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1. Introduction

Recent theoretical analyses of investment under uncertainty have highlighted the

e¤ects of irreversibility in generating �real options�(e.g. Dixit and Pindyck (1994)).

In these models uncertainty increases the separation between the marginal product of

capital which justi�es investment and the marginal product of capital which justi�es

disinvestment. This increases the range of inaction where investment is zero as the

�rm prefers to �wait and see�rather than undertaking a costly action with uncertain

consequences. In short, investment behaviour becomes more cautious.

Firm-level data is attractive for investigating this e¤ect of uncertainty on the

degree of caution since empirical measures of uncertainty can be constructed based

on share price volatility (e.g. Leahy and Whited (1996)). One important di¢ culty

for direct testing of real options models of investment under uncertainty using �rm

data, however, is the extreme rarity of observations with zero investment in annual

consolidated accounts. If we believed that these �rms make a single investment de-

cision in each year this lack of zeros would reject the canonical real options model of

a single investment decision with its region of inaction. However, given the extensive

evidence of discrete and lumpy adjustments in more disaggregated plant-level data

(e.g. Doms and Dunne (1998)), this lack of zeros at the �rm level is suggestive of

aggregation over types of capital, production units and time.

Previous research has shown that aggregation does not eliminate the impact

of lumpy micro investment decisions for more aggregated investment dynamics.1

This raises the question of whether the e¤ects of uncertainty and irreversibility on

short run investment dynamics can be detected in an econometric study of �rm-

level investment spending. To investigate this issue we develop a model of the

�rm�s investment decisions that allows for two types of capital, a rich speci�cation

of adjustment costs, time-varying uncertainty, alternative functional forms for the

1See, for example, Bertola and Caballero (1994), Caballero and Engel (1999), Abel and Eberly
(2001), and Doyle and Whited (2001). Thomas (2002) and Veracierto (2002) �nd that in general
equilibrium models the impact of non-convex investment costs on the business cycle may be small.
These papers are necessarily based on relatively simple models of �rm investment - including a
constant level of uncertainty - to enable complex general equilibrium modelling. Our focus here is on
much richer (partial equilibrium) micro models that include �uctuations in the level of uncertainty.
These are appropriate for estimation on �rm-level data.
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revenue function and extensive aggregation over time and over production units.

We solve this theoretical model numerically and simulate �rm-level panel data. We

use this simulated data in two ways. First we analyse it directly to con�rm two

properties of �rm-level investment dynamics in this framework. One property is the

e¤ect of higher uncertainty on the degree of caution in investment decisions as noted

above. We show that, with (partial) irreversibility, the impact e¤ect on investment

of a given �rm-level demand shock tends to be weaker for �rms that are subject

to a higher level of uncertainty. We also show that the response of investment to

demand shocks tends to be convex, as larger shocks induce �rms to invest in more

types of capital and at more production units (the extensive margin). This in turn

induces more adjustment at the intensive margin, with these aggregation e¤ects

being reinforced by supermodularity in the production technology.

We also use our simulated data to show that both of these e¤ects can be de-

tected using a relatively simple dynamic econometric speci�cation to approximate

the complex �rm-level investment dynamics implied by this framework. Our start-

ing point is an error correction model (ECM) of investment that has been widely

used in �rm-level studies. We add two types of terms. First, an interaction between

real sales growth and measured uncertainty tests for the more cautious response of

investment to demand shocks at higher levels of uncertainty. Second, a non-linear

sales growth term to test for convexity in the response of investment to demand

shocks. Generalised Method of Moments (GMM) estimation on the simulated panel

data indicates that we can reject the null hypothesis of a common, linear response

of investment to demand shocks, provided the dynamic speci�cation used is su¢ -

ciently rich for standard tests of overidentifying restrictions not to indicate severe

misspeci�cation of the econometric model.

We then apply the same econometric approach to study the investment behaviour

of a sample of 672 publicly traded UK manufacturing companies over the period

1972 to 1991. We �nd evidence both of more cautious investment behaviour for

�rms subject to greater uncertainty, and of a convex response of investment to real

sales growth. While there may be other explanations for these patterns in company

investment dynamics, we conclude that the investment behaviour of large �rms is
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consistent with a partial irreversibility model in which uncertainty dampens the

short run adjustment of investment to demand shocks.

Finally, simple simulations using our estimated econometric model suggest that

observed �uctuations in uncertainty can play an economically important role in

shaping �rm-level investment decisions. For example, we �nd that a one standard

deviation increase in our measure of uncertainty, as occurred after 9/11 and the

�rst OPEC oil crisis, can halve the impact e¤ect of demand shocks on company

investment. While we do not model the behaviour of labour demand, the existence

of similar labour hiring and �ring costs would imply that higher uncertainty would

also make employment responses to demand shocks more cautious. This suggests

that �rms will generally be less responsive to monetary and �scal stimulus in peri-

ods of high uncertainty, which is important for policy-makers trying to respond to

major shocks during periods of high uncertainty.2 Several papers have also reported

evidence of an increase in �rm-speci�c uncertainty in the US and other OECD coun-

tries in recent years,3 which our analysis indicates could have signi�cant e¤ects on

investment dynamics.

The plan of the paper is as follows. Section 2 considers two implications of uncer-

tainty and irreversibility for investment behaviour, and con�rms these numerically

using simulated data. Section 3 develops our econometric investment equation and

shows, using the simulated data, that tests based on this model can detect these

e¤ects on investment dynamics. Section 4 takes this econometric model to real

company investment data to test for the presence of these e¤ects, while section 5

examines their magnitude. Section 6 o¤ers some concluding remarks.

2. Simulating investment dynamics under uncertainty

The typical model in the literature considers investment in a single partially irre-

versible capital good, with a Cobb-Douglas revenue function and demand conditions

which follow a Brownian motion process with constant variance. Investment only

2See Bloom (2006) on the evidence for steep rises in uncertainty after major macro shocks.
3Campbell et al. (2001) study US �rms in the period 1962-1997 and �nd an increase in the

�rm-level (but not market-level) volatility of annualised daily stock returns in the 1980s and 1990s
compared to the 1960s and 1970s. See also Philippon (2003) for evidence of increased sales growth
volatility for US �rms, and Thesmar and Thoenig (2003) for similar evidence on French �rms.
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occurs when the �rm�s marginal revenue product of capital hits an upper threshold,

given by the traditional user cost of capital plus an option value for investment.

Similarly disinvestment only occurs when the marginal revenue product hits a lower

threshold, given by the user cost for selling capital less an option value for disin-

vestment. The �rm chooses to wait and do nothing if its marginal revenue product

of capital lies between these two thresholds.

As the marginal revenue product of capital evolves stochastically over time this

approach predicts that the �rm will undertake sporadic bursts of investment or

disinvestment, consistent with the typical evidence from plant-level data (see, for

example, Doms and Dunne (1998) or Nilson and Schiantarelli (2003)). Abel and

Eberly (1996) show by comparative statics that the option values are increasing in

the (time invariant) level of uncertainty. This suggests that �rms which face a higher

level of uncertainty are less likely to respond to a given demand shock.

2.1. Aggregation and �rm-level investment

Annual investment data for publicly traded UK and US �rms, however, do not dis-

play the discrete switches from zero to non-zero investment regimes indicated by this

basic model. In particular observations with zero investment spending are almost

completely absent from their company accounts. Table 1 reports evidence from our

sample of 672 UK manufacturing companies, and from a sample of UK manufactur-

ing establishments that contain one or more plants at the same location. There are

two distinct patterns of aggregation that can be observed: �rst aggregation across

types of capital (structures, equipment and vehicles); and second aggregation across

plants within the establishment or the �rm. In both cases we observe a higher pro-

portion of observations with zero investment when we consider more disaggregated

data. There is also likely to be a third type of aggregation - temporal aggregation -

as the frequency of shocks and investment decisions is likely to be much higher than

that of the (annual) data.

[Table 1 about here]

In view of this we explicitly consider a framework in which �rms invest in multiple

types of capital goods, across multiple production units, and there is aggregation over
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time. These production units experience idiosyncratic unit-level productivity shocks

as well as a common �rm-level demand shock. In this more general framework, but in

a model with a constant level of uncertainty and partial irreversibilities only, Eberly

and Van Mieghem (1997) have shown that the optimal investment decisions for each

unit will follow a multi-dimensional threshold policy. Extending this to allow for

time-varying uncertainty and temporal aggregation provides two implications which

are the focus of our simulation and empirical investigation.

The �rst implication is that the response of company investment to demand

shocks should be lower at higher levels of uncertainty due to the �cautionary�e¤ect

of uncertainty. For each production unit or type of capital the option to wait and

do nothing is more valuable for �rms that face a higher level of demand uncertainty.

Following a given positive demand shock investment by such �rms is expected to be

lower, as both less units (or types of capital) will invest (the extensive margin) and

each unit (type) that does invest will invest less (the intensive margin), with any

supermodularity in the production technology reinforcing these e¤ects.4 Similarly

the impact of a given negative demand shock on �rm-level disinvestment is also

expected to be smaller for �rms that face a higher level of uncertainty.

Second, the investment response will be convex in response to positive demand

shocks and concave in response to negative demand shocks. When the �rm expe-

riences a positive demand shock it may invest in a greater number of production

units or types of capital (the extensive margin) and it may invest more in each unit

or type of capital (the intensive margin). Larger demand shocks will a¤ect both

margins, and any supermodularity in the production technology would make these

two e¤ects reinforcing. Thus, the more types of capital the �rm is induced to invest

in, the more it wants to invest in those types of capital which are already adjusting,

generating a convex response. The same reasoning also suggests that the response

of �rm-level disinvestment to negative demand shocks will be concave.

4Supermodularity is a general concept for complementarity. A function f :Rn ! R is de�ned
as supermodular if 8 x; x0 2 Rn, f(x) + f(x0) � f(min(x; x0)) + f(max(x; x0)). If f is twice

di¤erentiable this implies @2f(x1;x2;::xn)
@xi@xj

� 0 8 i 6= j. The Cobb-Douglas and CES production
functions are both supermodular.
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As these investment models do not have closed form solutions we cannot prove

these properties analytically. In the next section we con�rm them using numerical

simulations.

2.2. The simulation model

We start by parameterising one model from the general class of supermodular ho-

mogeneous models that we are considering. Firms are assumed to operate a large

collection of individual production units, with the number chosen to ensure that full

aggregation has occurred. In the simulation this is set at 250 units per �rm, chosen

by increasing the number of units until the results were no longer sensitive to this

number.5

Each unit faces an iso-elastic demand curve for its output, which is produced

using labour and two types of capital. Demand conditions evolve as a geometric ran-

dom walk with time-varying uncertainty, and have a unit-speci�c idiosyncratic com-

ponent and a common �rm-level component. Demand shocks, uncertainty shocks

and optimisation occur in monthly discrete time. Labour is costless to adjust while

both types of capital are costly to adjust.

2.2.1. The production unit model

In the basic model each production unit has a reduced form supermodular revenue

function R(X;K1; K2)

R(X;K1; K2) = X

K�

1K
�
2 (2.1)

based on an underlying Cobb-Douglas production function after labour, a �exible

factor of production, has been optimised out. Demand and productivity conditions

have been combined into one index, X, henceforth called demand conditions. For

computational tractability we normalize this demand conditions parameter through

the substitution, P
1����


 = X, so that the revenue function is homogeneous of degree

5In the UK Census of Production microdata the average size of a manufacturing production
unit is about 20 employees. The mean size of �rms in our sample is 4,440 employees, suggesting a
mean of around 220 units per �rm. Tests on speci�cations with di¤erent degrees of cross-sectional
aggregation (5, 10 and 50 units per �rm) and temporal aggregation (2, 4 and 6 periods per year)
con�rm the robustness of our results to these assumptions.
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one in (P;K1; K2), where

R(X;K1; K2) = eR(P;K1; K2) (2.2)

= P 1����K�
1K

�
2 : (2.3)

In the simulation we set � = 0:4 and � = 0:4; corresponding to a 25% mark-up and

constant returns to scale in the physical production function, with equal coe¢ cients

on each type of capital.

Demand conditions are a composite of a unit-level (PU) and a �rm-level (P F )

component, P = PU � P F . The unit-level demand (or productivity) conditions
evolve over time as an augmented geometric random walk with stochastic volatility:

PUt = PUt�1(1 + �(�t) + �tV
U
t ) V Ut � N(0; 1) (2.4)

�t = �t�1 + ��(�
� � �t�1) + ��Wt Wt � N(0; 1): (2.5)

Here �(�t) is the mean drift in unit-level demand conditions, �2t is the variance

of unit-level demand conditions, �� is the long run mean of �t, �� is the rate of

convergence to this mean, and �2� is the variance of the shocks to this variance

process. The terms V Ut and Wt are the i.i.d. shocks to unit-level demand and

variance conditions respectively.

The �rm-level demand process is also an augmented geometric random walk

with stochastic volatility, which for tractability we assume has the same mean and

variance:

P Ft = P
F
t�1(1 + �(�t) + �tV

F
t ) V Ft � N(0; 1): (2.6)

Hence, the overall demand process logP has drift 2�(�t) and variance 2�2t . While

this demand structure may seem complex, it is formulated to ensure that units

within the same �rm have linked investment behaviour due to the common �rm-

level demand shocks and level of uncertainty, but also display some independent

behaviour due to idiosyncratic shocks. The baseline value of 2�(�t) is set to 4%

(average real sales growth), invariant to the level of uncertainty, although we also

report below some experiments that allow for more general drifts.

The two types of capital are costly to adjust. We start by modelling only partial

irreversibility adjustment costs whereby the resale price of a unit of capital is less
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than the purchase price. Capital type 1 is assumed more costly to adjust (for

example, specialised equipment), while capital type 2 is less costly to adjust (for

example, vehicles). For the simulation we set the resale loss for capital of type 1 to

50% and the resale loss for capital of type 2 to 20%.6

These adjustment costs are de�ned by the �rm�s adjustment cost function,

C(P;K1; K2; I1; I2). We assume, for numerical tractability, that newly invested

capital enters production immediately, that both types of capital depreciate at an

annualized rate of 10%, and that the �rm has an annualized discount rate of 10%.

2.2.2. Solving the production unit model

The complexity of the model necessitates numerical simulation, but analytical results

can be used to show that the problem has a unique-valued continuous solution,7 and

an (almost everywhere) unique policy function. This means our numerical results

will be convergent with the unique analytical solution.

In principle we have a model with too many state variables to be solved using

numerical methods given current computing power. The unit�s optimization prob-

lem, however, can be simpli�ed by noting that the revenue function, adjustment cost

function, depreciation schedules and expectations operators are all jointly homoge-

neous of degree one in (P;K1; K2). This allows us to normalize by one state variable

- capital type 1 - simplifying the model and dramatically increasing the speed of

the numerical solution routine. This e¤ectively gives us one state �for free�, in that

we estimate on two major state spaces ( P
K1
and K2

K1
) but for three underlying state

variables.
6Our choice of adjustment cost parameters is based on the literature where available, in par-

ticular Cooper and Haltiwanger (2006). The qualitative results from our analysis of the simulated
data are not sensitive to moderate changes to the adjustment cost parameter values, although as
discussed in section 3.2, they are sensitive to the type of adjustment costs considered.

7An application of Stokey and Lucas (1989) for the continuous, concave and almost surely
bounded normalized returns and cost function for models with partial irreversibilities (this section)
and quadratic adjustment costs; and Caballero and Leahy (1996) for the extension to models with
�xed costs in section (3.2.2).
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The optimization problem (before normalization) can be stated as:

V (Pt; K1t; K2t; �t) = max
I1t;I2t

eR(Pt; K1t; + I1t; K2t + I2t)� C(Pt; K1t; K2t; I1t; I2t)

+
1

1 + r
E[V (Pt+1; (K1t + I1t)(1� �); (K2t + I2t)(1� �); �t+1)]

where r is the discount rate, � is the depreciation rate, E[:] is the expectations

operator, Ijt is investment in type j (j = 1; 2) capital at time t and Kjt is the stock

of type j capital. Using the homogeneity in (P;K1; K2) this can be re-written as:

K1tV (P
�
t ; 1; K

�
2t; �t) = max

I�1t;I
�
2t

K1t
eR(P �t ; 1 + I�1t; K�

2t(1 + I
�
2t))�K1tC(P

�
t ; 1; K

�
2t; I

�
1t; I

�
2tK

�
2t)

+
1

1 + r
K1t+1E[V (P

�
t+1; 1; K

�
2t+1; �t+1)]

where starred variables are K�
2 =

K2

K1
; P � = P

K1
; I�1 =

I1
K1

and I�2 =
I2
K2
. Upon

normalization by K1t this simpli�es to:

V (P �t ; 1; K
�
2t; �t) = max

I�1t;I
�
2t

eR(P �t ; 1 + I�1t; K�
2t(1 + I

�
2t))� C(P �t ; 1; K�

2t; I
�
1t; I

�
2tK

�
2t)

+
(1 + I�1t)(1� �)

1 + r
E[V (P �t+1; 1; K

�
2t+1; �t+1)]

which is a function of only the state variables ( P
K1
; K2

K1
; �). We let uncertainty, �t,

take �ve equally-spaced values from 0.05 to 0.5, with a symmetric monthly transition

matrix that is approximately calibrated against (the variance and autocorrelation

of) our stock-returns measure of uncertainty for UK listed �rms, described in section

4.1 below. The simulation is run on a state space of ( P
K1
; K2

K1
; �) of (100,100,5).8

2.2.3. Aggregation to �rm-level data

Simulated data is generated by taking the numerical solutions for the optimal in-

vestment functions and feeding in demand and uncertainty shocks at a monthly

frequency. The simulation is run for 60 months to generate an initial ergodic distri-

bution. Annual �rm-level investment data is then generated by aggregating across

the two types of capital, across the 250 units and across 12 months within each year.

Capital stocks and the level of the demand conditions are summed across all units

at the end of each year, while uncertainty is measured as the average yearly value.
8We also need the optimal control space of (I�1 ; I

�
2 ) of dimension (100,100), so that the full

returns function in the Bellman equation has dimensionality (100,100,100,100,5). The program and
a manual explaining the underlying techniques are available at http://cep.lse.ac.uk/matlabcode or
from nbloom@stanford.edu.
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2.3. Investigating the theoretical implications

Using the model and solution method outlined above we generate simulated invest-

ment and demand data for a panel of 50,000 �rms and 25 years. We con�rm the two

implications for short run investment dynamics highlighted in section 2 by consider-

ing the relationship between �rm-level annual investment rates and demand growth

in this simulated data. As the drift in the demand process is common to all �rms,

and the idiosyncratic shocks are averaged across 250 production units, there is a

simple correspondence between demand growth and the �rm-level demand shock in

this simulation.

Figure 1 presents Lowess smoothed non-parametric plots9 of investment against

demand growth for observations around the 10th, 25th, 50th, 75th and 90th percentiles

of the distribution of uncertainty (�t).10 Investment rates are measured as annual

investment divided by the capital stock at the beginning of the year, and annual

demand growth is measured as the percentage change comparing the beginning

and the end of the year. The �rst implication - that the short run response of

investment to demand shocks will be lower at higher uncertainty - indicates that the

slope of these response functions is lower at higher levels of uncertainty. It is evident

that these non-parametric regression estimates do indeed become �atter as the level

of uncertainty rises, consistent with the �rst implication. In quantitative terms,

comparing investment responses to -10% and +25% demand growth, the gradient

of the investment response to demand growth approximately doubles when moving

from the third quartile to the �rst quartile of the distribution of uncertainty, and

approximately triples when moving from the 90th percentile to the 10th percentile.

Hence, di¤erences in the level of uncertainty generate substantial variation in the

short run response of investment to demand shocks, and this is clearly seen in our

9Lowess smoothing estimates a linear regression at each data point, using Cleveland�s (1979)
tricube weighting over a moving window of 5% of the data, to generate a non-parametrically
smoothed data series. Lowess is similar to Kernel smoothing but uses information on both the
mean and the slope of the data, and so is more e¢ cient in estimating functions with continuous �rst
derivatives, which our aggregated data has asymptotically (in the number of production units).
10As this variance parameter has a �ve point process in the underlying monthly model, we obtain

considerable clustering of observations around these values, even in the average annual �rm data.
Although we use 1.25 million generated observations, there are no observations in the sample at
the 10th and 25th percentiles of uncertainty with annual demand growth above 27% and 64%
respectively, so the lines are not estimated beyond these points.
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simulated �rm-level data despite extensive aggregation across two types of capital,

250 production units and 12 monthly decision periods.

The second implication - that the short run response of investment to demand

shocks is non-linear - indicates that these response functions are convex for pos-

itive investment and concave for negative investment. Focusing �rst on positive

investment, it is evident that all �ve curves are indeed convex, with a proportion-

ally larger response to larger positive shocks. Looking at negative investment the

picture is unclear because, even for large negative demand growth of -25%, most

�rms are still undertaking positive gross investment. This re�ects the combination

of longer run dynamics with pent-up investment demand, 4% demand drift and 10%

depreciation, which even in the presence of relatively low degrees of irreversibility

generates very few �rm-level disinvestment observations (2% in our simulated data

sample and 3% in the real UK data). Thus, we cannot identify the concavity in the

disinvestment responses in either the simulation or in actual UK data, and therefore

we concentrate on the convex response for positive investment in the remainder of

the paper.

3. Evaluating our empirical speci�cation

The next step is to investigate the empirical importance of these properties of short

run investment dynamics in actual �rm-level data, which requires an appropriate

econometric speci�cation. If we observed the true underlying demand shocks and

demand variance this would be relatively straightforward as we could, for example,

use the same the non-parametric approach used in the previous section to analyse

short run investment responses to exogenous demand shocks. However, in real �rm-

level datasets we only observe proxies for demand growth such as sales growth and

proxies for uncertainty such as share price volatility. Among other issues, this re-

quires us to deal with the problem that outcomes like sales and share prices are

jointly determined with the �rm�s investment decisions. To do this we consider

GMM estimates of dynamic econometric investment equations.

Our starting point is a reduced form error correction model that provides a

�exible distinction between short run in�uences on investment rates and longer term

11



in�uences on capital stocks. This has been widely used in recent empirical studies of

company investment behaviour.11 Bloom (2000) shows that the actual capital stock

series chosen by a �rm under partial irreversibility has a long run growth rate equal

to that of the hypothetical capital stock series that the same �rm would choose

under costless reversibility, essentially because the gap between these two series is

bounded. This implies that the logarithms of the two series should be cointegrated,

and thus provides one motivation for considering an error correction model of capital

stock adjustment.12

This cointegration result indicates that

logKit = logK
�
it + eit (3.1)

whereKit is the actual capital stock for �rm i in period t, K�
it is the capital stock this

�rm would have chosen in the absence of adjustment costs, and eit is a stationary

error term. We specify this hypothetical frictionless level of the capital stock as

logK�
it = log Yit + A

�
i +B

�
t (3.2)

where Yit is the (real) sales of �rm i in period t, and A�i and B
�
t are unobserved

�rm-speci�c and time-speci�c e¤ects re�ecting possible variation across �rms in

the components of and response to the user cost of capital (Chetty, 2006). This

formulation is consistent, for example, with the frictionless demand for capital for

a �rm with a constant returns to scale CES production function and iso-elastic

demand, and implies that the logs of the actual capital stock and real sales are

cointegrated, provided the user cost of capital is stationary.13 Note that this does

not impose that the actual capital stock and its hypothetical frictionless level are

equal on average, since the error term eit need not be mean zero. However, the

partial irreversibility framework indicates that eit will be serially correlated in a

11See, for example, Hall, Mairesse and Mulkay (1999) and Bond, Harho¤and Van Reenen (2003).
12The representation theorem of Engle and Granger (1987) shows that the dynamic relationship

between two I(1) series that are cointegrated can be formulated as an error correction relationship.
13Both this speci�cation and the results in Bloom (2000) are based on a single production unit

with one type of capital. To check that this provides an accurate approximation for our aggregated
�rm-level data, we con�rmed that log capital was cointegrated with log sales in our simulated
data, with a coe¢ cient of 1.008 on log sales. In sections 3.2 and 4.4 we also consider relaxing the
restriction in (3.2) that this coe¢ cient is unity.
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highly complex way. Any parsimonious speci�cation of these dynamics should be

viewed as an approximation, the quality of which we will investigate using simulated

investment data in the next section.

A basic error correction representation of the dynamic relationship between

logKit and logK�
it, using equation (3.2), would have the form

� logKit = �� log Yit + �(log Yi;t�s � logKi;t�s) + Ai +Bt + vit (3.3)

where Ai and Bt are again unobserved �rm-speci�c and time-speci�c e¤ects and vit

is, at least approximately, a serially uncorrelated error term. A key property is that

the coe¢ cient � on the error correction term should be positive, so that �rms with a

capital stock level below their target will eventually adjust upwards, and vice versa.

We use the approximation � logKit � (Iit=Ki;t�1)� �i, where Iit is gross invest-
ment and �i is the (possibly �rm-speci�c) depreciation rate. To test for the e¤ect of

uncertainty on the impact e¤ect of demand shocks (the �rst implication), we add an

interaction term between a measure of uncertainty (SDit) and current sales growth

(� log Yit). A negative coe¢ cient on this interaction term would indicate that the

short run response of investment to demand shocks is indeed lower at higher levels

of uncertainty. To allow for other possible e¤ects of uncertainty on the level of the

capital stock in either the short run or the long run, we also consider further terms

in both the change (�SDit) and the level (SDit) of our measure of uncertainty. To

test for non-linearity in the short run response of investment to demand shocks (the

second implication), we add a higher order term in current sales growth (� log Yit)2.

A positive coe¢ cient on this squared term would be consistent with this implication,

indicating a convex relationship between investment and demand shocks, recalling

that our samples are dominated by observations on �rms with positive gross invest-

ment.

These additional terms then give us an empirical speci�cation of the form

Iit
Ki;t�1

= �1� log Yit + �2(� log Yit)
2 + �3(SDit �� log Yit) (3.4)

+�(log Yi;t�1 � logKi;t�1) + 
1SDit + 
2�SDit + Ai + �i +Bt + vit:
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3.1. Testing our empirical speci�cation on simulated data

To investigate whether this econometric approach can detect the properties of short

run investment dynamics highlighted in section 2, we use our simulation model

to generate data for a panel of 1,000 �rms and 15 years. This allows us to con-

sider whether this relatively simple dynamic econometric speci�cation provides an

adequate approximation to the complex investment dynamics suggested by mod-

els with partial irreversibility, and to compare speci�cations that use sales and a

stock-returns measure of uncertainty with speci�cations that use the true underly-

ing demand and uncertainty variables. Sales (Yit) are generated from the revenue

function and aggregated across production units and months. Monthly stock re-

turns are generated by aggregating the value function across units and adding in

monthly net cash �ows (revenue less investment costs). The within-year standard

deviation of these monthly returns (SDit) provides our �rm-level measure of uncer-

tainty, which mimics the kind of measure used in our empirical analysis in section

4. Table 2 reports the sample correlation matrix for key variables in our simulated

dataset. This demonstrates that the standard deviation of monthly stock returns is

positively correlated with the underlying standard deviation of demand shocks (�it),

supporting the use of this as an empirical measure of uncertainty. In what follows

we use lower cases to denote natural logarithms, so for example, yit = log Yit.

[Tables 2 and 3 about here]

In Table 3 we present the results of estimating the augmented error correction

model of investment using this simulated �rm-level panel. In column (1) we �rst

report OLS estimates using as explanatory variables the annual measures of the �true�

demand (P ) and uncertainty (�) variables that were used to generate this simulated

investment data. Our tests detect signi�cant heterogeneity in the impact e¤ect of

demand shocks on �rm-level investment, depending on the level of uncertainty, and

signi�cant convexity in the response of investment to demand shocks. We also �nd

evidence of �error correcting�behaviour, with the actual capital stock adjusting in

the long run towards a target that is cointegrated with its frictionless level. We �nd

no evidence here that a permanent increase in the level of uncertainty would a¤ect
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the level of the capital stock in the long run, but there is an indication that increases

in uncertainty reduce investment in the short run in ways that are not fully captured

by our multiplicative interaction term.

Column (2) of Table 3 uses instead the empirical counterparts to the demand

and uncertainty variables, based on annual levels of simulated sales (Yit) and the

within-year standard deviation of simulated monthly stock returns (SDit). As these

variables are jointly determined with investment decisions we treat them as endoge-

nous and report GMM estimates. To mimic our empirical analysis of real company

data more closely, we also allow for the possibility of unobserved �rm-speci�c ef-

fects here, and estimate this speci�cation in �rst-di¤erences. The instruments used

are the second and third lags of our simulated investment, capital, sales and un-

certainty measures, following Arellano and Bond (1991). A Sargan-Hansen test of

overidentifying restrictions does not reject this speci�cation, and there is no sig-

ni�cant evidence of second-order serial correlation in the �rst-di¤erenced residuals.

While the parameter estimates are less precise in this case, we again detect signif-

icant evidence that uncertainty in�uences the short run response of investment to

demand shocks, and that this response is convex. It should be noted, however, that

this was not always the case if we imposed simpler dynamic speci�cations that were

rejected by the test of overidentifying restrictions (for example, if we omit the error

correction term). This illustrates the potential importance of controlling for longer

run investment dynamics when testing the properties of the short run responses to

demand shocks. For other calibrations of the simulation model we found that al-

ternative dynamic speci�cations or instrument sets may be required. The negative

coe¢ cient on the interaction term and the positive coe¢ cient on the squared term,

however, were found consistently across speci�cations that were not rejected by the

test of overidentifying restrictions.

Considering the magnitude of this e¤ect of uncertainty, we �nd that the predicted

impact e¤ect of sales growth on investment rates increases by 79% when moving from

the third quartile to the �rst quartile in the distribution of measured uncertainty,

and by 168% when moving from the 90th percentile to the 10th percentile. These

di¤erences are quantitatively similar to those that we estimated directly for the
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underlying model in section 2.3.

This suggests that our econometric tests have power to detect these properties of

short run investment dynamics, at least using this simulated dataset. Interestingly

we also �nd that the longer run capital stock adjustment process is approximated

quite well by our error correction speci�cation, and that our GMM estimates using

measured sales and uncertainty variables even provide quantitative estimates of the

e¤ect of uncertainty on short run responses to demand shocks that are in the right

ballpark.

In columns (3) and (4) of Table 3 we con�rm that these properties of short

run investment dynamics are also found using two alternative speci�cations of our

simulation model, which approximate Hartman (1972) and Abel (1983) type e¤ects

of uncertainty on the expected marginal revenue product of capital (MRPC).14 In

column (3) we set the drift in the demand process 2�(�t) = 0:04 +
�2t
2
, so that the

expected MRPC is increasing in uncertainty. As expected, this generates a positive

long run e¤ect of the level of uncertainty on the level of the capital stock. Neverthe-

less we can still detect the negative e¤ect of uncertainty on the short run response

of investment to demand shocks, and the convex shape of these short run responses.

In column (4) we set the drift 2�(�t) = 0:04 � �2t
2
, so that the expected MRPC is

decreasing in uncertainty. This generates a negative long run e¤ect of uncertainty

on the level of the capital stock, but has little impact on either the interaction term

between demand growth and uncertainty or on our higher order demand growth

term. This suggests, �rst, that our econometric tests of the properties of short run

14In a competitive model with shocks to output prices and a �exible factor (such as labour) the
marginal revenue product of capital (MRPC) is convex in demand conditions, so uncertainty has a
positive impact on the expected MRPC. For example, with a revenue function R = ZKaLb (where
Z is a demand process, K is capital and L is labour), after optimizing out labour net revenue

equals CZ
1

1�bK
a

1�b (where C is a constant) and the MRPC equals aC
1�bZ

1
1�bK

a+b�1
1�b . If Z is a

geometric Brownian process with drift � and variance � then E[dZ
1

1�b =Z
1

1�b ] = (� + b
1�b

�2

2 )
dt
1�b ,

so the expected growth of MRPC equals (�+ b
1�b

�2

2 )
1
1�b ; which is increasing in uncertainty. How-

ever, as Caballero (1991) notes, the sign of this e¤ect is sensitive to assumptions such as the
degree of imperfect competition, and whether the underlying shocks are to prices or quantities.
Under alternative assumptions the marginal revenue product of capital can become concave in
demand conditions, with a negative impact of uncertainty. To qualitatively simulate these pos-
itive and negative Hartman-Abel e¤ects in our linear homogeneous speci�cation, we adjust our
demand drift term by ��2

2 , noting that the quantitative e¤ects would also depend on the exact
convexity/concavity of the underlying MRPC in demand conditions.
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investment dynamics appear to be robust (at least to these modi�cations), and sec-

ondly, that the longer run e¤ects of uncertainty are theoretically ambiguous and

need to be determined empirically. This echoes the discussions both in Leahy and

Whited (1996), who outline a range of potentially positive and negative e¤ects of

uncertainty, and in Abel and Eberly (1999), who note the ambiguous long run e¤ects

of uncertainty on capital stock levels in a partial irreversibility framework.

3.2. Simulation robustness tests

To assess the generality of our predictions on the uncertainty-demand growth inter-

action term and on the demand growth squared term, we now investigate whether

these e¤ects are found for an alternative revenue function, and for alternative types

of adjustment costs.

[Table 4 about here]

3.2.1. A CES speci�cation

The simulation model and assumptions require only a supermodular homogeneous

unit revenue function, so we can replace the Cobb-Douglas revenue function (2.1)

with a function of a CES aggregator over the two types of capital

R(X;K1; K2) = X
�(K�

1 +K
�
2 )



� (3.5)

The associated linear homogeneous revenue function is then de�ned by eR(P;K1; K2) =

P 1�
(K�
1 +K

�
2 )



� , where P = X

�
1�
 . We set � = 0:5 and 
 = 0:8.

Column (1) of Table 4 presents OLS results for simulated �rm-level data with

this alternative CES speci�cation, using the true demand and uncertainty variables.

We again �nd that the short run response of investment to demand shocks is convex,

and that higher uncertainty reduces this impact e¤ect of demand shocks on invest-

ment. First-di¤erenced GMM estimates, using sales as a measure of demand and

stock-return volatility as a measure of uncertainty, also yielded a signi�cant positive

coe¢ cient on the sales growth squared term and a signi�cant negative coe¢ cient on

the uncertainty interaction term.15 This suggests that our empirical tests can detect

15Coe¢ cients (standard deviations) of 0.627 (0.132) on the sales growth term and -1.452 (0.467)
on the uncertainty interaction term.
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these e¤ects on short run investment dynamics with this alternative speci�cation of

the revenue function.

3.2.2. General adjustment costs

A number of previous papers, including Abel and Eberly (1994), Cooper and Halti-

wanger (2006) and Bloom (2006) have noted that di¤erent forms of adjustment costs

can have signi�cantly di¤erent implications for investment behaviour. Our core pre-

dictions are based on a model with partial irreversibilities, but in this section we

investigate whether they are also found using two additional types of adjustment

costs: �xed disruption costs and quadratic adjustment costs.

Fixed disruption costs

When new capital is added into the production process some downtime may

result in a �xed loss of output however large the investment. For example, the factory

may need to close for a �xed period while a re�t is occurring. For the simulation we

assume the �xed cost of adjustment for either type of capital is 5% of annual sales,

which is approximately calibrated on a monthly basis from the annual estimates in

Cooper and Haltiwanger (2006).

Quadratic adjustment costs

The costs of investment may also be related to the rate of adjustment with

higher costs for more rapid changes, which we specify as Cquad;j = �mKm(
Im
Km
)2 for

j = 1; 2. For the simulation we assume that �j = 0.3 for both types of capital,

again calibrated roughly on a monthly basis from Cooper and Haltiwanger�s (2006)

annual estimates.16

Since both of these adjustment costs are jointly homogeneous of degree one in

(P;K1; K2) the cost function C(P;K1; K2; I1; I2) is also homogeneous, permitting

the same normalization by capital type 1 and the resulting accelerated numerical

solution as outlined in section 2.2.

Column (2) of Table 4 presents OLS results for simulated �rm-level data with

16For simplicity we have assumed that both the �xed and the quadratic adjustment costs are
identical for the two types of capital, with no cross e¤ects. In experiments allowing for di¤erent
levels of these adjustment costs for the two types of capital, we found qualitatively similar results.
Our approach could allow for more general speci�cations of these adjustment costs, with cross
e¤ects, but we leave this for future research.
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�xed adjustment costs only, again using the true demand and uncertainty variables.

Interestingly, in this case we �nd that higher uncertainty has the opposite e¤ect on

the impact e¤ect of demand shocks on investment. This suggests that the �caution-

ary e¤ect�of uncertainty on short run investment dynamics is sensitive to the form of

adjustment costs, even within the class of non-convex adjustment costs. The reason

for this positive e¤ect is that, under �xed costs, investment is undertaken as a jump

process with the level of investment determined so as to return P
K1
and P

K2
to target

levels between their thresholds, rather than to hold them continuously at their in-

vestment thresholds as under partial irreversibility. When uncertainty rises and the

thresholds move further apart, this target level moves by less, so that the gap be-

tween the target and the investment threshold grows and the amount of investment

required to reach the target also grows. This positive impact of uncertainty on the

level of investment undertaken at each investing unit o¤sets the negative e¤ect of

uncertainty on the number of investing units, leading to a positive e¤ect of uncer-

tainty on the response of investment to demand shocks in our simulation with �xed

costs only. Since the magnitude of these opposing e¤ects is likely to be sensitive to

the exact parameterization of the model, the sign of this short run e¤ect is probably

ambiguous under (pure) �xed costs. We also �nd no signi�cant non-linearity in the

response of investment to demand shocks in this experiment.

Column (3) of Table 4 reports the OLS results for a simulation with quadratic

adjustment costs only. In this case we �nd a smaller response of investment to

demand shocks at higher levels of uncertainty, but again no signi�cant indication

of non-linearity in the short run responses. Again these results suggest that these

properties of short run investment dynamics are sensitive to the type of adjustment

costs. In this experiment we also �nd a strong long run e¤ect of uncertainty in

reducing the level of the capital stock,17 although we note that this e¤ect could be

o¤set by a positive Hartman-Abel type e¤ect of the kind considered in Table 3.

Finally in columns (4) and (5) we report the results for a simulation that com-

bines all three types of adjustment costs, with the same parameter values used

17With �xed costs or partial irreversibilities, the value function is linear outside the central region
of inaction, with slope equal to the purchase/resale price of capital, so that the value function is
concave only in the region of inaction. With quadratic adjustment costs, the value function is
globally curved, thereby generating greater global concavity.
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previously. For both the OLS results using the �true�explanatory variables in col-

umn (4), and for the �rst-di¤erenced GMM results using the observable proxies in

column (5), we �nd evidence that higher uncertainty makes the response of invest-

ment to demand shocks more cautious, and that this response is convex, with a

proportionately larger response to larger shocks. At least for this combination of

adjustment cost parameters, based on the evidence presented in Cooper and Halti-

wanger (2006), we �nd that the properties of the short run investment dynamics

seem to be dominated by the e¤ects of partial irreversibility that we highlighted in

section 2.

In other robustness tests we also experimented with, �rst, changing the discount

rate from 10% to 5%, and second, relaxing the restriction in our econometric speci-

�cation that the long run coe¢ cient on log sales is unity, as in equation (3.2). The

signs and statistical signi�cance of the coe¢ cients on the additional uncertainty

interaction and squared demand growth terms in our augmented error correction

models were robust in both cases, both in the OLS and �rst-di¤erenced GMM re-

sults.18

4. Empirical results for company data

We use �rm-level data for an unbalanced panel of 672 publicly traded UK man-

ufacturing �rms between 1972 and 1991. We use pre-1991 UK data because the

accounting regulations required �rms to report investment expenditure consistently

throughout this period, together with the net book value of capital from acquisition

of subsidiaries, and revenue from sales of �xed assets. We use data on publicly

traded companies because this allows us to construct measures of uncertainty from

high frequency stock market returns data.

18For the simulated data with a 5% discount rate, a consistent �nding was that the e¤ect of
uncertainty on the short run response of investment to demand shocks was larger than we found
with a 10% discount rate. This is consistent with the higher value of real options at a lower discount
rate. These results are available on request from the authors.
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4.1. Uncertainty measures

Although our formal model focuses on uncertainty about demand and productivity

conditions, our measure of uncertainty is much broader in scope. In reality �rms

will be uncertain about a wide range of factors, including taxes, regulations, interest

rates, wages, exchange rates and technological change. In an attempt to capture all

relevant factors in one scalar measure, we follow the approach suggested by Leahy

and Whited (1996) and use the standard deviation of daily stock returns for �rm i in

accounting year t, denoted SDit. This provides a forward-looking indicator which is

implicitly weighted in accordance with the impact of di¤erent sources of uncertainty

on the �rm�s value.

A stock returns-based measure of uncertainty is also attractive because the data

is reported at a su¢ ciently high frequency to use on an annual basis. For ho-

moskedastic di¤usion processes, the variance of the sample variance is inversely

related to the sampling frequency (see Merton (1980)). Our sampling frequency of

about 265 observations per year should yield low sample variance, so that move-

ments in the measured variance should re�ect changes in the underlying process

rather than extreme draws.

One possible concern about this measure of uncertainty is that the variability

in stock market returns may partly re�ect noise unrelated to fundamentals (for

example, share price bubbles). We address this by considering a second measure

which normalizes the �rm�s daily share return by the return on the FTSE All-

Share index, to eliminate the e¤ect of any aggregate stock market bubbles. We

also consider using the within-year standard deviation of the �rm�s monthly stock

returns. Although estimates based on 12 monthly observations are subject to more

sampling variation, this will reduce the impact of high frequency noise that may be

present in daily observations.

A di¤erent concern is whether the volatility in stock returns would re�ect the

variance of demand or productivity shocks in our underlying theoretical framework.

We have addressed this using our simulated data in the previous section where

we �nd that econometric speci�cations using this observable proxy can detect the

impact of underlying uncertainty on investment dynamics.
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We have also compared our stock returns measure to other possible proxies for

uncertainty. Using I/B/E/S data for UK �rms, Bond et al. (2005) report that

stock returns volatility is positively correlated with both the within-year variability

of analysts�earnings forecasts, and with the cross-section dispersion across forecasts

made by di¤erent analysts for the same �rm.

Finally we note that our empirical �nding on the relationship between uncer-

tainty and the impact e¤ect of demand growth is qualitatively similar to that ob-

tained by Guiso and Parigi (1999), who used cross-sectional survey data on man-

agers� subjective distributions of future demand growth to estimate the variance

of �rm-level demand shocks for a sample of Italian �rms. This suggests that this

property of short run investment dynamics can be detected using di¤erent empirical

measures of uncertainty.

4.2. Investment and other accounting data

We obtained company accounts data, as well as data on stock returns, from Datas-

tream. Investment in �xed capital assets is measured net of revenue from asset

sales. Our capital stock measure is benchmarked using the book value of the �rm�s

stock of net �xed assets, and subsequently updated using the investment data in a

standard perpetual inventory formula. Real sales are obtained from data on nominal

sales using the aggregate GDP de�ator. Cash �ow is measured as reported post-

tax earnings plus depreciation deductions. Further details are provided in the Data

Appendix.

4.3. Estimation results

Our main econometric results are estimated using the system GMM procedure devel-

oped by Arellano and Bover (1995) and Blundell and Bond (1998). This combines

a system of equations in �rst-di¤erences using suitably lagged levels of endoge-

nous variables as instruments, as in the basic �rst-di¤erenced GMM estimator (see

Arellano and Bond (1991)), with equations in levels for which lagged di¤erences

of endogenous variables are used as instruments. Unobserved �rm-speci�c e¤ects

are eliminated from the �rst-di¤erenced equations by the transformation. The key

requirement is that the additional instruments used in the levels equations should
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be uncorrelated with the unobserved �rm-speci�c e¤ects in the investment equa-

tion, which is tested using the Sargan-Hansen test of overidentifying restrictions.

The advantage is that, if these additional instruments are valid, the system GMM

estimator should have greater e¢ ciency and smaller �nite sample bias than the cor-

responding �rst-di¤erenced GMM estimator. The reported results treat both sales

and stock-returns volatility as endogenous variables, with the precise instruments

used noted in the Tables. Similar results were found using a range of alternative in-

strument sets, and our main �ndings concerning the short run e¤ects of sales growth

and uncertainty on company investment were also found using the �rst-di¤erenced

GMM estimator.

Our main speci�cation is based on equation (3.4), with current and lagged cash

�ow variables (Cit=Ki;t�1) as additional controls. Such terms are often found to

be informative in microeconometric investment equations, and may re�ect either

�nancing constraints (see Fazzari, Hubbard and Petersen (1988)), expectations of

future demand growth or pro�tability (see Bond et al. (2004)), or more generally

measurement errors or mis-speci�cations (see, for example, Erickson and Whited

(2000) and Cooper and Ejarque (2003)). In our case these cash �ow terms are

statistically signi�cant, and are required to obtain empirical speci�cations that are

not rejected by the test of overidentifying restrictions. However, as reported below,

our main results on investment dynamics are robust to their exclusion.

[Table 5 about here]

Column (1) of Table 5 reports results for a basic linear error correction speci-

�cation with these additional cash �ow terms. We �nd that the key coe¢ cient on

the error correction term is correctly signed and statistically signi�cant, suggesting

that in the long run companies adjust their capital stocks towards a target that

is proportional to real sales. We also �nd an impact e¤ect of real sales growth

that is positive and statistically signi�cant, although considerably smaller than the

long run elasticity of unity, and signi�cant e¤ects from the additional cash �ow

terms. There is marginally signi�cant evidence of second-order serial correlation in

the �rst-di¤erenced residuals in this basic speci�cation, although the Sargan-Hansen
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test does not reject the validity of the overidentifying restrictions. A simple good-

ness of �t statistic also suggests that this model has reasonable explanatory power

for �rm-level data of this kind.19

Column (2) of Table 5 adds a squared term in current real sales growth to this

basic speci�cation. In line with our results for the simulated data under partial

irreversibility in section 3, we �nd signi�cant positive coe¢ cients on both the level

and the square of real sales growth. Column (3) adds a range of uncertainty terms

to this extended error correction speci�cation. The main result of interest here is

the signi�cant negative coe¢ cient on the interaction term. The linear uncertainty

terms (the change in uncertainty and the lagged level of uncertainty), in contrast,

are found to be only weakly signi�cant, with a joint test of their exclusion from the

speci�cation in column (3) not rejected (p-value = 0.17). We include these terms

here partly to ensure that the signi�cant coe¢ cient on the interaction term is not

the result of omitting relevant linear uncertainty terms, and partly to investigate

whether there is signi�cant evidence of a long run e¤ect of uncertainty on capital

accumulation. The insigni�cance of the lagged level of uncertainty in column (3)

formally rejects the presence of such a long run e¤ect, although the imprecision

with which we estimate this coe¢ cient suggests that this test may not be very

powerful.20 Omitting this term in column (4) results in an insigni�cant coe¢ cient

on the short run change in uncertainty term, which we also omit from our preferred

parsimonious speci�cation in column (5). Thus the only e¤ect of uncertainty on

company investment behaviour that we can detect with a high degree of statistical

con�dence is the interaction with the impact e¤ect of current real sales growth.

Table 6 investigates this interaction e¤ect further. Here we decompose our stock

returns measure of uncertainty (SDit) into three components - a macroeconomic

component, common to all �rms in a particular year (SDt); a time-invariant �rm-

speci�c component (SDi); and an idiosyncratic time-varying component (gSDit =

19We report the squared correlation coe¢ cient between actual and predicted levels of the in-
vestment rate. This squared correlation measure is equivalent to the standard R2 in an OLS
regression, and is recommended as a goodness of �t measure for instrumental variable regressions
by, for example, Windmeijer (1995).
20That is, our results do not rule out the possibility of an economically signi�cant negative long

run e¤ect of uncertainty on capital accumulation, although we cannot con�rm the presence of such
an e¤ect with any con�dence.
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SDit�SDt�SDi). Columns (1) to (3) include interactions between real sales growth

and each of these uncertainty variables individually, while column (4) includes all

three interaction terms jointly.

[Tables 6 and 7 about here]

The interaction between �rm-level real sales growth and a purely macroeconomic

measure of uncertainty, included in column (1) of Table 6, is the least informative

of our three variables.21 The interaction with a time invariant �rm-speci�c measure

of uncertainty, reported in column (2), is only weakly signi�cant, while columns (3)

and (4) show that it is the interaction between sales growth and the idiosyncratic

time-varying component (gSDit) of our uncertainty measure that is most informative.

However, because the coe¢ cients on the remaining interaction terms in column (4)

are estimated imprecisely, we can easily accept the restriction of common coe¢ cients

on these three interactions, as imposed in our preferred empirical speci�cation.

4.4. Robustness tests

We conducted a number of robustness tests, some of which are reported in Table 7.

In column (1) we omit the cash �ow variables, which causes the test of overiden-

tifying restrictions to reject, but does not a¤ect the sign or the signi�cance of the

coe¢ cients on the interaction term between uncertainty and sales growth and on the

squared sales growth term. In column (2) we add a further interaction with �rm size,

de�ning a �big �rm�dummy variable Bit which takes the value one for observations

with real sales above the sample median, and zero otherwise. Our result indicates

that the e¤ect of uncertainty on the impact e¤ect of sales growth on investment is

not signi�cantly di¤erent between the smaller and larger �rms within our sample.

The point estimate suggests that this e¤ect may be smaller for the relatively large

�rms. One possible explanation is that our stock-returns measure may be a noisier

proxy for the underlying uncertainty in the case of larger �rms, due to the e¤ect of

conglomeration.

21The limited information that we �nd in macroeconomic as opposed to microeconomic variation
in our uncertainty measure may help to explain why time-series studies of aggregate investment
data have often not found signi�cant e¤ects of uncertainty variables.
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In column (3) of Table 7 we use an alternative measure of uncertainty constructed

after normalising each �rm�s stock returns by the return on the FTSE All-Share

index for the same day. This measure gives a slightly larger and more precisely

estimated coe¢ cient on the interaction term than our basic results, possibly because

some of the general stock market noise has been removed from this measure of

uncertainty. In column (4) we use the within-year standard deviation of monthly

stock returns (not normalised), rather than daily stock returns, to generate the

uncertainty measure. Our results here are qualitatively similar, but in this case the

coe¢ cient on the interaction term is slightly smaller and less signi�cant. This may

be partly due to the greater sampling variance that results from the lower monthly

sampling frequency,22 suggesting that higher frequency stock returns data is valuable

for obtaining a more powerful test.

In column (5) of Table 7 we implement an adjustment for �nancial leverage,

following Leahy and Whited (1996), to eliminate the e¤ect of gearing on the vari-

ability of stock returns.23 Again we �nd that our key results on the properties of

short run investment dynamics are robust. In this case we �nd that the coe¢ cient

on the interaction with sales growth is larger and more signi�cant, possibly because

controlling for leverage reduces some of the measurement error in our proxy for

uncertainty.

We also considered speci�cations with the lagged level of log sales as an additional

explanatory variable; together with the included error correction term, this relaxes

the restriction that the long run elasticity of capital with respect to sales is unity.

This additional term was insigni�cant in all cases, and our results on short run

investment dynamics were completely robust to its inclusion. We also experimented

with a range of additional non-linear and interaction terms, none of which were found

to be statistically signi�cant in our sample. For example, we included interactions

22Switching from daily to monthly returns data is expected to increase the sampling variance of
SDit �ve-fold. The monthly (weekly) measure of uncertainty has a correlation coe¢ cient with the
daily measure of 0.784 (0.900). Using the weekly uncertainty measure, the coe¢ cient (standard
error) on the uncertainty-sales growth interaction term was estimated to be -0.146 (0.082), about
mid-way between the estimates using the daily and monthly measures.
23This is done by mutliplying SDit by the ratio of equity to (equity+debt), with equity measured

using the market value of shares (ordinary and preference) and debt measured using the book value
of all long-term debt.
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of our measure of uncertainty with squared sales growth, cash �ow and the error

correction term. The joint Wald test for the exclusion of these three terms gave a

�2(3) statistic of 4.42, with a p-value of 0.219. Finally, we also investigated whether

the coe¢ cient on our interaction term was larger or more signi�cant for �rms in

industries where market power is likely to be greater (as proxied by concentration

ratios, trade barriers, etc.). An implication of real options theory is that this e¤ect

of uncertainty should be stronger for �rms with more market power. We found no

evidence that this was the case, although it could be that our industry-level proxies

are inadequate measures of the �rm�s market power.

5. Quantifying the impact of uncertainty

The results presented in the preceding section detect a statistically signi�cant e¤ect

of higher uncertainty in dampening the response of company investment to demand

shocks. To evaluate the size of this e¤ect we conducted a simple simulation using

the model in column (5) of Table 5, in which we track the predicted response of

investment and the capital stock to an unanticipated, permanent 2.5% increase in

real sales.24 Figure 2 plots the predicted response of investment rates for observations

at di¤erent levels of uncertainty, highlighting the large �cautionary�e¤ect of higher

uncertainty on the short-run investment response. Here we �nd that moving from the

third quartile to the �rst quartile in the distribution of our measure of uncertainty

doubles the impact, while moving from the 90th percentile to the 10th percentile

increases it by four-fold. This substantial impact of uncertainty is similar to the

�ndings from our calibrated simulation model reported in section 2.3, suggesting

that an e¤ect of this size is consistent with a real options explanation.

This indicates that increases in uncertainty around major shocks, like 9/11 and

the OPEC oil shocks, could seriously reduce the responsiveness of investment to

monetary or �scal policy.25 Over the longer term these short run e¤ects are slowly

cancelled out due to the cointegration between capital and sales, as illustrated in

24See Bloom, Bond and Van Reenen (2003) for more details of these and further simulations.
The exact size of the sales shock makes relatively little di¤erence to the results.
25For comparison, the increase in average uncertainty for our sample �rms after the �rst OPEC

oil crisis is similar in magnitude to the increase from the �rst quartile to the third quartile of our
sample distribution.
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Figure 3, but our estimates suggest that the �short run� e¤ects persist for a sig-

ni�cant period. Even after ten years there is still a noticeable di¤erence between

the predicted increases in capital stocks, in response to the same demand shock, at

di¤erent levels of uncertainty.

6. Conclusions

This paper develops two implications of partial irreversibility for the short run dy-

namics of investment. First, investment will respond more cautiously to a given

demand shock at higher levels of uncertainty (due to wider thresholds for the zone

of inaction), and second investment will have a convex response to positive demand

shocks (due to aggregation and supermodularity). We con�rm these implications

using numerical methods to solve a model with two types of capital, a rich mix of

adjustment costs (partial irreversibility, quadratic and �xed), time-varying uncer-

tainty, alternative functional forms for the revenue function and aggregation over

time and over production units. We propose and evaluate an econometric speci�ca-

tion that is designed to test for these properties of short run investment dynamics

using �rm-level data. We report evidence that both e¤ects are found using a measure

of uncertainty based on stock-returns volatility for a large panel of manufacturing

�rms. Through both numerical and econometric simulations we show that these

e¤ects are economically important - the investment response to a demand shock is

doubled by moving from the third quartile to the �rst quartile in the distribution of

our measure of uncertainty, and quadrupled by moving from the 90th to the 10th

percentile.

This indicates that the one standard deviation increase in measures of uncer-

tainty observed around major shocks, like 9/11 and the OPEC oil shocks, could

seriously reduce the responsiveness of investment to subsequent monetary or �scal

policy. While we do not model the behaviour of labour demand, the existence of

similar labour hiring and �ring costs would imply that higher uncertainty would

also make �rms more cautious in their employment responses. This is important

as policy-makers typically want to respond to major shocks, but the behavioural

responses to any given policy stimulus may be much lower than normal in these
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periods of high uncertainty.

The empirical results indicate that the short run investment dynamics for large

manufacturing �rms are consistent with the predictions of a partial irreversibility

model in which higher uncertainty reduces the impact e¤ect of demand shocks on

investment. Of course, there may be other explanations that could account for the

same patterns in company investment dynamics. One possibility is that �rms subject

to greater uncertainty may place less weight on recent information in updating their

expectations of future growth prospects. Discriminating between these and other

explanations for our empirical �ndings presents an interesting challenge for future

research.

In future work we plan to build on this research in at least three further direc-

tions. First, by looking at the implications of uncertainty for adjusting other factors

of production, such as labour, R&D and information communication technologies.

Second, by moving beyond our calibration of the micro-model to undertake a full

simulated method of moments estimation of the adjustment cost parameters under

time-varying uncertainty, multiple factors of production and extensive aggregation.

Finally, by using this approach to investigate the impacts of uncertainty on both

the level and the distribution of micro and macro activity.
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Data Appendix
The company data is taken from the consolidated accounts of manufacturing

�rms listed on the UK stock market. We deleted �rms with less than three consec-
utive observations, broke the series for �rms where accounting periods fell outside
the range 300 to 400 days (due to changes in year ends), and excluded observations
for �rms where there are jumps of greater than 150% in any of the basic variables.
This data is obtained from the Datastream on-line service.

Investment (I). Total new �xed assets (DS435) less sales of �xed assets (DS423).

Capital Stock (K): Constructed by applying a perpetual inventory procedure with
a depreciation rate of 8%. The starting value was based on the net book value
of tangible �xed capital assets (DS339) in the �rst observation within our sample
period, adjusted for previous in�ation. Subsequent values were obtained using ac-
counts data on investment and asset sales, and an aggregate series for investment
goods prices.

Sales (Y ): Total sales (DS104), de�ated by the aggregate GDP de�ator.

Cash Flow (C): Net pro�ts (earned for ordinary, DS182) plus depreciation (DS136).

Uncertainty (�). The computation of this variable is described in the text. For
each company we take the daily stock market return (Datastream Returns Index,
RI). This measure includes on a daily returns basis the capital gain on the stock,
dividend payments, the value of rights issues, special dividends, and stock dilutions.
We then compute the standard deviation of these daily returns on a year by year
basis, matched precisely to the accounting period. We trim the variable so that
values above �ve are set equal to �ve. The results are robust to dropping these ten
observations.
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TABLE 1: Episodes of Zero Investment in Di¤erent Types of Data

% of observations with zero investment
Buildings Equipment Vehicles Total

Firms 5.9 0.1 n.a. 0.1
Establishments 46.8 3.2 21.2 1.8
Single Plants 53.0 4.3 23.6 2.4
Small Single Plants 57.6 5.6 24.4 3.2

Note : Firm-level data (6,019 annual observations) from Extel and Datastream. Establishment-level

data (46,089 annual observations) from UK Census of Production (see Reduto dos Reis, 1999).

TABLE 2: Sample Correlations in the Simulated Data

Iit=Ki;t�1 �yit �pit SDit �it
investment rate Iit=Ki;t�1 1.000 0.823 0.618 0.081 -0.067
sales growth �yit 1.000 0.395 0.018 -0.224
demand growth �pit 1.000 -0.018 -0.006
standard deviation of returns SDit 1.000 0.645
uncertainty �it 1.000
Note : These are Pearson correlation coe¢ cients of the relevant variables (e.g. the correlation of �yit and
�pit is 0.395) taken over the simulated data for 1,000 �rms and 15 years
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TABLE 3: Econometric Estimation on the Simulated Data

Dependent Variable: Iit=Ki;t�1 (1) (2) (3) (4)
Estimation Method OLS GMM OLS OLS
Type of data for P and � True Empirical True True
Hartman-Abel e¤ects No No Positive Negative

Demand Growth, �pit 0.395 0.539 0.387 0.416
(0.041) (0.083) (0.040) (0.040)

Demand Growth Squared, �p2it 0.028 0.864 0.028 0.028
(0.005) (0.212) (0.004) (0.005)

Change in Uncertainty, ��it -0.095 -0.042 -0.020 -0.755
(0.046) (0.019) (0.160) (0.161)

Uncertainty, �it 0.005 -0.080 0.373 -0.402
(0.021) (0.097) (0.080) (0.066)

Uncertainty � Demand Growth, �it ��pit -0.441 -0.440 -1.500 -1.733
(0.108) (0.166) (0.368) (0.373)

Demand ECM, (p� k)i;t�1 0.190 0.439 0.189 0.187
(0.008) (0.105) (0.008) (0.008)

2nd order serial correlation (p-value) 0.185
Sargan-Hansen test (p-value) 0.856

Note : Standard errors are robust to arbitrary autocorrelation and heteroskedasticity. GMM
coe¢ cients are one-step estimates. Columns (1), (3) and (4) estimate using the underlying �true�
demand and variance data, while column (2) estimates using the �empirical�proxies: sales (instead
of demand) and the standard deviation of stock returns (instead of demand variance). The instru-
ments used in column (2) are lags 2 and 3 of the variables Iit

Ki;t�1
; �yit, �SDit, and (y � k)it.

Instrument validity is tested using a Sargan-Hansen test of the overidentifying restrictions. Serial
correlation is tested using an LM test on the �rst-di¤erenced residuals (Arellano and Bond, 1991).
To maintain a constant sample across speci�cations we use years 4 to 15 in all columns, providing
12,000 observations on a balanced panel of 1,000 �rms. Implementation of Hartman-Abel e¤ects
is described in the text.
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TABLE 4: Robustness Tests on the Simulated Data

Dependent Variable: (Iit=Ki;t�1) (1) (2) (3) (4) (5)
Estimation Method OLS OLS OLS OLS GMM
Type of data for P and � True True True True Empirical
Adjustment Costs Partial Fixed Quad All All
Revenue Function CES Cobb- Cobb- Cobb- Cobb-

Douglas Douglas Douglas Douglas

Demand Growth, �pit 0.400 0.586 0.486 0.378 0.630
(0.041) (0.093) (0.051) (0.039) (0.065)

Demand Growth Squared, �p2it 0.029 -0.012 -0.004 0.011 0.403
(0.004) (0.031) (0.015) (0.004) (0.114)

Change in Uncertainty, ��it -0.389 -1.031 -0.048 -0.666 -0.064
(0.158) (0.283) (0.220) (0.141) (0.042)

Uncertainty, �it -0.006 -0.505 -1.216 0.033 0.101
(0.071) (0.131) (0.090) (0.066) (0.294)

Uncertainty � Demand Growth, -1.566 1.766 -0.844 -1.791 -0.701
�it ��pit (0.373) (0.854) (0.427) (0.346) (0.294)
Demand ECM Term, (p� k)i;t�1 0.186 0.205 0.323 0.180 0.204

(0.008) (0.024) (0.020) (0.006) (0.098)

2nd order serial correlation (p-value) 0.267
Sargan-Hansen test (p-value) 0.875

Note Standard errors are robust to arbitrary autocorrelation and heteroskedasticity. GMM
coe¢ cients are one-step estimates. Columns (1) to (4) estimate using the underlying �true�de-
mand and variance data, while column (5) estimates using the �empirical�proxies: sales (instead
of demand) and the standard deviation of stock returns (instead of demand variance). The instru-
ments used in column (5) are lags 2 and 3 of the variables Iit

Ki;t�1
; �yit, �SDit, and (y � k)it.

Instrument validity is tested using a Sargan-Hansen test of the overidentifying restrictions. Serial
correlation is tested using an LM test on the �rst-di¤erenced residuals (Arellano and Bond, 1991).
To maintain a constant sample across speci�cations we use years 4 to 15 in all columns, providing
12,000 observations on a balanced panel of 1,000 �rms.
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TABLE 5: Econometric Estimates using UK Company Data

Dependent Variable: (Iit=Ki;t�1) (1) (2) (3) (4) (5)

Sales Growth (�yit) 0.259 0.151 0.382 0.400 0.413
(0.072) (0.059) (0.136) (0.139) (0.139)

Change in Cash Flow (�(Cit=Ki;t�1)) 0.206 0.263 0.260 0.255 0.272
(0.135) (0.132) (0.124) (0.126) (0.125)

Lagged Cash Flow (Ci;t�1=Ki;t�2) 0.303 0.269 0.272 0.288 0.273
(0.086) (0.082) (0.083) (0.081) (0.076)

Error Correction Term (y � k)i;t�1 0.062 0.056 0.054 0.054 0.053
(0.030) (0.029) (0.026) (0.026) (0.026)

Sales Growth Squared (�yit)2 0.481 0.512 0.494 0.500
(0.175) (0.152) (0.150) (0.151)

Change in Uncertainty (�SDit) -0.023 -0.012
(0.012) (0.008)

Lagged Uncertainty (SDi;t�1) -0.015
(0.011)

Uncertainty � Sales Growth -0.162 -0.165 -0.167
(SDit ��yit) (0.067) (0.068) (0.068)

Goodness of Fit - Corr(I=K; dI=K)2 0.259 0.287 0.285 0285 0.307
Serial correlation (p-value) 0.048 0.102 0.069 0.078 0.091
Sargan-Hansen (p-value) 0.510 0.709 0.699 0.629 0.560

Note One-step coe¢ cients and standard errors robust to autocorrelation and heteroskedas-
ticity are reported. The number of observations in all columns is 5,347, using an unbalanced
panel of 672 �rms over 1973 to 1991. A full set of year dummies is included in all speci�ca-
tions. Estimation uses a system GMM estimator (see Blundell and Bond, 1998) computed in
DPD98 for Gauss. The instruments used in columns (3) to (5) are, in the �rst-di¤erenced equa-

tions:
�
Ii;t�2
Ki;t�3

�
and

�
Ii;t�3
Ki;t�4

�
, �yi;t�2 and �yi;t�3,

�
Ci;t�2
Ki;t�3

�
and

�
Ci;t�3
Ki;t�4

�
, (y � k)i;t�2 and

(y � k)i;t�3, and SDi;t�2, SDi;t�3 and SDi;t�4; and in the levels equations: �
�
Ii;t�1
Ki;t�2

�
,

��yi;t�1, �
�
Ci;t�1
Ki;t�2

�
;��(y � k)i;t�1 and �SDi;t�1. Columns (1) and (2) use this in-

strument set but with the uncertainty variables excluded. Instrument validity is tested using a
Sargan-Hansen test of the overidentifying restrictions. Second-order serial correlation in the �rst-
di¤erenced residuals is tested using an LM test (Arellano and Bond, 1991). The goodness of �t
measure is the squared correlation coe¢ cient between actual and predicted levels of the dependent
variable.
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TABLE 6: Separating Time, Firm and Residual Variation in
Uncertainty

Dependent Variable: (Iit=Ki;t�1) (1) (2) (3) (4)

Sales Growth (�yit) 0.127 0.141 0.474 0.499
(0.052) (0.053) (0.182) (0.184)

Change in Cash Flow (�Cit=Ki;t�1) 0.270 0.263 0.287 0.280
(0.124) (0.127) (0.122) (0.124)

Lagged Cash Flow (Ci;t�1=Ki;t�2) 0.271 0.274 0.269 0.273
(0.078) (0.083) (0.079) (0.081)

Error Correction Term (y � k)i;t�1 0.054 0.056 0.047 0.049
(0.027) (0.027) (0.026) (0.026)

Sales Growth Squared (�yit)2 0.497 0.507 0.534 0.537
(0.170) (0.157) (0.148) (0.162)

Time Uncertainty � Sales Growth 0.016 -0.051
(SDt)�(�yit) (0.150) (0.135)

Firm Uncertainty � Sales Growth -0.130 -0.136
(SDi)�(�yit) (0.105) (0.107)

Residual Uncertainty � Sales Growth -0.225 -0.230
(gSDit)�(�yit) (0.102) (0.103)

Goodness of Fit - Corr(I=K; dI=K)2 0.307 0.298 0.311 0.288
2nd order serial correlation (p-value) 0.096 0.094 0.132 0.106
Sargan-Hansen (p-value) 0.399 0.490 0.383 0.452

Note : One-step coe¢ cients and standard errors robust to autocorrelation and heteroskedas-
ticity are reported. The number of observations in all columns is 5,347, using an unbalanced
panel of 672 �rms over 1973 to 1991. A full set of year dummies is included in all speci�-
cations. Estimation uses a system GMM estimator (see Blundell and Bond, 1998) computed
in DPD98 for Gauss. The instruments used in all columns are, in the �rst-di¤erenced equa-

tions:
�
Ii;t�2
Ki;t�3

�
and

�
Ii;t�3
Ki;t�4

�
, �yi;t�2 and �yi;t�3,

�
Ci;t�2
Ki;t�3

�
and

�
Ci;t�3
Ki;t�4

�
, (y � k)i;t�2 and

(y � k)i;t�3, and SDi;t�2, SDi;t�3 and SDi;t�4; and in the levels equations: �
�
Ii;t�1
Ki;t�2

�
,

��yi;t�1, �
�
Ci;t�1
Ki;t�2

�
;��(y � k)i;t�1 and �SDi;t�1. Instrument validity is tested using a

Sargan-Hansen test of the overidentifying restrictions. Second-order serial correlation in the �rst-
di¤erenced residuals is tested using an LM test (Arellano and Bond, 1991). The goodness of �t
measure is the squared correlation coe¢ cient between actual and predicted levels of the dependent
variable.
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TABLE 7: Robustness Tests on UK Company Data

Dependent Variable: (Iit=Ki;t�1) (1) (2) (3) (4) (5)
Experiment No cash Size FTSE Monthly Leverage

�ow splits normed returns adjusted

Sales Growth (�yit) 0.509 0.379 0.464 0.374 0.443
(0.121) (0.137) (0.153) (0.166) (0.119)

Change in Cash Flow (�Cit=Ki;t�1) 0.283 0.282 0.279 0.306
(0.123) (0.124) (0.126) (0.119)

Lagged Cash Flow (Ci;t�1=Ki;t�2) 0.272 0.272 0.268 0.257
(0.076) (0.075) (0.077) (0.073)

Error Correction Term (y � k)i;t�1 0.163 0.052 0.052 0.050 0.060
(0.025) (0.026) (0.026) (0.026) (0.028)

Sales Growth Squared (�yit)2 0.500 0.479 0.462 0.482 0.557
(0.172) (0.151) (0.146) (0.154) (0.155)

Uncertainty � Sales Growth -0.142 -0.185 -0.196 -0.122 -0.278
(SDit ��yit) (0.065) (0.069) (0.075) (0.069) (0.087)
Big�Uncertainty�Sales Growth 0.082
(Bit � SDit ��yit) (0.060)

Serial correlation (p-value) 0.049 0.056 0.080 0.083 0.064
Sargan-Hansen (p-value) 0.010 0.531 0.504 0.668 0.662

Notes: One-step coe¢ cients and standard errors robust to autocorrelation and heteroskedas-
ticity are reported. The number of observations in all columns is 5,347, using an unbalanced
panel of 672 �rms over 1973 to 1991. A full set of year dummies is included in all speci�cations.
The dummy variable Bit indicates real sales above the sample median. The uncertainty measure
in column (5) has been multiplied by the ratio equity/(equity+debt). Estimation uses a system
GMM estimator (see Blundell and Bond, 1998) computed in DPD98 for Gauss. The instruments

used in all columns are, in the �rst-di¤erenced equations:
�
Ii;t�2
Ki;t�3

�
and

�
Ii;t�3
Ki;t�4

�
, �yi;t�2 and

�yi;t�3,
�
Ci;t�2
Ki;t�3

�
and

�
Ci;t�3
Ki;t�4

�
, (y � k)i;t�2 and (y � k)i;t�3, and SDi;t�2, SDi;t�3 and

SDi;t�4; and in the levels equations: �
�
Ii;t�1
Ki;t�2

�
, ��yi;t�1, �

�
Ci;t�1
Ki;t�2

�
;��(y � k)i;t�1

and �SDi;t�1. Instrument validity is tested using a Sargan-Hansen test of the overidentifying
restrictions. Second-order serial correlation in the �rst-di¤erenced residuals is tested using an LM
test (Arellano and Bond, 1991). The goodness of �t measure is the squared correlation coe¢ cient
between actual and predicted levels of the dependent variable.
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