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Abstract

Most industries go through a “shakeout” phase during which the number
of producers in the industry declines. Industry output generally continues to
rise, however, which implies a reallocation of capacity from exiting firms to
incumbents and new entrants. Thus shakeouts seem to be classic creative-
destruction episodes.
Shakeouts of firms tend to occur sooner in industries where technological

progress is rapid. Existing models do not explain this. Yet the relation emerges
naturally in a vintage-capital model in which shakeouts of firms accompany the
replacement of capital, and in which a shakeout is the first replacement echo
of the capital created when the industry is born. We fit the model to the
Gort-Klepper (1982) data and to Agarwal’s (1998) update of those data.

1 Introduction

Schumpeter argued that creative destruction happens in waves. By “creative destruc-
tion” he meant the replacement of old capital — physical and human — by new capital
and of old firms by new firms. The driving force behind these waves of creative
destruction is technological change, thought Schumpeter.

Whether such creative-destruction waves are to be seen at the aggregate level or
not, they have been documented in many industries. The “shakeout” episodes that
Gort and Klepper (1982, henceforth GK) document are classic creative-destruction
episodes: During a shakeout, a substantial fraction of firms exits, and yet industry
output on average continues to rise implying that aggregate capacity does not fall.
The capacity withdrawn by the exiting firms is replaced by incumbents and new
entrants.
∗We thank A. Gavazza, M. Gort, S. Greenstein, C. Helfat, O. Licandro, S. Klepper, S. Kortum

and M. Kredler for comments, R. Agarwal for providing data, and the NSF for support.
†NYU and Hong Kong University, respectively.

1



Several explanations exist for these creative-destruction episodes. When the entire
economy is involved, the shock that prompts the creative-destruction wave may be
a system-wide reform or deregulation (Atkeson and Kehoe 1993), or the arrival of a
new general-purpose technology, a topic surveyed by Jovanovic and Rousseau (2006).
At the level of an individual industry, there are four sets of explanations:

(i) Temporary demand declines.–Caballero and Hammour (1994) find that if re-
placement of capital causes interruptions in production, it is optimal to replace cap-
ital when demand temporarily drops, for then the foregone sales are at their lowest.
Klenow (1998) finds that when, in addition, the productivity of new capital rises with
cumulative output, a firm will replace capital when the recovery is about to start.
This raises the productivity growth of the new capital. Our explanation does not rely
on recurring shocks to generate recurring replacement.

(ii) Technological advances.–When a new technology raises the efficient scale of
firms, it crowds some of them out of the industry; so argue Hopenhayn (1993) and
Jovanovic andMacDonald (1994). The assembly-line technology, e.g., probably raised
the optimal scale of auto-manufacturing plants and caused a large reduction in the
number of auto producers. Related to this, Utterback and Suarez (1993) argue that
a dominant design emerges: The winning model forces out other models and their
producers. In a similar vein, Klepper (1996) argues that larger firms do more R&D
than small firms because they can spread its results over a larger number of units;
because they invent at a faster rate, large firms then drive smaller firms out.

(iii) Exit after learning through experience.–GK observed that a shakeout usually
comes after a wave of entry. Horvath, Schivardi and Woywode (2003) argue that if a
run-up in entry occurs at some point in the industry’s life, then some time later, a
fraction of the entrants will have found themselves unfit to be in that industry — a
type of learning that Jovanovic (1982) stresses — and will then exit en masse.

(iv) Consolidations for other reasons.–Firms that exit during a shakeout are of-
ten acquired by other firms in the same industry. Consolidations and merger waves
can occur for reasons unrelated to drops in demand and to advances in technology.
Deregulation, for instance, has led to merger waves in the airlines and banking in-
dustries (Andrade et al. 2001) and to a sharp fall in the numbers of producers.

Our hypothesis.–One obvious explanation for creative-destruction episodes seems,
however, to have gone unnoticed: Producers sometimes exit an industry when their
capital comes up for replacement. Before its optimal replacement date, the sunk
costs in the capital stock will tend to keep a firm in the industry even if, on other
grounds, it may prefer to exit. But at the replacement date, the firm may not be able
to finance the new plant and equipment, or for some other reason the entrepreneur
may then decide that the moment is then right to move out of the industry and let
some other firm — incumbent or a new entrant — provide the new capacity. Viewed
in this way, a shakeout is but an “echo” of the burst of investment that occurs when
an industry comes into being. This explanation is suggested by the pattern shown

2



0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6

Average annual rate of decline of the product price

Fluorescent lamps

Penicillin
Electric Shavers

DDT

Styrene
TV

Records

Zippers

Age of the industry at the shakeout date   
(years)

Figure 1: Technological progress and industry age at shakeout

in Figure 1.1 The pattern is that the shakeout occurs earlier in those industries in
which technological progress — as measured by the rate at which its product price
declined prior to the shakeout — is faster.2 As we shall show, the same pattern arises
in subsequent echoes — the faster the technological progress, the more frequent the
echoes.

We also provide direct evidence that firms with old capital are more likely to
exit: In the air-transportation industry, exiting firms have capital that is on average
eight years older than the capital of the surviving firms; in Section 3 we shall dis-
play this highly significant relation both for the U.S. and for the world as a whole.
A related pattern emerges at the two-digit-industry level: Sectors that face more
rapidly declining equipment-input prices experience higher rates of entry and exit
(Samaniego, 2006). In other words, a sector that enjoys a high rate of embodied
technological change will have a high rate of entry and exit, or what one would nor-
mally understand to be a higher level of creative destruction.

All technological change in our model is embodied in capital, which means that

1GK time the start of the shakeout when net entry becomes negative for an appreciable length
of time. The shakeout era typically begins when the number of producers reaches a peak and ends
when the number of producers again stabilizes at a lower level.

2Table 7 of GK reports the number of years until shakeout for 39 industries. But only for 8 of
them does Table 5 report data on the rate of price decline up to the shakeout. These are the eight
reported in Figures 1 and 6.
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TFP should be constant when one adjusts inputs for quality. During the shakeout, a
fraction of the capital stock is replaced by new capital; the number of efficiency units
of capital stays the same but the productivity of capital per physical unit rises.

The model is a standard vintage-capital model; Mitchell (2002) and Aizcorbe and
Kortum (2005) use it to analyze industry equilibrium in steady state, i.e., the station-
ary case in which the effect of initial conditions has worn off, and after any possible
investment spikes that may be caused by initial conditions have vanished. Jovanovic
and Lach (1989) use it to analyze transitional dynamics but they cannot generate a
shakeout or repeated investment echoes. We shall derive damped investment echoes
that relate to the constant investment echoes derived by Boucekkine, Germain and
Licandro (1997, henceforth BGM) in a similar GE model and by Mitra, Ray and Roy
(1991) in a model where there is no progress but in which capital is replaced because
it eventually tends to wear out. Our contribution is to interpret the shakeout data
using, for the first time, a model in this class.

Plan of the paper.–Section 2 presents the model. Section 3 provides evidence
on the hypothesis that capital replacement and firm exit occur at the same time.
Sections 4 and 5 test the model’s main implications. Section 6 presents the model’s
implications for TFP growth and Section 7 concludes the paper. The Appendix
contains some proofs.

2 Model

Consider a small industry that takes as given the rate of interest, r, and the price
of its capital. The product is homogeneous, and technology improves exogenously at
the rate g. To use a technology of vintage t, however, a firm must buy capital of
that vintage. The productivity of vintage-0 capital is normalized to 1, and so the
productivity of vintage-t capital is egt.

Each firm is of measure zero and takes prices as given. Let p be industry price,
q industry output, and D (p, t) the demand curve at date t, assumed continuous in
both arguments. Production of the good becomes feasible at t = 0.

The price of capital is unity for all t. Capital must be maintained at a cost of
c per unit of time; c does not depend on the vintage of the capital, nor on time.
Capital cannot be resold; it has a salvage value of zero. We assume that willingness
to pay at small levels of q is high enough to guarantee that investment will be positive
immediately.3

Industry output.–Capital is the only input. Let Kt (s) be the date-t stock of
active capital of vintage s or older, not adjusted for quality. Industry output at time

3Sufficient for this is that
R∞
0

e−rtD−1 (0, t) dt > 1.
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Figure 2: The number of spikes, i (t).

t is the sum of the outputs of all the active capital

q (t) =

Z t

0

egsdKt (s) . (1)

Capital ceases to be active when it is scrapped.

Evolution of the capital stock.–Because capital is supplied to the industry at
a constant price, the investment rate will exhibit damped echoes. Any mass point
that occurs will repeat itself, though in a damped form. That is, if a mass-point
of investment ever forms, will recur at a periodicity of T , and the size of the mass
point will diminish over time. Moreover, there must be an initial mass point at
t = 0 because no capital is in place when the industry comes into being. After that
initial mass point, capital evolves smoothly until date T when the original capital
is completely replaced by vintage-T capital. This is the second industry investment
spike. The third investment spike then occurs at date 2T , when all the vintage-T
capital is replaced, and so on. Since the inter-spike waiting times are T , and since
the first spike occurs at t = 0, the date of the i’th investment spike is (i− 1)T , for
i = 1, 2, .... Let i (t) be the integer index of the most recent spike.4 We plot i (t) in
Figure 2.

We shall show that equilibrium is indeed of the form described in the previous
paragraph: All the capital created at one spike date is replaced at the following
spike date, T periods later. Therefore the capital stock at date t comprises capital
created at the most recent spike date i (t), plus the flow of investment, x (t) , over the
preceding T periods.

Let Xi denote the size of the i’th investment spike. At date t, then, the amount of
capital accounted for by the last spike is Xi(t), and the date-t cumulative distribution

4Formally, i (t) = max {i ∈ integers | i ≥ 1 and (i− 1)T ≤ t}.
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of capital by vintage is

Kt (s) = Xi(t) +

Z s

max(0,t−T )
x (u) du. (2)

We portray Kt (s) in Figure 3. It has exactly one discontinuity at (i (t)− 1)T .

2.1 Equilibrium

The definition of equilibrium is simple if x (t) > 0 for all t. BGL call this the “no
holes” assumption because when it holds, the vintage distribution of capital in use
has no gaps in it. We shall later provide conditions — in (10) — that guarantee this
outcome). Such an equilibrium consists of a product-price function p (t) , a retirement-
age of capital, T, investment flows x (t) , and investment spikes Xi accruing at dates
(i− 1)T, (i = 1, 2, ...) that satisfy
1. Optimal retirement of capital : The revenue of a vintage-t machine at date

t0 ∈ [t, t+ T ] is egtp (t0). Since price declines monotonically, it is optimal to
replace vintage-t capital as soon as its revenue equals its maintenance cost:

egtp (t+ T ) = c. (3)

2. Optimal investment : If investment x (t) > 0, the present value of a new capital
good must equal its cost. The present value of the net revenues derived from
that (vintage-t) unit of capital was

1 =

Z t+T

t

e−r(s−t)
¡
egtp (s)− c

¢
ds. (4)
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If the RHS of (4) were ever less than unity, x (t) would be zero.5

3. Market clearing:

D (p (t) , t) = eg(i(t)−1)TXi(t) +

Z t

max(0,t−T )
egsx (s) ds. (5)

Existence of a constant-T equilibrium.–Because the supply of entrants is infinitely
elastic, the time path of p (t) depends on the cost side alone. We now show that p (t)
declines at the rate g. That is, for some initial price p0,

p (t) = p0e
−gt. (6)

In that case, (3) implies
p0e

−gT = c, (7)

while (4) implies

1 + c
1− e−rT

r
= p0

1− e−(r+g)T

r + g
. (8)

Equations (7) and (8) are to be solved for the pair (p0, T ). If we eliminate p0, we
reach the implicit function for T alone:µ

r + c

c

¶
(r + g) = ge−rT + regT , (9)

for t ≥ 0.

Proposition 1 Eq. (9) has unique solution for T ≡ T̃ (r, c, g).

Proof. The LHS of (9) is constant and exceeds r+g. On the other hand, the RHS
of (9) is continuous and strictly increases from r+ g to infinity, having the derivative
rg
¡
egT − e−rT

¢
> 0 for T > 0. Therefore the two curves have exactly one strictly

positive intersection.

Having got T , we now use (7) to solve for the last unknown: p0 = cegT̃ (r,c,g).

Sufficient conditions for x (t) > 0 for all t.–Proposition 1 relies on the assump-
tion that investment is always positive. A necessary and sufficient condition for that
to be true is that output be increasing. That condition is that for all t,

d

dt
D (p, t) =

∂D

∂p

dp

dt
+

∂D

∂t
= gp

¯̄̄̄
∂D

∂p

¯̄̄̄
+

∂D

∂t
> 0. (10)

5Proposition 4 of BGM covers that case which arises when there is too high an initial stock of
capital. This cannot be true at t = 0 in our model, and we shall state conditions in (10) that exclude
it as an equilibrium possibility at any date.
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Thus it is possible for the time-derivative of D to be negative, but not too negative
to offset the positive effect on output of the fall in price. Now, condition (10) is
of limited value because it involves the endogenous variable p. One can, however,
reduce (10) to a condition on primitives in some special cases. Take the case where
population grows at the rate γt and where each consumer’s demand is iso-elastic, i.e.,

the case where D (p, t) = Ap−λ exp
³R t

0
γsds

´
, (10) is equivalent to

gλ > −γt

for all t ≥ 0. Thus (10) can hold even if population is declining, as long as its rate of
decline, γt, never exceeds gλ.

2.2 The nature of the investment spikes

The first result follows directly from implicitly differentiating (9) and is derived in
the Appendix:

Proposition 2 The replacement cycle is shorter if technological progress is faster:

∂T

∂g
= −

r+c
c
+ (gT − 1) egT

g2 (egT − e−rT )
< 0. (11)

Thus, industries with higher productivity growth should have an earlier shakeout.6

The second relation concerns the rate at which investment echoes or investment
spikes die off:

Proposition 3 Investment spikes decay geometrically. That is,

Xn = e−gT (n−1)X1 (12)

for n = 1, 2, ....

Proof. Because p (t) is continuous at T , the number of efficiency units replaced
at the spikes is a constant, X1, which means that Xn = e−gTXn−1, and (12) follows.

The spike dates remain T periods apart, at 0, T, 2T, 3T, .... The spikes occur
regularly because technological progress occurs at the steady rate g. Asymptotically,
however, the spikes vanish and the equilibrium becomes like the one that Mitchell
(2002) and Aizcorbe and Kortum (2005) analyze.

6We interpret g as an invariant property of an industry. But it can be interpreted as applying only
to a given epoch in the lifetime of a given industry, and subject to occasional shifts. In Aizcorbe and
Kortum (2005), e.g., one can think of such shifts as tracing out the relation between technological
change and the lifetime of computer chips.
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2.3 Other properties of the model

The next proposition relates the size of the shakeout to the ratio of the industry’s
date-zero to date-T output. To measure the size of the shakeout, we shall use the
variable

y ≡ X1

qT
,

i.e., the fraction of capacity replaced at the first shakeout. Next, let

z ≡ q0
qT

be the initial output of the industry relative to its output at the shakeout date. From
(7), p0 = cegT . Then from (5) ,

q0 = D
¡
cegT , 0

¢
= X1

Since all of the initial capacity is replaced at T , it must mean that X1 = q0 and that
therefore

Proposition 4 The fraction of capacity replaced at T depends inversely on output
growth over the period [0, T ]:

y = z. (13)

The restriction in (13) holds regardless of why output has grown. Output may have
grown because the demand curve shifted out, or it may have grown because demand
is elastic so that the price decline led output to grow. The end result in (13) is the
same. Proposition 4 will be tested in Section 5.

The remaining parameters of the model are the maintenance cost c and the rate
of interest r. The following claim is proved in the Appendix:

Proposition 5

(i)
∂T

∂c
< 0. And, if gc < r2, (ii)

∂T

∂r
> 0.

A rise in the maintenance cost, c, reduces the lifetime of capital as one would expect.
Since replacing capital constitutes an investment, when the rate of interest rises that
form of investment is discouraged, and it will occur less frequently.

2.4 Relation to GE vintage-capital models

Our partial equilibrium structure is not a special case of any GE vintage-capital
model in which there is but one final good. Before explaining why, let us begin with
the similarities. Johansen (1959) and Arrow (1962) assume a production function for
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the sole final good that is Leontieff in capital and labor. In that case the effective
maintenance cost is the wage multiplied by the labor requirement per machine. Since
wages rise at the same rate as the rate at which the labor requirement declines, and
the maintenance rate is then constant in units of the consumption good. Thus our
maintenance cost, c, has an exact counterpart in these models. Since these models
have no costs of rapid adjustment, the infinitely-elastic supply of capital that we
assume amounts to the same thing.

Now for the main and perhaps only fundamental difference between our model
and the one-consumption-good GE models. In a GE model, for the interest rate to
remain constant in the face of variations in the rate of investment that inevitably
occur along the transition path from arbitrary initial conditions, the instantaneous
utility of consumption must be linear. Then, if the rate of technological progress
is also constant, the investment echoes will have the constant periodicity that they
also have in our model, but they will not be damped. Rather, the investment profile
simply repeats itself every T periods — see Mitra et al. (1991) and BGL.

3 Evidence on capital replacement and exit

The model assumes that capital is operated by measure-zero firms of indeterminate
size. We hypothesize that a fraction of the machines replaced are in firms that will
themselves exit and be replaced by new firms. The argument is that if the firm needed
to exit for some unrelated reason, then the appropriate time to do so would be when
its plant and equipment need replacing. Instead of replacing its equipment at T , the
firm can exit and let others bring the new equipment into the industry.

Reliable data on the age of capital are hard to find, and there are few, if any,
studies linking firm exit to the age of its capital stock. We therefore conducted our
own study using data on aircraft where accurate information on age is available.
Figure 4 shows that in the U.S., the airplanes of exiting airlines were on average
7 years older than those of the surviving airlines. After weighing by the number
of observations, the difference is highly significant. Balloon size is for each series
proportional to the square root of the number of observations, but the constant of
proportionality is larger for the exiting capital series so as to allow us to see how
sample size of that series too evolves over time.

Figure 5 shows almost as strong a difference among all the world airlines. Capital
of exiting airlines was four years older than the capital of surviving airlines and
the difference in the means is again highly significant. Surprisingly, perhaps, the U.S.
carriers operated older planes than the carriers based in other countries. A description
of the data is in the Appendix, but a summary is in Table 1:

10
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Figure 4: Age of capital among exiters and survivors in the U.S. airline
industry, 1960-2003.

U.S. World
Survivors Exiters Survivors Exiters

Average age (yrs) 10.4 17 9.8 13.7
Std. dev. of age 7.5 9.4 7.4 9.4
# of airlines 231 181 1140 659
# of plane-year obs. 95,147 530 213,650 2,092

Table 1 : The data in Figures 4 and 5.

As reported in the table, a plane is counted as one observation for each year of its life.
An airline is counted at most twice — as a survivor and then possibly as an exiter.

Three other pieces of evidence link exit decisions to the need to replace capital to
the decision to exit

1. Plant exit.–Salvanes and Tveteras (2004) find that old plants are (i) less likely
to exit, but (ii) more likely to exit when their equipment is old. Fact (i) they
attribute to the idea that plants gradually learn their productivity and exit if
the news is unfavorable as Jovanovic (1982) argued. Fact (ii) they attribute to
the vintage-capital effect on exit.

2. The trading of patent rights.–The renewal of a patent is similar to replacing a
piece of capital in the sense that a renewal cost must be paid if the owner of
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the patent is to continue deriving value from it. If that owner sells the patent
right, he effectively exits the activity that the patent relates to. Serrano (2006)
finds that the probability of a patent being traded rises at its renewal dates,
indicating that the decision to exit is related to the wearing out of a patent
right.

3. Higher embodied technical progress raises exit.–A faster rate of decline in the
price of capital makes it optimal to replace capital more frequently. If replace-
ment sometimes leads to exit, we should see more exit where there is more
embodied progress. Samaniego (2006) indeed finds that in sectors where the
prices of machinery inputs fall faster, the firms using those machines experience
higher rates of exit.

4 Empirics on the negative g − T relation

GK measure an industry’s age from the date that the product was commercially
introduced, i.e., from the date of its first sales. The shakeout period is defined as the
epoch during which the number of firms is declining. GK say that an “exit” occurs
when a firm stops making the product in question, even if that firm continues to make
other products.

12



4.1 Testing (11): The timing of the shakeout

As suggested by the discussion in Section 3, we shall begin by proxying the age, T , of
an industry at its first replacement spike, by the industry’s age at which the shakeout
of its firms begins. This measure will underlie the first test of the model. And as
suggested by (6), we shall proxy the rate of technological progress, g, by the rate at
which the price of the product declines. Since replacement episodes are in the model
caused by technological progress, we first check if industries with higher productivity
growth experience earlier shakeouts. That is, we ask whether industries with a high
g have a low T as Proposition 2 claims and, if so, how well the solution for T to (9)
fits the cross-industry data on g and T .

Product name ĝ(1) T̂ (1) ĝ(2) T̂ (2)

Auto tires 0.03 21
Ball-point pens 0.07 >28 0.07 >18
CRT 0.04 24
Computers 0.07 19
DDT 0.20 12 0.13 16
Electric shavers 0.05 8 0.01 5.5
Fluorescent lamps 0.21 2 0.21 2.5
Nylon 0.03 >34 0.03 >21
Home & farm freezers 0.02 18
Penicillin 0.57 7 0.57 8.5
Phonograph records 0.03 36 0.02 8.5
Streptomycin 0.31 22
Styrene 0.06 31 0.07 12
Television 0.05 33 0.08 8
Transistors 0.17 15
Zippers 0.04 63 0.05 38

Table 2 : The data in Figures 6 and 7.7

We now describe the procedure by which we choose the model’s parameters. By
Proposition 1, a unique solution to (9) for T exists, denoted it by T̃ (r, c, g). In Table
2, T̂ (1) is the date that GK find that Stage 4 (the shakeout stage) begins in their
various industries. In a couple of cases the shakeout had not yet begun, and they
are censored. The annual rate at which the price declines, averaged over the period

7The variable definitions are: T̂ (1) = age at the start of shakeout, ĝ(1) = average annual price
decline on

h
0, T̂ (1)

i
, T̂ (2) = the number of years elapsed between the start of stage 2 and the midpoint

of the shakeout stage, and ĝ(2) = annual price decline over stages 2 and 3.
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h
0, T̂ (1)

i
is ĝ(1)i . We do not have observations on r and c, so we set r = 0.07 and

estimate c to minimize the sum of squared deviations of the model from the data for
the eight industries for which we have complete information on both g and T :

min
c

(
8X

i=1

h
T̂
(1)
i − T̃

³
0.07, c, ĝ

(1)
i

´i2)
.

The data and the implicit function T̃ (g, r, c) fitted to them are shown in Figure 6.
The estimate is c = 0.039 (s.e. = 0.013, R2 = 0.53).

Our estimate of c is in the range of typical maintenance spending. McGrattan
and Schmitz (1999) report that in Canada, total maintenance and repair expenditures
have averaged 5.7 percent of GDP over the period from 1981 to 1993, and 6.1 percent
if one goes back to 1961. These estimates are relative to output, however, whereas
ours are relative to the purchase price of the machine which is normalized to unity.
Relative to output, maintenance costs are one hundred percent at the point when
the machine is retired (this is equation [3]). Maintenance costs are constant over
the machine’s lifetime, whereas the value of the machine’s output relative to the
numeraire good is egT when the machine is new. Now egT averages around e1.7 = 5.5
— see Figures 13 and 14 — so that as a percentage of output, maintenance spending
ranges between 18 and 100 percent. Therefore, c must stand partly for wages to
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workers as a fixed-proportion input as in the original vintage-capital models like
Arrow (1962) and Johansen (1959) that had a fixed labor requirement.

4.1.1 Testing (11) using an alternative definition of T

We now entertain a different definition of T ; one that may provide a better test of
the model, and one that will provide us with more observations. The main reason for
doing this is that GK’s “Stage 1,” defined as the period during which the number of
producers is still small (usually two or three), may not contain what we would call
an investment spike. During stage 1, only a few firms enter, a number that is in some
industries — autos and tires, e.g., — much smaller than the number of firms that exit
during the shakeout.

The model predicts a date-zero investment spike X1 = D (p0, 0), without which
there would be no exit spike at date T . Not all the GK industries will fit this,
however. Indeed, GK state that rarely is a product’s initial commercial introduction
immediately followed by rapid entry. Autos, e.g., had very low sales early on, and it
took years for sales to develop.8 Therefore the spike is better defined at or around
the time when the entry of firms was at its highest. Moreover, in GK, for many
industries, the shakeouts were not completed until a few years after they first began.
It may thus be more appropriate to designate the shakeout date as the midpoint of
the shakeout episode instead of as the start date of the shakeout episode.

In light of this, let T̂ (2) be the time elapsed between the industry’s “Takeoff”
date (which is when Stage 2 begins) and the midpoint of the the industry’s shakeout
episode (the midpoint of Stage 4). This revised definition for bT calls for adjustingbg to be the rate of the average annual price decline between the takeoff date (which
comes after the industry has completed stage 1), and the first shakeout date. We call
this variable ĝ(2). This allows us to enlarge the sample. The additions are as follows:

1. For six of the GK industries, complete information for price-declines in Stages
2 and 3 (but not Stage 1) is available. They can now be added to the analysis;

2. The two censored observations listed in Table 2 will also be added;

3. We replace the GK information for the TV by that reported in Wang (2006),
who compiled the data from the Television Factbook. This change may better
reflect the history of the TV industry as GK dated the birth of the industry
as early as 1929, while according to Wang, the commercial introduction of TV
starts only in 1947.

8Klepper and Simons (2005), however, do find an initial spike for TVs and Penicillin — both start
out strong after WW2. There may be a problem with the TV birthday being set at 1929 as GK
have it. During WW2 the Government had banned the sale of TVs.
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Figure 7: T̂ and ĝ using the alternative definition of T

The estimation procedure.–The inclusion of the two censored observations leads
us to use maximum likelihood. We set r = 0.07 and assume that the distribution
of c over industries is log- normal: For all firms in industry i, ln ci is a draw from
N (ln c, σ2). We then estimate c and σ to fit the model to the data; the details are in
the Appendix.

The estimate of c̄ = 0.078 is a bit higher than with the previous sample. This
is because T is smaller under the new definition, and a higher replacement cost is
needed to generate the earlier replacement. Figure 7 plots the predicted T for the
industry for which c = c. For the two truncated observations, Ball—point pens and
Nylon, the data points represent the respective means conditional on their truncated
values.

4.2 Testing (11) using subsequent entry and Exit Spikes

In our model industry-wide investment spikes continue to occur, yet Gort and Klepper
report at most one shakeout per industry. Shakeouts should diminish geometrically
in absolute terms as (12) shows. Moreover, exit spikes should coincide with entry
spikes. This section tests these implications using Agarwal’s extension and update of
the GK data, described fully in Agarwal (1998). The products are listed and some
statistics on them presented in Table 3.

The evidence hitherto is mixed: Cooper and Haltiwanger (1996) find industry-
wide retooling spikes, but GK did not report second shakeouts, though this may in
part be because the GK data rarely cover industry age to the point t = 2T where we
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ought to observe a second shakeout. In any case, Agarwal’s data cover more years
and contain entry and exit separately, and we shall use them to study this question.

A procedure for detecting spikes must recognize the following features of the data:

(A) Length of histories differ by product.–Coverage differs widely over products,
from 18 years (Video Cassette Recorders) to 84 years (Phonograph Records).

(B) The volatility of entry and exit declines as products age.–The model predicts
that the volatility of entry and exit should decline with industry age. Other factors
also imply such a decline: (i) Convex investment costs at the industry level, as in
Caballero and Hammour (1994), and (ii) Firm-specific c’s. Both (i) and (ii) would
transform our Xn from spikes into waves and, eventually, ripples.9

Hodrick-Prescott residuals in entry and exit rates.–Roughly speaking, we shall
say that a spike in a series Yt occurs whenever its HP residual is more than two
standard deviations above its mean. “Roughly”, because of adjustments for (A) and
(B) above. We constrain industry i’s trend, τ , by

AiX
t=2

(τ t − τ t−1) ≤ aAb
i ,

where Ai is the age at which an industry’s coverage ends. We set a = 0.005 for both
series. Because both series are heteroskedastic, with higher variances in earlier years,
we chose b = 0.7 for both entry and exit (If b were unity, an industry with longer
coverage would have a larger fraction of its observations explained by the trend). The
trend therefore explains about the same fraction of the variation in short-coverage
industries as in long-coverage industries.
This fixes problem (A), but not (B): The HP residual, ut ≡ Yt − τ t, is still

heteroskedastic, the variance being higher at lower ages. To fix this, we assumed that
the standard-deviation was age specific and equal to

σt = σ0t
−γ, (14)

where σ0 ≥ 0 and γ ≥ 0 are product-specific parameters estimated by maximizing
the normal likelihood10

AiY
t=1

1p
2πσ2t

exp

Ã
−1
2

∙
ut
σt

¸2!
.

9Spikes may also dissipate because (i) A positive shock to demand would start a new spike
and series of echoes following it; these would mix with the echoes stemming from the initial
investment spike, (ii) Random machine breakdowns at the rate δ would transform (12) into
Xn = e−(g+δ)T (n−1)X1, which decays faster with n.
10Although the HP residuals are not independent and probably not normal either, this procedure

still appears to have removed the heteroskedasticity in the sense that the spikes were as likely to
occur late in an industry’s life as they were to occur early on.
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The spike-detection algorithm.–If at some date the HP residual is more than two
standard deviations above its mean of zero, then that date is a spike date. But we
shall allow for the possibility that unusually high replacement will take up to three
periods. Thus we shall say that a series Yt in a certain time window is above ‘normal’
if one or more of the following events occurs

1-period spike: ut > 2σt,

2-period spike: ut > σt and ut+1 > σt+1,

3-period spike: ut >
2

3
σt and ut+1 >

2

3
σt+1 and ut−1 >

2

3
σt−1.

The cutoff levels of 2, 1, and 2
3
times σt were chosen in the expectation that each

of the three events would carry the same (small) probability of being true under the
null. The latter depends on the distribution and the serial correlation of the ut which
we do not know. But, again for the normal case, these probabilities turned out to be
roughly the same. That is,

1− Φ (2) = 0.023, (1− Φ (1))2 = 0.025, and
µ
1− Φ

µ
2

3

¶¶3
= 0.016.

Table 3 summarizes the results in more detail. The 33 products are listed al-
phabetically and are so numbered. To explain the table, let us focus on product 23,
Phonograph Records and read across the row. Records were first commercialized,
i.e., sold, in 1908. Being the oldest product, it also is the product for which we have
the most observations, 84, since (with one exception) the series all end in 1991. The
next four entries are the exit and entry spikes, by age of industry and by calendar
year. There are seven one-year spikes and one two-year spike, this being the last
exit spike. The 1934 exit spike is labelled in red because it falls in the GK shakeout
region the dates of which are in the last column of the table. See Figure 7 where
the GK shakeout region is shaded. The remaining columns report the correlations
between the entry and exit series.11 The raw series are negatively correlated — when
the industry is young, entry is higher than exit, and later the reverse is true — but the
correlation is slight (-0.07). The trends (i.e., the τ ’s) are more negatively correlated
(-0.27). The HP residuals, on the other hand, are positively correlated; our model
suggests that this should be so because the spikes should coincide.12 The correlations
averaged across products are at the bottom of the table.

11Since there are no incumbents at date zero, the entry spike at date zero is infinite in both the
data and the model. Since neither the entry nor the exit rate is defined in the first year of the raw
series, both series begin in the second year. Thus “Year t” of the entry and exit rate series refers to
element t+ 1 of the raw data series.
12While the entry and exit spikes do not always coincide, a clustering test finds a highly positive

and significant correlation in their timing.
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residuals 

 
 
 

Corr 
btw 

entry 
and exit 

rates  

 
 
 
 

G-K  
Stage 4 

1 Antibiotics 44 7 1955 2 1950 -0.46 -0.04 -0.30 not in G-K 
  1948   19 1967 39 1987         

      32 1980             

2 
Artificial 
Christmas Trees 

54 
8 1946 35 1973 -0.52 -0.02 -0.21 1968-1969 

  1938   18 1956 49 1987         
      43 1981             

      45 1983             

3 Ball-point Pens 44 23 1971  9-10 1957-58 0.81 -0.32 0.55 S4 not reached 

  1948       26 1973-74         

4 Betaray Gauges 36 7 1963 7 1963 0.18 0.34 0.26 1973- 

  1956       33 1989         

5 
Cathode Ray 
Tubes 

57 
54 1989 10 1945 0.92 0.55 0.79 1963-1967 

  1935       15 1950         

          52 1987         

6 

Combination 
Locks 

80 

13 1925 21 1933 0.41 0.01 0.21 not in G-K 
  1912   16 1928 29 1941         
      65 1977 53 1965         

      75 1987             

7 Contact Lenses 56 10 1946 6 1942 0.09 -0.15 -0.13 not in G-K 

  1936   29 1965 12 1948         
      35 1971 30 1966         

          39 1975         

8 Electric Blankets 76 3 1919  6-7 1922-23 -0.13 0.07 -0.09 1962-1973 
  1916   35 1951 30 1946         
      41 1957 46 1962         
      63 1979 70 1986         

      69-70 1985-86             

9 Electric Shavers 55 36 1973 36-39 1973-76 0.22 -0.09 -0.11 1938-1945 
  1937       49 1986         

                      

10 

Electrocardiograp
hs 

50 

6 1948 6 1948 0.25 0.41 0.37 1964-1969 

  1942   32 1974 48 1990         

11 Freezers 46 27 1973 40 1986 0.41 -0.13 0.23 1947-1957 

 
1946   

                

Red =  Is or may be in GK Stage 4                    Blue =  Within 1 year of exit spike 
 

Table 3: Entry and Exit Statistics in Agarwal’s data 



EXIT   ENTRY 
 

spike dates 
 

spike dates 
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yr of comm  
intr. 

 
 
 
 

Length of 
raw series  

in yrs 
since 
comm 
intro 

in calendar 
yr 

in yrs 
since 
comm 
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yr 

Corr 
btw 

smthed 
entry 
and 
exit 
rates 

Corr 
btw 

entry 
and exit 
rsiduals 

 
 

Corr 
btw  

entry 
and 
exit 
rates  

 
 

G-K 
stage 4 

12 
Freon 
Compressors 

57 
5 1940 3 1938 -0.21 -0.12 -0.17 1971-1973 

  1935   37 1972 46 1981         

      52 1987             

13 Gas Turbines 48 20 1964 2 1946 -0.42 0.00 -0.22 1973- 

  1944       36 1980         

          41 1985         

14 Guided Missiles 41 2 1953 8 1959 -0.32 -0.43 -0.41 1965-1973 

  1951       35 1986         

                      

15 Gyroscopes 77 10 1925 4 1919 0.36 0.10 0.24 1966-1973 
  1915   31-32 1946-47 30-32 1945-47         

          39-40 1954-55         

16 Heat Pumps 38 5 1959 25 1979 -0.42 -0.08 -0.24 1970-1973 

  1954   16 1970             

      32 1986             

17 Jet Engines 44 6 1954 6 1953-54 -0.26 0.42 0.07 1960-1962 

  1948   22 1970 32 1980         

          35 1983         

18 
Microfilm 
Readers 

52 
 5-6 1945-46 8 1948 0.37 -0.24 -0.12 

S4 not 
reached 

  1940   16 1956 22-23 1962-63         
          33 1973         

          45 1985         

19 Nuclear Reactors 37 30 1985 30 1985 -0.57 0.12 -0.38 1965-1973 

  1955   33 1988 35 1990         

20 Outboard Motors 79 22 1935  2-4 1915-17 -0.18 0.07 -0.08 1921-1923 
  1913   67 1980 28 1941         
          34 1947         

          72 1985         

21 Oxygen Tents 60 41 1973 4 1936 -0.32 -0.17 -0.26 1967-1973 

  1932   48 1980 56 1988         

      52-53 1984-85             

22 Paints 58 39 1973 13-14 1947-48 -0.41 0.04 -0.20 1967-1973 
  1934   43 1977 20 1954         

 
Red =  Is or may be in GK Stage 4                    Blue =  Within 1 year of exit spike 
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spike dates 

 
spike dates 

  

 
Product & 

Yr of 
Comm  Intr. 

Length 
of raw 

series in 
Agarwal 

in yrs 
since 
comm 
intro 

in calendar 
yr 

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

Corr 
btw 

smooth
ed entry 
and exit 

rates 

Corr 
btw 

entry 
and 
exit 

residua
ls 

 
 
 
 

Corr btw 
entry and 
exit rates  

 
 

G-K 
stage 4 

23 

Phonograph Records 84 

5 1913 9 1917 -0.23 0.08 -0.07 1923-1934 
  1908   25 1933 13 1921         
      51 1959 40 1948         

  
    65-

66 1973-74 67 1975         

24 

Photocopying 
Machines 

52 

34 1974 42 1982 -0.30 -0.20 -0.25 1965-1973 

  1940   39 1979             

25 

Piezoelectric Crystals 51 

13 1953 3 1943 -0.28 -0.06 -0.21 1955-1957 

  1940   40 1980 45 1985         

26 Polariscopes   64 15 1943 18 1946 0.20 -0.26 -0.03 1964-1967 

  1928   45 1973 23 1951         
          25 1953         

          44 1972         

27 
Radar Antenna 
Assemblies  

40 
15 1967 4 1956 -0.50 -0.10 -0.32 1957-1968 

  1952   21 1973 33 1985         

28 

Radiant Heating 
Baseboards   

45 

25 1972 27 1974 -0.42 0.02 -0.19 1972-1973 

   1947   37 1984             

29 Radiation Meters 43 6 1955 -0.28 0.20 -0.13 not in G-K 

  1949   37 1986         

      no spike dates      41 1990         

30 Recording Tapes 40 11 1963 33 1985 -0.53 0.06 -0.31 1973- 

  1952   28 1980             

31 Rocket Engines 34 32 1990 7 1965 -0.34 -0.08 -0.19 1973- 

  1958       33 1991         

32 Styrene 54 17 1955  4-5 1942-43 -0.55 -0.09 -0.27 1966-1973 

  1938       20-1 1958-59         

33 

Video Cassette 
Recorders   

18 

7 1981 -0.33 -0.18 -0.11 not in G-K 

  1974   no spike dates 11 1985         

  average 51.94         -0.11 -0.01 -0.07   
  max 84.00         0.92 0.55 0.79   
  min 18.00         -0.57 -0.43 -0.41   

  std deviation 14.97         0.40 0.22 0.27   

Red =  Is or may be in GK Stage 4                    Blue =  Within 1 year of exit spike 
 

 

Table 3, continued 



Figure 7 plots the exit and entry series for Phonograph records, in each case
plotting the HP trend and the two-standard-deviation band. Spikes are circled in
green. Let us note the following points:

1. For both entry and exit the spikes are evenly distributed, and this is true in
most industries. This suggests that the heteroskedasticity adjustment in (14)
is adequate.

2. The number of entry and exit spikes is equal — four entry and four exit spikes.
But only the final, fourth spikes coincide in that they are within one year of
each other. There were only five other products (10, 11, 25, 27, and 32) for
which this was so.

3. The second exit spike is well in the GK region, but there should also have been
an entry spike in that region. Over all the industries the number of entry spikes
(67 in all) is slightly less than the number of entry spikes (79 in all), for the nine
industries in which the GK region does contain an Agarwal spike, it is always
an exit spike — see the red numbers in Table 2.

4. Just as our model predicts, however, T2,i−T1,i is negatively related to ĝi. That
is, analogously to the result in Figures 6, the first exit spike is followed sooner
by the second exit spike in those industries i where prices decline faster. We
now calculate bg as the rate of average price decline during the years covered
by T2 − T1. To maximize the number of observations, we include products for
which price information is available for as little as 70% of the time during the
years covered by T2 − T1. For Outboard Motors and Recording Tapes, however,
price went up during those years which is inconsistent with the model. But
they both had above-average T2 − T1 values, 42 and 17 respectively, and while
we did not include them in the estimation routine, we include them in Figure
9, setting ĝ to zero in both cases.

5. The same test is also done on entry spikes. Once again, T2,i− T1,i is negatively
related to ĝi. The results are in Figure 10.13 At first it may seem like a better fit
could be obtained at a lower value of c̄ which would raise the red curve upwards.
The problem, however, is that a fall in c raises T by much more when g is low,
as one can verify from Proposition 5 and more intuitively from (7), so that the
curve moves clockwise.

4.3 Other explanations for the negative g − T relation

Endogenous technological change.–Our model assumes that technological change is
exogenous. Klepper (1996) assumes firms do research, and his model appears to imply

13For both plots c̄ solves minc
Pn

i=1

³bTi − T (r, c, bgi)´2 .
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Figure 9: Exits: The relation between T̂2 − T̂1 and ĝ

that leading firms would squeeze out the inefficient fringe more quickly in industries
where there is more technological opportunity and, hence, faster-declining product
prices. The difference between our model and his concerns the fate of the firms in the
first cohort of entrants: In our model the first cohort is the least efficient, whereas in
Klepper’s model, the first cohort is the most efficient because it has done the most
research. In Grossman and Helpman (1991) and Aghion and Howitt (1992), monopoly
incumbents are periodically replaced by more efficient entrants. Tse (2001) extends
the model to allow for more than a single producer, but he too has a fixed number
of producers over time and cannot explain shakeouts.

Demand declines.–Consider the following explanation for the negative relation
between T̂ and ĝ. Let there be just two periods of different length: [0, 1] and (1,∞).
Suppose demand either stays constant or that it declines, and that the outcome is
unpredictable. A demand decline produces a shakeout (T = 1) and a decline in p.
If demand does not decline then there is no shakeout (T = +∞) and no decline
in p. This explanation does not, however, get support from GK’s sample. For the
analysis in Figure 6, among the industries where output fell during the shakeout,14

the average pair was
³bg(−), bT (−)´ = (0.07, 30.4), whereas among the industries where

output rose,15 the average pair
³bg(+), bT (+)´ = (0.28, 13.3) . For the analysis in Figure

7, the corresponding figures are
³bg(−), bT (−)´ = (0.05, 17.3)16 and

³bg(+), bT (+)´ =

14DDT, Electic shavers, Phonograph records, TV, and Zippers.
15Fluorescent lamps, Penicillin, and Styrene.
16The industries in note 14 plus Auto tyres and CRT.
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(0.21, 11.2) .17 Yet the demand hypothesis implies the opposite: Prompted by the
decline in output, ĝ(−) should have exceeded ĝ(+), and T̂ (−) should have been lower
than T̂ (+).

Exit after learning through experience.–The argument of Horvath et al. (2003)
would measure the learning period by T . But then one needs to explain why learning
would be faster in those industries where p is declining rapidly.

Consolidations for other reasons.–Again, one would need a reason for why consol-
idations should occur sooner in industries where technological change is more rapid.

5 Testing (13)

Testing Proposition 4 requires that we estimate the fraction of capacity replaced and
the growth of output when the industry reaches age T . Equation (13) says that if
we regress y on z we should get a perfect fit. We calculate bzi from GK’s table 5 as
the inverse of the rate of output increase from the date industry i was born up to
the date when the number of firms in the industry peaked. But we do not have data
on capacity replaced; we do have estimates on the fraction of firms that exit during
the shakeout. We calculate ŷi = GK’s Table 4 column 3. This is the total decrease
in the number of firms for a period of time that lasted for on average 5.4 years, after

17The industries in note 15 plus Freezers and Transistors. GK did not report whether output fell
or rose during the shakeout for Computers and Streptomcyin.
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Figure 11: Testing (13): The relation between y and z.

which the number of firms in the industry peaked. Hence byi is the upper bound on
the number of firms that exited at time T .
Because exiting firms are smaller than surviving firms, the fraction of firms that

exits does not equal the fraction of industry capacity withdrawn by the exiting firms:
Evans (1987) and Dunne, Roberts and Samuelson (1988) find that firm size is posi-
tively associated with survival. Table 2 of Dunne et al. (1988) shows that the size of
exiting firms is about 35 percent of the size of non-exiting firms. Therefore the frac-
tion of firms should be roughly three times the fraction of capacity replaced. In other
words, Proposition 4 together with the size adjustment implies the regression equa-
tion ŷi = 3ẑi+ ui, where i denotes the industry. Firms may also exit for reasons that
are outside the model. We add a constant, β0, to the RHS of the regression equation
in order to represent these other forms of exit. Thus, we estimate the relation

ŷi = β0 + β1ẑi + ui,

where β1 represent the fraction of firms that exit in response to capacity replacement.
The estimates are in Figure 11. There are too few observations to allow us to tell if
β1 differs significantly from 3.

5.0.1 Tests of (13) with the alternative definition of T

The alternative definition of T takes the date of the first spike to be the takeoff date
of an industry, i.e., the start of GK’s Stage 2. In that case, if we ignore as negligible
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Figure 12: Testing (13) with the alternative definition of T

the capacity created before the takeoff date, bz should equal the inverse of the rate of
output increase between the takeoff date and the start of Stage 4, i.e., the date at
which the number of firms in the industry peaked. There are 5 industries in GK for
which output data, as well as information on by, are available from the takeoff date to
the shakeout date but not earlier. These industries can now be added to the analysis.
For the TV industry we use the information from Wang (2006) in place of GK. The
results are described in Figure 12. The slope is marginally significant, but far lower
than the model predicts.

6 Implications for productivity growth

The model has no labor, and so TFP is simply the productivity of capital.18 If the
price of capital used to deflate investment spending were per unit of quality, then all
the technological progress would appear in the capital stock, the resulting measure
of the capital stock would be given by (1) and would equal output, with TFP being
constant at unity. On the other hand, if no adjustment is made for quality so that
the price index used to deflate investment was unity, then the capital stock would be

18One way to add labor to the model is to have one worker per machine, and to interpret c as the
wage. Labor productivity would then be the same as the productivity of the physical units of capital
and would equal the expression in (15). A shakeout would be accompanied by a sharp decline in
employment.
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Figure 13: TFP growth and the max/min TFP ratio — predicted and
actual

given by K (t, t) as given by (2) when evaluated at s = t, and TFP would equal

TFPt =
qt

K (t, t)
. (15)

Thus TFP rises smoothly until the shakeout date, and then it experiences an upward
jump during the shakeout when the number of physical units of capital falls, but the
number of their efficiency units stays unchanged.

6.0.2 TFP growth vs. dispersion

Faster TFP-growing industries should show greater TFP dispersion in our model.
Dwyer (1998) derives the same relation in a similar model. In a group of textile
industries he found that the relation was positive and significant.19 Dwyer measured
dispersion by the TFP ratio of the tenth percentile plants to the ninetieth percentile
plants. TFP growth ranged from about two percent to about eight percent and the
TFP ratio ranged between 2.4 to 4.6.

Our model cannot generate such large dispersion, even when we measure disper-
sion as the ratio of the most productive to the least productive producer. Figure 13
plots the logarithm of

ln
TFPmax
TFPmin

= gT

19At the two-digit level, Oikawa (2006) finds a positive relation between TFP growth and TFP
dispersion measured by the standard deviation of the logs.
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Figure 14: TFP growth and the max/min TFP ratio with the alternative
definition of T — predicted and actual

as a function of g. It shows, in other words, the comparative steady-state relation
between inequality and growth.20 The relation is positive, but for the less-than-ten-
percent range of TFP growth (which would include all of Dwyer’s industries), the
most we can explain is a ratio of about 1.75. Table 5 of Aizcorbe and Kortum (2005)
reports a result similar to the one portrayed in Figure 13 — when g is larger, gT should
go up.

Figure 13 is based on the information in Figure 6, and on the least-squares estimate
c = 0.039. If we switch to measuring T by the time between the industry’s takeoff and
the midpoint of the shakeout episode while adjusting the measure of g accordingly,
and if we use the ML estimate of c̄ reported in Figure 7, we get the results shown in
Figure 14. Note that Figures 13 and 14 portray the very same information portrayed
in Figures 6 and 7 — no new information is added. The difference is merely that the
variable plotted on the vertical axis is gT instead of T . Since the data do not have
T declining with g as fast as the model predicts, the relation between g and gT is
steeper than the model predicts. This is especially evident in Figure 14.

A further difficulty with the model as an explanation of TFP dispersion is that
the dynamics of TFP do not quite match the dynamics of actual plants in the data.
In a word, too much leapfrogging goes on. In the data TFP-rank reversals sometimes,
but we hardly ever see the “last shall be first” phenomenon of the least productive

20Moreover, the model’s implications for inequality have a curious discontinuity at g = 0. Namely,
if g is really zero, then everyone should be using the same quality machine and there should be no
TFP inequality. But a steady state with a very small g would have TFP inequality of at least unity.
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Figure 15: Transitional dynamics in productivity dispersion

producer suddenly becoming the most productive. In our model, a plant would move
smoothly down the distribution of percentiles until it reached the last percentile, and
it then would suddenly jump back up to the first percentile, and so on. Analysis
of productivity transitions by Baily, Hulten, and Campbell (1992, Table 3) does not
bear this out. Plants move up and down the various quintiles of the distribution
and the transition matrix is fairly full. Moreover, births tend to be of below average
productivity.

On the positive side, a supporting fact in Baily et al.’s transition matrix is that
more plants (14 percent) move from the bottom quintile to the top quintile than the
reverse (5 percent). One reason why we do not see the dramatic “last shall be first”
rank reversals is the tendency for a plant’s TFP to grow as it ages.21 Thus a new,
cutting-edge plant does not immediately have the highest productivity. Rather, its
productivity grows as it ages, as Bahk and Gort (1993), and Table 5 of Baily et al.
(1993) document. This would explain why a new plant does not enter at the top of
the distribution of TFP in the way that this model predicts and why, as Table 5 of
Baily et al. (1993) shows they tend to rise from the bottom to the top TFP quintile
by the time they are 10-15 years old.

6.0.3 Transitional dynamics in productivity dispersion

The model implies that in the initial stages of an industry’s life, the distribution of
TFP across producers should be fanning out. How fast it does so, however, should
depend on the rate of technological progress, i.e., on g. This is the rate at which

21Parente (1994) models learning of the technology with the passage of time, and Klenow (1998)
models learning as a function of cumulative output.
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the productivity of new capital gains at the expense of old capital. But after the
industry reaches age T , no further fanning out takes place, because old capital begins
to be withdrawn. Thereafter, dispersion remains constant at its steady-state level.
In Figure 15 we show how the fanning out process depends on the industry’s growth
rate by plotting, for four different values of g, the logarithm of

ln
TFPmax
TFPmin

= gmin (t, T )

where t is the age of the industry. In contrast, learning models like that of Jovanovic
(1982) are ambiguous on this score: The dispersion among survivors can become more
narrow over time if certain distributional assumptions are met, as was the case for
the distribution that Jovanovic (1982) used — the variance of the truncated normal
distribution is smaller than the variance of the untruncated distribution.

7 Conclusion

This paper started out with a graphical display of evidence that industry shake-
outs of firms occur earlier in industries where technological progress is faster. We
argued that other models of shakeouts were not able to explain this fact, whereas
our vintage-capital model does so by predicting earlier replacement when capital-
embodied technological progress is fast. We supported this claim with evidence from
the airline industry that showed firm exits to be positively related to the age of the
capital stock.
By inferring technological progress in the inputs from the decline in the price

of the output as our model predicted, we found that the model fits fairly well the
negative relation between technological progress and the onset of the shakeout. More-
over, we found that subsequent investment spikes, too, are also more frequent where
technological progress is fast.
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8 Appendix

8.1 The aircraft data

The data that Figures 4 and 5 portray come from a file, complied by a producer of a
computer based aviation market information system and safety management software,
that records the history of every non—military aircraft manufactured. They are de-
scribed by Gavazza (2007, Sec. 5.1) and at http://www.flightglobal.com/StaticPages/Acas.html
. Coverage begins in 1942 and ends at April 2003. For each aircraft, it records the
usual identification information, such as the manufacturer, the model, etc., and (most
important for our purposes) the first and the last date that each aircraft was operated
by individual carriers. We aggregate such information at the level of an individual
carrier to calculate the average age of capital of the carrier at a given point in time.
The analysis is restricted to narrow-body (100 seats +) and wide—body passenger
jets.

Measurement of entry and exit.–We say that a carrier has “entered” in the year in
which it was first recorded as having operated a passenger jet. A carrier has “exited”
in the year in which it was last recorded as having operated a passenger jet. A carrier
has “survived” a certain year if it entered before that year and if it has not exited by
the end of the year. The data contain information on mergers; a company that was
acquired is not counted as an exit.

Measurement of age.–The age of a jet at a point in time is the time elapsed since
the jet was first delivered. The average age of a carrier’s capital is the average age of
all the jets that it operated on January 1 of the year.
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8.2 Proofs and derivations

Proof of Proposition 2.–Rewrite (9) as

ge−rT + regT −
µ
r + c

c

¶
(r + g) ≡ Φ (T, g, c, r) = 0.

We have ∂Φ
∂T
= rg

¡
egT − e−rT

¢
> 0. Therefore (11) follows if ∂Φ

∂g
> 0. Now

∂Φ

∂g
= e−rT + rTegT − r + c

c
and, by eliminating e−rT ,

=

µ
r + c

c

¶
r + g

g
− r

g
egT + rTegT − r + c

c

=

µ
r + c

c

¶
r

g
− r

g
egT + rTegT =

r

g

µ
r + c

c
− egT

¶
+ rTegT

=
r

g

µ
r + c

c
+ (gT − 1) egT

¶
> 0.

The strict inequality follows because (i) The function (gT − 1) egT is increasing in gT,
with derivative egT [1 + (gT − 1)] = gTegT , and because (ii)As gT → 0, (gT − 1) egT →
−1, so that at its smallest point, ∂Φ

∂g
= r2

gd
> 0. Then, since ∂T

∂g
= −∂Φ

∂g
/∂Φ
∂T
, and since

∂Φ
∂T

> 0, (11) follows. ¥
Proof of Proposition 5.–(i)We showed that ΦT > 0 in the proof of Proposition 2.

Moreover, ∂Φ
∂c

> 0 because the ratio r+c
c
is decreasing in c. Therefore ∂T

∂c
= −∂Φ

∂c
/∂Φ
∂T

<
0. (ii) When gc < r2, ∂T
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so that then ∂T
∂r
= −∂Φ

∂r
/∂Φ
∂T

> 0. ¥
Derivation of the Likelihood Function used for the estimates in Figure 7.–. For

each industry i, if we know ci and bgi, we know eTi = eT (r, ci, bgi). We would like to
solve eTi as a function of ci, so that we can derive the distribution of eTi from the
assumed log—normal distribution on ci. But since eT (r, ci, bgi) does not admit a closed
form solution, the exact functional relationship between eTi and ci is unknown, and
we linearize it in c. After substituting xi ≡ log ci and g = ĝi into (9), it reads³ r

exi
+ 1
´
(r + ĝi) = ĝie

−rTi + reĝiTi . (16)
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Taking total derivatives at xi = x, where x = log c, gives

−re−x (r + ĝi) dxi = rĝi
³
eĝiT i − e−rT i

´
dTi

where T̄i ≡ T̃ (0.07, ex, ĝi). Then

−dTi
dxi

= e−x
r + ĝi
ĝi

1

eĝiT̄i − e−rT̄i
≡ βi

Hence Ti ' T̃ (0.07, x, ĝi) − (xi − x)βi. If xi ∼ N (x, σ2), then approximately, Ti ∼
N
¡
T̄i, β

2
iσ
2
¢
. The density of Ti is f (Ti) = 1√

2πβiσ
exp

µ
−1
2

h
Ti−T i
βiσ

i2¶
. Letting F (Ti)

denote its CDF, the likelihood is

L =
2Y

i=1

(1− FTi (Ti))
nY
i=3

fTi (Ti) ,

where i = 1, 2 denote the two censored observations.

Conditional Expectation in Figure 7.–Take the Nylon observation for exam-
ple. The observation is truncated at 21. As we showed in the previous paragraph,
Ti ∼ N

¡
T̄i, β

2
iσ
2
¢
approximately. By setting x and σ equal to their respective point

estimates of -2.56 and 2.27, we obtain estimates of T̄i and β2iσ
2. Then we calculate

the expected value of Ti conditional on Ti ≥ 21.
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