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In the twenty years since Mehra and Prescott’s paper on the equity premium puzzle many

studies have proposed and evaluated utility functions for their ability to explain the most salient

aggregate asset pricing facts. Several specifications have demonstrated their ability to improve

considerably over a basic time-separable constant relative risk aversion setup. Despite the progress,

however, it seems that we have not yet reached the state where there would be a widely accepted

replacement for the standard time-separable utility specification.

Contrary to the consumption side, the production side of asset pricing has received considerably

less attention. Focusing on the production side shifts the burden towards representing production

technologies and interpreting production data. While a number of asset pricing studies have

considered nontrivial production sectors, these have generally been studied jointly with some

specific preference specification. Thus, the analysis could not escape the constraints imposed by

the preference side. A pure production asset pricing literature has emerged from the Q-theory of

investment. However, typically, these studies consider a limited set of implications for the links

between investment and stock returns, but not the equity premium.1

In this paper I am interested in studying the macroeconomic determinants of asset prices given

by a multi-input aggregate production technology. The focus is exclusively on the producers’ first-

order conditions that link production variables and state prices, with sectorial investment playing

the key role. Two sets of questions are considered. First, what properties of investment and

production technologies are important for the first and second moments of risk free rates and

aggregate equity returns? Second, does a model plausibly calibrated to the U.S. economy have

the ability to replicate first and second moments of risk free rates and aggregate equity returns?

The work most closely related to mine are Cochrane’s contributions on production-based asset

pricing (1988, 1991). Some of the features that differentiate my work are that I focus explicitly on

the equity premium, use more general functional forms for adjustment cost, and base the empirical

evaluation on the two main sectorial aggregates of U.S. capital investment, namely equipment &

software as well as structures. Cochrane (1993) derives a set of asset pricing implications of a

production function where the productivity level can be selected in a state-contingent way.

My model pictures the problem of a representative producer that selects multiple fixed input

factors. In order to be able to recover a state-price process, the setup needs to have two related

1An incomplete list of contributions include: for successful utility functions, Abel (1990), Campbell and Cochrane

(1999), Constantinides (1990); for models with nontrivial production sectors Jermann (1998) and Rouwenhorst

(1995); for production asset pricing studies, Cochrane (1988, 1991), Li, Vassalou and Xing (2003), and Gomes,

Yaron and Zhang (2002). Other examples of related asset pricing studies with rich production structures are Berk,

Green and Naik (1999), Carlson, Fisher and Giammarino (2003), Hugonnier, Morellec and Sundaresan (2005), and

Tuzel (2004).

1



properties. First, markets need to be complete and the producer has to face a full set of state-

prices. Second, there needs to be as many predetermined factors of production as there are states

of nature. This assumption of “complete technologies” is necessary in order to be able to recover

the full set of state-contingent prices from the production side. In most studies with nontrivial

production sectors this property is not satisfied; of course, in a general equilibrium environment

it doesn’t usually play such an important role.

The model is calibrated to a two-sector representation. I use U.S. data on investment for

equipment & software, as well as for structures. These two types of investments sum to the total

of U.S. fixed business investment. With this representation the two sectors also have some natural

asymmetries. As becomes clear below, asymmetries across sectors play an important role in the

analysis.

One of the paper’s main contributions is to characterize the determinants of the equity pre-

mium. Specifically, a closed form expression is presented for the Sharpe ratio at steady-state as a

function of investment volatility and adjustment cost curvature. The key quantitative findings are

the following. For unconditional moments, the model can plausibly generate an equity premium

of several percentage points with risk free rates having a reasonable mean and volatility. For con-

ditional moments, the expected excess equity return is quite volatile, usually more volatile than

the risk free rate. Also, concerning aggregate excess returns, the correlation between conditional

means and volatilities is negative.

The paper is organized as follows. Section 1 presents the model and section 2 some general asset

pricing implications. Section 3 introduces functional forms. Section 4 characterizes theoretical

links between asset prices and investment. Section 5 contains the calibration and section 6 the

quantitative analysis.

1 Model

The model represents the producer’s choice of capital inputs for a given state price process. Key

ingredients are capital adjustment cost and stochastic productivity.

Assume an environment where uncertainty is modelled as the realization of s, one out of a

finite set S = (s1, s2, ...sN), with st the current period realization and st ≡ (s0, s1, ...st) the history
up to and including t. Probabilities of st are denoted by π

¡
st
¢
. Assume an aggregate production

function

Y
¡
st
¢
= F

³©
Kj
¡
st−1

¢ª
j∈J , s

t, N
¡
st
¢´
,

where st allows for a technology shock, Kj is the j-th capital stock, and N labor. Note that in the

analysis of the model, labor will not play an active role. Capital accumulation for capital good of
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type j is represented by

Kj
¡
st
¢
= Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
,

where δj is the depreciation rate and Zj
¡
st
¢
the technology for producing capital goods. Assume

Zj
¡
st
¢
= Zj

¡
st−1

¢ · λZj (st), with λZj (st) following a N-state Markov process. The total cost of

investing in capital good of type j is given by

Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
.

This specification will be further specialized below.

Taking as given state prices P
¡
st
¢
, the representative firm solves the following problem

max
{I,K0,N}

∞X
t=0

X
st

P
¡
st
¢⎡⎣ F ³©Kj ¡st−1¢ªj∈J , st, N ¡st¢´− w ¡st¢N ¡st¢

−Pj Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢

⎤⎦
s.t.
£
P
¡
st
¢
qj
¡
st
¢¤
: Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢−Kj ¡st¢ ≥ 0, ∀st, j

with s0 and Kj (s−1) given, and P (s0) = 1 without loss of generality.

The scaling of the multipliers is chosen so as to generate intuitive labels. Indeed, q represents

the marginal value of one unit of installed capital in terms of the numeraire of the same period. In

equilibrium, it is also the cost of installing one unit of capital including adjustment cost. Note that

q is not the ratio of the market value over the book value of capital, that is, Tobin’s Q, that would

be qZ. Indeed, 1/Z is equal to the price of a unit of capital in terms of the final good. The book

value (or replacement cost) of the capital stock is then K/Z. The introduction of the investment

specific technology Z allows the model to capture the historical downward trend observed in U.S.

equipment prices.

First-order conditions are summarized by

0 = −Hj,2
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
+ Zj

¡
st
¢
qj
¡
st
¢
,

qj
¡
st
¢
=
X
st+1

P
¡
st, st+1

¢
P (st)

⎡⎣ FKj

³©
Ki
¡
st
¢ª
i∈J , s

t, st+1,N
¡
st, st+1

¢´
−Hj,1

¡
Kj
¡
st
¢
, Ij
¡
st, st+1

¢
, Zj

¡
st, st+1

¢¢
+ (1− δj) qj

¡
st, st+1

¢
⎤⎦ ,

and

FN
¡©
Kj
¡
st−1

¢ª
, st, N

¡
st
¢¢− w ¡st¢ = 0.

Substituting out shadow prices, we have

X
st+1

P
¡
st+1|st

¢
⎡⎢⎢⎢⎣

FKj

¡©
Kj
¡
st
¢ª
, st, st+1, N

¡
st, st+1

¢¢
−Hj,1

¡
Kj
¡
st
¢
, Ij
¡
st, st+1

¢
, Zj

¡
st, st+1

¢¢
+(1− δj)

Hj,2(Kj(st),Ij(st,st+1),Zj(st,st+1))
Zj(st,st+1)

⎤⎥⎥⎥⎦
Ã

Zj
¡
st
¢

Hj,2 (Kj (st−1) , Ij (st) , Zj (st))

!
= 1
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for each j, where the notation P
¡
st+1|st

¢
shows the price of the numeraire in st+1 conditional on st

and in units of the numeraire at st. From this condition, define the investment return RIj
¡
st, st+1

¢
implicitly through

P
st+1

P
¡
st+1|st

¢
RIj
¡
st, st+1

¢
= 1. RIj

¡
st, st+1

¢
is the return realized in st+1

from adding one (marginal) unit of capital of type j in state st. The first-order condition shows

that in equilibrium adding one marginal unit of a given type of capital produces a change in the

profit plan that is worth one unit.2

I will specialize the model to have 2 capital inputs and 2 states of nature in each period. In

addition to complete markets, that is, the producers ability to sell contingent output for each

state of nature, the requirement of “complete technologies” needs to be satisfied, that is, the

ability to move resources independently between all states of nature. This complete technologies

requirement is needed if I want to be able to recover state prices uniquely from the producers

first-order conditions.

2 From investment returns to state prices and asset returns

Representing the first-order conditions in matrix form yields⎡⎣ RI1 ¡st, s1¢ RI1
¡
st, s2

¢
RI2
¡
st, s1

¢
RI2
¡
st, s2

¢
⎤⎦⎡⎣ P ¡s1|st¢

P
¡
s2|st

¢
⎤⎦ = 1, (1)

or more compactly RI
¡
st
¢ · p ¡st¢ = 1, so that the state price vector is obtained from matrix

inversion

p
¡
st
¢
=
¡
RI
¡
st
¢¢−1

1.

Clearly, it isn’t necessarily the case that this matrix inversion is feasible nor that state prices are

necessarily positive for any chosen set of returns. As further discussed below, the requirement for

positive state prices will constrain the empirical implementation.

In this environment, the risk free return is given by:

1/Rf
¡
st
¢
= 1p

¡
st
¢
= P

¡
s1|st

¢
+ P

¡
s2|st

¢
.

Starting with equation 1, it is easy to check that if for one of the investment returns is not state-

contingent, that is RIj
¡
st, st+1

¢
= RIj

¡
st
¢
, then, as is implied by no-arbitrage, it equals the risk

free rate, RIj
¡
st
¢
= Rf

¡
st
¢
.

Consider aggregate capital returns

R
¡
st, st+1

¢ ≡ D ¡st, st+1¢+ V ¡st, st+1¢
V (st)

,

2Based on the details given below, strict concavity will be assumed, so that first-order and transversality condi-

tions (given below) are sufficient for a maximum.
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whereD
¡
st, st+1

¢
= F

¡©
Kj
¡
st−1

¢ª
, st, N

¡
st
¢¢−w ¡st¢N ¡st¢−Pj Hj

¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢

represents the dividends paid by the firm and V
¡
st, st+1

¢
the ex-dividend value of the firm. As-

suming constant returns to scale in F (.) andHj (.), Hayashi’s (1982) result applies, and this return

will be equal to a weighted average of the investment returns:

R
¡
st, st+1

¢
=
X
j

qj
¡
st
¢
Kj
¡
st
¢P

i qi (s
t)Ki (st)

·RIj
¡
st, st+1

¢
. (2)

The market price of risk, aka the highest Sharpe ratio, also has a simple expression. Let us,

introduce the stochastic discount factor m
¡
st+1|st

¢
by dividing and multiplying through by the

probabilities π
¡
st+1|st

¢
, so that

P
¡
st+1|st

¢
=

Ã
P
¡
st+1|st

¢
π (st+1|st)

!
π
¡
st+1|st

¢
= m

¡
st+1|st

¢
π
¡
st+1|st

¢
.

Ruling out arbitrage implies Et
¡
m
¡
st+1|st

¢
Re
¡
st, st+1

¢¢
= 0, for ∀Re ¡st, st+1¢ defined as an

excess return. It can then easily be shown that

max
E
£
Re
¡
st, st+1

¢ |st¤
Std [Re (st, st+1) |st] =

vuuutP
st+1

P (st+1|st)2 /π (st+1|st)hP
st+1

P (st+1|st)
i2 − 1.

3 Functional Forms

This section presents the functional forms and the simulation strategies.

3.1 Investment cost function

The investment cost function plays a crucial role in the analysis. Its form is chosen to satisfy two

criteria. First, I require investment returns to be stationary. This is achieved through a particular

type of homogeneity. Second, I want the curvature of the cost function to be slightly more general

than the standard quadratic specification.

A simple functional form that satisfies these criteria is

H (K, I, Z) =

½
b

ν
(ZI/K)ν + c

¾
(K/Z) ,

with b, c > 0, ν > 1. For each capital stock, different parameter values will be allowed. For

compactness, the notation doesn’t express that. As can easily be seen, this function is convex in

I for ν > 1. Adjustment cost and the direct cost for additional capital goods are separable, triv-

ially so because H (K, I, Z) = [H (1, ZI/K)− ZI/K + ZI/K] · (K/Z) = [H (1, ZI/K)− ZI/K] ·
(K/Z) + I ≡ C (1, ZI/K) · (K/Z) + I. I impose restrictions on the parameters of H (.) so that
C (1, ZI/K) ≥ 0, that is, the pure adjustment cost is nonnegative.
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The cost function is homogenous of degree 1 in I and K/Z. This is required for balanced

growth. Indeed, given the capital accumulation equation, IZ and K are cointegrated, and so are I

and K/Z. With this homogeneity assumption, the investment cost H(.) will share the same trend

as I and K/Z. As further discussed below, balanced growth will contribute to making investment

returns stationary.

For a given investment process, the curvature parameter ν determines the volatility of the

market price of capital. This parameter will be a crucial contributor to return volatility and risk

premiums. From the first-order conditions a relationship between the investment rate and the

marginal cost of capital is obtained

qZ = b (IZ/K)ν−1 .

So that the elasticity of qZ with respect to IZ/K is

∂qZ

∂ (IZ/K)

IZ/K

qZ
= ν − 1.

In addition to having the degree of freedom to chose this curvature parameter, the ability to have

different curvatures across sectors will be important.

The parameters b and c are less important for asset pricing implications. They provide the

flexibility to center the adjustment cost function and to minimize the amount of resources lost

due to adjustment cost. It is easy to see that by setting ν = b = 1, and c = 0, the case without

adjustment cost is obtained

H (K, I,Z) = I.

3.2 Production function

I chose a production function that is consistent with stationary investment returns and that is

easily tractable. Specifically, output, after payments to labor, is a linearly separable function of

the capital stocks

F
³©
Kj
¡
st
¢ª
j∈J , s

t, st+1, N
¡
st+1

¢´− w ¡st+1¢N ¡st+1¢ =X
j

Aj (st+1)

Zj (st)
Kj
¡
st
¢
.

Marginal products of capital are then

FKj

³©
Kj
¡
st
¢ª
j∈J , s

t, st+1, N
¡
st, st+1

¢´
=
Aj (st+1)

Zj (st)
.

The term Zj is introduced to guarantee stationary returns. It implies, for instance, that as a

given capital gets cheaper to produce, that is as Z increases, it also becomes less productive. This

is related to one of the properties implied by Greenwood, Hercowitz and Krusell’s (1997) balanced

growth path. Aj (st+1) can be thought of as a productivity shock.
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3.3 Simulation strategy and stationarity of returns

The spirit of the quantitative analysis is to assume that the optimal investment process is known.

The implied investment returns and state prices can then easily be derived. As mentioned above,

I want returns to be stationary. This also imposes additional restrictions on technologies and the

assumed optimal investment process. These issues are discussed here in detail.

Assume that sectorial investment growth rates follow finite element Markov chains, that is,

Ij
¡
st, st+1

¢
= Ij

¡
st
¢
λIj (st+1). Under the assumed functional forms, investment returns can then

be written as

RIj
¡
st, st+1

¢
=

Aj,t+1

b (ZjtIj,t/Kj,t)
ν−1 (3)

+
³
1/λ

Zj
t+1

´
· b
¡
1− 1

ν

¢
(Zj+1tIjt+1/Kjt+1)

ν − c
b (ZjtIj,t/Kj,t)

ν−1

+
³
1/λ

Zj
t+1

´
· (1− δj) · b (Zjt+1Ij,t+1/Kj,t+1)

ν−1

b (ZjtIj,t/Kj,t)
ν−1 ,

with,

Zjt+1Ij,t+1/Kj,t+1 = (ZjtIjt/Kj,t+1)λ
I
t+1λ

Zj
t+1,

where for compactness the state-dependence is not explicit.

Inspection of equation (3) reveals that given the various assumptions made on the exogenous

processes and functional forms, investment returns are stationary. However, stationarity of sec-

torial investment returns is not sufficient for the stationarity of aggregate asset returns. Indeed,

as shown in equation (2), the aggregate return equals a weighted average of the sectorial returns.

For stationarity, the weights need to be stationary too. Aggregate returns are given by

R
¡
st, st+1

¢
=
X
j

b(ZjtIj,t/Kj,t)
ν−1

Zj,t
Kj,t+1P

i
b(ZitIi,t/Ki,t)

ν−1
Zi,t

Ki,t+1
RIj
¡
st, st+1

¢
.

A sufficient (and necessary) condition for stationarity, given the previous assumptions, is that

K1,t+1/Z1,t and K2,t+1/Z2,t are cointegrated. Given that the investment capital ratios ZjtIj,t/Kj,t

are stationary, this is equivalent to I1,t and I2,t being cointegrated. Setting investment expendi-

ture growth rates equal across sectors, that is λI1 (st+1) = λI2 (st+1), guarantees that I1,t and I2,t

are cointegrated. Thus, because individual quantities have stochastic trends, I end up choosing

identical investment expenditure growth realizations across sectors to guarantee stationarity of

aggregate equity returns. However, I am free to choose the realizations for λZ1t and λZ2t inde-

pendently. This is less restrictive than it might appear for several reasons. As seen above, what

matters for the investment returns is the behavior of the product λI1t λZ1t , and not λ
I1
t individually.

That is to say that the important element in the calibration is to fit the process of real investment
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growth rather than the growth in investment expenditure. Moreover, for the considered empirical

counterparts, as shown below, the historical volatilities of λI1and λI2 are nearly identical, and

realizations of the two growth rates are strongly positively correlated. Alternatively, one could

introduce additional components for each process that have purely transitory effects and would

thus not need to be restricted to ensure balanced growth. However, given the requirement to

keep the number of states small, the additional flexibility introduced in this way would be rather

limited.

To summarize the dynamic structure, realized investment returns are given as functions of the

following

RIj
¡
st, st+1

¢
= RIj

¡
Zj
¡
st
¢
Ij
¡
st
¢
/Kj

¡
st−1

¢
;λI (st+1) ,λ

Zj (st+1) , Aj (st+1)
¢
for j = 1, 2.

For the simulations, I can generate realizations of all quantities of interest based on a probability

matrix describing the law of motion for the exogenous state st+1. The law of motion for the rest

of the variables follows as

Ij
¡
st, st+1

¢
= Ij

¡
st
¢
λI (st+1) for j = 1, 2,

Zj
¡
st, st+1

¢
= Zj

¡
st
¢
λZj (st+1) for j = 1, 2, and

Kj
¡
st
¢
= Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
for j = 1, 2.

Seven variables are a sufficient statistic for the current state of the economy st, namely st,

K1
¡
st−1

¢
, K2

¡
st−1

¢
, I1

¡
st
¢
, I2

¡
st
¢
, Z1

¡
st
¢
, Z2

¡
st
¢
. Clearly Kj

¡
st
¢
matters too, but it is

a function of the state variables. The probability distribution of the shocks is summarized by

st, the realization of the return does not depend on st. As initial conditions, I set K2
¡
s−1
¢
=

Z1
¡
s0
¢
= Z2

¡
s0
¢
= 1, and K1

¡
s−1
¢
is set equal to the historical average of the ratio of the value

of capital in this sector relative to the other sector. Initial investment levels are assumed at their

implied steady state values.

4 Theoretical analysis

This section contains a series of theoretical results that explain key model mechanisms. The first

issue concerns the determinants of the equity premium. I present a simple expression for the Sharpe

ratio that depends only on the investment cost curvature and the investment volatility. Second,

the issue of what constitutes an admissible investment process for a given technology specification

is examined. One finding is that sectorial differences in the adjustment cost parameters νj are

crucial for generating admissible state prices from investment. Two additional results are included.

First, an upper bound for the Sharpe ratio is derived. This will illustrate some of the quantitative
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findings. Finally, it is shown that in a model without technology shocks interest rates cannot be

constant if one is interested in recovering state prices from producers first-order conditions.

4.1 What determines the equity premium?

I consider here the relationship between investment and asset prices, and in particular the equity

premium. For this analysis, a continuous-time representation is more convenient than the discrete-

time model used sofar. The analysis proceeds in two steps. First, I show that in order to have

a positive equity premium, the investment return that is expected to be higher needs to be the

more volatile. Second, I show that under some conditions, asymmetries in the investment cost

curvature ν can generate this property, and a simple expression for the Sharpe ratio is presented.

As a counterpart to the two-state representation in discrete time, consider a one-dimensional

Brownian motion. Investment returns are given by

dRj
Rj

= µj (.) dt+ σj (.) dz, for j = 1, 2, (4)

and the state-price process also has this form

dΛ

Λ
= −rf (.) dt+ σ (.) dz. (5)

Assume that the two returns are positively (perfectly) correlated so that sign (σ1) = sign (σ2).

The drift and diffusion coefficients are allowed to change with the state of the economy. For

compactness, from now on, the notation will not explicitly acknowledge this.

The objective is to derive the drift and diffusion terms of the state-price process, −rf and σ,

from the given return processes, that is from the four values µj and σj for j = 1, 2. Remember,

in this environment, the absence of arbitrage implies that

0 = Et

µ
dΛt
Λt

¶
+Et

µ
dRjt
Rjt

¶
+Et

µ
dΛt
Λt

dRjt
Rjt

¶
, (6)

so that

0 = −rfdt+ µidt+ σiσdt,

and thus there are 2 equations and 2 unknowns. The solution of this system is

rf =
σ2µ1 − σ1µ2
σ2 − σ1

−σ =
µ2 − µ1
σ2 − σ1

.

Clearly, in order to be able to recover the state-price process from the two returns, the two

volatility terms have to be different across sectors, that is σ2 − σ1 6= 0. This is an invertibility

requirement similar to the one for the discrete time case. However, there is no issue here about
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possibly negative state prices. Indeed, a process such as (5) cannot become negative if it is initially

positive.

From the pricing equation (6), the volatility term equals the Sharpe ratio

−σ = µ1 − rf
σ1

=
µ2 − rf

σ2
,

and using the solutions derived above

µ1 − rf = −σσ1 = σ1

∙
µ2 − µ1
σ2 − σ1

¸
. (7)

Clearly, with positively correlated returns, that is sign (σ1) = sign (σ2), the sign of both sectorial

risk premiums is equal, and thus the sign of the aggregate equity premium, a weighted average of

the sectorial premiums, will be the same as for the two sectorial premiums. From equation (7) it

is easy to see that there is a positive equity premium in the aggregate if, and only if, the return

with the higher risk premium is more volatile.3

Let us now make the link to the production side of the model. I consider a model without

technology shocks, where the only source of uncertainty are the state prices. Technology shocks

could be added for this analysis, but given their relatively minor quantitative impact as shown

later in the paper, keeping expressions simple seems preferable. As shown in the appendix, the

realized return to a given capital stock equals⎧⎪⎨⎪⎩ A− c
b
³
It
Kt

´ν−1 +µ1− 1ν
¶
It/Kt − δ + (ν − 1)

∙¡
λI − 1¢− (It/Kt − δ) +

1

2
(ν − 2)σ2I

¸⎫⎪⎬⎪⎭ dt+(ν − 1)σIdz,
(8)

where
¡
λI − 1¢ and σI are drift and diffusion terms of investment. Consider this return when¡

λI − 1¢− (It/Kt − δ) = 0. This holds at the deterministic steady state for given
¡
λI − 1¢ and δ,

assuming
¡
λI − 1¢+ δ > 0. The return then simplifies to½¡

R̄− 1¢+ 1
2
(ν − 1) (ν − 2)σ2I

¾
dt+ (ν − 1)σIdz. (9)

Where R̄ is the return in a deterministic model at the steady state with the same technology

parameters and where investment growth equals λI .4 As discussed further below, it is convenient

to calibrate the model by picking a value for R̄, the steady-state return, independently from other

parameters, which implicitly sets A at a given level. Focusing on the return at this steady state

3 Indeed, if σ1,σ2 > 0, this implies that if µ2−µ1 > 0, one needs σ2−σ1 > 0, and it can be seen that µ1−rf > 0.
Alternatively, if σ1,σ2 < 0, this condition implies that if µ2 − µ1 > 0 one needs σ2 − σ1 < 0, (sector 2 is more

volatile), and then again µ1 − rf > 0.
4 R̄ = A−c

b(λI−(1−δ))v−1
+ 1− 1

v
λI + 1

v
(1− δ) .
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point should be informative about average model behavior. There is an example at the end of the

quantitative analysis that confirms this.

Consider now how ν and δ contribute to the sign and magnitude of the equity premium, given

that these are the main asymmetries between equipment and structures that are considered in

the quantitative analysis. As is clear from equation (9), for a given R̄, there is no separate role

for depreciation rates at steady state. Let’s normalize ν2 > ν1. Because (ν − 1) multiplies σIdz,
given the normalization, the volatility term of sector 2 is larger, that is σ2 > σ1, having assumed

equal investment volatility σI across sectors.5 Whether this asymmetry can generate a positive

equity premium depends then on the effect of ν on the drift. It is easy to see that

∂ (ν − 1) (ν − 2)
∂ν

= 2

µ
ν − 3

2

¶
→ if ν >

3

2
then

∂ (ν − 1) (ν − 2)
∂ν

> 0.

That is, starting from a common curvature parameter ν > 3
2 , and increasing the curvature in one

sector, the sector with the higher curvature will have a higher drift, everything else equal. Thus, if

ν > 1.5, and if there are no sectorial asymmetries except the difference in ν, σ2 > σ1and µ2 > µ1,

that is, as shown in equation 7 above, the equity premium is positive.

Some algebra shows that the Sharpe ratio at steady state, again assuming σIj = σI , is given

as
µj − rf

σj
|ss = R̄2 − R̄1

(v2 − v1)σI +
ν1 + ν2 − 3

2
σI . (10)

The first term shows how a difference in the deterministic returns R̄j contributes to an increase

in the Sharpe ratio if the higher deterministic return corresponds to the more volatile return.

Unfortunately, there seems to be little direct empirical evidence about the levels of R̄j , in particular

about the exact level of the marginal product terms Aj . For this reason I will later focus the

quantitative analysis on the case R̄j = R.6

For the case R̄j = R, because, σj and σI have the same sign (given νj > 1), a necessary

and sufficient condition for a positive equity premium is that ν1 + ν2 > 3. Clearly, the equity

premium is then increasing in the sum of the curvature parameters. The equation suggests that the

curvature parameters ν have a similar role as the risk aversion coefficient in the basic consumption-

based model. The equation for the Sharpe ratio, together with the return equations (8) and (9),

highlight a fundamental trade-off in the model’s ability to explain asset returns. Increasing the

curvature parameters ν increases the equity premium. However, this also makes returns more

volatile. Therefore, asset prices alone will impose a clear limit on how much curvature can be

5As will be shown in the quantitative analysis, historical investment growth volatilities in the two sectors are

roughly identical.
6Clearly, in a deterministic model, R̄j = R̄ would be required to rule out arbitrage. However, in a model with

uncertainty, sectorial differences in R̄j are possible.
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used to generate large risk premiums. In standard consumption-based asset pricing models this

trade-off is much less present. In fact, in a basic constant relative risk aversion environment, for

the benchmark case with IID consumption growth, increasing risk aversion increases the equity

premium without affecting return volatility.

Under the assumptions made here, the instantaneous interest rate at steady state, assuming

R̄j = R̄ and σIj = σI , is given as

rf |ss =
¡
R̄− 1¢− (v1 − 1) (v2 − 1) σ2I

2
.

This expression shows how investment uncertainty contributes to a lower steady state interest rate

by an extent that is determined by the amount of the adjustment cost curvature. This parallels

the precautionary saving effect on interest rates in standard consumption based models.

Sofar, R̄2 and R̄1 have been set independently from other parameters as a way of implicitly

selecting values for Aj . As mentioned above, this will also be the approach chosen in the quanti-

tative analysis. Alternatively, one could take all coefficients determining R̄ as given, and consider

the partial derivatives with respect to ν and δ. In this case, the depreciation rate also matters

because it affects R̄. For the calibration with two sectors representing equipment and structures,

respectively, structures are harder to adjust and depreciate more slowly than equipment. That

is, νS > νE, and δS < δE . Let us therefore consider the case where the capital with the higher

adjustment cost curvature depreciates more slowly. With a few steps of algebra, under the stan-

dard assumptions that ν > 1, λ − 1 − δ > 0, and (A− c) /b (λ− (1− δ))ν−1 > 0, one finds that
∂R̄
∂ν > 0, and

∂R̄
∂δ < 0. Thus, given the two dimensions of sectorial asymmetries assumed here, both

would contribute to µ2 > µ1, and because σ2 > σ1, both would contribute positively to the equity

premium.

4.2 What is an admissible investment process?

In this section I consider the requirements for an investment process to be admissible, in the sense

that it has to represent a solution to the firm’s problem for the implied state-price process, and

that this price process is itself well behaved. The two key requirements are that the derived state

prices have to be positive and that the implied firm value has to be finite. While a large set of

investment processes are admissible, these requirements nevertheless impose constraints on the

simulations. For this reason, this section also provides the motivations for some of the choices

made in the empirical analysis.
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4.2.1 Positive state prices

The first key requirement is that state prices have to be positive. It is easy to see from equation

(1) that the relative state prices in the two-state case are given by

P
¡
st, s1

¢
P (st, s2)

=
RI2
¡
st, s2

¢−RI1 ¡st, s2¢
RI1 (s

t, s1)−RI2 (st, s1)
. (11)

For nonnegative investment returns, that is R > 0, state prices are positive if and only if the

numerator and the denominator have the same sign. This requirement implies that each capital

stock has to have a higher return than the other capital stock in one of the two states. Indeed,

if one type of investment were to generate a higher return in both states, then resources would

be moved into this type of capital from the other, meaning that this would not be an equilibrium

outcome.7

To see what properties are needed to satisfy this requirement, consider now a second-order

Taylor-series approximation of the investment return around the deterministic steady state. To

focus on the quantitatively important channels, I again consider a model without technology

shocks where the only source of uncertainty are the state prices. Without technology shocks, the

investment return from equation (3) simplifies to

RIt,t+1
¡
st, sj

¢
=

A− c
b
³

It(st)
Kt(st−1)

´ν−1+
⎧⎪⎨⎪⎩(1− δ) +

µ
1− 1

ν

¶⎡⎢⎣ It(st)
Kt(st−1)

It(st)
Kt(st−1) + (1− δ)

⎤⎥⎦λ (st+1)
⎫⎪⎬⎪⎭
⎛⎝ 1

It(st)
Kt(st−1) + (1− δ)

λ (st+1)

⎞⎠ν−1

.

(12)

Return realizations are now driven by the investment growth rate λ (st+1), while the only relevant

state variable is the current investment-capital ratio It
¡
st
¢
/Kt

¡
st−1

¢
. A second-order Taylor

approximation is obtained by assuming that the investment-capital ratio is at its steady state

It
¡
st
¢
/Kt

¡
st−1

¢
= λ̄− 1 + δ, for a given steady state growth rate λ̄, so that

RIt,t+1 = R̄+ (ν − 1)∆λ0 +
B

2

¡
∆λ0

¢2
+ o

³¡
∆λ0

¢2´ (13)

where ∆λ0 = λ0 − λ̄ and

B =
ν − 1
λ

½
ν − 1− 1− δ

λ

¾
.8

Assume equally sized up and down movements in a two-state setting so that

∆λj (s2) = −∆λj (s1) ≡ ∆λj , for each j ∈ (1, 2) .
7A related requirement for the ability to recover state prices is that the matrix of the investment returns R has

to be invertible.
8The only difference compared to the continuous-time equation derived above is the second-order term. With

(1− δ) = λ = 1, we would have B = (v − 1) (v − 2), which is the term in the continuous time counterpart.
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Assume also, like in subsection 4.1, that the investment growth volatilities are equal in the two

sectors and positively correlated, so that

∆λ1 = ∆λ2 = ∆λ.

With this approximation, the ratio determining relative state prices is given as

P (., s1)

P (., s2)
=
[ν2 − ν1]∆λ+

h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1)

¡
∆λ
¢2i

+ o
³¡
∆λ
¢2´

[ν2 − ν1]∆λ−
h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1)

¡
∆λ
¢2i

+ o
³¡
∆λ
¢2´ (14)

As shown by equation (14), in order to have positive prices at steady state, the first term in

the fraction needs to be far away from zero, that is
¯̄
[ν2 − ν1]∆λ

¯̄
>> 0. Thus, clearly, asymmetry

in the curvature parameters νj is needed to generate positive state prices.

State prices are also required to be positive away from steady state. Indeed, one of the issues

faced in the numerical experiments is that the investment capital ratio can reach very low levels. In

this case, the coefficients of a second-order approximation around the current investment-capital

ratio can differ substantially from their steady state values. Specifically, as can be seen from

equation (12), investment returns can get arbitrarily large as It
¡
st
¢
/Kt

¡
st−1

¢
gets close to 0.

Indeed, the first term (A− c) /b
µ

It(st)
Kt(st−1)

¶ν−1
can get arbitrarily large. Under these conditions,

the requirement for positive state prices can become hard to satisfy for all possible paths. What

makes this condition hard to satisfy is that it has to hold with probability one. In order to deal

with this in the simulations, the marginal product term, A, is made state contingent and its value

in the low growth state is set specifically so that state prices are positive for the lowest possible

It
¡
st
¢
/Kt

¡
st−1

¢
. As shown below, shocks to A have only second-order effects on asset price

implications in general. This is because the level of A is so small relative to the other terms in the

return equation (12).

4.2.1.1 An upper bound for the Sharpe ratio The requirement for nonnegative state

prices has an implication for two-state environments in general. Namely, there is an upper bound

to the Sharpe ratio. In particular, if the two states are equally likely, the Sharpe ratio is bounded

by 1. Because the simulations will never deviate much from this case, this constraint typically

matters.

In a two-state environment, no arbitrage requires that for the excess return on the market

RM (s)−Rf ,
P (s1)

³
RM (s1)−Rf

´
+ P (s2)

³
RM (s2)−Rf

´
= 0.

This implies that, in line with equation (11), the ratio of the state prices is given by

P (s1)

P (s2)
=

¡
RM (s2)−Rf

¢
− (RM (s1)−Rf ) =

£
RM (s2)−ERM

¤
+
£
ERM −Rf¤

− [RM (s1)−ERM ]− [ERM −Rf ] .
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It is easy to see that if both states are equally likely then
£
RM (s2)−ERM

¤
= − £RM (s1)−ERM¤

= Std
¡
RM

¢
, so that

P (s1)

P (s2)
=
Std

¡
RM

¢
+
£
ERM −Rf¤

Std (RM)− [ERM −Rf ] .
9

Because of the requirement of positive state prices, the denominator has to be positive, and

therefore the Sharpe ratio, ER
M−Rf

Std(RM )
, is bounded,

Std
¡
RM

¢
> ERM −Rf

1 >
ERM −Rf
Std (RM)

.

Clearly, this result applies to all models without arbitrage in a two-state environment. For instance,

it applies to the classic model used by Mehra and Prescott (1985). Based on the data of sectorial

investment growth I consider in this study, a reasonable calibration cannot deviate much from the

case where up and down movements are equally likely. Thus, the result derived here is relevant.

Because the requirement of positive state prices has to hold with probability one, the constraints on

the technology and the investment process end up reducing average Sharpe ratios in the simulations

to a level substantially below 1.10

4.2.2 Other requirements

Another requirement for simulations is that the value of the firm implied by an investment process

and a state price process has to be finite. If not, the equivalence between investment returns

and returns to the firm breaks down. A related condition that guarantees optimality of the path

satisfying the first-order condition is the transversality condition

lim
t→∞

X
st

P
¡
st
¢

P (s0)

©
A
¡
st
¢
+HI

¡
st
¢
(1− δ)−HK

¡
st
¢ª
Kt
¡
st−1

¢
= 0.

Both conditions are checked in the simulations. I also make sure that gross investment returns

are nonnegative, R ≥ 0. This limited liability requirement is not necessarily needed. On the other
hand, it doesn’t impact any quantitative conclusions.

4.2.3 Models with no technology shocks: Interest rates cannot be constant

I consider here the benchmark environment where the only source of uncertainty that firms face

are stochastic state prices. That is to say, there are no shocks to the production technology. I have
9The implicit normalization that RM (s2) > R

M (s1) is without loss of generality.
10For the case with unequal probabilities, through a similar argument, the bound equals,

1− π

π

0.5

>
ERM −Rf
std (RM )

,

where π is the probability of the state with the low return realization. Thus, with postively skewed returns the

bound is tighter, with negatively skewed returns it is looser.
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one result: even without technology shocks, investment returns can be optimally state-contingent

as long as interest rates are not constant. In an environment where interest rates are constant

forever, investment returns are constant too. Thus, with constant interest rates it is not possible to

recover the state price process from producers’ first-order conditions. The basic economic idea in

this section is that if a firm is subject to convex capital adjustment costs, it will not find it optimal

to choose a volatile investment plan unless forced by changing prospects in future valuations.

Consider the discrete-time model with no technology shocks. Assuming a general two-state

environment where state prices do not necessarily have a Markov representation. The firm’s

problem is given by

max
{I(st),K(st+1)}

T−1X
t=0

X
st

∙
AKt (st−1)−

½
b

ν

¡
I
¡
st
¢
/Kt

¡
st−1

¢¢ν
+ c

¾
Kt
¡
st−1

¢¸×
⎛⎝t−1Y
j=0

P
¡
sj+1|sj

¢⎞⎠
+
X
sT

ΨKT
¡
sT−1

¢⎛⎝T−1Y
j=1

P
¡
sj+1|sj

¢⎞⎠ ,
subject to

0 = (1− δ)Kt
¡
st−1

¢
+ I

¡
st
¢−Kt+1 ¡st¢ ,

with K (s0) given, P
¡
s0|s0

¢
= 1, and Ψ > 0 a parameter; assuming that st ∈ (s1, s2).

The solution to this problem for T → ∞ is equivalent to the solution of the general version

of the problem with enough regularity so that the firm value is finite. However, it is easy to see

in this model why interest rate volatility is needed. Indeed, from T − 1 to T , without technology
shocks, the return to capital equals the risk free rate. For the second-to-last return-period, that

is, from T − 2 to T − 1, it can be checked that the return is given by

RT−2,T−1
¡
sT−2, sj

¢
=

α

µ
Ψ

RfT−1,T (sT−2,sj)

¶
α

µ
Ψ

RfT−1,T (sT−2,s1)

¶
P (s1|sT−2) + α

µ
Ψ

RfT−1,T (sT−2,s2)

¶
P (s2|sT−2)

, for j = 1, 2.

with α (x) = (A− c)+(1− δ)x+
¡
1− 1

ν

¢ ¡
1
b

¢ 1
ν−1 x

ν
ν−1 . Clearly, if the interest rateRfT−1,T

¡
sT−2, sj

¢
is constant, that is if it does not depend on sj , then, RT−2,T−1

¡
sT−2, sj

¢
= RT−2,T−1

¡
sT−2

¢
=

RfT−2,T−1
¡
sT−2

¢
. However, to the extent that one-period interest rates are state-contingent at

T − 1, the return to the firm from T − 2 to T − 1 will be state-contingent, and it will depend on
the technology of the firm, in particular, the parameters of the adjustment cost function. Going

backwards in time, this same argument can be made if all future one-period interest rates are

constant. The following proposition summarizes these derivations.

Proposition 1 If one-period interest rates are constant in every period, without technology shocks,

the returns to the firm (and the investment returns) are equal to the one-period interest rate.
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A consequence of this result is that, without technology shocks, if investment returns for

one capital stock are state-contingent, then one-period interest rates cannot be constant. The

importance of this result is that one cannot work with a “nice” benchmark environment with

constant interest rates, in general.11 On the other hand, as shown in the quantitative applications

below, interest rate volatility doesn’t have to be excessively high, even when investment returns

are quite volatile.

5 Calibration

Parameter values are assigned based on 3 types of criteria. First, a set of parameter values are

picked to match direct empirical counterparts. Second, some parameters are chosen to yield the

best implications for key asset pricing moments. Third, some parameters are chosen to make sure

the derived state-prices are admissible. I first present a short summary of the baseline calibration.

The details and the specification with shocks to the investment technology are given thereafter.

5.1 Summary

Table 1 lists the main parameters chosen for the baseline case,

Table 1: Parameter values

ρ = (0.2, 0)

λI (s1) ,λ
I (s2) = 0.9712, 1.0954

δe, δs = 0.112, 0.031

(Ke/Ze) / (Ks/Zs) = 0.6

νe, νs = 2.5, 5

be, bs, ce, cs so that qZ = 1.5

Ae, As so that R̄ = 1.03

Aj (s1) , Aj (s2) = Aj (1− .236) , Aj (1 + .236)
where ρ stands for the first-order serial correlation of investment growth. A set of parameters is

chosen based on direct empirical counterparts; namely, ρ, (δe, δs), and (Ke/Ze) / (Ks/Zs). The

investment realizations, λI (sj), are chosen to mimic first and second moments of postwar U.S.

investment growth, with the additional restriction that the lowest investment-capital ratio is above

0. In order to replicate steady-state values for qZ, (be, bs) are selected; (ce, cs) are then determined

11Note, setting v = 1 = b, and c = 0 for one of the firms in our analysis would seem to imply constant interest

rates. However, this is not an admissible specification, because the first-order conditions do not describe optimal

firm behavior in general, as this problem is linear.
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to generate the lowest possible total cost. For the curvature parameters, it is assumed that νe < νs,

with the exact values picked to maximize the model’s fit. R̄, and thus Ae and As, primarily affect

the risk free rate. Finally, the volatility of Aj (s) is chosen so that state prices and gross investment

returns are always positive.

5.2 Details of calibration

This section discusses the details of the calibration.

5.2.1 Investment and productivity processes

I consider the Bureau of Economic Analysis’ (BEA) quantity indexes of investment for equipment

& software as well as for structures as the empirical counterparts to investment in units of capital

goods, IZ. Because Z measures the number of capital goods that can be produced from one unit

of the final good, ruling out arbitrage implies that 1/Z is the price of the capital good in terms

of the final good. Equivalently, 1/Z is the replacement cost for capital (not including adjustment

cost), or the bookvalue of capital. For each of the two sectors, Z is computed as the deflator

for nondurable consumption and services divided by the deflator of the sectorial investment good.

Investment expenditure, I, can then be obtained by combining the series for IZ and Z. Based

on annual data covering 1947-2003, the properties of the growth rates of these series are shown in

Table 2.

Table 2: U.S. Investment 1947-2003 (Growth rates)

Mean Standard Deviation 1st Autocorrelation

Investment expenditure IE&S 3.81% 6.98% .08

IS 2.85% 7.94% .27

Investment IZE&S 5.71% 7.81% .13

IZS 2.29% 6.86% .28

Investment technology ZE&S 1.82% 2.56% .66

ZS −.44% 2.35% .31

As is well known, the price of equipment and software has been decreasing over time. The 1.82%

annual increase in Z shows that in Table 2. Table 2 also shows that the volatilities of investment,

and investment expenditure, are very similar across the two sectors.

The calibration of the investment growth process proceeds in two steps. First, the proba-

bility matrix is determined to match the serial correlation and the frequency of low and high
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growth states. These two moments do not depend on the shock values themselves but only on the

probabilities. Specifically, the two diagonal elements of the probability matrix are given as

π11 =
ρ+ fr

1 + fr
; π22 =

1 + fr · ρ
1 + fr

,

where fr is the relative frequency of state 1, the recession state. The numbers of realizations of

investment growth rates above and below the mean are almost the same, thus I set fr = 1. As

shown in Table 2, the first-order serial correlations of the growth rates of investment are 0.13 and

0.28, respectively, and 0.08 and 0.27 for investment expenditure. The common ρ is set at the

average for investment expenditure of 0.2; the case where ρ = 0 is also considered.

For the baseline calibration, I abstract from shocks to the investment technology, Z. Due

to the balanced growth requirement, the growth rates of investment expenditures are equalized

across sectors. The mean of λI − 1 is set at 3.33% per year, which is the average of the historical

investment growth rates across the two sectors. The implied standard deviation is 6.21%. This

is 20% lower than the historic average across the two sectors. With this reduction in volatility,

the investment-capital ratio for structures at the steady state corresponding to the low growth

state is λI (s1) −1 + δs = 0.9712 − 1 + 0.031 = 0.0022. This is sufficient to make sure that the

investment-capital ratio is bounded away from zero.12 As explained in the previous section, this

is a way to guarantee positive state prices. Note that the perfect positive sectorial correlation in

the model is not that far from the historical reality. Indeed, the historical sample correlations for

investment across the two sectors are 0.61 and 0.64, for investment and investment expenditure,

respectively.

For the case where the investment specific technology Z is allowed to vary in both sectors, the 6

values for the realized growth rates of investment expenditure (2) and the sector specific investment

technologies (4) are set so as to match as closely as possible the 8 means and standard deviations

of the growth rates of IZE, IZS, ZE&S and ZS. This objective can be achieved quite well.

The standard deviations are again reduced, here by 30%, for the reason explained in the previous

paragraph. The empirical correlations of sectorial investment with its specific technological growth

are 0.43 and −0.32, while the correlations of the technological growth across sectors is 0.3. Clearly,
due the limited degrees of freedom, the two-state process cannot match all these correlations. As

shown below, for most quantities of interest, the Z shocks don’t turn out to matter that much.

5.2.2 Depreciation rates

The depreciation rates for equipment and software as well as for structures, (δe, δs) are based

on time series averages of the depreciation rates reported in the Fixed Assets tables form the
12This is not an issue for equipment & software because the depreciation rate is higher.
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BEA. These are 13.06% and 2.7%, respectively, for the period 1947-2002. Because the BEA’s

depreciation includes physical wear as well as economic obsolescence, the data is adjusted to take

into account that depreciation in the model covers only physical depreciation. To do this the price

increase in the capital good is added, so that

δt =
Dt
Kt
+ (Zt−1/Zt − 1) ,

with Dt depreciation according to the BEA. This adjustment decreases depreciation by 1.82% for

equipment and -0.44% for structures, so that (δe, δs) = (.112, .031).

5.2.3 Relative size of capital stocks

The average ratio of the capital stocks, (Ke,t/Ze,t) / (Ks,t/Zs,t), is needed only for computing

aggregate returns, which, as shown earlier, are value weighted averages of the sectorial returns.

Based on the Current-Cost Net Stocks of Fixed Assets from the BEA, for the period 1947-2002,

the average of (Ke,t/Ze,t) / (Ks,t/Zs,t) is 0.6. Note that given the balanced growth assumptions,

in the model, the ratio of the physical capital stocks Ke,t/Ks,t is trending, while the ratio of the

book values of the capital stocks (Ke,t/Ze,t) / (Ks,t/Zs,t) is stationary.

5.2.4 Adjustment cost and marginal product

The parameters of the adjustment cost functions are set through the following procedure.

1) Select ν 0s to get good results for asset prices under the restriction that νe < νs. Specifically,

the selected values generate roughly the highest equity premium with the lowest reasonable return

volatility, by also guaranteeing positive state prices.

2) Pick b0s so that qZ is consistent with average values reported in the literature.

3) The c0s are then picked to minimize the overall amount of output lost due to adjustment

cost.

In addition to casual empiricism, there is also more direct evidence that suggests that the

adjustment cost curvature is larger for structures than for equipment & software. For example,

as shown in Table 2, the fact that the serial correlation of the growth rates is somewhat higher

for structures than for equipment can be interpreted as an expression of the desire to smooth

investment over time due to the high adjustment cost. As another example, Guiso and Parigi

(1999) examine investment behavior for equipment and structures with Italian data on investment

and sales. Their findings are also consistent with the notion that structures are more costly to

adjust than equipment.

There are many examples of studies that estimate qZ. Lindenberg and Ross (1981) report

averages for two-digit sectors for the period 1960-77 between .85 and 3.08. Lewellen and Badrinath
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(1997) report an average of 1.4 across all sectors for the period 1975-91. Gomes (1999) reports an

average of 1.56. Based on this, I use a steady-state target value for qZ, qZ, of 1.5 for both sectors.

One problem with using empirical studies to infer the required heterogeneity in the sectorial costs

is that most studies consider adjustment costs by sector of activity. For the analysis here, I would

need information about the adjustment costs by type of capital.

One way to gauge whether the adjustment cost parameters are reasonable is to consider the

amount of resources lost due to the adjustment process. For the baseline calibration, the mean

average adjustment cost (obtained in simulations) is 7% and 9% of investment for equipment &

software and structures, respectively. These values depend primarily on the target value for qZ,

which itself does not affect much the model’s asset pricing implications.

The marginal product coefficients Ae and As are set implicitly so as to have the steady-state

return R̄j equalized in the two sectors, to replicate the mean risk free rate, and to make sure

the firm value is finite and the transversality conditions are satisfied. The implied values are

(A1, A2) = (0.1492, 0.0612).

Finally, the variability of the marginal product terms, x in Aj (1± x), is chosen so that for
all paths the implied state-prices are positive, as explained in section 4.2.1, and so that the gross

returns are positive. While these shocks are useful in insuring that the implied state-prices are

admissible, they have only second-order effects on key asset pricing moments. This is because

the marginal product component A represents a small part of the return. The implied correlation

between productivity shocks and investment is positive, which seems reasonable.

6 Quantitative findings

Table 3 presents model implications for the baseline calibration as well as empirical counterparts

for a set of moments. Model results are based on sample moments of very long simulated time

series. For unconditional moments, the key finding is that the model is able to generate an equity

premium of several percentage points with reasonable volatility for the equity return as well as

for the risk free rate. The model’s mean Sharpe ratio is about one third of the one that is implied

by the historic equity premium. Consistent with the analysis in subsection 4.1, given the higher

adjustment cost curvature for structures relative to equipment, structures have a higher return

volatility and a higher risk premium than equipment.

The model is able to generate considerable time-variation in conditional risk premiums. Indeed,

the standard deviation of the one-period ahead conditional equity premium is 5.2%, which is

considerably higher than the standard deviation of the risk free rate at 2.24%. There is a variety

of empirical studies measuring return predictability. For example, Campbell and Cochrane (1999)
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report R20s of 0.18 and 0.04 for regressions of excess returns on lagged price-dividend ratios at a

one-year horizon for the periods 1947− 95 and 1871− 1993, respectively. Combining the R2 with
the volatility of the excess returns,

√
R2std

¡
R−Rf¢ provides an estimate of the volatility of the

conditional equity premium. Setting R2 = 0.1 this would be
√
0.1 × 0.17 = 5.27%. Thus, the

model’s value of 5.2% is close.

What is driving expected excess returns? In general, assuming the absence of arbitrage, we

have that

Et

³
Rt+1 −Rft

´
= −σt (mt+1)

Etmt+1
σt (Rt+1) ρt (mt+1, Rt+1) .

Possibly, return volatility σt (Rt+1) can drive risk premiums. However, according to Lettau and

Ludvigson (2004) this is not the case for the U.S. postwar period. They find negative correlations

between conditional means and volatilities. The model here is consistent with this fact. For

the baseline calibration the correlation between conditional means and volatilities is −0.56. This
negative correlation is very robust to parameter changes.

Most standard models cannot replicate this finding of a negative correlation between condi-

tional means and volatilities. With CRRA utility and lognormal consumption, expected returns

are given by

Et

³
Rt+1 −Rft

´ ∼= −γ · σt ¡lnC 0/C¢ · σt (Rt+1) · ρt (mt+1, Rt+1) .13
In the Mehra-Prescott setup, all terms in the equation are roughly constant, with the correlation,

ρt (mt+1, Rt+1), roughly equal to one. In Campbell and Cochrane’s (1999) model,
σt(mt+1)
Etmt+1

displays

considerable variation. However, as is clear from their Figures 4 and 5, conditional means and

volatilities are positively correlated.

What is driving the negative correlation between the conditional mean and volatility in the

model? It can be shown under fairly general assumptions that this correlation is actually positive

for individual (sectorial) investment returns at steady state levels of investment-capital ratios.

And it is positive for sectorial returns in all simulations. The negative correlation displayed for

the aggregate returns is generated by movements in the sectorial weights. For instance, when

investment capital ratios are low in both sectors, the value of the more volatile sector declines by

relatively more. And, because conditional volatilities of the sectorial returns are relatively stable,

the shift in sectorial weights dominates.

Let us focus now directly on the Sharpe ratio

Et

³
Rt+1 −Rft

´
σt (Rt+1)

= −σt (mt+1)

Etmt+1
ρt (mt+1, Rt+1) . (15)

13The approximation comes from replacing exp [γ2vart (lnC0/C)]− 1 by γ · σt (lnC0/C)

22



Given the volatile conditional means and the negative correlation between conditional means

and volatilities, Sharpe ratios are very volatile. According to Lettau and Ludvigson (2004), for

quarterly data, market implied Sharpe ratios have a mean of 0.39 and a standard deviation of

0.448, which implies a coefficient of variation of 0.448/0.39 = 1.15. In the model here, for the

baseline calibration, this ratio equals, 0.26/0.18 = 1.44. That is, considering that the model

generates average Sharpe ratios of roughly 1/3 of the ones implied by the aggregate market, it

nevertheless has the ability to generate considerable volatility in Sharpe ratios

What drives the volatility of the Sharpe ratio? Both parts on the right hand side of equation

(15) contribute. As shown in Table 3, the market price of risk is moving, but its mean and

standard deviation differ from those of the market’s Sharpe ratio. The mean of the market price

of risk is (obviously) larger, while the volatility is lower. Given the two-state setup, the conditional

correlation ρt (mt+1, Rt+1) can only be 1 or -1. Therefore, ρt (mt+1, Rt+1) switches between values

of 1 and -1 as a function of the state of the economy. The case with IID investment growth rates,

presented in Table 4, displays similar properties.

Tables 5 and 6 show results for the calibrations with investment specific technology shocks Z.

In Table 5 the correlation of Z with the same sector’s investment growth equals, 1, in Table 6, it

is -1. While there are some quantitative differences compared to the baseline case and between

the two cases considered here, none of the main conclusions are affected. Note, for maximum

comparability, I only recalibrated R̄ and x to make sure implied state-prices are admissible.

To further illustrate model properties, I consider the implications from feeding through the

investment realizations for the U.S. for the period 1947-2003. Given that investment growth in the

model has only two values, the fit of the driving process is not perfect. Nevertheless, as shown in

Figure 1, the fit can be very good, with correlations between the model and the data of 0.78 and

0.71 for equipment and structures, respectively. Figure 2 shows that the model’s generated returns

are indeed related to actually realized stock returns, with a correlation of 0.48. Figure 3 shows

conditional moments. The two panels on the left show that conditional volatility is more persistent

than expected returns. The right hand side panel shows the market price of risk and the market’s

Sharpe ratio. Considering the 1990s, through the series of 8 high realizations in investment growth,

expected returns and Sharpe ratios are declining over time. The figure also shows that with a

low investment growth realization, the market’s Sharpe ratio becomes negative, and thus the

conditional correlation ρt (mt+1, Rt+1) becomes positive. It is interesting here to consider again

the calibration with IID investment growth to further highlight the persistent component driving

risk premiums. Figure 3b, presents the realized conditional moments corresponding to the IID

case presented in Table 4. In this case, the relevant state of the economy is summarized by the two
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investment-capital ratios,
¡
Ij
¡
st
¢
/Kj

¡
st−1

¢¢
j=1,2

. The sequence of positive investment growth

realization in the 90s, pushes up these ratios, leading to lower Sharpe ratios. Only three times in

the postwar period does the market’s Sharpe ratio become negative. In the 1990s, it is at the 6th

realization of a high investment rate that the market’s Sharpe ratio becomes negative. The story

told by the model is that throughout the 90’s firms continued to invest heavily, despite declining

expected returns, because investment returns were considered less and less risky.

6.1 Discussion and sensitivity

I provide here some additional information about the factors driving quantitative results.

Let us reconsider equation (10) of the Sharpe ratio at steady state in the continuous-time

model for the baseline parameterization

µj − rf
σj

|ss = ν1 + ν2 − 3
2

σI . (16)

Using the values from the baseline calibration, (ν1, ν2) = (2.5, 5) and σI = 6.21%, the Sharpe ratio

computed from (16) is 0.14. As shown in Table 3 and 4, average Sharpe ratios obtained from the

simulations in the discrete-time model are at 0.18 for the baseline case. Thus, the continuous-time

approximation at steady state gets slightly less than 80% of the simulated average Sharpe ratios.

To get a sense of how much of the difference is due to the approximation and how much to the

off steady-state realizations, note that in the baseline model, the Sharpe ratio is at 0.148 at the

steady-state. Thus, the somewhat higher Sharpe ratios reported from the simulations are mainly a

product of the off steady-state behavior. Of course, the baseline model also is subject to stochastic

marginal products, that is, shocks to A. But not surprisingly, this has only minor effects. Table 7

reports simulation results that further confirm this point. Here the shocks to marginal products

in the equipment sectors are turned off, while they are maintained for structures so as to assure

that implied state prices are always positive. The main effect of this is to reduce the volatility for

returns on equipment by about 2.5 percentage points. The Sharpe ratio gets to 0.16, compared

to 0.18 in the benchmark case. As suggested by equation (16), turning of the A shocks in the

equipment sector has an effect on the Sharpe ratio primarily because of the asymmetry introduced

across the sectors, rather than because of the volatility in A itself.

7 Conclusions

The paper has examined the implications of producers’ first-order conditions for asset prices in a

model where convex adjustment cost play a major role. One lesson of this analysis is that some

asymmetries across sectors are crucial. One reason for this is that the considered technology does
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not allow a firm to make state-contingent investment decisions for each capital stock individually.

State-contingent investment decisions are possible through the combination of the two stocks. If

both sectorial technologies were identical, optimal decision would generate identical returns, which

would make it impossible to recover the state price process.

The analysis demonstrates the ability of a simple investment cost representation to explain a

number of features of aggregate asset prices. Investment cost curvature and investment volatility

are the main ingredients to explain return volatility and risk premiums.

The quantitative asset pricing implications from a basic representation of the production side

are encouraging. With reasonable assumptions on the quantities, risk premiums and interest rates

come close to explaining observed empirical counterparts. Despite being very stylized, the model

has rich implications for time-varying moments. Specifically, the negative correlation between

means and volatilities is noteworthy.
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Appendix: Continuous-time model

This appendix presents a continuous-time investment model that replicates the setup of the

discrete-time environment. The technology side of the model follows Abel and Eberly (1994) but

without shocks. The main difference is that here the firm faces stochastic state prices, while in

their case pricing is risk neutral. The steps needed to derive the return equation (8) are also

presented.

The capital stock evolves as dKt = (It − δKt) dt, and the investment cost is given by

H (It,Kt) =

½
b

ν
(It/Kt)

ν + c

¾
Kt,

which is homogenous of degree one in I and K. The gross profit is given as

AKt.

Assume that the state-price process is given as

dΛt = −Λtr (xt) dt+ Λtσ (xt) dzt,

where dzt is a one-dimensional Brownian motion, and

dxt = µx(xt)dt+ σx(xt)dzt.

Assume that the functions µx(xt),σx(xt), r (xt) and σ (xt) satisfy the regular conditions such that

there are solutions for the above two SDEs.

The firm maximizes its value

V = max
{It+s}

Et

½Z ∞

0
[AKt+s −H (It+s,K,t+s)] Λt+s

Λt
ds

¾
.

Given the dynamics of Λt, it is obvious that the firm’s value function V is independent of Λt.

Following from the Markov property of the state variable xt, the firm’s value function would be a

function of (Kt, xt). The HJB equation is

rV = max
{It}

½
[AKt −H (It,Kt)] + (It − δKt)VK + µxVx +

1

2
σ2xVxx + σσxVx

¾
.

The first-order condition is

HI (It,Kt) = VK ≡ qt

That is,

VK = b (It/Kt)
ν−1

It =

µ
VK
b

¶ 1
ν−1

Kt
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Because of constant returns to scale in Kt, following Hayashi, it is easy to see that V (Kt, xt) =

KtVK (xt). Thus, it is clear that optimal investment follows an Ito process, dIt/It = µI (Kt, xt) dt+

σI (Kt, xt) dzt.

Define realized returns to the firm as

AKt −H (It,K,t)
Vt

dt+
dVt
Vt
.

Given Hayashi’s result and the first-order conditions

AKt −H (It,K,t)
Vt

dt+
dVt
Vt

=
AKt −H (It,K,t)

qtKt
dt+

dKt
Kt

+
dqt
qt
.

Using qt = b (It/Kt)
ν−1 and Ito’s lemma, the return equation 8 given in the main text can be

derived.
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Table 3
Asset Pricing Implications: Baseline calibration

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S        RE&S-Rf  RS              RS-Rf

Mean 3.59% 1.43% 0.26 0.18 2.14% 5.09%
Std 20.52% 2.24% 0.19 0.26 12.06% 27.23%

Std[E(RM-Rf|t)] 5.20% Corr(E(RM-Rf|t), Std(RM-Rf|t)) -0.56
Std[Std(RM-Rf|t)] 0.51%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , MPR  )

E&S -0.03 -0.68 -0.58
S -0.34 -0.32 -0.82

Corr( λIZ, RM)

E&S, S 0.98

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe Market
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%

( v1=2.5, v2=5 , R=1.03 , x=0.23643 , reduction σ∆I =20% )



Table 4
Asset Pricing Implications: IID case; (no serial correlation)

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S          RE&S-Rf  RS                 RS-Rf

Mean 3.52% 1.43% 0.20 0.18 2.13% 4.94%
Std 20.75% 1.91% 0.13 0.15 12.21% 27.09%

Std[E(RM-Rf|t)] 3.04% Corr(E(RM-Rf|t), Std(RM-Rf|t)) -0.95
Std[Std(RM-Rf|t)] 0.45%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , MPR  )

E&S -0.62 -0.70 -0.54
S -0.89 -0.35 -0.78

Corr( λIZ, RM)

E&S, S 0.99

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe Market
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%

( v1=2.5, v2=5 , R=1.03 , x=0.23643 , reduction σ∆I =20% )



Table 5
Asset Pricing Implications: with shocks to investment technology, positive correlation λ I and λZ  

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S          RE&S-Rf  RS                 RS-Rf

Mean 2.84% 2.01% 0.29 0.17 1.73% 4.04%
Std 17.14% 2.95% 0.20 0.30 10.53% 22.59%

Std[E(RM-Rf|t)] 5.01% Corr(E(RM-Rf|t), Std(RM-Rf|t)) -0.70
Std[Std(RM-Rf|t)] 0.29%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , MPR  )

E&S 0.11 -0.74 0.14
S -0.33 -0.29 -0.16

Corr( λIZ, RM)

E&S, S 0.98

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%

( v1=2.5, v2=5 , R=1.033 , x=0.28245 , reduction σ∆I =30% )



Table 6
Asset Pricing Implications: with shocks to investment technology, negative correlation λI and λZ  

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S          RE&S-Rf  RS                 RS-Rf

Mean 4.13% 1.19% 0.30 0.20 2.77% 5.49%
Std 20.97% 3.17% 0.21 0.30 14.06% 26.45%

Std[E(RM-Rf|t)] 6.07% Corr(E(RM-Rf|t), Std(RM-Rf|t)) -0.66
Std[Std(RM-Rf|t)] 0.29%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , MPR  )

E&S 0.11 -0.57 0.15
S -0.32 -0.08 -0.16

Corr( λIZ, RM)

E&S, S 0.98

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%

( v1=2.5, v2=5 , R=1.033 , x=.30846 , reduction σ∆I =30% )



Table 7
Asset Pricing Implications: Baseline calibration; No A shocks in sector 1 (Equipment)

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S        RE&S-Rf  RS              RS-Rf

Mean 2.89% 2.19% 0.24 0.16 1.45% 4.35%
Std 19.47% 2.39% 0.17 0.25 9.69% 27.24%

Std[E(RM-Rf|t)] 4.65% Corr(E(RM-Rf|t), Std(RM-Rf|t)) -0.33
Std[Std(RM-Rf|t)] 1.01%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , MPR  )

E&S 0.06 -0.87 -0.58
S -0.25 -0.60 -0.83

Corr( λIZ, RM)

E&S, S 0.98

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe Market
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%

( v1=2.5, v2=5 , R=1.03 , x=0.23643 , reduction σ∆I =20% )
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