there is both insufficient aggregate liquidity and Knightian uncertainty.

We also show that the LLR must be a last-resort policy: If liquidity injections take place too

often, the policy exacerbates the private sector’s mistakes and reduces the value of intervention.

This occurs for reasons akin to the moral hazard problem identified with the LLR.

Holmstrom and Tirole (1998) study how a shortage of aggregate collateral limits private

liquidity provision (see also Woodford, 1990). Their analysis suggests that a credible govern-

ment can issue government bonds which can then be used by the private sector for liquidity

provision. The key difference between our paper and those of Holmstrom and Tirole, and

Woodford, is that we show how even aggregate collateral may be inefficiently used, so that
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private sector liquidity provision is limited. In our model, the government intervention not

only adds to the private sector’s collateral but also, and more centrally, it improves the use of

private collateral.

Routledge and Zin (2004) and Easley and O’Hara (2005) are two related analyses of Knigh-

tian uncertainty in financial markets.3 Routledge and Zin begin from the observation that

financial institutions follow decision rules to protect against a worst case scenario. They de-

velop a model of market liquidity in which an uncertainty averse market maker sets bids and

asks to facilitate trade of an asset. Their model captures an important aspect of flight to

quality: uncertainty aversion can lead to a sudden widening of the bid-ask spread, causing

agents to halt trading and reducing market liquidity. Both our paper and Routledge and Zin

share the emphasis on financial intermediation and uncertainty aversion as central ingredients

in flight to quality episodes. But each paper captures different aspects of flight to quality.

Easley and O’Hara (2005) study a model where ambiguity (uncertainty) averse traders focus

on a worst case scenario when making an investment decision. Like us, Easley and O’Hara

point out that government intervention in a worst-case scenario can have large effects. Easley

and O’Hara study how uncertainty aversion affects investor participation in stock markets,

while the focus of our study is on uncertainty aversion and financial crises.

Finally, in our model agents are only Knightian with respect to systemic events. Epstein

(2001) explores the home bias in international portfolios in a related setup, where agents are

more uncertain about foreign than local markets.4 As Epstein points out, this modelling also

highlights the difference between high risk aversion and aversion to Knightian uncertainty.

Moreover, our modelling shows that max-min preferences interact with macroeconomic con-

ditions in ways that are not present in models with an invariant amount of risk aversion.

We show that when aggregate liquidity is plentiful, Knightian and standard agents behave

identically. However when there is an aggregate liquidity shortage, the actions of these agents

differ, leading to flight to quality in the Knightian model.

3There is a growing economics literature that aims to formalize Knightian uncertainty (a partial list of

contributions includes, Gilboa and Schmeidler (1989), Dow and Werlang (1992), Epstein and Wang (1994),
Epstein (2001), Hansen and Sargent (1995, 2003), Skiadas (2003), Epstein and Schneider (2004), and Hansen,

et al. (2004)). As in much of this literature, we use a max-min device to describe agents expected utility. Our

treatment of Knightian uncertainty is most similar to Gilboa and Schmeidler, in that agents choose a worst

case among a class of priors.
4Epstein’s model is closely related to our model in Caballero and Krishnamurthy (2005).
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2 The Model

We study a model conditional on entering a turmoil period where liquidity risk and Knightian

uncertainty coexist. Our model is silent on what triggers the episode. In practice, we think

that the occurrence of an unexpected event, such as the Penn Central default or 9/11, causes

agents to re-evaluate their models and triggers robustness concerns. Our goal is to present a

model to study the role of a centralized liquidity provider such as the central bank.

2.1 The environment

PREFERENCES AND SHOCKS

The model has a continuum of competitive agents, which are indexed by ω ∈ Ω ≡ [0, 1].

An agent may receive a liquidity shock in which he needs some liquidity immediately. We

view these liquidity shocks as a parable for a sudden need for capital by a financial market

specialist (e.g. a trading desk, hedge fund, market maker).

The shocks are correlated across agents. With probability φ(1), the economy is hit by a

first-wave of liquidity shocks. In this wave, a randomly chosen group of one-half of the agents

have liquidity needs. We denote the probability of agent ω receiving a shock in the first wave

by φω(1), and note that, ∫
Ω

φω(1)dω =
φ(1)

2
. (1)

Equation (1) states that on average, across all agents, the probability of an agent receiving a

shock in the first wave is φ(1)
2

.

With probability φ(2|1), a second wave of liquidity shocks hits the economy. In the second

wave of liquidity shocks, the other half of the agents need liquidity. Let φ(2) = φ(1)φ(2|1).
The probability for agent ω of being in this second wave is φω(2), which satisfies,∫

Ω

φω(2)dω =
φ(2)

2
. (2)

With probability 1 − φ(1) > 0 the economy experiences no liquidity shocks.

We note that the sequential shock structure means that,

φ(1) > φ(2) > 0. (3)

This condition states that, in aggregate, a single-wave event is more likely than the two-wave

event. We will refer to the two-wave event as an extreme event, capturing an unlikely but
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severe liquidity crisis in which many agents are affected. Relation (3), deriving from the

sequential shock structure, plays an important role in our analysis.

We model the liquidity shock as a shock to preferences (e.g., as in Diamond and Dybvig,

1983). Agent ω receives utility:

Uω(c1, c2, cT ) = α1u(c1) + α2u(c2) + βcT . (4)

With α1 = 1, α2 = 0 if the agent is in the early wave; α1 = 0, α2 = 1 if the agent is in the

second wave; and, α1 = 0, α2 = 0 if the agent is not hit by a shock. We will refer to the first

shock date as “date 1,” the second shock date as “date 2,” and the final date as “date T.”

u : R+ → R is twice continuously differentiable, increasing, strictly concave and satisfies

the condition limc→0 u
′(c) = ∞. Preferences are concave over c1 and c2 and linear over cT .

We view the preference over cT as capturing a time, in the future, when market conditions

are normalized and the trader is effectively risk neutral. The concave preferences over c1 and

c2 reflect the potentially higher marginal value of liquidity during a time of market distress.

ENDOWMENT AND SECURITIES

Each agent is endowed with Z units of goods. These goods can be stored at gross return

of one, and then liquidated if an agent receives a liquidity shock. If we interpret the agents of

the model as financial traders, we may think of Z as the capital or liquidity of a trader.

Agents can also trade financial claims that are contingent on shock realizations. As we will

show, these claims allow agents who do not receive a shock to insure agents who do receive a

shock.

We assume all shocks are observable and contractible. There is no concern that an agent

will pretend to have a shock and collect on an insurance claim. Markets are complete. There

are claims on all histories of shock realizations. We will be more precise in specifying these

contingent claims when we analyze the equilibrium.

PROBABILITIES AND UNCERTAINTY

Agents trade contingent claims to insure against their liquidity shocks. In making the

insurance decisions, agents have a probability model of the liquidity shocks in mind.

We assume that agents know the aggregate shock probabilities, φ(1) and φ(2). We may

think that agents observe the past behavior of the economy and form precise estimates of

these aggregate probabilities. However, and centrally to our model, the same past data does

not reveal whether a given ω is more likely to be in the first wave or the second wave. Agents

treat the latter uncertainty as Knightian.
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Formally, we use φω(1) to denote the true probability of agent ω receiving the first shock,

and φω
ω(1) to denote agent-ω’s perception of the relevant true probability (similarly for φω(2)

and φω
ω(2)). We assume that each agent ω knows his probability of receiving a shock either in

the first or second wave, φω(1) + φω(2), and thus the perceived probabilities satisfy:5

φω
ω(1) + φω

ω(2) = φω(1) + φω(2) =
φ(1) + φ(2)

2
. (5)

We define,

θω
ω ≡ φω

ω(2) − φ(2)

2
. (6)

That is, θω
ω reflects how much agent ω’s probability assessment of being second is higher than

the average agent in the economy’s true probability of being second. This relation also implies

that,

−θω
ω = φω

ω(1) − φ(1)

2
.

Agents consider a range of probability-models θω
ω in the set Θ, with support [−K,+K]

(K < φ(2)/2)), and design insurance portfolios that are robust to their model uncertainty. We

follow Gilboa and Schmeidler’s (1989) Maximin Expected Utility representation of Knightian

uncertainty aversion and write:

max
(c1,c2,cT )

min
θω
ω∈Θ

E0[U
ω(c1, c2, cT )|θω

ω] (7)

where K captures the extent of agents’ uncertainty.

In a flight to quality event, such as the Fall of 1998 or 9/11, agents are concerned about

systemic risk and unsure of how this risk will impinge on their activities. They may have a

good understanding of their own markets, but are unsure of how the behavior of agents in

other markets may affect them. For example, during 9/11 market participants feared gridlock

in the payments system. Each participant knew how much he owed to others but was unsure

whether resources owed to him would arrive (see, e.g., Stewart, 2002, or Ashcraft and Duffie,

2006). In our modeling, agents are certain about the probability of receiving a shock, but are

uncertain about the probability that their shocks will occur early relative to others, or late

relative to others.

5For further clarification of the structure of shocks and agents’ uncertainty, see the event tree that is

detailed in the Appendix.
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We view agents’ max-min preferences in (7) as descriptive of their decision rules. The

widespread use of worst-case scenario analysis in decision making by financial firms is an

example of the robustness preferences of such agents.

SYMMETRY

To simplify our analysis we assume that the agents are symmetric at date 0. While each

agent’s true θω may be different, the θω for every agent is drawn from the same Θ.

The symmetry applies in other dimensions as well: φω, K, Z, and u(c) are the same for all

ω. Moreover, this information is common knowledge. As noted above, φ(1) and φ(2) are also

common knowledge.

2.2 A benchmark

We begin by analyzing the problem when K = 0. This case will clarify the nature of cross-

insurance that is valuable in our economy as well. We derive the equilibrium as a solution to

a planning problem, where the planner allocates the Z across agents as a function of shock

realizations.

Figure 1 below describes the event tree of the economy. The economy may receive zero,

one, or two waves of shocks. An agent ω may be affected in the first or second wave in the

two wave case, or may be affected or not affected in the one wave event. We denote s = ( #

of waves, ω’s shock) as the state for agent ω. Agent ω’s allocation as a function of the state

is denoted by Cs where in the event of agent ω being affected by a shock, the agent receives

a consumption allocation upon incidence of the shock, as well as a consumption allocation

at date T . For example, if the economy is hit by two waves of shocks in which agent ω is

affected by the first wave, we denote the state as s = (2, 1) and agent ω’s allocation as (c1, c
s
T ).

C = {Cs} is the consumption plan for agent ω (equal to that for every agent, by symmetry).

We note that c1 is the same in both state (2, 1) and state (1, 1). This is because of the

sequential shock structure in the economy. An agent who receives a shock first needs resources

at that time, and the amount of resources delivered cannot be made contingent on whether

the one or two wave event transpires.

Figure 1 also gives the probabilities of each state s. Since agents are ex-ante identical

and K = 0, each agent has the same probability of arriving at state s. Thus we know that

φω(2) = φ(2)/2, which implies that the probability of ω being hit by a shock in the second

wave is one-half. Likewise, the probability of ω being hit by a shock in the first wave is
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one-half. These computations lead to the probabilities given in Figure 1.

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

Prob φ(2)

1 Wave

Prob 1 − φ(1)
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2 Waves

ω 1st

ω 2nd

Prob φ(1) − φ(2)

ω 1st

ω not hit

No Shocks

s = (# waves, ω’s shock)

(2,1)

(2,2)

(1,1)

(1,no)

(0,no)

ps

φ(2)/2

φ(2)/2

(φ(1) − φ(2))/2

(φ(1) − φ(2))/2

1 − φ(1)

Cs

(c1, c
2,1
T )

(c2, c
2,2
T )

(c1, c
1,1
T )

(c1,no
T )

(c0,no
T )

Figure 1: Benchmark Case

The planner’s problem is to solve,

max
C

∑
psUω(Cs)

subject to resource constraints that for every shock realization, the promised consumption

amounts are not more than the total endowment of Z:

c0,no ≤ Z
1

2

(
c1 + c1,1

T + c1,no
T

) ≤ Z

1

2

(
c1 + c2,1

T + c2 + c2,2
T

) ≤ Z,

as well as non-negativity constraints that for each s, every consumption amount in Cs is

non-negative.

It is obvious that if shocks do not occur, then the planner will give Z to each of the agents

for consumption at date T . Thus c0,no
T = Z and we can drop this constant from the objective.

We rewrite the problem as:

max
C

φ(1) − φ(2)

2

(
u(c1) + βc1,1

T + βc1,no
T

)
+
φ(2)

2

(
u(c1) + u(c2) + βc2,1

T + βc2,2
T

)
subject to resource and non-negativity constraints.

10



Observe that c1,1
T and c1,no

T enter as a sum in both objective and constraints. Without loss

of generality we set c1,1
T = 0. Likewise, c2,1

T and c2,2
T enter as a sum in both objective and

constraints. Without loss of generality we set c2,1
T = 0. The reduced problem is:

max
(c1,c2,c1,no

T ,c2,2
T )

φ(1)u(c1) + φ(2)(u(c2) + βc2,2
T ) + (φ(1) − φ(2))βc1,no

T

subject to:

c1 + c1,no
T = 2Z

c1 + c2 + c2,2
T = 2Z

c1, c2, c
1,no
T , c2,2

T ≥ 0.

Note that the resource constraints must bind. The solution hinges on whether the non-

negativity constraints on consumption bind or not.

If the non-negativity constraints do not bind, then the first order condition for c1 and c2

yield:

c1 = c2 = u′−1(β) ≡ c∗.

The solution implies that,

c2,2
T = 2(Z − c∗), c1,no

T = 2Z − c∗.

Thus the non-negativity constraints do not bind if Z ≥ c∗. We refer to this case as one of

sufficient aggregate liquidity. When Z is large enough, agents are able to finance a consumption

plan in which marginal utility is equalized across all states. At the optimum, agents equate

the marginal utility of early consumption with that of date T consumption, which is β given

the linear utility over cT .

Now consider the case in which there is insufficient liquidity so that agents are not able

to achieve full insurance. This is the case where Z < c∗. It is obvious that c2,2
T = 0 in this

case (i.e. use all of the limited liquidity towards shock states). Thus, for a given c1 we have

that c2 = c1,no
T = 2Z − c1 and the problem is,

max
c1

φ(1)u(c1) + φ(2)u(2Z − c1) + (φ(1) − φ(2)) β(2Z − c1) (8)

with first order condition,

u′(c1) =
φ(2)

φ(1)
u′(2Z − c1) + β

(
1 − φ(2)

φ(1)

)
. (9)
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Since u′(2Z − c1) > β (i.e. c2 < c∗) we can order:

β < u′(c1) < u′(2Z − c1) ⇒ c1 > Z. (10)

The last inequality on the right of (10) is the important result from the analysis. Agents

who are affected by the first-wave of shocks receive more liquidity than agents who are affected

by the second-wave. There is cross-insurance between agents. Intuitively, this is because the

probability of the second-wave occurring is strictly smaller than that of the first-wave (or,

equivalently, conditional on the first wave having taken place there is a chance the economy

is spared of a second wave). Thus, when liquidity is scarce (small Z) it is optimal to allocate

more of the limited liquidity to the more likely shock. On the other hand, when liquidity is

plentiful (large Z) the liquidity allocation of each agent is not contingent on the order of the

shocks. This is because there is enough liquidity to cover all shocks.

We summarize these results as follows:

Proposition 1 The equilibrium in the benchmark economy with K = 0 has two cases:

• The economy has insufficient aggregate liquidity if Z < c∗. In this case,

c∗ > c1 > Z > c2.

Agents are partially insured against liquidity shocks. First wave liquidity shocks are more

insured than second wave liquidity shocks.

• The economy has sufficient aggregate liquidity if Z ≥ c∗. In this case,

c1 = c2 = c∗

and agents are fully insured against liquidity shocks.

Flight to quality effects, and a role for central bank intervention, arise only in the first case

(insufficient aggregate liquidity). This is the case we analyze in detail in the next sections.

2.3 Implementation

There are two natural implementations of the equilibrium: financial intermediation, and trad-

ing in shock-contingent claims.
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In the intermediation implementation, each agent deposits Z in an intermediary initially

and receives the right to withdraw c1 > Z, if he receives a shock in the first-wave. Since

shocks are fully observable, the withdrawal can be conditioned on the agents’ shocks. Agents

who do not receive a shock in the first wave own claims to the rest of the intermediary’s assets

(Z − c1 < c1). The second group of agents either redeem their claims upon incidence of the

second wave of shocks, or at date T . Finally, if no shocks occur, the intermediary is liquidated

at date T and all agents receive Z.

In the contingent claims implementation, each agent purchases a claim that pays 2(c1 −
Z) > 0 in the event that the agent receives a shock in the first wave. The agent sells an

identical claim to every other agent, paying 2(c1 − Z) in case of the first wave shock. Note

that this is a zero-cost strategy since both claims must have the same price.

If no shocks occur, agents consume their own Z. If an agent receives a shock in the first

wave, he receives 2(c1 − Z) and pays out c1 − Z (since one-half of the agents are affected in

the first wave), to net c1 −Z. Added to his liquidity of Z, this gives total liquidity of c1. Any

later agent has Z − (c1 − Z) = 2Z − c1 units of liquidity to either finance a second shock, or

as date T consumption.

Finally, note that if there is sufficient aggregate liquidity either the intermediation or

contingent claims implementation achieves the optimal allocation. Moreover, in this case,

the allocation is also implementable by self-insurance. Each agent keeps his Z and liquidates

c∗ < Z to finance a shock. The self-insurance implementation is not possible when Z < c∗,

because the allocation requires each agent to receive more than his endowment of Z if the

agent is hit first.

2.4 K > 0 robustness case

We now turn to the general problem when K > 0. Once again, we derive the equilibrium

by solving a planning problem where the planner allocates the Z to agents as a function of

shocks. When K > 0, agents make decisions based on a “worst-case” for the probabilities.

This decision making process is encompassed in the planning problem by altering the planners

objective to,

max
C

min
θω
ω∈Θ

∑
ps,ωU(Cs) (11)

The only change in the problem relative to the K = 0 case is that probabilities are based on

the worst-case min rule.
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Figure 2 redraws the event tree now indicating agent’s worst-case probabilities. We use

the notation that φω
ω(2) is agent ω’s worst-case probability of being hit second. In our setup,

this assessment only matters when the economy is going through a two-wave event in which

the agent is unsure if other agents’ shocks are going to occur before or after agent ω’s.6
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ω(1) − φ(1)−φ(2)

2

φω
ω(2)

(φ(1) − φ(2))/2

(φ(1) − φ(2))/2

1 − φ(1)

Figure 2: Robustness Case

We simplify the problem following some of the steps of the previous derivation. c0,no
T must

be equal to Z. Since the problem in the one-wave node is the same as in the previous case, we

observe that c1,1
T and c1,no

T enter as sum in both objective and constraint and choose c1,1
T = 0.

The reduced problem is then,

V (C; θω
ω) ≡ max

C
min
θω
ω∈Θ

φω
ω(1)u(c1)+(φ(2) − φω

ω(2))βc2,1
T +φω

ω(2)
(
u(c2) + βc2,2

T

)
+
φ(1) − φ(2)

2
βc1,no

T

(12)

The first two terms in this objective are the utility from the consumption bundle if the agent

is hit first (either in the one wave or two wave event). The third term is the utility from the

consumption bundle if the agent is hit second. The last term is the utility from the bundle

when the agent is not hit in a one-wave event.

6We derive the probabilities as follows. p2,2,ω = φω
ω(2) by definition. This implies that p2,1,ω = φ(2)−φω

ω(2)
since the probabilities have to sum up to the probability of a two wave event (φ(2)). We rewrite p2,1,ω =

φ(2)−φω
ω(2) = φω

ω(1)− φ(1)−φ(2)
2 using relation (5). The probability of ω being hit first is φω

ω(1) = p2,1,ω+p1,1,ω.

Substituting for p2,1,ω, we can rewrite this to find that p1,1,ω = φ(1)+φ(2)
2 . Finally, p1,1,ω+p1,no,ω = φ(1)−φ(2),

which we can use to solve for p1,no,ω.
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The resource constraints for this problem are,

c1 + c1,no
T ≤ 2Z

c1 + c2 + c2,1
T + c2,2

T ≤ 2Z.

The optimization is also subject to non-negativity constraints.

Proposition 2 Let:

K̄ ≡ φ(1) − φ(2)

4

(
u′(Z) − β

u′(Z)

)
.

Then, the equilibrium in the robust economy depends on both K and Z as follows:

• When there is insufficient aggregate liquidity, there are two cases:

– For 0 ≤ K < K̄, agents’ decisions satisfy:

φω
ω(1)u′(c1) = φω

ω(2)u′(c2) + β
φ(1) − φ(2)

2
. (13)

where, the worst-case probabilities are based on θω
ω = +K:

φω
ω(1) =

φ(1)

2
−K, φω

ω(2) =
φ(2)

2
+K.

In the solution,

c2 < Z < c1 < c∗

with c1(K) decreasing and c2(K) increasing. We refer to this as the “partially

robust” case.

– For K ≥ K̄, agents’ decisions are as if K = K̄, and

c1 = Z = c2 < c∗.

We refer to this as the “fully robust” case.

• When there is sufficient aggregate liquidity (Z), agents’ decisions satisfy,

c1 = c2 = c∗ < Z.
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The formal proof of the proposition is in the Appendix, and is complicated by the need

to account for all possible consumption plans for every given θω
ω scenario when solving the

max-min problem. But, there is a simple intuition that explains the results.

We show in the Appendix that c2,1
T , and c2,2

T are always equal to zero. Dropping these

controls, the problem simplifies to:

max
c1,c2,c

1,no
T

min
θω
ω∈Θ

φω
ω(1)u(c1) + φω

ω(2)u(c2) +
φ(1) − φ(2)

2
βc1,no

T .

For the case of insufficient aggregate liquidity, the resource constraints give:

c2 = 2Z − c1, c1,no
T = 2Z − c1.

Then the first order condition for the max problem for a given value of θω
ω is,

φω
ω(1)u′(c1) = φω

ω(1)u′(c2) + β
φ(1)− φ(2)

2
.

In the benchmark case, the uncertain probabilities are φω
ω(1) = φ(1)

2
and φω

ω(2) = φ(2)
2

, which

yields the solution calling for more liquidity to whoever is affected by the first shock (c1 > c2).

When K > 0, agents are uncertain over whether their shocks are early or late relative to other

agents. Under the max-min decision rule, agents use the worst case probability in making

decisions. Thus, they bias up the probability of being second relative to that of being first.

When K is small, agents’ first order condition is,(
φ(1)

2
−K

)
u′(c1) =

(
φ(2)

2
+K

)
u′(c2) + β

φ(1)− φ(2)

2
.

As K becomes larger, c2 increases toward c1. For K sufficiently large, c2 is set equal to c1.

This defines the threshold of K̄. In this “fully robust” case, agents are insulated against their

uncertainty over whether their shocks are likely to be first or second.

2.5 Flight to quality

A flight to quality episode can be understood in our model as a comparative static across

K or Z. Let us fix a value of K and Z and suppose that at a date −1, agents enter into a

contractual arrangement as dictated by Proposition 2. At date 0, there is an unanticipated

(non-contracted) event that increases K (or reduces Z) and leads agents to rewrite contracts.

We may think of a flight to quality in terms of this rewriting of contracts.
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In this subsection we discuss three concrete examples of flight to quality events in the

context of our model. Our first two examples identify the model in terms of the financial

intermediation implementation discussed earlier, while the last example identifies the model

in terms of the contingent claims implementation.

The first example is one of uncertainty-driven contagion and is drawn from the events of

the fall of 1998. We interpret the agents of our model as the trading desks of an investment

bank. Each trading desk concentrates in a different asset market. At date −1 the trading

desks pool their capital with a top-level risk manager of the investment bank, retaining c2 of

capital to cover any needs that may arise in their particular market (“committed capital”).

They also agree that the top-level risk manager will provide an extra c1 − c2 > 0 to cover

shocks that hit whichever market needs capital first (“trading capital”). At date 0, Russia

defaults. An agent in an unrelated market – i.e. a market in which shocks are now no more

likely then before, so that φω
ω(1) + φω

ω(2) is unchanged – suddenly becomes concerned that

other trading desks will suffer shocks first and therefore the agent’s trading desk will not

have as much capital available in the event of a shock. The agent responds by lobbying the

top-level risk manager to increase his committed capital up to a level of c2 = c1. As a result,

every trading desk now has less capital in the (likelier) event of a single shock. Scholes (2000)

argues that during the 1998 crisis, the natural liquidity suppliers (hedge funds and trading

desks) became liquidity demanders. In our model, uncertainty causes the trading desks to tie

up more of the capital of the investment bank. The average market has less capital to absorb

shocks, suggesting reduced liquidity in all markets.

In this example, the Russian default leads to less liquidity in other unrelated asset markets.

Gabaix, Krishnamurthy, and Vigneron (2006) present evidence that the mortgage-backed

securities market, a market unrelated to the sovereign bond market, suffered lower liquidity

and wider spreads in the 1998 crisis. Note also that in this example there is no contagion

effect if Z is large as the agents’ trading desk will not be concerned about having the necessary

capital to cover shocks when Z > c∗. Thus, any realized losses by investment banks during

the Russian default strengthen the mechanism we highlight.

Our second example is a variant of the classical bank-run, but on the credit side of a

commercial bank. The agents of the model are corporates. The corporates deposit Z in a

commercial bank at date −1 and sign revolving credit lines that give them the right to c1 if they

receive a shock. The corporates are also aware that if banking conditions deteriorate (a second

wave of shocks) the bank will raise lending standards/loan rates so that the corporates will
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effectively receive only c2 < c1. The flight to quality event is triggered by the commercial bank

suffering losses and corporates becoming concerned that the two-wave event will transpire.

They respond by preemptively drawing down credit lines, effectively leading all firms to receive

less than c1. Gatev and Strahan (2006) present evidence of this sort of credit-line run during

periods when the spread between commercial paper and Treasury bills widens (as in the fall

of 1998).

The last example is one of the interbank market for liquidity and the payment system. The

agents of the model are all commercial banks who have Z Treasury bills at the start of the day.

Each commercial bank knows that there is some possibility that it will suffer a large outflow

from its reserve account, which it can offset by selling Treasury bills. To fix ideas, suppose

that bank A is worried about this happening at 4pm. At date −1, the banks enter into an

interbank lending arrangement so that a bank that suffers such a shock first, receives credit on

advantageous terms (worth c1 of T-bills). If a second set of shocks hits, banks receive credit

at worse terms of c2 (say, the discount window). At date 0, 9/11 occurs. Suppose that bank

A is a bank outside New York City which is not directly affected by the events, but which is

concerned about a possible reserve outflow at 4pm. However, now bank A becomes concerned

that other commercial banks will need liquidity and that these needs may arise before 4pm.

Then, bank A will renegotiate its interbank lending arrangements and be unwilling to provide

c1 to any banks that receive shocks first. Rather, it will hoard its Treasury Bills of Z to cover

its own possible shock at 4pm. In this example, uncertainty causes banks to hoard resources,

which is often the systemic concern in a payments gridlock (e.g., Stewart, 2002, and Ashcraft

and Duffie, 2006).

The different interpretations we have offered show that the model’s agents and their actions

can be mapped into the actors and actions during a flight to quality episode in a modern

financial system. As is apparent, our environment is a variant of the one that Diamond and

Dybvig (1983) study. In that model, the sequential service constraint creates a coordination

failure and the possibility of a bad crisis equilibrium in which depositors run on the bank.

In our model, the crisis is an unanticipated rise in Knightian uncertainty rather than the

realization of the bad equilibrium. Our model also offers interpretations of a crisis in terms

of the rewriting of financial contracts triggered by the uncertainty increase, rather than the

behavior of a bank’s creditors.7

7There is an underlying connection between the crisis in our model and that of Diamond and Dybvig (1983).

As Diamond and Dybvig emphasize, a deposit contract implements an optimal shock-contingent allocation of
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3 Collective Bias and the Value of Intervention

In this section, we study the benefits of central bank actions in the flight to quality episode of

our model. Since the agents of the model are not standard expected utility maximizers (i.e.

adhering to the Savage axioms), there are delicate issues that arise when defining the central

bank’s objective. On the one hand, if the central bank’s objective is the min-max objective of

the planner in (11), then since we have previously derived the equilibrium as the solution to

a planner’s problem, the central bank cannot improve on the allocation. On the other hand,

throughout this section, we argue for a paternalistic central bank objective which does not

incorporate agents’ worst-case probability assessments. We argue that there are “natural”

paternalistic policies that arise in our setting.8

3.1 Collective bias

In the fully robust equilibrium of Proposition 2 agents insure equally against first and second

shocks. To arrive at the equal insurance solution, robust agents evaluate their first order

conditions (equation 13) at conservative probabilities:

φω
ω(1) − φω

ω(2) =
φ(1) − φ(2)

2

(
u′(c∗)
u′(Z)

)
(14)

Suppose we compute the probability of one and two aggregate shocks using agents’ con-

servative probabilities:

φ̄(1) ≡2

∫
Ω

φω
ω(1)dω, φ̄(2) ≡ 2

∫
Ω

φω
ω(2)dω.

The two in front of these expressions reflects the fact that only one-half of agents are affected

by each of the shocks. Integrating equation (14) and using the definitions above, we find that

liquidity. In the fully robust equilibrium of our model, agents choose an allocation that is non-contingent on

each other’s shocks instead of the contingent liquidity allocation of the benchmark economy. In this sense,

robust agents’ preference for shock-independent liquidity allocations is related to the behavior of panicked

depositors in a bank run.
8The appropriate notion of welfare in models where agents are not rational is subject to some debate in

the literature. The debate centers on whether or not the planner should use the same model to describe

choices and welfare (see, e.g., Gul and Pesendorfer (2005) and Bernheim and Rangel (2005) for two sides of

the argument). See also Sims (2001) in the context of a central bank’s objective.

19



agents’ conservative probabilities are such that,

φ̄(1) − φ̄(2) = (φ(1) − φ(2))

(
u′(c∗)
u′(Z)

)
< φ(1) − φ(2).

The last inequality follows in the case of insufficient aggregate liquidity (Z < c∗).

Implicitly, these conservative probabilities overweight an agent’s chances of being affected

second in the two-wave event. Since each agent is concerned about the scenario in which

he receives a shock last and there is little liquidity left, robustness considerations lead each

agent to bias upwards the probability of receiving a shock later than the average agent.

However, every agent cannot be later than the “average.” Across all agents, the conservative

probabilities violate the known probabilities of the first and second wave events, implying that

agents’ conservative probabilities are collectively biased.

Note that each agent’s conservative probabilities are individually plausible. Given the

range of uncertainty over θω, it is possible that agent ω has a higher than average probability

of being second. Only when viewed from the aggregate does it become apparent the scenario

that the collective of conservative agents are guarding against is impossible.

These observations motivate us to study how a central bank, which is interested in maxi-

mizing the collective, can improve on outcomes.

3.2 Central bank information and objective

The central bank knows the aggregate probabilities φ(1), φ(2), and knows that the φω’s are

drawn from a common distribution for all ω. We have previously noted that this information

is common knowledge, so we are not endowing the central bank with any more information

than agents. The central bank also understands that because of agents’ ex-ante symmetry, all

agents choose the same contingent consumption plan Cs. We denote ps,CB
ω as the probabilities

that the central bank assigns to the different events that may affect agent ω. Like agents, the

central bank does not know the true probabilities ps
ω. Additionally, ps,CB

ω may differ from ps,ω
ω .

The central bank is concerned with the equally weighted ex-post utility that agents derive

from their consumption plans:

V CB ≡
∫

ω∈Ω

∑
ps,CB

ω U(Cs) (15)

=
∑

psU(Cs)
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where the second line follows from exchanging the integral and summation, and using the fact

that the aggregate probabilities are common knowledge.

One can view this objective as descriptive of how central banks behave: As noted above,

central banks are interested in the collective outcome, and thus it is natural that the objective

adopts the average consumption utility of agents in the economy.

The objective can also be seen as corresponding to agents’ welfare. Two potential issues

arise when making the latter identification. First, since the objective is based on ex-post

consumption utility, it ignores any utility costs that agents may suffer because of date 0

“anxieties” about ex-post outcomes. Second, if we introduce some rational agents into the

economy, they may suffer from the type of policies we discuss in this and the next section. We

address the second concern below. In contrast, we ignore the first one, which is what makes

ours a paternalistic criterion.

3.3 Collective risk management and wasted liquidity

Starting from the robust equilibrium of Proposition 2, consider a central bank that alters

agents’ decisions by increasing c1 by an infinitesimal amount, and decreasing c2 and c1,no
T by

the same amount. The value of the reallocation based on the central bank objective is:

φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − φ(1) − φ(2)

2
β. (16)

First, note that if there is sufficient aggregate liquidity, c1 = c2 = c∗ = u′−1(β). For this

case,
φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − φ(1) − φ(2)

2
β = 0

and equation (16) implies that there there is no gain to the central bank from a reallocation.

Turning next to the insufficient liquidity case, the first order condition for agents in the

robustness equilibrium satisfies,

φω
ω(1)u′(c1) − φω

ω(2)u′(c2) − β
φ(1)− φ(2)

2
= 0

or (
φ(1)

2
−K

)
u′(c1) −

(
φ(2)

2
+K

)
u′(c2) − β

φ(1)− φ(2)

2
= 0.

Rearranging this equation we have that,

φ(1)

2
u′(c1) − φ(2)

2
u′(c2) − β

φ(1) − φ(2)

2
= K(u′(c1) + u′(c2)).
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Substituting this relation into (16), it follows that the value of the reallocation to the central

bank is K(u′(c1) + u′(c2)) which is positive for all K > 0.

Summarizing these results:

Proposition 3 For any K > 0, if the economy has insufficient aggregate liquidity (Z < c∗),

agent decisions are collectively biased. Agents choose too much insurance against receiving

shocks second relative to receiving shocks first. A central bank that maximizes the expected (ex-

post) utility of agents in the economy can improve outcomes by reallocating agents’ insurance

toward the first shock.

The reallocation is valuable to the central bank because from its perspective agents are

wasting aggregate liquidity by self-insuring excessively rather than cross-insuring risks.

The central bank reaches this conclusion requiring only knowledge of aggregate probabil-

ities. As we have remarked, the central bank may be more confused than individual agents

about individual θωs. In this sense, the central bank may be the least informed agent of the

economy. The important point is that the central bank does not suffer from collective bias.9

In fact, going beyond local perturbations, the linearity with respect to individual probabilities

of the central bank objective in (15) implies that the central bank solves the K = 0 problem

of the planner in Section 2, regardless of how uninformed it may be about individual θωs.

3.4 Welfare and paternalism

To what extent does the central bank’s objective correspond to welfare? We offer two further

arguments in favor of our paternalistic welfare criterion in this subsection. First, suppose that

a fraction of the agents in the economy are rational and had probabilities such that θω = +K;

i.e. these agents know that the worst-case probabilities are truly their own probabilities.

Suppose the rest of the agents are Knightian agents with θω’s such that the average θω across

all agents is zero. In this case, reallocating insurance from second to first shocks hurts the

rational agents while it helps the average Knightian agent. However, note that the envelope

theorem implies that the utility cost to the rational agents is second order, while, since the

9If the central bank is uncertain about the values of φ(1) and φ(2), then we could overturn the result. In

particular, we may imagine a situation in which the central bank is uncertain about these probabilities, and its

objective function overweights liquidity crises (i.e. the incidence of both shocks occurring). In this case, the

central bank will also be subject to the “overinsurance” bias of agents. However, this “bias” is of a different
nature than the one we emphasize as it would not be collectively inconsistent with conditional probabilities.
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envelope theorem does not apply to the average Knightian agent, the policy results in a first

order utility gain to the Knightian agents. Thus, although the central bank’s policy is not

Pareto improving, it involves asymmetric gains to the Knightian agents. Our policy satisfies

the asymmetric paternalism criterion that Camerer, et. al., (2003) propose for evaluating

policy when some agents are behavioral.

Another justification is through the following thought experiment: Suppose that we repeat

the liquidity episode we have described infinitely many times. At the beginning of each episode,

agent ω draws a θω ∈ Θ. These draws are i.i.d. across episodes, and the agent knows that

on average his θω will be zero. In each episode, since agent ω does not know the θω for that

episode, the agent’s worst-case decision rule will have him using θω = +K. The central bank’s

ex-post utility criterion corresponds to the expected consumption utility of an agent across

all of these episodes, where the expectation is taken using agents’ known probabilities.10

3.5 Risk aversion versus uncertainty aversion

Given the centrality of collective bias in Proposition 3, it should be apparent that while

increased risk aversion may generate positive implications (flight to quality) that are similar

to those of Knightian uncertainty, its normative implications are not. Without collective bias,

and regardless of the agent’s degree or change in risk aversion, our central bank sees no reason

to reallocate liquidity toward the first wave of shocks beyond the private sector’s choices.

We can make this point precise by returning to the agents’ first order condition in the

K = 0 case of Proposition 1. Equation (9) simplified by setting β = 0 is,

u′(c1)
u′(c2)

=
φ(2)

φ(1)
.

Suppose that u(c) = c1−γ

1−γ
. Then the first order condition is,

(
c1
c2

)−γ

=
φ(2)

φ(1)
.

If we think of a flight to quality event in terms of increased risk aversion then it is clear that

c1 falls and c2 rises as γ rises. However, since K = 0, there is no role for the central bank in

this case.

10In living through repeated liquidity events, an agent will learn over time about the true distribution of

θω . However, it is still the case that along this learning path, K remains strictly positive (while shrinking)

and hence the qualitative features of our argument will go through for a small enough agent discount rate.
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We conclude that there is a role for the central bank only in situations of Knightian

uncertainty and insufficient aggregate liquidity. Of course not all recessionary episodes exhibit

these ingredients. But there are many scenarios where they are present, such as October 1987

and the Fall of 1998.

4 An Application: Lender of Last Resort

The abstract reallocation experiment considered in Proposition 3 makes clear that during

flight to quality episodes the central bank will find it desirable to induce agents to insure less

against second shocks and more against first shocks. In this section we discuss an application

of this result and consider a lender of last resort (LLR) policy in light of the gain identified

in Proposition 3.

As in Woodford (1990) and Holmstrom and Tirole (1998), we assume the LLR has access

to collateral that private agents do not (or at least, it has access at a lower cost). Woodford

and Holmstrom and Tirole focus on the direct value of intervening using this collateral. Our

novel result is that, because of the reallocation benefit of Proposition 3, the value of the LLR

exceeds the direct value of the intervention. Thus our model sheds light on a new benefit of

the LLR.

The model also stipulates when the benefit will be highest. As we have remarked previously,

the reallocation benefit only arises in situations where K > 0 and Z < c∗. This carries over

directly to our analysis of the LLR: the benefits are highest when K > 0 and Z < c∗. We also

show that the LLR must be a last-resort policy. In fact, if liquidity injections take place too

often, the reallocation effect works against the policy and reduces its value.

4.1 LLR policy

Formally, the central bank credibly expands the resources of agents in the two-shock event by

an amount ZG. That is, agents who are affected second in the two-wave event (s = (2, 2)), will

have their consumption increased from c2 to c2 + 2ZG (twice ZG because one-half measure of

agents are affected by the second shock). The resource constraints for agents (for the reduced

problem) are:

c1 + c1,no
T ≤ 2Z (17)

c1 + c2 ≤ 2Z + 2ZG. (18)
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In practice, the central bank’s promise may be supported by a credible commitment to costly

ex-post inflation or taxation and carried out by guaranteeing, against default, the liabilities

of financial intermediaries who have sold financial claims against extreme events. Since we

are interested in computing the marginal benefit of intervention, we study an infinitesimal

intervention of ZG.

If the central bank offers more insurance against the two-shock event, this insurance has

a direct benefit in terms of reducing the disutility of an adverse outcome. The direct benefit

of the LLR is,

V CB,direct
ZG = 2

∫
Ω

φω(2)u′(c2,ω) dω = φ(2)u′(c2).

The anticipation of the central bank’s second-shock insurance leads agents to reoptimize

their insurance decisions. Agents reduce their private insurance against the publicly insured

second-shock and increase their first-shock insurance. The total benefit of the intervention

includes both the direct benefit as well as any benefit from portfolio reoptimization:

V CB,total
ZG =

∫
Ω

[
φω(1)u′(c1,ω)

dc1,ω

dZG
+ φω(2)u′(c2,ω)

dc2,ω

dZG
+
φ(1) − φ(2)

2
β
dc1,no

T,ω

dZG

]
dω.

The first order condition for agent decisions, from (13), in the robust equilibrium gives,

φ(1)

2
u′(c1) =

φ(2)

2
u′(c2) + β

φ(1)− φ(2)

2
+K(u′(c1) + u′(c2)).

We simplify the expression for V CB,total
ZG by integrating through φω(1) and φω(2) and then

substituting for u′(c1) from the first order condition. These operations yield,

V CB,total
ZG =

φ(2)

2
u′(c2)

(
dc1
dZG

+
dc2
dZG

)
+β

φ(1)− φ(2)

2

(
dc1
dZG

+
dc1,no

T

dZG

)
+K(u′(c1)+u′(c2))

dc1
dZG

Last, we differentiate the resource constraints, (17) and (18) with respect to ZG to yield,

dc1
dZG

+
dc2
dZG

= 2,
dc1
dZG

+
dc1,no

T

dZG
= 0.

Then,

V CB,total
ZG = φ(2)u′(c2) +K(u′(c1) + u′(c2))

dc1
dZG

= V CB,direct
ZG +K(u′(c1) + u′(c2))

dc1
dZG

.

The additional benefit we identify is due to portfolio reoptimization: Agents cut back on

the publicly insured second shock and increase first shock insurance, thereby moving their
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decisions closer to what the central bank would choose for them. In this sense, the LLR

policy can help to implement the policy suggested in Proposition 3.

We also note that without Knightian uncertainty (K = 0), there is no gain (beyond the

direct benefit) from the policy. Moreover, it is straightforward to see that if Z > c∗ then

agents will not use the additional insurance to cover their liquidity shocks, but will reoptimize

in a way as to use the insurance at date T . In this case also there is no gain to offering the

public insurance (since dc1
dZG = 0 ). We summarize these results as follows:

Proposition 4 For K > 0 and Z < c∗, the total value of the lender of last resort policy

exceeds its direct value:

V CB,total
ZG > V CB,direct

ZG .

It is important to note that under the LLR policy the central bank injects resources

only rarely. As we associate the second-shock event with an extreme and unlikely event,

in expectation the central bank does not promise many resources. This aspect of policy is

similar to Diamond and Dybvig’s (1983) analysis of a LLR. However there are a few important

differences in the mechanism through which the policies work. As there is no coordination

failure in our model, the policy does not work by ruling out a “bad” equilibrium. Rather,

the policy works by reducing the agents’ “anxiety” that they will receive a shock last when

the economy has depleted its liquidity resources. It is this anxiety that leads agents to use

a high φω
ω(2) in their decision rules. From this standpoint, it is also clear that an important

ingredient in the policy is that agents have to believe that the central bank will have the

necessary resources in the two-event shock in order to reduce their anxiety. Credibility and

commitment are central to the working of our LLR policy.11

4.2 Moral hazard and early interventions

The policy we have suggested cuts against the usual moral hazard critique of central bank

interventions. The moral hazard critique is predicated on agents responding to the provision

of public insurance by cutting back on their own insurance activities. In our model, in keeping

with the moral hazard critique, agents reallocate insurance away from the publicly insured

11In this sense, the policy relates to the government bond policy of Woodford (1990) and Holmstrom and

Tirole (1998) who argue that government promises are unique because they have greater collateral backing

than private sector promises.
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shock. However, when flight to quality is the concern, the reallocation improves (ex-post)

outcomes on average.12 Public and private provision of insurance are complements in our

model.

This logic suggests that interventions against first shocks may be subject to the moral

hazard critique as agents’ portfolio reoptimization would lead them toward more insurance

against the second shock. To consider the “early intervention” case, suppose that the central

bank credibly offers to increase the consumption of agents who are affected in the first shock

from c1 to c1 + 2ZG. The resource constraints for agents (for the reduced problem) are:

c1 + c1,no
T ≤ 2Z + 2ZG

c1 + c2 ≤ 2Z + 2ZG.

The direct benefit of intervention in the first shock is:

V CB,direct,f irst
ZG = 2

∫
Ω

φω(1)u′(c1,ω)dω = φ(1)u′(c2).

We compute the total benefit as previously except that we substitute agents’ first order con-

dition using,

φ(2)

2
u′(c2) =

φ(1)

2
u′(c1) − β

φ(1)− φ(2)

2
−K(u′(c1) + u′(c2)).

Also, using the fact that,

dc1
dZG

+
dc2
dZG

= 2,
dc1
dZG

+
dc1,no

T

dZG
= 2.

we find that,

V CB,total
ZG = V CB,direct,f irst

ZG −K(u′(c1) + u′(c2))
dc1
dZG

< V CB,direct,f irst
ZG

The expected cost of the early intervention policy is much larger than the second shock

intervention, since the central bank rather than the private sector bears the cost of insurance

against the (likely) single-shock event. Agents reallocate the expected resources from the

central bank to the two-shock event, which is exactly the opposite of what the central bank

wants to achieve. In this sense, interventions in intermediate events are subject to the moral

hazard critique. We conclude that the lender of last resort facility, to be effective and improve

private financial markets, has to be a last and not an intermediate resort.

12Note that if the direct effect of intervention is insufficient to justify intervention, then the lender of last

resort policy is time inconsistent. This result is not surprising as the benefit of the policy comes precisely from

the private sector reaction, not from the policy itself.
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4.3 Multiple shocks

It is clear that the LLR should not intervene during early shocks and instead should only

pledge resources for late shocks; but if we move away from our two-shock model to a more

realistic context with multiple potential waves of aggregate shocks, how late is late?

To answer this question we extend the model to consider multiple shocks. We assume

the economy may experience n = 1...N waves of shocks, each affecting 1
N

of the agents. The

probability of the economy experiencing n waves is denoted φ(n), with φ(n) < φ(n−1). Also,

each ω’s probability of being affected in the nth wave satisfies
∫

ω∈Ω
φω(n)dω = φ(n)

N
.

The LLR policy takes the following form: The central bank injects 1
N−j+1

units of liquidity

for all shocks after (and including) the jth wave (j ≤ N). We also simplify our analysis by

focusing on the fully robust case where cn is the same for all n and by setting β = 0, thereby

assuring that Z < c∗ and allowing us to disregard effects on cn,no
T . cn rises to cn + N

N−j+1
in

the intervention (i.e. 1
N−j+1

injected to a measure 1
N

of agents).

The direct value of the intervention as a function of j is,

V CB,direct
ZG =

N

N − j + 1

∫
Ω

N∑
n=j

φω(n)u′(cn,ω)dω

= u′(c1)
1

N − j + 1

N∑
n=j

φ(n).

Agents reduce insurance against the publicly insured shocks and increase their private

insurance for the rest of the shocks. The total benefit of the intervention includes both the

direct benefit as well as any benefit from portfolio reoptimization:

V CB,total
ZG =

∫
Ω

N∑
n=1

φω(n)u′(cn,ω)
dcn,ω

dZG
dω.

From the resource constraint we have that

N∑
n=1

dcn,ω

dZG
= N

In the fully robust case, cn,ω and dcn,ω

dZG are the same for all n. Then,

V CB,total
ZG = u′(c1)

dc1
dZG

1

N

N∑
n=1

φ(n) = u′(c1)
1

N

N∑
n=1

φ(n) (19)
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Note that this expression is independent of the intervention rule j. In contrast, it is apparent

that V CB,direct
ZG is decreasing with respect to j since the φ(n)’s are monotonically decreasing.

Thus, the ratio:
V CB,total

ZG

V CB,direct
ZG

=
1
N

∑N
n=1 φ(n)

1
N−j+1

∑N
n=j φ(n)

is strictly greater than one for all j > 1 and is increasing with respect to j.

Of course, the above result does not suggest that intervention should occur only in the Nth

shock. Instead, it suggests that for any given amount of resources available for intervention,

the LLR should first pledge resources to theNth shock and continue to do so until it completely

replaces private insurance, it should then move on to the N − 1st shock, and so on.

The multiple shock model also clarifies another benefit of late intervention. As j rises,

events that are being insured by the LLR become increasingly less likely. If we take the case

where the shadow cost of the LLR resources for the central bank is constant, the expected

cost of the LLR policy falls as j rises, while the expected benefit remains constant.

In other words, as j rises, it is the private sector that increasingly improves the allocation

of scarce private resources to early and more likely aggregate shocks, thereby reducing the

extent of the flight-to-quality phenomenon. In contrast, the central bank plays a decreasingly

small role in terms of the expected value of resources actually disbursed, as j increases.

Thus, while a well designed LLR policy may indeed have a direct effect only in highly

unlikely events, the policy is not irrelevant for likely outcomes. Its main benefits come from

unlocking private markets to insure more likely and less extreme events.

5 Final remarks

Flight to quality is a pervasive phenomenon that exacerbates the impact of recessionary shocks

and financial accelerators. The starting point of this paper is a model of this phenomenon

based on Knightian uncertainty aversion among financial specialists. We show that when

aggregate liquidity is plentiful, agents’ uncertainty does not affect the equilibrium. However,

when there is both Knightian uncertainty and agents think that aggregate liquidity is scarce,

they take a set of protective actions to guarantee themselves safety, but which leave the

aggregate economy overexposed to negative shocks.

In this context, a Lender of Last Resort policy is valuable when used to support rare events.

Our model prescribes that the benefit of the LLR is highest when there is both insufficient
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aggregate liquidity and Knightian uncertainty. Many of the examples we have discussed in

this paper (1987 market crash, Fall of 1998, 9/11) satisfy these criteria. But just as important

are times when the “dog did not bark.” For example, a recession in which the ingredients are

not both central, does not call for central bank action. Likewise, we prescribe that a default

by a hedge fund – even one that is large – should not elicit central bank reaction unless the

default triggers considerable uncertainty in other market participants and hedge funds are

financially weak. The model also suggests that it is important for the central bank to have an

understanding of whether a given market dynamic is driven by risk or uncertainty.

There is currently considerable uncertainty over how the downgrade of a top name will

affect the credit derivatives market. Our model suggests that ex-ante actions to reduce the

extent of uncertainty during a flight to quality episode are valuable. For example, recent moves

to increase transparency and risk assessment in this market as well as streamline back-office

settlement procedures can be viewed in this light (Geithner, 2006).

The implications of the framework extend beyond the particular interpretation we have

given to agents and policymakers. For example, in the international context one may think

of our agents as countries and the policymaker as the IMF or other IFI’s. Then, our model

prescribes that the IMF not support the first country hit by a sudden stop, but to commit

to intervene once contagion takes place. The benefit of this policy comes primarily from the

additional availability of private resources to limit the impact of the initial pullback of capital

flows.
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A Event Tree and Probabilities
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Prob φ(2)

Prob φ(1) − φ(2)

Prob 1 − φ(1)

1st Wave

2nd Wave

No More Shocks

2 Waves

1 Wave

No Shocks

The event tree is pictured above. The probability of two waves affecting the economy is

φ(2); the probability of one wave affecting the economy is φ(1) − φ(2); and, the probability

of no waves affecting the economy is 1 − φ(1). We used the dashed box around “1st wave”

to signify that agents are unsure whether they are in the upper branch (one more wave will

occur) or the middle branch (no further shocks).

Consider an agent ω who may be affected in these waves. Suppose that his probability of

being affected by a shock when the event is the middle branch (“1 wave”) is one-half. Suppose

that his probability of being of being affected by a first shock when the event is the upper

branch (“2 waves”) is ψω, while his probability of being affected by a second shock is 1 − ψω.

Moreover, suppose that the agent is uncertain about ψω, which we interpret as the agent is

uncertain about his likelihood of being first or second, in the case of a two wave event.

The agent’s probability of being affected by a first shock is,

φω(1) = φ(2)ψω + (φ(1) − φ(2))
1

2
.

The agent’s probability of being affected by a second shock is,

φω(2) = φ(2)(1 − ψω).

Note that,

φω(1) + φω(2) = φ(2) + (φ(1) − φ(2))
1

2
=
φ(1) + φ(2)

2
,
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and,

φω(1) − φ(1)

2
= φ(2)ψω − φ(2)

2

φω(2) − φ(2)

2
= −φ(2)ψω +

φ(2)

2

These expressions show that the event tree is consistent with agents being certain about their

probability of receiving a shock, but being uncertain about their relative probabilities of being

first or second. In the text, we describe the uncertainty in terms of φω(2) − φ(2)
2

rather than

in terms of ψω.

B Proof or Proposition 2

We focus on the case of insufficient aggregate liquidity (Z < c∗). The other case follows the

same logic as the K = 0 case. We are looking for a solution to the problem in equation

(12). We can describe this problem in the game-theoretic language often used in max-min

problems. The agent chooses C to maximize V (C; θω
ω) anticipating that “nature” will choose

θω
ω to minimize V (C; θω

ω) given the agent’s choice of C.

The solution (θ̄ω
ω, C̄) has to satisfy a pair of optimization problems. First, θ̄ω

ω ∈ argminθω
ω
V (C̄; θω

ω).

That is, nature chooses θω
ω optimally given the agent’s choice of C̄. Second, C̄ ∈ argmaxCV (C; θ̄ω

ω).

That is, the agent chooses C optimally given nature’s choice of θ̄ω
ω.13

We compute:
∂V

∂θω
ω

= u(c2) − u(c1) + β(c2,2
T − c2,1

T )

Let us first ask whether there exists a solution in which ∂V
∂θω

ω
< 0. If so, then clearly θω

ω = +K.

Taking this value of θω
ω let us consider the agent’s problem in equation (12). First note that

c2,1
T = 0. To see this, suppose that c2,1

T > 0. Then we can reduce c2,1
T by δ and increase c2,2

T by

δ and produce a utility gain of δ(φω
ω(2) − φ(2) + φω

ω(2)) > 0 when θω
ω > 0.

With this knowledge, we rewrite the condition that ∂V
∂θω

ω
< 0 as,

u(c2) + βc2,2
T < u(c1) ⇒ c1 > c2

13The fact that the agent chooses C before nature chooses θω
ω does not affect our problem. To see this, note

that choosing first only gives the agent an advantage if the agent can induce nature to choose a θω
ω different

than θ̄ω
ω . Suppose the agent chooses C 	= C̄ to increase V (·). Clearly this choice reduces V below V (θ̄ω

ω , C̄).

Thus, nature can always choose to set θω
ω = θ̄ω

ω and make the agent strictly worse off than at the choice C = C̄.
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If c1 > c2 and Z < c∗ it follows from the resource constraint that c2 < c∗. But if c2 < c∗ then

from the agent’s problem, we must have that c2,2
T = 0 (i.e. do not save any resources for date

T if these resources could be used earlier).

Thus, we only need to consider the agent’s problem in (12) for values of c1, c2, c
1,no
T > 0.

The first order condition for the agent at θω
ω = +K is,(

φ(1)

2
−K

)
u′(c1) =

(
φ(2)

2
+K

)
u′(c2) + β

φ(1)− φ(2)

2
.

We note that for K = 0, the unique solution to the agent’s problem is c1 > c2. Thus, for

small values of K, a solution exists in which the agent chooses c1 > c2 and nature chooses

θω
ω = +K. This is the partially robust solution given in the Proposition.

As K becomes larger, c1/c2 falls and at some point c1 = c2 = Z. This occurs when K̄

solves, (
φ(1)

2
− K̄

)
u′(Z) =

(
φ(2)

2
+ K̄

)
u′(Z) + β

φ(1)− φ(2)

2
.

which gives the expression for the value of K̄ defined in the Proposition.

Note that if K > K̄, the solution θω
ω = +K̄ and c1 = c2 still solves both the agent’s and

nature’s optimization problems. The agent’s choice is uniquely optimal at θω
ω = +K̄, while

nature is indifferent over values of θω
ω ∈ [−K,+K]. This is the fully robust solution given in

the Proposition.

We have thus far shown that considering the case where ∂V
∂θω

ω
≤ 0, the solution given in the

Proposition is the only solution to the problem in (12). We conclude by showing that there

are no other solutions to the problem. To do this, we only need to consider whether there

exists a solution in which ∂V
∂θω

ω
> 0.

Suppose there does exist such a solution. If ∂V
∂θω

ω
> 0, then θω

ω = −K. We can go back

through arguments similar to those previously offered to show that c2,2
T and c2,1

T must both be

zero in this case. Then the condition that ∂V
∂θω

ω
> 0 is equivalent to,

c1 < c2

The first order condition for the agent is,(
φ(1)

2
+K

)
u′(c1) =

(
φ(2)

2
−K

)
u′(c2) + β

φ(1)− φ(2)

2
.

The solution to this problem is that c1 > c2, which is a contradiction. Thus there does not

exist a solution in which ∂V
∂θω

ω
> 0.
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