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1 Introduction

This paper is concerned with the question as to how much insured consumers should invest in

loss reduction measures when they can be contaminated by others due to interdependencies. To

motivate the analysis consider the following problem faced by Ms. A, an owner of an apartment in a

multi-unit building. Ms. A, who is required to purchase insurance as a condition for her mortgage,

needs to determine how much she should invest in protective measures (e.g. a sprinkler system) to

reduce the likelihood of a fire occurring in her apartment knowing that there is some chance that

one of her neighbors unprotected could experience a fire that could spread to her apartment and

cause damage even if she invests in these measures.

More generally, our interest is on examining the equilibrium levels of investment in protective

measures when there are interdependencies between individuals and when insurance rates are risk-

based. We show that without coordination between those at risk, individuals will, in equilibrium,

underinvest in protection relative to the socially optimal decision due to the possibility of being

contaminated by others. Restricting the amount of coverage an individual can take by requiring a

deductible on insurance policies can encourage investment in protective measures and often improves

both individual and social welfare.

To our knowledge no-one has investigated optimal behavior by insureds when they have the op-

portunity to invest in protective measures and face interdependent risks. Ehrlich and Becker (1972)

study the interaction between insurance and self-protection when there are no interdependencies.

Schlesinger and Venezian (1986) focus on the joint production of insurance and self-protection in

various market settings without interdependencies between insureds. The problem of optimal pro-

tection when there are interdependencies between agents has been recently studied by Kunreuther

and Heal (2002) and Heal and Kunreuther (2005) when there is no insurance. They developed a

game theoretic model for these interdependent security problems where there are two choices facing

an agent: don’t invest in protection at all or invest in full protection. For the case where there are

negative externalities due to the possibility of contagion from others, they show that there can be
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two Nash equilibria–either everyone invests in protection or no-one invests. The key point is that

the incentive that any agent has to invest in risk-reduction measures depends on how she expects

the others to behave in this respect. If she thinks that they will not invest in protection, then this

reduces the incentive for her to do so. On the other hand should she believe that others will invest

in risk reducing measures, then it may be best for her to also do so. So there may be an equilibrium

where no-one invests in protection, even though all would be better off if they had incurred this

cost.

The interdependency problem we are studying raises the question as to the benefits of coordinat-

ing individuals’ protective decisions so that one can reduce the externalities due to contamination

and hence improve both individual and social welfare. In this sense it is related to the study by

Shavell (1991) who investigated the optimal decision by individuals to protect their property against

theft, acting alone or collectively, when precautions are observable (e.g. iron bars on a window) or

unobservable (e.g. use of a safe for storing valuables). Ayres and Levitt (1998) have demonstrated

the social benefits of protection when individuals invest in unobservable precautionary measures.

They focus on the Lojack car retrieval system that criminals cannot detect. This generates positive

externalities that lead to a sub-optimal level of private investment.

The paper is organized as follows. We first consider the case of two identical individuals where

there is no possibility of contamination from one individual to another and each individual has

an opportunity to invest in mitigation to reduce its losses with premium reductions reflecting the

reduced level of risk. We label this base case the No Contamination case. We compare this base

case with a situation where there can be contamination between the two parties and where the two

parties coordinate their actions. This case is labeled Contamination – First Best. It will be

compared with a situation where the two parties cannot coordinate their actions and thus each party

makes a decision independent of the other. This case is labeled Contamination – Second Best.

We then turn to a situation where there is a required deductible on each insurance policy and show

that this can improve welfare if the two parties face the possibility of contamination and cannot

coordinate their actions, i.e. the case Contamination – Second Best. The concluding section
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discusses the policy implications of these findings by highlighting the importance of coordination

between agents either voluntarily or through external involvement such as building codes. We also

suggest directions for future research.

2 Model

There are two identical agents, i and j, who maximize expected utility with respect to an increasing,

concave utility function u (·).1 Each policyholder has initial wealth w0 and is exposed to a loss of

size L with probability p0. There is a market for self-protection and a market for insurance.

Investing in self-protection reduces the loss probability and investing in insurance transfers wealth

from the no-loss to the loss state. The cost of reducing the loss probability to pi ≤ p0 is given by

a cost function γ (∆p) = γ (p0 − pi) where γ (0) = 0, γ0 > 0, and γ00 > 0. The policyholder can

purchase insurance coverage I for an actuarially fair premium P = P (I). We assume that there is

no moral hazard problem, i.e. the agents’ investment in protection is verifiable and contractible by

the insurer.

Optimal Insurance Coverage. As insurance is actuarially fair, it is optimal for the risk-averse

agent to purchase full insurance, i.e. I∗ = L, for any level of investment in self-protection. Hence

one can investigate the decision on how much self-protection to purchase under conditions of no

contamination and contamination independently of the insurance decision. Furthermore since in-

dividuals are fully protected by insurance they do not face any risk. They will thus determine their

optimal amount of self-protection by maximizing their level of final wealth which, in this case, is

equivalent to maximizing their expected utility of wealth. This equivalence does not hold if insur-

ance coverage is restricted and individuals therefore face risk. The optimal level of self-protection

is then derived under the maximization of expected utility of final wealth (see Section 3).

1One obtains the same qualitative results when considering n rather than two individuals.
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2.1 No Contamination

We first review the situation in which one individual cannot be contaminated by the other. As

noted above, the optimal amount of self-protection and therefore the optimal loss probability p∗ is

determined by maximizing the value of final wealth

max
p

W (p) = w0 − γ (p0 − p)− pL.

The first and second derivatives with respect to p is W 0 (p) = γ0 (p0 − p) − L and W 00 (p) =

−γ00 (p0 − p) < 0. The objective function is thus globally concave which implies that we either

have a corner solution p∗ = p0 if γ0 (0) ≥ L or otherwise the optimal loss probability p∗ < p0 is

determined by the first order condition

γ0 (p0 − p∗) = L. (1)

The individual thus equates the marginal cost of the loss reduction, γ0 (∆p), with the marginal

benefit in premium reduction, L. We now assume that γ0 (0) < L < γ0 (p0) which implies an inner

solution 0 < p∗ < p0. Note that if γ0 (p0) < L then p∗ = 0 because the marginal cost of eliminating

the probability of a loss is sufficiently small relative to the magnitude of the loss itself that it is

worth investing so there is no exposure to this risk. Similarly if γ0 (0) > L then the marginal cost

of investing in any protection is so high relative to the benefits in reducing the expected loss that

it is optimal not to commit any funds to mitigation.

2.2 Contamination

In this section, we introduce the possibility that one agent can be contaminated by the other agent.

Denote by q (pj) the likelihood that agent i is contaminated by the other agent, j, as a function

of the other agent’s loss probability pj . Contamination thus introduces an externality between the

two agents in the sense that the decision of one policyholder to invest in protection affects the
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decision of the other policyholder. We assume that contamination is “perfect” in the sense that if

a loss is incurred by one policyholder it spreads with probability one to the other policyholder, i.e.

q (pi) = pi and q (pj) = pj . The loss and final wealth distribution faced by policyholder i is

event prob final wealth

loss pi + (1− pi) pj w0 − γ (p0 − pi)− P (I)− L+ I

no loss (1− pi) (1− pj) w0 − γ (p0 − pi)− P (I)

where the actuarially fair premium is given by P (I) = (pi + (1− pi) pj) I.

As above, given that insurance coverage is actuarially fair, it is optimal for the policyholder to

purchase full insurance, I∗ = L, independent of the amount invested in self-protection. Under full

coverage, policyholder i’s level of final wealth is given by

Wi =W (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) pj)L.

In the following two subsections, we consider the optimal investment in self-protection under the

first-best and second-best scenarios in which policyholders can and cannot, respectively, contract

on the level of investment in protection.

First-Best. If policyholders can contract on the externalities, i.e. they jointly determine and

implement pi and pj , the Coase theorem applies and the optimal solution is given by the socially

optimal level that maximizes the aggregate level of final wealth

Wi +Wj = 2w0 − γ (p0 − pi)− γ (p0 − pj)− 2 (pi + (1− pi) pj)L.
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The first and second derivative of the aggregate level of wealth with respect to pi is given by

∂Wi +Wj

∂pi
= γ0 (p0 − pi)− 2 (1− pj)L

∂2Wi +Wj

∂p2i
= −γ00 (p0 − pi) < 0.

The aggregate level of wealth is thus globally concave which implies a unique solution p∗i (pj) for

each pj . As the maximization problem is symmetric in i and j, let p∗FB denote the optimal solution

which is determined by p∗FB = p∗i (p
∗
FB) = p∗j (p

∗
FB). If γ

0 (0) ≥ 2 (1− p0)L, then it is optimal not

to invest in protection, i.e. p∗FB = p0. Note that 2 (1− p0)L represents the expected joint loss

to individuals i and j if neither party invests in protection. In this situation the marginal cost of

investing even a penny in protection is greater than the marginal benefit of the joint reduction in

losses to individuals i and j from incurring this cost. Note that the smaller p0 is, the more likely one

invests in protection for any given value of γ0 (0) because the marginal benefits to each individual

of the other investing in mitigation is (1− p0)L which increases as p0 decreases. Otherwise, the

optimal solution is determined by the first-order condition

γ0 (p0 − p∗FB) = 2 (1− p∗FB)L. (2)

We can interpret this condition by rearranging it into

γ0 (p0 − p∗FB) + p∗FBL = L+ (1− p∗FB)L. (3)

The left hand side of (3) is the marginal cost of investing in protection which is the sum of the

marginal dollar cost, γ0 (p0 − p∗FB), and the marginal increase in the premium, p
∗
FBL, due to in-

directly increasing the likelihood of being contaminated by the other agent. The right hand side

of (3) is the marginal benefit of investing in protection which is decomposed into the marginal

reduction in premium, L, due to the reduced likelihood of a direct loss and the marginal reduction
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in premium, (1− p∗FB)L, due to the reduction in the likelihood of contaminating the other agent.

The latter marginal benefit represents the benefit from internalizing the positive externality.

Second-Best. In this section, we examine the setting in which the two policyholders cannot con-

tract on the level of investment in self-protection and determine the pure-strategy Nash-equilibria.

Policyholder i’s best response function p∗i (pj) is given by

p∗i (pj) ∈ argmaxpi
Wi (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) pj)L.

It therefore satisfies the first-order condition

γ0 (p0 − p∗i (pj))− (1− pj)L = 0.

Differentiating with respect to pj yields

−p∗0i (pj) γ00 (p0 − p∗i (pj)) + L = 0

i.e.

p∗0i (pj) =
L

γ00 (p0 − p∗i (pj))
> 0. (4)

Policyholder i’s strategy is thus a strategic complement to policyholder j’s strategy which implies

that there are only symmetric pure-strategy Nash-equilibria.

If policyholder j reduces the loss probability to zero, i.e. pj = 0, then there is no contamination

to policyholder i and thus p∗i (0) = p∗ which is implicitly determined by (1). Under the assumption

γ0 (0) < L < γ0 (p0) we have an inner solution 0 < p∗i (0) = p∗ < p0. If policyholder j does not

invest in self-protection, i.e. pj = p0, then policyholder i0s best response is determined by

γ0 (p0 − p∗i (p0)) = (1− p0)L.
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If γ0 (0) ≥ (1− p0)L then policyholder i’s best response is also to not invest in self-protection, i.e.

p∗i (p0) = p0. Otherwise, if γ0 (0) < (1− p0)L then p∗i (p0) < p0.

Since 0 < p∗i (0) = p∗j (0) < p0 and since the best-response functions are increasing, they can

only cross the 45 degree line an odd number of times. We thus conclude that if γ0 (0) < (1− p0)L

then there exists an odd number of pure-strategy Nash-equilibria, p∗SB = p∗i (p∗SB) = p∗j (p∗SB),

which are all inner solutions and determined by the condition

γ0 (p0 − p∗SB) = (1− p∗SB)L. (5)

If γ0 (0) ≥ (1− p0)L, then there also exists an odd number of pure-strategy Nash-equilibria with

the only difference that the largest equilibrium is at the corner p∗SB = p0, i.e. there is no investment

in self-protection in this equilibrium.

In both cases, the smallest and the largest equilibrium are stable with respect to a myopic ad-

justment process and the other equilibria alternate in terms of stability and instability. The stability

condition is characterized by p∗0i (p∗SB) < 1 which, by equation (4) is equivalent to γ
00 (p0 − p∗SB) > L.

If the best-response functions are concave, then there exists a unique pure strategy Nash-equilibrium

which is stable with respect to a myopic adjustment process. Figure 1 shows a situation in which

there are three Nash-equilibria.
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To interpret condition (5), we rearrange it into

γ0 (p0 − p∗SB) + p∗SBL = L. (6)

The left hand side of (6) is the same as under the first-best scenario (3) , i.e. the sum of the

marginal dollar cost, γ0 (p0 − p∗SB), and the marginal increase in the premium, p
∗
SBL, due to in-

directly increasing the likelihood of being contaminated by the other agent. The right hand side

of (6), however, differs from the first-best scenario (3). The only marginal benefit of investing in

protection is the marginal reduction in premium, L, due to the reduced likelihood of a direct loss.

As policyholders cannot contract on the level of investment in self-protection, it is not possible

for a policyholder to benefit from the positive externality that his investment poses on the other

policyholder as shown in equation (3) for the joint solution.
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2.3 Comparison

In the following subsection, we compare the level of investment in any Nash equilibrium with both

the one in the first-best scenario and the one if policyholders do not face contamination.

Comparing Second-Best with First-Best. In this section, we compare the optimal level of

investment in self-protection in the first-best with the one in the second-best scenario. Suppose it

is optimal to not invest in self-protection in the first-best world, i.e. γ0 (0) ≥ 2 (1− p0)L. Then it

is also not optimal to invest in self-protection in the second-best world, as γ0 (0) ≥ 2 (1− p0)L >

(1− p0)L since an individual does not take into account the positive externalities provided the

others when making an investment decision. Now suppose it is optimal to invest in self-protection

in the first-best world, i.e. γ0 (0) < 2 (1− p0)L. The optimal solution is then determined by

γ0 (p0 − p∗FB) = 2 (1− p∗FB)L.

This implies

γ0 (p0 − p∗FB) > (1− p∗FB)L

and condition (5) yields p∗SB > p∗FB. In any pure-strategy Nash-equilibrium the level of investment

in self-protection is thus lower compared to the first-best scenario. The intuition behind this

result can be derived from comparing the first-order condition (3) in the first-best scenario under

contamination

γ0 (p0 − p) + pL = L+ (1− p)L

with the first-order condition (5) in the second-best scenario under contamination

γ0 (p0 − p) + pL = L.
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We note that in the second-best scenario it is not possible to internalize the marginal benefit

of the policyholder’s effect on the other policyholder, (1− p)L, and he therefore underinvests in

self-protection compared to the first-best scenario.

Comparing First-Best with No-Contamination. Let us compare the optimal level of in-

vestment without contamination with the one in the first-best scenario with contamination. The

first-order condition (1) under no contamination is

γ0 (p0 − p) = L

and the first-order condition (3) in the first-best scenario under contamination is

γ0 (p0 − p) + pL = L+ (1− p)L.

By comparing the marginal costs and benefits of the two scenarios, we see that contamination adds

both a marginal cost and a marginal benefit of investing in self-protection. The additional marginal

cost, pL, is due to the indirect increase in the likelihood of being contaminated by the other agent

while the marginal benefit, (1− p)L, is due to the internalized positive of effect on the other agent.

This implies that investment in self-protection under contamination can be larger or smaller than

under no contamination depending on whether the additional marginal benefit is larger or smaller

than the additional marginal cost.

Under the condition p0 < 1/2–which seems most relevant for insurance events–the additional

marginal benefit is larger than the additional marginal cost of investing in self-protection. It is thus

optimal to invest more in self-protection under the first-best scenario with contamination compared

to the scenario in which agents cannot be contaminated which yields p∗FB < p∗.

To be more precise, suppose it is optimal to not invest in self-protection if there is no contamina-

tion, i.e. γ0 (0) ≥ L. Then it may still be optimal to invest in self-protection in the first-best world

with contamination since the condition for not investing is γ0 (0) ≥ 2 (1− p0)L and 2 (1− p0)L > L
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for all p0 < 1/2. Now suppose that it is optimal to invest in self-protection without contamination.

Then policyholders invest more in self-protection in the first-best world with contamination as the

first-order condition γ0 (p0 − p∗) = L under no contamination implies

γ0 (p0 − p∗) < 2 (1− p∗)L

for all p0 < 1/2 and condition (3) yields p∗FB < p∗.

Comparing Second-Best with No-Contamination. Let us now compare the optimal level

of investment without contamination with the one in the second-best scenario with contamination.

Suppose it is optimal to not invest in self-protection if there is no contamination, i.e. γ0 (0) ≥ L.

Then it is also optimal to not invest in self-protection in the second-best world as γ0 (0) ≥ L

implies γ0 (0) > (1− p0)L. Now suppose that it is optimal to invest in self-protection without

contamination. Then policyholders invest less in self-protection in the second-best world with

contamination as the first-order condition γ0 (p0 − p∗) = L implies

γ0 (p0 − p∗) > (1− p∗)L

and condition (5) yields p∗SB > p∗. In any pure-strategy Nash-equilibrium the level of investment

in self-protection is thus lower compared to the scenario in which policyholders do not face possible

contamination. The intuition behind this result can again be derived by comparing the first-order

conditions (6) in the second-best scenario under contamination

γ0 (p0 − p) + pL = L

with the first-order condition (1) under no contamination is

γ0 (p0 − p) = L.
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In the second-best scenario policyholders, by investing in self-protection, face the additional marginal

cost of implicitly increasing the likelihood of being contaminated by the other policyholder, pL.

The marginal cost equates the marginal benefit of investing in self-protection thus at a lower level

of investment.

2.4 Illustrative Example

Suppose that the cost of reducing the probability from p0 to pi is given by the function

γ (p0 − pi) =
c

2
(p0 − pi)

2 .

As γ0 (0) = 0, it is optimal under all three scenarios to invest in self-protection. We also assume

γ0 (p0) = cp0 > L such that the optimal loss probability is strictly positive. Solving the first-order

conditions (1), (2), and (5) yields the following solutions:

p∗ = p0 − L

c
,

p∗FB = p0 − (1− p0) 2L

c− 2L ,

p∗SB = p0 − (1− p0)L

c− L
.

We observe that p∗SB > p∗ and p∗SB > p∗FB. Furthermore, the best response function of individual

i in the second-best scenario is given by

p∗i (pj) = p0 − (1− pj)L

c
.

Since it is linear in pj the solution p∗SB above is the unique pure-strategy Nash-equilibrium.
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3 Improving Welfare by Restricting Insurance Coverage

In the section above, we have shown that individuals inefficiently underinvest in self-protection if

they cannot coordinate their activities. In this section, we show that restricting insurance coverage,

e.g. by requiring a deductible in the insurance policy, can improve individual and social welfare

in a second best world with contamination. With a deductible, each individual has to bear part

of their own loss and is likely to have more of an incentive to invest in self-protection than if he

had full insurance coverage. The additional investment in self-protection creates an extra marginal

benefit, (1− p)L, through the positive externality that exists between individuals. In the following

Proposition, we specify conditions under which this benefit outweighs the cost of bearing part of the

loss and implies that partial insurance is optimal. It is important, however, that the deductible is

enforced by some regulatory entity. In an unregulated environment, an insurer always will deviate

by offering full coverage to attract all customers.2

Proposition 1 Suppose that the stability condition γ00 (p0 − p∗SB) > L holds where p∗SB is the loss

probability in a Nash-equilibrium under full insurance coverage, implicitly defined by (5). Then the

optimally enforced deductible is strictly positive if and only if

(1− p∗SB)
2 L >

³
1− (1− p∗SB)

2
´
γ00 (p0 − p∗SB) . (7)

Proof. See Appendix.

Imposing a strictly positive deductible and thereby forcing agents to invest more in self-protection

can only be welfare-improving if the marginal benefit of internalizing the externality, i.e. (1− p)L,

is relatively large. This is exactly reflected in the necessary and sufficient condition (7). If p∗SB is

relatively small, the marginal benefit of internalizing the externality, (1− p∗SB)L, is relatively large

and (7) is satisfied.

2Since individuals face risk under restricted insurance coverage, the proof requires the maximization of expected
utility of final wealth.
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This result should be contrasted with the case of terrorism insurance considered by Lakdawalla

and Zanjani (2005) where protection by one target leads the terrorist to attack a less protected

target. Protection thus creates a negative externality and an inefficient overinvestment in self-

protection. A governmental subsidy of terrorism insurance can improve social welfare by discourag-

ing investment in protection. In our case, there is a positive externality associated with investment

in protection. Social welfare is now improved by limiting insurance through a deductible, thereby

encouraging investment in protection.

Remark 2 In the proof of Proposition 1, we show that small, but strictly positive deductibles induce

agents to invest more in self-protection if and only if p∗SB < 1 −p1/2. Note that this condition
is implied by the necessary and sufficient condition (7), i.e. enforcing a strictly positive deductible

can only be optimal if it induces agents to invest more in self-protection than they would under full

insurance coverage.

Put differently, if the probability of a loss under full insurance coverage is relatively large,

i.e. p∗SB > 1 −p1/2, limiting insurance by enforcing a deductible discourages the investment in
protection. This is related to the finding of Ehrlich and Becker (1972) who show that the absence

of market insurance can discourage the investment in self-protection if the probability of a loss is

relatively large.

3.1 Illustrative Example

We continue our previous illustrative example in Section 2.4 with γ00 (p0 − pi) = c. Then

p∗SB = p0 − (1− p0)L

c− L
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with cp0 > L which implies γ00 (p0 − pi) = c > L. The necessary and sufficient condition (7) for the

optimal enforced deductible to be strictly positive is

p0 < 1−
s
(c− L)2

c (c+ L)
.

4 Implications for Policy

The bundling of protection and insurance has a long history dating back to the factory mutuals

founded in the early 19th century in New England (Bainbridge, 1952). These mutual companies

offered factories an opportunity to pay a small premium in exchange for protection against poten-

tially large losses from fire while at the same time requiring inspections of the factory both prior

to issuing a policy and after one was in force. Poor risks had their policies canceled; premium re-

ductions were given to factories that instituted loss prevention measures. For example, the Boston

Manufacturers worked with lantern manufacturers to encourage them to develop safer designs and

then advised all policyholders that they had to purchase lanterns from those companies whose

products met their specifications. In many cases, insurance would only be provided to companies

that adopted specific loss prevention methods. For example one company, the Spinners Mutual,

only insured risks where automatic sprinkler systems were installed. The Manufacturers Mutual

in Providence, Rhode Island developed specifications for fire hoses and advised mills to buy only

from companies that met these standards.

Private insurers today should consider requiring protective measures as a condition for insurance

with respect to standard homeowners coverage to reduce the negative externalities due to contagion.

However, all insurers would have to find it in their financial interest to follow this strategy because of

the contractual arrangements with respect to claims payments. Any insurer who provides protection

to individual i is responsible for losses incurred by this policyholder no matter who caused the

damage.3 One reason for this arrangement between insurer and insured is the difficulty in assigning

3With respect to fire damage, a classic case is H.R. Moch Co., Inc. v Rensselaer Water Co. 247N.Y.160, 159 N.E.
896 which ruled that “A wrongdoer who by negligence sets fire to a building is liable in damages to the owner where
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causality for a particular event. Without protection requirements by other insurers, a competitive

insurer will have to charge premiums that reflect the actions of policyholders who are independently

deciding how much to invest in protection given that they have some chance of being contaminated

by others.

One way of coordinating protective decisions of individuals is through a monopolistic insurer

who can require the adoption of such measures or provide premium incentives for those at risk to

adopt them to internalize the externalities due to interdependencies . A competitive insurer may

not be able to do this as easily if others in the industry do not take similar actions. von Ungern-

Sternberg (1996) provides an empirical study of the pricing and performance of insurance markets in

Switzerland and compares the performance of competitive insurers in seven cantons of the country

with local state monopolies in the 19 other cantons. The study finds that for very similar products

the monopolies charge premiums that are 70 percent lower than for the competitive insurance, they

spend substantially more on fire prevention and have much lower damage rates.

Some type of coordinative mechanism may also improve both individual and social welfare with-

out having to rely on the power of the monopolist insurer. One option is for a well-enforced standard

or regulation, such as a building code, that requires individuals and firms to adopt cost-effective

protective mechanisms when they would not do so voluntarily. One could also turn to the private

sector to coordinate decisions through an industry association that stipulates that any member has

to follow certain rules and regulations. For example, an apartment owners association could require

that all residents in the building adopt certain fire protective measures such as installing a smoke

alarm and/or a sprinkler system. The association could then arrange to purchase insurance for all

units in the building where the premiums would reflect the required protection that would reduce

the chances of a fire occurring.

the fire has its origin, but not to other owners who are injured when it spreads”. We are indebted to Victor Goldberg
who provided us with this case.
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6 Appendix: Proof of Proposition 1
The economic environment is as above in the second-best scenario in which individuals cannot contract on
their investment in self-protection. The only difference is that the insurance policy includes a deductible D,
i.e., the insurer pays L−D in case of a loss. The loss and final wealth distribution faced by policyholder i is

event prob final wealth
loss pi + (1− pi) pj w0 − γ (p0 − pi)− P (D)−D
no loss (1− pi) (1− pj) w0 − γ (p0 − pi)− P (D)

where the actuarially fair premium is given by P (D) = (pi + (1− pi) pj) (L−D). Policyholder 1’s expected
utility of final wealth is given by

EUi (pi, pj ,D) = (1− pi) (1− pj)u (w0 − γ (p0 − pi)− P (D))

+ (pi + (1− pi) pj)u (w0 − γ (p0 − pi)− P (D)−D) .

Policyholder i’s best response function p∗i (pj ,D) is given by

p∗i (pj ,D) ∈ argmax
pi

EUi (pi, pj) .

Let p∗SB (D) denote the symmetric Nash-equilibrium, i.e. p∗SB (D) = p∗i (p
∗
SB (D) ,D) = p∗i (p

∗
SB (D) ,D),

which satisfies the first-order condition

(1− p∗SB (D)) (u (w0 − γ (p0 − p∗SB (D))− P (D)−D)− u (w0 − γ (p0 − p∗SB (D))− P (D)))

+ (1− p∗SB (D))
2
(γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+p∗SB (D) (2− p∗SB (D)) (γ
0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

= 0. (8)

At D = 0 we get the condition

γ0 (p0 − p∗SB (0))− (1− p∗SB (0))L = 0, (9)

where p∗SB (0) = p∗SB . For a given deductible D, the level of expected utility is thus given by

EUi (p
∗
SB (D) , p

∗
SB (D) ,D) = (1− p∗SB (D))

2
u (w0 − γ (p0 − p∗SB (D))− P (D))

+ (2− p∗SB (D)) p
∗
SB (D)u (w0 − γ (p0 − p∗SB (D))− P (D)−D) . (10)

Differentiating expected utility with respect to the deductible level and evaluating at D = 0 implies

∂EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D
|D=0 = −p∗0SB (0) (1− p∗SB (0))Lu

0 (w0 − γ (p0 − p∗SB (0))− P (0)) . (11)

To determine the sign of the first derivative we implicitly differentiate the first-order condition (8) with
respect to D and evaluate it at D = 0. We derive

p∗0SB (0) (L− γ00 (p0 − p∗SB (0))) = 0.

The stability condition γ00 (p0 − p∗SB (0)) > L then implies p∗0SB (0) = 0 and thus

20



∂EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D
|D=0 = 0.

Next, we determine the sign of the second derivative of expected utility evaluated at D = 0. It is given by

∂2EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D2
|D=0

= −p∗00SB (0) (1− p∗SB (0))Lu
0 (w0 − γ (p0 − p∗SB (0))− P (0))

+ (1− p∗SB (0))
2 p∗SB (0) (2− p∗SB (0))u

00 (w0 − γ (p0 − p∗SB (0))− P (0)) . (12)

Implicitly differentiating the first-order condition (8) twice with respect to D and evaluating at D = 0 yields

p∗00SB (0) (L− γ00 (p0 − p∗SB (0)))u
0 (w0 − γ (p0 − p∗SB (0))− P (0))

= (1− p∗SB (0))
³
1− 2 (1− p∗SB (0))

2
´
u00 (w0 − γ (p0 − p∗SB (0))− P (0)) ,

i.e.

p∗00SB (0) =
(1− p∗SB (0))

³
1− 2 (1− p∗SB (0))

2
´
u00 (w0 − γ (p0 − p∗SB (0))− P (0))

(L− γ00 (p0 − p∗SB (0)))u0 (w0 − γ (p0 − p∗SB (0))− P (0))
. (13)

If p∗SB (0) < 1 −p1/2 then p∗00SB (0) < 0 and small deductible levels thus increase the investment in self-
protection. Note that this condition is implied by the necessary and sufficient condition (7). Substitution of
(13) into the second derivative of expected utility (12) implies

∂2EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D2
|D=0

=

1− (1− p∗SB (0))
2 −

³
1− 2 (1− p∗SB (0))

2
´
L

(L− γ00 (p0 − p∗SB (0)))

 (1− p∗SB (0))
2
u00 (w0 − γ (p0 − p∗SB (0))− P (0)) .

(14)

A strictly positive deductible is optimal if and only if ∂
2EUi(p

∗
SB(D),p

∗
SB(D),D)

∂D2 |D=0 > 0. Equation (14) implies
the condition

(1− p∗SB (0))
2 L >

³
1− (1− p∗SB (0))

2
´
γ00 (p0 − p∗SB (0)) .

21




