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Liquidity and Risk Management

Nicolae Gârleanu and Lasse Heje Pedersen

This paper provides a model of the interaction between risk-management practices and

market liquidity. Our main finding is that a feedback effect can arise: tighter risk manage-

ment leads to market illiquidity, and this illiquidity further tightens risk management.

Risk management plays a central role in institutional investors’ allocation of capital to

trading. For instance, a risk manager may limit a trading desk’s one-day 99% value at

risk (VaR) to $1 million. This means that the trading desk must choose a position such

that, over the following day, its value drops no more than $1 million with 99% probability.

Risk management thus helps control an institution’s use of capital while limiting default

risk, and helps mitigate agency problems. Jorion (2000, page xxiii) states that VaR “is now

increasingly used to allocate capital across traders, business units, products, and even to the

whole institution.”

We do not focus on the benefits of risk management within an institution adopting such

controls, but, rather, on the aggregate effects of such practices on liquidity and asset prices.

An institution may benefit from tightening its risk management and restricting its security

position, but as a consequence it cannot provide as much liquidity to others. We show that,

if everyone uses a tight risk management, then market liquidity is lowered in that it takes

longer to find a buyer with unused risk-bearing capacity, and, since liquidity is priced, prices
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fall.

Not only does risk management affect liquidity, but liquidity can also affect risk-management

practices. For instance, Bank for International Settlements (2001, page 15) states that “For

the internal risk management, a number of institutions are exploring the use of liquidity

adjusted-VaR, in which the holding periods in the risk assessment are adjusted to account

for market liquidity, in particular by the length of time required to unwind positions.” For

instance, if liquidation is expected to take two days, a two-day VaR might be used instead

of a one-day VaR. Since a security’s risk over two days is greater than over one day, this

means that a trader must choose a smaller position to satisfy his liquidity-adjusted value at

risk (LVaR) constraint. One motivation for this constraint is that, if an institution needs to

sell, its maximum loss before the completion of the sale is limited by the LVaR.

The main result of the paper is that subjecting traders to an LVaR gives rise to a multiplier

effect: tighter risk management leads to more restricted positions, hence longer expected

selling times, implying higher risk over the expected selling period, which further tightens

the risk management, and so on. This snowballing feedback between liquidity and risk

management can help explain why liquidity can suddenly drop. We show that this spiraling

illiquidity can arise if volatility rises, or if more agents face reduced risk-bearing capacity —

for instance, because of investor redemptions, losses, or increased risk aversion.

Our link between liquidity and risk management is a testable prediction. While no formal

empirical evidence is available, to our knowledge, our prediction is consistent with anecdotal

evidence on financial market crises. For example, in August 1998 several traders lost money

due to a default of Russian bonds and, simultaneously, market volatility increased. As a
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result, the (L)VaR of many investment banks and other institutions increased. To bring risk

back in line, many investment banks reportedly asked traders to reduce positions, leading

to falling prices and lower liquidity. These market moves exacerbated the risk-management

problems, fueling the crisis in a similar manner to the one modelled here.

We capture these effects by extending the search model for financial securities of Duffie,

Gârleanu, and Pedersen (2005, 2007) (DGP). This framework of time-consuming search is

well suited for modeling liquidity-based risk management as it provides a natural framework

for studying endogenous selling times. While DGP relied on exogenous position limits, we

endogenize positions based on a risk-management constraint, and consider both a simple

and a liquidity-adjusted VaR. Hence, we solve the fixed-point problem of jointly calculating

endogenous positions given the risk-management constraint and computing the equilibrium

(L)VaR given the endogenous positions that determine selling times and price volatility.

Weill (2007) considers another extension of DGP in which marketmaker liquidity provision

is limited by capital constraints. Our multiplier effect is similar to that of Brunnermeier and

Pedersen (2006) who show that liquidity and traders’ margin requirements can be mutually

reinforcing.

1 Model

The economy has two securities: a “liquid” security with risk-free return r (i.e. a “money-

market account”), and a risky illiquid security. The risky security has a dividend-rate process

X and a price P (X), which is determined in equilibrium. The dividend rate is Lévy with
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finite variance. It has a constant drift normalized to zero, Et (X(t + T ) − X(t)) = 0, and a

volatility σX > 0, i.e.,

(1) Vart (X(t + T ) − X(t)) = σ2
X T.

Examples include Brownian motions, Poisson processes, and sums of these.

The economy is populated by a continuum of agents who are risk neutral and infinitely

lived, have a time-preference rate equal to the risk-free interest rate r > 0, and must keep

their wealth bounded from below. Each agent is characterized by an intrinsic type i ∈ {h, l},

which is a Markov chain, independent across agents, and switching from l (“low”) to h

(“high”) with intensity λu, and back with intensity λd. An agent of type i holding θt shares

of the asset incurs a holding cost of δ > 0 per share and per unit of time if he violates his

risk-management constraint

(2) vart (θt [P (Xt+τ ) − P (Xt)]) ≤ (σi)2,

where σi is the risk-bearing capacity, defined by σh = σ̄ > 0 and σl = 0. The low risk-bearing

capacity of the low-type agents can be interpreted as a need for more stable earnings, hedging

reasons to reduce a position, high financing costs, or a need for cash (e.g., an asset manager

whose investors redeem capital).1

We use this constraint as a parsimonious way of capturing risk constraints, such as the

1An interesting extension of our model would consider the direct benefit of tighter risk management,
which could be captured by a lower λd.
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very popular VaR constraint,2 which are used by most financial institutions. Our results

are robust in that they only rely on two natural properties of the measure of risk: the risk

measure increases with the size of the security position and the length of the time period τ

over which the risk is assessed. While the constraint is not endogenized in the model, we

note that its wide use in the financial world is probably due to agency problems, default

risk, and the need to allocate scarce capital.

We consider two types of risk management: (a) “simple risk management,” in which the

variance of the position in (2) is computed over a fixed time horizon τ , and (b) “liquidity-

adjusted risk management,” in which the variance is computed over the time required for

selling the asset to an unconstrained buyer, which will be a random equilibrium quantity.

Because agents are risk neutral and we are interested in a steady-state equilibrium, we

restrict attention to equilibria in which, at any given time and state of the world, an agent

holds either 0 or θ̄ units of the asset, where θ̄ is the largest position that satisfies (2) with

σi = σ̄, taking the prices and search times as given.3 Hence, the set of agent types is

T = {ho, hn, lo, ln}, with the letters “h” and “l” designating the agent’s current intrinsic

risk-bearing state as high or low, respectively, and with “o” or “n” indicating whether the

agent currently owns θ̄ shares or none, respectively. We let µζ(t) denote the fraction at time

2A VaR constraint stipulates that Pr (−θ [P (Xt+τ ) − P (Xt)] ≥ V aR) ≤ π for some risk limit VaR and
some confidence level π. If X is a Brownian motion, this is the same as (2). We note that rather than
considering only price risk, we could alternatively consider the risk of the gains process (i.e., including

dividend risk) Gt,τ = P (X(t + τ)) − P (X(t)) +
∫ t+τ

t
X(s) ds. This yields qualitatively similar results (and

quantitatively similar for many reasonable parameters since dividend risk is orders of magnitude smaller
than price risk over a small time period).

3Note that the existence of such an equilibrium requires that the risk limit σ̄ be not too small relative to
the total supply Θ, a condition that we assume throughout.
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t of agents of type ζ ∈ T . These fractions add up to 1 and markets must clear:

1 = µho + µhn + µlo + µln(3)

Θ = θ̄(µho + µlo),(4)

where Θ > 0 is the total supply of shares per investor.

Central to our analysis is the notion that the risky security is not perfectly liquid, in the

sense that an agent can only trade it when she finds a counterparty. Every agent finds a

potential counterparty, selected randomly from the set of all agents, with intensity λ, where

λ ≥ 0 is an exogenous parameter characterizing the market liquidity for the asset. Hence,

the intensity of finding a type-ζ investor is λµζ , that is, the search intensity multiplied by

the fraction of investors of that type. When two agents meet, they bargain over the price,

with the seller having bargaining power q ∈ [0, 1].

This model of illiquidity captures directly the search that characterizes over-the-counter

(OTC) markets. In these markets, traders must find an appropriate counterparty, which

can be time consuming. Trading delays also arise due to time spent gathering information,

reaching trading decisions, mobilizing capital, etc. Hence, trading delays are commonplace

and, therefore, the model can also capture features of other markets such as specialist and

electronic limit-order-book markets, although these markets are, of course, distinct from

OTC markets.
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2 Equilibrium Risk Management, Liquidity, and Prices

We now proceed to derive the steady-state equilibrium agent fractions µ, the maximum

holding θ̄, and the price P . Naturally, low-type owners lo want to sell and high-type non-

owners hn want to buy, which leads to

0 = −2λµhn(t)µlo(t) − λuµlo(t) + λdµho(t)(5)

and three more such steady-state equations. Equation (5) states that the change in the

fraction of lo agents has three components, corresponding to the three terms on the right

hand side: First, whenever an lo agent meets an hn investor, he sells his asset and is no

longer an lo agent. Second, whenever the intrinsic type of a lo agent switches to high, he

becomes an ho agent. Third, ho agents can switch type and become lo. Duffie, Gârleanu,

and Pedersen (2005) show that, taking θ̄ as fixed, there is a unique stable steady-state mass

distribution as long as θ̄ ≥ Θ. Here, agents’ positions θ̄ are endogenous and depend on µ, so

that we must calculate a fixed point.

Agents take the steady-state distribution µ as fixed when they derive their optimal strate-

gies and utilities for remaining lifetime consumption, as well as the bargained price P . The

utility of an agent depends on his current type, ζ(t) ∈ T , (i.e., whether he is a high or a

low type and whether he owns zero or θ̄ shares), the current dividend X(t), and the wealth

W (t) in his bank account:

Vζ(X(t),Wt) = Wt + 1(ζ∈{ho, lo})
θ̄X(t)

r
+ θ̄vζ ,(6)
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where the type-dependent utility coefficients vζ are to be determined. With q the bargaining

power of the seller, bilateral Nash bargaining yields the price:

P θ̄ = (Vlo − Vln) (1 − q) + (Vho − Vhn) q .(7)

We conjecture, and later confirm, that the equilibrium asset price per share is of the form

P (X(t)) =
X(t)

r
+ p,(8)

for a constant p to be determined. The value-function coefficients vζ and p are given by a

set of Hamilton-Jacobi-Bellman equations, stated and solved in the appendix. The appendix

contains all the proofs.

Proposition 1 If the risk-limit σ̄ is sufficiently large, there exists an equilibrium with hold-

ings 0 and θ̄ that satisfy the risk management constraint (2) with equality for low- and

high-type agents, respectively. With simple risk management, the equilibrium is unique and

(9) θ̄ =
rσ̄

σX

1√
τ
.

With liquidity-adjusted risk management, θ̄ depends on the equilibrium fraction of potential

buyers µhn and satisfies

(10) θ̄ =
rσ̄

σX

√

2λµhn.
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In both cases, the equilibrium price is given by

(11) P (Xt) =
Xt

r
− δ

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
,

where the fractions of agents µ depend on the type of risk management.

These results are intuitive. The “position limit” θ̄ increases in the risk limit σ̄ and decreases

in the asset volatility and in the square root of the VaR period length, which is τ under

simple risk management and (2λµhn)−1 under liquidity-adjusted risk management. In the

latter case, position limits increase in the search intensity λ and in the fraction of eligible

buyers µhn.

The price equals the present value of dividends, Xt

r
, minus a discount for illiquidity.

Naturally, the liquidity discount is larger if there are more low-type owners in equilibrium

(µlo is larger) and fewer high-type non-owners ready to buy (µhn is smaller).

Of the equilibria obtaining with liquidity-adjusted risk management, we concentrate on

the ones that are stable, in the sense that increasing θ̄ marginally would result in equilibrium

quantities violating the VaR constraint (2). Conversely, an equilibrium is unstable if a

marginal change in holdings that violates the constraint would result in the equilibrium

adjusting so that the constraint is not violated. If an equilibrium exists, then a stable

equilibrium exists. Indeed, the equilibrium with the largest θ̄ is stable and has the highest

welfare among all equilibria.

The main result of the paper characterizes the equilibrium connection between liquidity

and risk management:
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Figure 1: The effects of dividend volatility on equilibrium seller search times (left panel) and
prices (right panel) with, respectively simple (dashed line) and liquidity-adjusted (solid line)
risk management.

Proposition 2 Suppose that σ̄ is large enough for existence of an equilibrium. Consider a

stable equilibrium with liquidity-adjusted risk management and let τ = 1
2λµhn

, which means

that the equilibrium allocations and price are the same with simple risk management.

Consider any combination of the conditions (a) higher dividend volatility σX , (b) lower

risk limit σ̄, (c) lower meeting intensity λ, (d) lower switching intensity λu to the high risk-

bearing state, and (e) higher switching intensity λd to the low risk-bearing state. Then, (i)

the equilibrium position θ̄ decreases, (ii) expected search times for selling increase, and (iii)

prices decrease. All three effects are larger with liquidity-adjusted risk management.

To see the intuition for these results, consider first the impact of a higher dividend

volatility. This makes the risk-management constraint tighter, inducing agents to reduce

their positions and spreading securities among more agents, thus leaving a smaller fraction

of agents with unused risk-bearing capacity. Hence, sellers’ search time increase and their
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bargaining position worsen, leading to lower prices. This price drop is due to illiquidity, as

agents are risk neutral.4

Importantly, with liquidity-adjusted risk management, the increased search time for sell-

ers means that the risk over the expected liquidation period rises, thus further tightening

the risk-management constraint, further reducing positions, further increasing search times,

and so on.

This multiplier also increases the sensitivity of the economy with liquidity-adjusted risk

management to the other shocks (b)–(e). Indeed, a lower risk limit (b) is equivalent to a

higher dividend risk. The “liquidity shocks” (c)–(e) do not affect the equilibrium position θ̄

with simple risk management, but they do increase the sellers’ search times and reduce prices.

With liquidity-adjusted risk management, these liquidity shocks reduce security positions,

too, because of increased search times and, as explained above, a multiplier effect arises.

The multiplier arising from the feedback between trading liquidity and risk management

clearly magnifies the effects on liquidity and prices of changes in the economic environment.

Our steady-state model illustrate this point using comparative static analysis that essentially

compares across economies. Similar results would arise in the time series of a single economy

if there was random variation in the model characteristic, e.g., parameters switched in a

Markov chain as in Duffie, Gârleanu, and Pedersen (2007). In the context of such time-series

variation, our multiplier effect can generate the abrupt changes in prices and selling times

that characterize crises.

4In a Walrasian market with immediate trade, the price is the present value of dividends X
r

when Θ

θ̄
<

λu

λu+λd

, a condition that is satisfied is all our examples. (When Θ

θ̄
>

λu

λu+λd

, the Walrasian price is X−δ
r

.)
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We illustrate our model with a numerical example in which λ = 100, r = 10%, X0 = 1,

λd = 0.2, λu = 2, δ = 3, q = 0.5, Θ = 1, and σ̄ = 1. Figure 1 shows how prices (right panel)

and sellers’ expected search times (left panel) depend on asset volatility. The solid line shows

this for liquidity-adjusted risk management and the dashed for simple risk management with

τ = 0.0086, which is chosen so that the risk management schemes are identical for σX = 30%.

Search times increase and prices decrease with volatility. Importantly, these sensitivities are

stronger (i.e., the curves are steeper) with liquidity-adjusted risk management due to the

interaction between market liquidity (i.e., search times) and risk management.
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A Appendix

Steady-State Distribution of Agent Types:

The steady-state distribution of agent types is given by the following system of equations.

The economic intuition for these equations is discussed in connection with Equation (5) in

the paper.

(A.1)

0 = µ̇lo(t) = −2λµhn(t)µlo(t) − λuµlo(t) + λdµho(t)

0 = µ̇hn(t) = −2λµhn(t)µlo(t) − λdµhn(t) + λuµln(t)

0 = µ̇ho(t) = 2λµhn(t)µlo(t) − λdµho(t) + λuµlo(t)

0 = µ̇ln(t) = 2λµhn(t)µlo(t) − λuµln(t) + λdµhn(t).

Two of the equations in (A.1) are redundant, so that, together with (3)–(4), (A.1) forms a

well-posed system. The system can be reduced to the quadratic equation

0 = 2λµ2
hn +

(

2λ

(

Θ

θ̄
− λu

λd + λu

)

+ λu + λd

)

µhn − λu

(

1 − Θ

θ̄

)

.(A.2)

We use below the following result, which follows from calculations in Duffie, Gârleanu,

and Pedersen (2007).

Lemma 3 If θ̄ ≥ Θ, the system of equations (3), (4), and (A.1) has a unique solution in

[0, 1]4. The steady-state fraction of sellers µlo increases with λd and decreases with λu, while

the fraction of buyers µhn decreases with λd and increases with λu. Both µlo and µhn decrease

with the meeting intensity λ. Furthermore, µlo increases, while µhn decreases with θ̄.
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Proof of Proposition 1:

The value function coefficients are given by

0 = rvlo − λu(vho − vlo) − 2λµhn(p − vlo + vln) + δ

0 = rvln − λu(vhn − vln)

0 = rvho − λd(vlo − vho)(A.3)

0 = rvhn − λd(vln − vhn) − 2λµho(vho − vhn − p)

p = (vlo − vln)(1 − q) + (vho − vhn)q.

The first equation means that an agent of type lo has a zero change in steady-state utility.

The change in his utility is due to opportunity cost −rvlo, expected change in intrinsic-type

λu(vho − vlo), trade 2λµhn(p− vlo + vln), and holding cost −δ. The next three equations are

similar. Direct solution of this system yields

p =
δ

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
.(A.4)

Given the dependence of P (Xt) on Xt, it is immediate that

vart(P (Xt+τ ) − P (Xt)) =
σ2

X

r2
τ
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for constant τ . If τ is randomly distributed with constant arrival intensity λµhn,

vart(P (Xt+τ ) − P (Xt)) =
1

r2
vart(Xt+τ − Xt)

=
1

r2
[Et(vart(Xt+τ − Xt|τ)) + vart(Et(Xt+τ − Xt|τ))]

=
1

r2
[σ2

XEt(τ)] =
σ2

X

r2λµhn

,

and it is clear that, when the VaR constraint (2) binds, the equilibrium holding θ is given

by (9) or (10), depending on the nature of risk management.

�

Proof of Proposition 2: The equilibrium with the two kinds of risk management is given

by fi(θ̄) = rσ̄
σX

, where f0(θ̄) = θ̄
√

τ and f1(θ̄) = θ̄√
2λµhn(θ̄)

. Clearly, f0 = f1 when τ = 1
2λµhn

,

so that the two equilibria are identical.

The sensitivity θ̄′ of the equilibrium position θ̄ to the ratio σ̄
σX

is given by f ′
i θ̄

′ = r. With

simple risk management, it is clear that f ′
0 > 0, so that the equilibrium position θ̄ decreases

if the volatility σX increases or the risk limit σ̄ decreases. A decreasing θ̄ leads, in turn,

to an increasing expected search time for sellers (2λµhn)−1 and a decreasing price, because

∂µhn/∂θ̄ > 0 and ∂µlo/∂θ̄ < 0, as stated by Lemma 3.

With liquidity-adjusted risk management, f ′
1 > 0 by the definition of a stable equilibrium,

and, since ∂µhn/∂θ̄ > 0, f ′
1 < f ′

0. Hence, with liquidity-adjusted risk management, the effects

of σX on the equilibrium quantities are larger in absolute value and of the same sign as with

simple risk management. A stable equilibrium exists because f1 < ∞ on (Θ,∞), while

limx→Θ f1(x) = limx→∞ f1(x) = ∞, given that µhn(Θ) = 0 and limx→∞ µhn(x) > 0.
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Consider now the dependence on the meeting intensity λ. It holds that

0 =
dfi

dλ

=
∂fi

∂θ̄

dθ̄

dλ
+

∂fi

∂λ
+

∂fi

∂µhn

dµhn

dλ

=
∂fi

∂θ̄

dθ̄

dλ
+

∂fi

∂λ
+

∂fi

∂µhn

(

∂µhn

∂λ
+

∂µhn

∂θ̄

dθ̄

dλ

)

,

which can be solved for dθ̄
dλ

.

With simple risk management, it follows that dθ̄
dλ

= 0 , as ∂f0

∂λ
= ∂f0

∂µhn

= 0. With liquidity-

adjusted risk management, dθ̄
dλ

> 0, since ∂f1

∂θ̄
+ ∂f1

∂µhn

∂µhn

∂θ̄
= df1

dθ̄
> 0 for a stable equilibrium.

We also use the fact that ∂f1

∂λ
+ ∂f1

∂µhn

∂µhn

∂λ
< 0, which holds because d(λµhn)

dλ
> 0, as can be

shown based on (A.2). Since ∂f1

∂λ
< 0, the result on selling times also obtains.

The price effects follows from

dP

dλ
=

∂P

∂λ
+

∂P

∂θ̄

dθ̄

dλ
.(A.5)

The first term gives the impact with simple risk management, while the second captures the

additional impact introduced by adjusting risk management to liquidity. Since ∂P
∂θ̄

> 0 from

Proposition 1 and (A.2) (a complete proof can be given along the lines of Duffie, Gârleanu,

and Pedersen (2007)), the second term has the same sign as dθ̄
dλ

. This sign was shown above

to be positive, as is the sign of ∂P
∂λ

. The total effect is therefore larger with risk-adjusted risk

management.

Similar reasoning establishes the results concerning the dependence on λd and λu.

�
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