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ABSTRACT

Statistical risk factor models are often proposed for screening high-risk children to participate in
early intervention programs. Recent contributions to the program evaluation literature demonstrate
the need for incorporating judgments about relative importance of false positives versus false
negatives in screening. This paper formalizes these judgments as commensurable economic costs
and benefits and applies them to demonstrate an approach to participant selection motivated by the
standard cost-benefit criterion of maximizing expected net benefits. Implications of this approach
are explored using data from a mental health prevention trial. We illustrate the response of expected
net benefits to the choice of a selection risk level, the sensitivity of the optimal selection risk level
to per participant cost/benefit magnitudes, and the use of the target-efficiency approach for choosing
among alternative risk-factor models. Several strategies that directly incorporate expected net benefit
maximization as a criterion in the model estimation process are also examined.
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Introduction 
 
 Statistical models of risk factors have often been proposed or used for identifying high-

risk children as participants for intervention programs (1-3).  These models include bivariate 

associations of individual risk factors with undesirable outcomes, as well as regression models 

that include multiple risk factors. Recently, Kraemer et al. (4) examined the application of a 

variety of purely statistical performance criteria for such models and have stressed the 

importance of incorporating expert judgments on the clinical and policy significance of the 

consequences of false positive and false negative classifications. In particular, they argue that 

such expert judgments are necessary in order to select the optimal statistical test for any specific 

intervention program. While the examples presented in Kraemer et al. (4) were limited to 

bivariate associations, Kiernan et al. (5) suggested that such judgments could also be 

accommodated in multiple risk factor models estimated by regression tree (recursive 

partitioning) methods.  Another recent application of this method, presented in Berk et al. (6), 

combines recursive partitioning with expert judgments (by police officials) of relative costs of 

false negatives versus false positives in responding to domestic violence calls. A recent paper by 

Menditto et al. (7) tests the performance of a logistic regression model of risk of elopement by 

state psychiatric hospital patients in which false negatives are more costly than false positives.  

 Taking the Kraemer et al. (4), Berk et al. (6), and Menditto et al. (7) arguments as a point 

of departure, in this paper we replace expert judgments on relative significance or costs of 

prediction outcomes with quantitative estimates of expected economic costs and benefits of the 

intervention. We explore how these estimates, in combination with the basic economic principle 

of expected net benefit maximization, can be applied to the problem of selecting the optimal 

predictive test for an early intervention program to prevent adult crime. To signify the parallel 
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between this approach to targeting a program, and the generally accepted view in cost-benefit 

analysis that economic efficiency is achieved by program choices that maximize benefits minus 

costs, we shall refer to our procedure as a “target-efficiency” method of participant selection. 

(Note that the term was originally applied (8,9), for analogous reasons, to alternative formulae 

for redistributing income to poor families via taxes and income transfers.) 

 Using illustrative data, we examine the sensitivity of optimal rules for selecting high-risk 

participants to changes in expected economic cost and benefit figures, and we illustrate the 

implications of these figures for choosing among alternative risk factor models. We begin by 

describing the context for our analysis. Then we consider the problem of finding an optimal level 

of “selection risk” which we define as the high-risk selection threshold for assigning participants 

to the intervention.  An empirical demonstration of a solution to this problem is then presented, 

along with an examination of the sensitivity of the optimal selection risk level to changes in 

expected intervention costs and benefits. This is followed by exploration of several extensions of 

our empirical example in which we apply our target-efficiency approach to the problem of 

choosing among alternative risk-factor models. The paper concludes with a summary and briefly 

discusses limitations of the proposed methods and priorities for further research.   

I. The Context for the Analysis 
 
 Suppose we are considering an early-intervention crime-prevention program to be applied 

to a target group of potential participants made up of two subgroups, positives and negatives. 

The former are children who, in the absence of our intervention, would in fact become criminals 

as adults, and the latter are children who would not become adult criminals. We seek a test for 

targeting our intervention to the children who are at high risk of being positives. We can 
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conceptualize each test as consisting of two parts: 1) a process for predicting the risk of a 

positive outcome and 2) a selection risk level that differentiates high vs. low levels of this risk. 

 Of course, since we can not directly observe the adult outcomes of the children in the 

target group, any empirically-based process for predicting risk will require analysis of a 

retrospective “control” data set which contains both data on observable risk factors that are also 

available for our target group and data on outcomes. The “control” population described in this 

data set should be similar in observable risk factors to the target population and should not have 

been subjected to any intervention. 

 Based on this analysis of a retrospective “control” data set, we can evaluate the 

performance of any particular test with reference to the outcomes observed in that data set (plus 

other retrospective control data sets if available). As in Kraemer et al. (4), Berk et al. (6), and 

Menditto et al. (7), the focus of our exposition here is on the criteria used in that evaluation. 

II. Finding an Optimal Level of Selection Risk 
 
 Within the context just described, let us first assume that a process for predicting the risk 

of positive outcomes based on observable risk factors has been arrived at, so that all that remains 

in designing our test is to choose the selection risk level at which assignment to the intervention 

warranted.  As suggested above, the procedure for making this decision is based on applying any 

proposed selection risk level to empirical evaluation with a retrospective control data set. In the 

clinical diagnosis literature, the criteria used in this evaluation are typically the resulting 

sensitivity and specificity of the proposed test. Kraemer et al. (4) have discussed the relationship 

between these criteria and the purely statistical criteria that are usually applied in other 

disciplines (epidemiology, sociology, psychology). They have demonstrated that statistically 

equivalent tests can vary widely in terms of sensitivity and specificity; hence the need for 
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additional expert judgment of clinical and policy significance of different types of errors (false 

positives vs. false negatives).  Menditto et al. (7) provide an example in which the risk level is 

chosen to minimize the number of false positive plus false negatives, and compared this 

prediction performance with those obtained by several lower selection risk levels that implicitly 

incorporate judgments that false negatives are more costly than false positives. 

 In this analysis, we explicitly represent these judgments in terms of 1) the expected 

economic costs of the intervention program and 2) the expected economic benefit of enrolling 

each positive child in the program. It is assumed that knowledge of these expected costs and 

benefits has already been obtained from previous evaluation studies.  From this economic 

perspective, the intuition involved in finding the optimal level of high risk can be described in 

simple terms. If we choose a very high selection risk level, only a small number of children 

would be referred to the intervention.  This has the advantage of keeping intervention costs low 

but it has the disadvantage of effectively treating only a small number of children who are 

positive (i.e., who will become adult criminals in the absence of treatment).  Conversely, setting 

the selection risk level at a low threshold will result in higher costs but will also treat a larger 

number of children who are positive. A rule for trading off of these concerns is the principle of 

maximizing expected net benefit, which is a fundamental concept in the economic theory of cost-

benefit analysis. Applying this rule, the optimal level of selection risk is defined as the level that 

balances these concerns of costs and benefits and results in the largest expected net benefit of the 

intervention (as evaluated with the control data). 

 A formal mathematical statement of the problem is straightforward.  Let P and N be the 

number of positives and negatives in the control data set used for evaluating the test. Let Xi 

denote the vector of observable risk factors of the ith child in the control data and let β be a 
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vector of regression coefficients estimated from the control data set by regressing the risk factors 

X on the dichotomous outcome (1 = positive outcome, 0 = negative outcome). Given the form of 

the regression relationship (e.g., multiple probit, multiple logistic, or linear probability model), 

the estimated values for β, and the values in Xi, we can compute πI, the predicted probability that 

the ith child in the control data set would have a positive outcome. Replicating this process for 

each child in the control population, we obtain a P-element vector of predicted probabilities for 

the positives in the control population (ΠP), and an N-element vector of predicted probabilities 

for the negatives (ΠN).  Then for any proposed selection risk level of predicted probability, π*, 

the ith child in the control data would be designated as high risk only if πI>π*.  Thus, the number 

of positive children designated as high risk (i.e., “true positives”), P*, would be equal to the 

number of elements of ΠP > π*; N* (i.e., the number of “false positives”) would be defined 

analogously. 

 Applying this risk level in a simulated intervention with the control population, the 

expected costs of the intervention would be (P*+N*)C, where C is expected intervention cost per 

child. The expected benefit would be BP*, where B is the expected benefit per true positive child 

treated in the intervention. Thus the expected net benefit corresponding to π* would be BP* - 

(P*+N*)C. With known values for B and C, we can compute expected net benefit values for each 

possible level of selection risk (π*) and thereby find the level of selection risk that maximizes 

expected benefit in the simulated intervention.i (Note that we do not assume that the intervention 

yields benefits for each true positive child. Instead, B represents the expected benefit for a 

randomly selected true positive child. For true negative children, we assume that the intervention 

yields no benefit.) 

III. An Empirical Example 
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 To demonstrate the process of finding the optimal level of selection risk (π*), we use data 

from the control population of cohorts 1 and 2 of the Johns Hopkins Prevention Intervention 

Research Center's (JHU PIRC) Baltimore intervention trials. The cohorts were recruited in 1985 

and 1986 from 43 first-grade classrooms in 19 elementary schools located in 5 socio-

demographically distinct areas in eastern Baltimore City. The numbers of children in the two 

successive cohorts were 1,196 and 1,115. (For information on the project, the characteristics of 

the children, the interventions, and the data content and collection processes, see the project web-

site http://www.bpp.jhu.edu/Cohort3/methods.measures.young.adult.followup.word.htm 

(accessed on December 6, 2005).) In our analysis, we only examine male students in the control 

group populations. (Females were excluded due to their very low rate of subsequent adult 

incarceration as shown in data collected by the JHU PIRC.) 

 Descriptive statistics on the data and variables used in our empirical analysis are shown 

in Table 1.  In our initial analysis of this example, we will focus on the outcome, socio-

demographic, and first-grade variables and on the 542 male control group members with data 

sufficiently complete to allow construction of these variables. (A subsequent section of the paper 

will look more closely at the third-grade and sixth-grade variables.) Note that the first row of 

Table 1 describes our outcome variable, a 0-1 dichotomy indicating whether a child was 

subsequently incarcerated in the adult correctional system.  The table indicates that 16.6 percent 

of our study group had in fact been incarcerated at least once in the adult system as a young adult 

(by age 26). 

 Table 2 presents the results of maximum likelihood probit regressions of our outcome 

variable on the socio-demographic risk factors and first-grade school rating risk factors shown in 
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Table 1. In our initial discussion, we will focus on the results obtained with the linear model 

(shown in Columns 1 and 2). 

 In addition to these empirical results about risk factors, critical inputs for our analysis are 

the assumptions made about the dollar magnitudes of expected intervention cost per child 

included in the program (C) and the expected benefit resulting from enrolling each positive child 

who would be incarcerated in the future in the absence of the intervention program (B). Note that 

B can be viewed as the product of two figures, the change in the probability of incarceration as a 

result of the program and the benefit of avoiding incarceration and the crime that resulted in the 

incarceration. 

 For our illustrative example, figures for C and B were based on the results of the Seattle 

Social Development project as reported by Aos et al. (10). This project was a three-part 

intervention for teachers, parents and students in grades 1-6 that focused on schools in high 

crime urban areas.  Cost-benefit evaluation of the project yielded an estimated cost per 

participant of $4,355; we use this as our assigned value for C. They do not report a specific value 

for B but instead provide a figure for estimated net benefit per participant (including both 

positives and negatives). This figure is -$456. (Note that it is restricted to benefits to taxpayers 

only; their corresponding figure that includes crime victim benefits is +$14,619.)  Converting 

this figure to a gross benefit per participant by subtracting out costs yields a figure of $3,899. 

Since Aos et al. do not report an incarceration rate for the control group, we assume for purposes 

of our exposition that approximately 20 per cent of treated children in the program were 

positives (i.e., would have been incarcerated in the absence of the intervention), thus yielding a 

value for B of approximately $20,000 for gross benefit per positive participant.ii  



 8 

 It is assumed here that the populations served by the Seattle project are similar to the 

Baltimore population in our example and that the estimates of C and B can therefore be applied 

in the example.  Using the results from Table 2, Columns 1 and 2, we can compute a predicted 

risk-level (i.e., probability of incarceration) for each person in our Baltimore data set. Given 

these predicted risk-levels, we can use our values for C and B to simulate the expected program 

net benefit of alternative selection-risk levels. The results of this process are reported in Figure 1. 

 As intuition would suggest, expected net benefit is strongly affected by the selection risk 

level, rising from -$560,410 at a level of 0.0 (i.e., everyone is enrolled in the intervention) to 

+$468,525 at a level of 0.25 and then declining to -$4,355 at a level of 0.7. Thus, 0.25 is the 

optimal selection risk, though the variation in expected net benefit over the selection risk range 

of 0.24 to 0.28 is quite small.  (The discontinuities in the net benefit function presumably arise 

because the number of positives in our data is fairly small and small changes in the selection risk 

level may result in discrete changes in the number of positives selected for program 

participation.) 

 Kraemer et al. (4) suggest that the optimal test procedure will depend on the relative 

weights (reflecting clinical and policy significance) of false positives and false negatives. The 

analogous observation in the current context is that the optimal selection rule will vary with the 

relative levels of C and B. We examined the sensitivity of the optimal selection risk level in our 

empirical example by allowing the level of B to vary holding C constant. (In our simple example, 

as in earlier studies (4-6), the ratio of B to C is sufficient to determine the optimal selection risk 

level.)  The results of this exercise are shown in Figure 2.  As expected the optimal selection risk 

level is negatively related to the ratio of B to C, dropping sharply from 0.9 when the B/C ratio 

increases above 1.65, and then declining more gradually as the B/C ratio continues to increase. 
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IV. Selecting Risk-Factor Models to Maximize Expected Net Benefit 

 Obviously the target-efficiency approach can be used not only for choosing the optimal 

selection risk level with any given risk-factor model, but also for choosing among alternative 

risk-factor models. If we confine ourselves to single risk factors and bivariate associations with 

outcome, as in Kraemer et al. (4), the choice involves comparing the maximum expected net 

benefit levels pertaining to each of the alternative candidate risk factors (e.g., teacher rating of 

educational progress vs. peer reports of fighting). In the case of choosing among alternative 

multiple risk-factor models, the choice involves comparing the maximum expected net benefit 

levels pertaining to each of the candidate models. 

 As a simple example, we consider choosing between the simple linear probit model in 

Columns 1 and 2 of Table 2 and the models in Columns 3-4 and Columns 5-6 that allow for 

nonlinearities in the relationships of some risk factors to the probit index. (We shall refer to the 

latter two respectively as the nonlinear and reduced non-linear models.)  Typically, such a choice 

between models would be made with reference to likelihood-ratio statistics or other measures of 

goodness of fit of the various models. However, if the objective is to devise a method for 

selecting intervention program participants that maximizes expected net benefit, these usual 

statistical criteria are not pertinent. 

 The comparisons of the three models yield the following results: 

   Max. Exp. Net Benefit  Optimal Selection Risk 

Linear    $468,525    0.25 

Nonlinear   $472,075    0.26 

Reduced Nonlinear  $483,200    0.22 
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While one might expect that adding the most additional parameters to the model (as in the 

nonlinear model) results in the highest maximum expected net benefit, we do not confirm this in 

our example. The reduced nonlinear model produces the largest maximum expected net benefit. 

Note however, that differences between the models in net benefit and in optimal selection risk 

levels are small.  Indeed, the differences are so small that it is reasonable to consider whether 

these differences are simply due to random factors. One straightforward way to assess this 

possibility is to use bootstrap replications of the overall process with the control data set 

(including both the estimation of regression coefficients and the computation of the optimal 

selection risk level for each model). This process would generate a distribution of maximum 

expected net benefits corresponding to each model and standard tests for differences in 

distributions across models could be applied. One could also test for differences in the optimal 

selection risk levels across the models.iii  

 The expected net benefit criterion can also be used to choose the timing of the 

intervention. In the current example, we can use the approach to address the question of whether 

the program should be implemented at first grade or at a later stage in children’s development. 

For this purpose, we modify our multiple probit regression models to include data from the 

Baltimore data set on third-grade and sixth-grade teacher ratings of the children. 

 Results for the linear probit regressions that add third grade ratings are shown in Table 3, 

Columns 3 and 4 below. Results obtained when sixth grade ratings are also added are shown in 

Table 3, Columns 5 and 6. For comparison purposes, in columns 1 and 2 we repeat the first-

grade-only results from Table 2, columns 1 and 2. A comparison of these three models can help 

us to understand how the expected net benefits of the intervention program might change if it 

were implemented in third grade or in sixth grade rather than in first grade. One might expect 
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that having additional information from teacher ratings in later grades would improve the 

accuracy of our models so that the third-grade or sixth-grade interventions could be targeted 

more efficiently. Note, however, that such a comparison should also reflect the changes in C and 

B that may occur if the implementation is delayed to a later grade. Such changes will be expected 

if the content of the program changes, if the effect of the program on students’ future course is 

altered by the delayed implementation, and simply to reflect the basic economic fact that the 

present value of costs decline as implementation is delayed due to discounting. (Changes in 

discounting for benefits arising from crimes averted are not indicated, however, unless the timing 

of these benefits is altered by the delay.)  In our discussion, however, we ignore possible changes 

in B and C between the models to focus purely on the gain in expected net benefits arising from 

superior predictive power of the third grade and sixth grade models. 

 The results in Table 3 indicate that the teacher rating of aggression in third grade 

(SCTAG3) has coefficients that are statistically significant but that the significance of the 

coefficient for first-grade peer rating of aggressive behavior (PERF) drops when this variable is 

included. (The loss of 92 cases due to missing data may also influence this result.)  Most of the 

other results for specific variables do not change very much as the third-grade and sixth-grade 

variables are added in. (Note however that the number of missing cases increases in sixth grade 

and the number of cases in the regression drops to 366.)iv 

 With respect to the results of principal interest, comparisons of the three models are 

shown in Table 4 below. A very large gain in expected net benefits is obtained by adding third-

grade variables to the risk-factor model. Further addition of sixth-grade variables yields a slightly 

lower expected net benefit figure.  The implication of the results, however, is that expected net 

benefits of the program may be increased substantially by implementing in third grade (rather 
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than first grade) and having additional information available on risk factors. (Changes in costs or 

effectiveness as a result of later implementation could either weaken or strengthen this 

conclusion.)  Finally, for both of the new models we also find a lower level of the optimal 

selection risk compared to the result for the first-grade model. v 

V. Maximizing Expected Net Benefit as a Criterion for Model Estimation 

 At this point, the discerning reader may be wondering why we use a purely statistical 

criterion (e.g., maximization of a likelihood function) for obtaining coefficient estimates of our 

risk factor model, while we use an economic criterion (maximization of expected net benefits) 

for choosing the optimal level of selection risk. While the statistical criterion may imply 

desirable statistical properties (such as consistency or asymptotic unbiasedness of coefficient 

estimates), and produce results that are easily interpretable (e.g., estimates of the probability that 

a particular participant will in fact turn out to be a positive), the statistical criterion may also 

conflict with the economic criterion.  This is likely to be the case since the statistical criterion 

treats false positives and false negatives symmetrically while the two types of errors may have 

very different implications for program net benefits.  

 These observations suggest that it may be interesting to explore alternative strategies for 

estimating the coefficients of parametric risk-factor models.  As a matter of interpretation, the 

results of these estimates will produce an index value for each individual (which we shall call the 

“risk index”) but this value is no longer interpretable as an estimate of the probability of turning 

out to be a positive. 

 One other advantage of using a purely statistical criterion to estimate coefficients of a 

parametric risk factor model is that the computation of these estimates can usually rely on 
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standard techniques for finding maximum values of continuous functions.   Computational 

procedures may be more challenging when we depart from this criterion. 

 To examine the possible economic gains of extending our target-efficiency approach to 

include estimates of coefficients in parametric multiple risk-factor models, we illustrate two 

possible methods.  First, we consider a relatively simple modification of our previous analysis. 

Instead of estimating a probit multiple risk-factor model with an unweighted likelihood function 

as our statistical criterion, we estimate this probit model with a weighted likelihood function that 

gives greater weight to those cases that were in fact positives than to those case that were in fact 

negatives. The logic here is that because of the relative size of C and B, it is more important to 

do a good job of identifying the positives as true positives than it is to identify the negatives as 

true negatives; therefore the former cases get greater weight in the likelihood function. How 

much greater should this weight be? We use our target-efficiency criterion to answer that 

question; in other words, we search over alternative values for this weight to find the value that 

(in combination with the optimal selection level of the risk index based on the coefficient 

estimates corresponding to that weight) produces the largest expected net benefit. 

 Applying this method to our linear probit model with first-grade data, we allowed the 

weight for positives (relative to negatives) to range from 1 to 4 and computed the maximum 

expected net benefit corresponding to each value of the weight.  The results of these calculations 

are summarized in Figure 3.  It is clear that the varying the size of the weight over the range 1.0 

to 4.0 does not result in very substantial changes in the level of net benefits. For example, 

moving from a weight of 1.0 to the weight of 1.3 (at which expected net benefits are maximized) 

only corresponds to a 3.4% increase in expected net benefits (from $468,525 to $483,365). 
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 The second method that we illustrate is a straightforward but cumbersome search process.  

We search over all relevant sets of possible values for the coefficients of the risk-factor model, 

computing the optimal selection level of the risk index for each set of coefficients and computing 

the maximum expected net benefit level corresponding to that optimal selection risk level, until 

we find that set of coefficients with the largest maximum expected net benefit value. 

 Since our economic criterion is not a well-behaved, continuous function of the coefficient 

values, the computational burden of this approach is potentially much greater than that in our 

previous illustration.  As we are undertaking these computations for illustrative and expositional 

purposes, we have made several assumptions that simplify the process considerably. One 

important assumption in our example is that only two risk factors are assumed to be relevant 

predictors: the peer rating of fighting in first grade and the teacher rating of educational progress 

in first grade. Second, since we are estimating a parametric risk-factor model, we assume a 

specific functional form for the risk-index function; in particular, we assume a probit functional 

form with a risk-index that is linear in the two risk factors. Thus, three coefficients will 

characterize our risk-index function (an intercept and a coefficient for each of the two risk 

factors). 

 Even with these simplifications, the development of a reasonably efficient computer 

program for conducting the search process is not a simple matter and we did not attempt this for 

the current paper.  Instead, to illustrate the potential usefulness of this method we have confined 

our calculations to only 36 alternative sets of coefficient values for the risk-factor model.  For 

comparison purposes, one set of coefficient values are the maximum-likelihood estimates 

obtained from a probit regression of the outcome on our two risk factors.  We then allowed each 

coefficient to take on values that were 50%, 100%, 150% and 200% of those maximum-
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likelihood estimates. Once we identified what appeared to be a global maximum, we then 

undertook a local search around this apparent maximum to locate the maximum more precisely. 

The result of this process is reported in Column 1 of Table 5.  Column 2 of this table reports the 

results from the standard maximum-likelihood estimation for comparison purposes. 

 Comparing the results in Column 1 versus Column 2, we see that the maximum expected 

net benefit value obtained by the search process ($190,940) is almost 44% larger than the value 

obtained from the maximum likelihood probit regression ($132,735).  This suggests that using 

the target efficiency criterion for selecting coefficient values in the risk-factor model may 

produce substantial gains over the values obtained using the purely statistical criterion of 

likelihood-function maximization. 

 We do note, however, that our two-factor probit model leaves much room for 

improvement; the expected net benefit is far below the level (reported above) that we obtained 

when we included a number of additional variables in the probit regression ($468,525).  Thus, 

the relative gain from the target-efficiency approach to coefficient estimation could be 

considerably smaller with a model that included more risk factors. In addition, the computational 

burden of the search process becomes much greater when additional variables are added to the 

risk-factor model. 

 A further aspect of the risk-factor analysis that could be reconsidered in the light of the 

target-efficiency criterion is the matter of functional form. For conceptual reasons or reasons of 

convenience, an empirical analysis that seeks to assess the importance of various risk factors 

typically involves the use of a parametric functional form, such as the linear probit model that we 

have employed throughout our discussion. If, however, our goal is to maximize expected net 

benefits, it may be preferable to use a nonparametric or semiparametric approach instead. One 
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promising nonparametric approach is the recursive partitioning method applied by Kiernan et al. 

(5) and Berk et al. (6), that uses a criterion (for selecting optimal partitions) that corresponds to 

the weights derived from our values for B and C.vi 

 With the ROC4 software used by Kiernan et al. (5), we determined the optimal split of 

our 542 control subjects into three groups based on the values for the same two risk factors as in 

our probit analysis.vii  The groups were defined as follows: Group 1 – PERF < 0.19, Group 2 – 

PERF ≥ 0.19 and TOCGB1 < 4, Group 3 - PERF ≥ 0.19 and TOCGB1 ≥ 4.  The corresponding 

percentages of true positives were 8.4, 17.6 and 31.0 respectively. In this type of analysis, 

choosing the optimal risk cutoff corresponds to choosing the groups to enter the intervention that 

will maximize expected net benefits. In the present case, our expected net benefits were 

maximized, by choosing only Group 3; the corresponding net benefit figure is shown in Table 5, 

Column 4 to be $216,595.  This is 13.4 per cent larger than the optimal value from our two-

factor probit model shown in Table 5 above. For comparison purposes, in Column 3 of Table 5 

we show the result obtained when the partitioning criterion is based on a weight of 0.5 

(equivalent to assuming Type 1 and Type 2 errors are of equal importance).  The expected net 

benefit in this case is nearly as large as when the weight is 0.8.viii 

 This example suggests that nonparametric recursive partitioning provides a modest gain 

over our parametric search procedure presumably by relaxing the functional form constraint of 

the parametric approach. The non-parametric result also appears to be less sensitive to the choice 

of weights.  

 The recursive partitioning method is computationally simpler than our parametric search 

method.  In the latter, the range of possible coefficient values is not bounded and the number of 

possible points in the search is infinite; in the former the process involves a finite number of 
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possible partitions.  Both methods may involve substantial computational time when 

implemented on a typical personal computer with large numbers of risk factors included in the 

model. 

 One other limitation of the recursive partitioning model is that it assumes the expected 

net benefit function is simply the sum of the expected net benefits over all the subjects assigned 

to treatment. (The parametric search model could use any function of the numbers of false and 

true positives as a criterion.) This limitation may be problematic, for example, if the cost of 

implementing the intervention is subject to economies or diseconomies of scale or discontinuities 

based on the total number of treated participants (e.g., constraints on the size of a single 

classroom). Program expected effectiveness per participant might also depend on the total 

number of participants. (For example, a larger group size may be less effective for each 

participant.) 

 Comparing our results in Table 5 with the earlier results in Table 2, our examples also 

suggest the possibility that either of the methods used in Table 5 would yield substantially larger 

expected net benefits as additional parameters and (especially) risk factors are added to the 

models.  Naturally this extension would greatly increase the computational burden. The earlier 

results also suggest that when additional risk factors are considered, allowing for flexibility in 

the functional form of the risk-factor model may become less important.ix 

 Finally, note that use of the target-efficiency criterion for finding an optimal multiple 

risk-factor model does not make statistical considerations irrelevant.  One could ultimately 

devise an extremely complex model that achieved the maximum possible expected net benefits 

by perfectly sorting out positive from negative cases. Such a model would probably use a 

complicated functional form and contain many predictor variables so that the number of 
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coefficient values to be estimated (or data partitions to be formed) became very large relative to 

the number of subjects in the control data set.  While such over fitting of the data might 

maximize our target efficiency criterion, it would also produce estimates that were highly 

sensitive to random influences in the process that generated the control data set and would 

probably generalize very poorly to additional control data sets or to the population for which the 

intervention is intended.  The solution to this problem, as noted earlier, is to apply bootstrapping 

techniques to the entire process for searching out the optimal risk-factor model and risk-index 

values. Presumably this process would reveal extremely wide confidence intervals for the 

optimal point estimates when the model used is highly complex and the number of coefficients 

(or partitions) is very large.x  

VI. Summary and Conclusions 
 
 For the education or mental health professional responsible for implementing an early 

intervention crime-prevention program, selecting the children to participate in the program is an 

important issue that can strongly influence the net benefits realized from the program.  If highly 

accurate risk-factor models were available for selecting students, and these models generated 

very large differences, between negative and positive children, in the predicted probability of a 

positive outcome (e.g., incarceration as an adult), the problem of selecting program participants 

would be fairly straightforward.  It is rarely the case, however, that the available risk-factor 

models are highly accurate, and thus the rules for selecting participants on the basis of these 

models becomes a matter of concern. 

 Kraemer et al. (1) have argued persuasively for the inclusion of expert judgments about 

the clinical and/or policy significance of false positives and false negatives in devising rules for 

assigning participants to treatments. Empirical application of this idea in a multiple risk-factor 
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context has been demonstrated by Berk et al. (6) and Menditto et al. (7). Building on this 

previous work, this paper has illustrated that when these judgments are expressed as 

commensurable economic costs and benefits, we can use a target-efficiency approach for 

participant assignment that is motivated by the standard cost-benefit criterion of maximizing 

expected net benefits. We have explored the potentially important implications of this approach 

in the context of an empirical example using data from the control groups of cohorts 1 and 2 of 

the JHU PIRC trials and estimates of per subject costs and benefits from Aos et al. (10).  Our 

example illustrates that expected net benefits are quite sensitive to the risk level chosen, with 

nearly five-fold variation as the selection risk level ranges between 0.1 and 0.5. Not surprisingly, 

the optimal selection risk level is also somewhat sensitive to the relative magnitudes of per 

participant costs vs. benefits. 

 We also illustrate the use of the target-efficiency approach for choosing among 

alternative multiple risk-factor models. In our example, the strongest differences between 

alternative models (in their ability to maximize expected net benefits) appears to arise from the 

inclusion or exclusion of predictors that are strongly related to the outcome we seek to prevent. 

This finding may point toward the inclusion of some risk factors in the selection model that may 

not meet the usual strict criteria of statistical significance. This does, however, raise concerns 

about over fitting that could be assessed by computing bootstrapped confidence intervals around 

the maximum expected net benefit figures for each competing model. 

 In the final section of our analysis, we examine the possible gains of incorporating 

expected net benefit measures directly into the estimation process in either parametric or non-

parametric approaches. To keep computational tasks manageable in this non-statistical approach, 

we restrict our attention to models involving only two risk factors.  In the parametric case, 



 20 

substantial gains in expected net benefits are observed (relative to the statistical likelihood-

maximization approach) but the relative gain is much smaller in the particular non-parametric 

method applied (i.e., the recursive partition approach).  We note that in both cases the reduced 

number of risk factors results in substantial declines in maximum expected net benefits relative 

to the more complete models examined in earlier sections of our analysis.  While this might 

argue for expanding the number of risk factors included in these non-statistical models, we note 

that computational problems or over fitting problems (especially in the non-parametric case) may 

present us with trade-offs in choosing a risk-factor modeling strategy for maximizing target 

efficiency. 

 While we have made several strong simplifying assumptions here, it may be worthwhile 

to extend our test of the target efficiency approach to more complex situations.  Examples are 

cases where outcomes are polychotomous rather than binary (e.g., no crime, non-violent crime, 

violent crime) and cases where the expected costs and/or benefits are not simply equal to the sum 

of individual-participant-level expected costs or benefits (e.g., because of program scale effects). 

 It must also be emphasized that the results presented here are drawn entirely from a 

single data set drawn from a particular geographic location, Evidence from many more settings 

and examples are clearly needed to reach an informed judgment about the usefulness of the 

target-efficiency approach to program participant and risk-factor model selection.  This is 

especially so because the application of results from a population of “controls” to a new 

population of potential program participants is based on stringent assumptions about the 

similarities between the two populations. In particular, these populations need to be similar not 

just in the means of the variable values in our analysis but also in the joint distributions of these 

variables.   Of course, the similarities of the “control” and potential participant populations could 
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be substantially enhanced by selecting from the control group, using propensity scores or other 

matching methods, to produce a sample that matches your population of potential participants. 
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 Table 1. Variable definitions and descriptive statistics 

a (1 = Almost Never … 6 = Almost Always) 
b = Grade 1 spring score if missing 
c = Grade 4 score if missing, grade 4 = interpolated value if missing 
d = Grade 7 score if missing 

Name Definition n Mean  Std Dev. 
Outcome Variable    

PRISON = 1 if individual ever incarcerated 542 0.1660 0.3724 
Socio-Demographic Variables    

WHITE = 1 if white; else = 0 542 0.3726 0.4839    
CGLTHS = 1 if individual’s caregiver education 

level is less than high school 
542 0.3025 0.4598 

CGHS = 1 if individual’s caregiver education 
level is high school 

542 0.3542 0.4787 

MCGEDUCN = 1 if individual’s caregiver education 
level is unknown 

542 0.1033 0.3046 

EMPLDCG = 1 if individual’s caregiver employed 542 0.4612 0.4989 
MEMPLDCG = 1 if individual’s caregiver employment 

status unknown 
542 0.1771 0.3821 

First Grade Variables    
PERF Percentage of peers that nominated 

individual for starting fights, grade 1 fall 
542 0.2617 0.1969 

SCTCP1ab Mean teacher rated attention/ 
concentration level, grade 1 fall 

542 3.2111 1.3343 

TOCGB1ab Teacher’s global rating of how individual 
is progressing as a student, grade 1 fall 

542 3.1051 1.2804 

Third Grade Variables     
SCTAG3ac Mean teacher rated aggressive disruptive 

behavior, grade 3 spring 
450 2.2868 1.1548 

SCTCP3ac Mean teacher rated attention 
concentration problems, grade 3 spring  

450 3.2216 1.1420 

TOCGB3ac Teacher’s global rating of how individual 
is progressing as a student, grade 3 spring 

450 3.0377 1.3644 

Sixth Grade variables     
SCTAG6ad Mean teacher rated aggressive disruptive 

behavior, grade 6 spring 
366 2.2928 1.0966 

SCTCP6ad Mean teacher rated attention 
concentration problems, grade 6 spring  

366 3.6244 1.2606 

TOCGB6ad Teacher’s global rating of how individual 
is progressing as a student, grade 6 spring 

366 3.1967 1.2406 



 
 Table 2.  Probit Models with First-Grade Risk Factors for Probability of Incarceration 

 
 1st Grade Linear  1st Grade Nonlinear  1st Grade Nonlinear Reduced 
Variable  Coefficient P > |z|   Coefficient P > |z|   Coefficient P > |z| 
Column #  1 2   3 4   5 6 
Demographic Variables 

WHITE - 0.911 0.000  - 0.967 0.000  - 0.950 0.000 
CGLTHS  0.815 0.001   0.784 0.001   0.833 0.000 
CGHS  0.601 0.009   0.595 0.010   0.636 0.006 
MCGEDUCN - 0.422 0.237  - 0.323 0.378   -- -- 
EMPLDCG - 0.229 0.156  - 0.258 0.115  - 0.245 0.132 
MEMPLDCG  0.501 0.095   0.362 0.245   0.246 0.376 

            
First Grade Variables 

PERF  1.029 0.005   3.001 0.051   4.160 0.001 
PERF2  -- --  - 4.707 0.005  - 4.103 0.008 
SCTCP1 - 0.171 0.077  - 0.592 0.105  - 0.446 0.115 
SCTCP12  -- --   0.115 0.215   0.036 0.342 
TOCGB1  0.329 0.001   0.677 0.083   0.344 0.001 
TOCGB12  -- --  - 0.005 0.955   -- -- 
PERF x 
SCTCP1 

 -- --  - 0.004 0.994   -- -- 

PERF x 
TOCGB1 

 -- --   0.429 0.412   -- -- 

SCTCP1 x 
TOCGB1 

 -- --  - 0.116 0.450   -- -- 

            
CONSTANT - 1.970 0.000  - 2.063 0.000  - 1.965 0.000 
            
N  542    542    542  

 



 24 

Table 3: First vs. First and Third vs. First, Third and Sixth Grade Probit Models for Probability of Incarceration 
 

 1st Grade Model  1st & 3rd Grade Model  1st, 3rd, & 6th Grade Model 
Variable  Coefficient P > |z|   Coefficient P > |z|   Coefficient P > |z| 
            
Demographic Variables 

WHITE - 0.911 0.000  - 0.751 0.000  - 0.654 0.005 
CGLTHS  0.815 0.001   0.857 0.001   0.995 0.001 
CGHS  0.601 0.009   0.726 0.006   0.835 0.005 
MCGEDUCN - 0.422 0.237  - 0.446 0.472   -- -- 
EMPLDCG - 0.229 0.156  - 0.154 0.359  - 0.080 0.667 
MEMPLDCG  0.501 0.095   1.518 0.003   -- -- 

            
First Grade Variables 

PERF  1.029 0.005   0.484 0.268   0.403 0.414 
SCTCP1 - 0.171 0.077  - 0.230 0.037  - 0.196 0.114 
TOCGB1  0.329 0.001   0.314 0.006   0.299 0.015 

            
Third Grade Variables 

SCTAG3  -- --   0.219 0.009   0.200 0.031 
SCTCP3  -- --   0.051 0.535   0.013 0.330 
TOCGB3  -- --   0.018 0.811  - 0.085 0.888 

            
Sixth Grade Variables 

SCTAG6  -- --   -- --   0.095 0.303 
SCTCP6  -- --   -- --   0.140 0.242 
TOCGB6  -- --   -- --   0.044 0.689 

            
CONSTANT - 1.970 0.000  - 2.502 0.000  - 3.090 0.000 
            
N  542    450    366  
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Table 4: Maximum Expected Net Benefits and Optimal Selection Risks 
Linear Probit Model Max. Exp. Net Ben. Optimal Selection Risk 

First-Grade Only $468,525 0.25 
First and Third Grades $666,684* 0.18 
First, Third and Sixth Grades $643,181** 0.14 
* Based on N = 450 prorated to N = 542.  
** Based on N = 366 prorated to N = 542. 
 

 
Table 5: Comparison of ML Probit vs. Target-Efficiency Probit vs. Recursive Partitioning 

 (1) (2) (3) (4) 
 Target-Effic. 

Probit 
ML Probit Partitioning w. 

0.5 Weight 
Partitioning w. 
0.8 Weight 

Constant -0.8908 -1.7816   
Coeff. PERF 0.7294 0.7294   
Coeff. TOCGB1 0.0926 0.1853   
Selection “Risk” 0.37 0.30 0.32 0.31 
Expected Net 
Benefit  

$190,940 $132,735 $214,015 $216,595 
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Figure 1: Relationship of Expected Net Benefits to Selection Risk-Level 
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Figure 2: Optimal Selection Risk Levels for Varying B/C Ratios 
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Figure 3: Maximum Expected Net Benefit as a Function of the Relative Weight for Positive 

Cases 

������

������

������

������

������

�	����

�	����

�
����

�
����

������

� ��� � ��� � ��� � ��� � ���

������



 29 

REFERENCES 

1. Hill, Laura G., Coie, John D.,Lochman, John E., Greenberg, Mark T. Effectiveness of Early 

Screening for Externalizing Problems: Issues of Screening Accuracy and Utility. Journal of 

Consulting and Clinical Psychology 72:5 (Oct 2004): 809-820 

2. Lochman, John E., Conduct Problems Prevention Research Group. Screening of child 

behavior problems for prevention programs at school entry. Journal of Consulting and Clinical 

Psychology 63:4 (Aug 1995): 549-559 

3. Loeber, R., Dishion, T. Early predictors of male delinquency: A review. Psychological 

Bulletin 94:1 (Jul 1983): 68-99. 

4. Kraemer HC, Kazdin AE, Offord DR, Kessler RC, Jensen PS, and Kupfer DJ, Measuring the 

potency of risk factors for clinical or policy significance. Psychological Methods 4(3):257-271, 

1999. 

5. Kiernan M, Kraemer HC, Winkleby MA, King AC, and Taylor CCB. Do logistic regression 

and signal detection identify different subgroups at risk? Implications for the design of tailored 

interventions. Psychological Methods 6,1(2001):35-48. 

6. Berk R, He Y, and Sorenson SB. Developing g a practical forecasting screener for domestic 

violence incidents. Evaluation Review 29:4 (August 2005):358-383. 

7. Menditto AA, Linhorst DM, Coleman JC and Beck NC. The use of logistic regression 

methods to enhance risk assessment and decision making by mental health administrators. 

Journal of Behavioral Health Services and Research 33:2 (April 2006): 213-224. 

8. Garfinkel I. and Haveman R. Earnings capacity and the target efficiency of alternative transfer 

programs. American Economic Review 64(2):196-204 (1974). 



 30 

9. Creedy J. Comparing tax and transfer systems: Poverty, inequality and target efficiency. 

Economica 63(250), Supplement: Economic Policy and Income Distribution, S163-174 (1996). 

10. Aos S, Phipps P, Barnoski R and Lieb R. The Comparative Costs and Benefits of Programs 

to Reduce Crime (Version 4.0). Washington State Institute for Public Policy, May 2001. 

11. Breiman L, Random forests. Machine Learning 45:5-32 (2001). 

 
ENDNOTES 

 
i For purposes of exposition, we ignore uncertainty about the precise levels of B and C. 

Uncertainty in these levels can be incorporated into the procedures described below via bootstrap 

replications of these procedures for randomly selected values of B and C from any specified 

bivariate distribution consistent with prior belief or evidence. 

ii Recall that we are not assuming that every positive child was prevented from incarceration by 

the program; thus, B is the average gross benefit per true positive. 

iii As suggested above, uncertainty about values of B and C could also be incorporated into the 

model selection process via bootstrapping. 

iv  Since the comparison presented here involves models with first-grade data versus models with 

first-grade and third-grade data, additional costs for collecting the third-grade data should also be 

incorporated though they have been ignored here. An alternative comparison could also be 

carried of models based only on first-grade data versus models based only on third grade data. 

Presumably any differentials in data collection costs between these two models would be much 

smaller. Similar comments apply to comparisons involving models using sixth-grade data. 

vv Prorating the third-grade and sixth grade model results to the N for all children on whom we 

have first-grade data assumes purely random attrition between the first-grade and later years’ 

surveys. We tested the sensitivity of our comparison to this assumption by using only the 450 
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individuals who were included in the estimation of the first and third grade model, re-estimating 

the first grade model and then computed the optimal selection risk and maximum expected net 

benefit level for each of the two models. The third-grade model yielded a maximum expected net 

benefit that was 20.3 % larger ($553,520 vs. $459,980) and a lower optimal selection risk (0.18 

vs. 0.27). Thus the gain in expected net benefit from using the first and third grade model 

(relative to the first grade model) was smaller in relative terms but still substantial.  

vi For our values of C = $3,899 and B = $20,000, the cost for a false negative is $16,101 and the 

cost for a false positive is $3,899.  The ratio of these values implies a criterion function 

(weighted Kappa) with a weight in 0.805. To accommodate the available software used in the 

Kiernan analysis, this was simplified to a weight of 0.8. (Note that an unweighted Kappa 

criterion function would use a weight of 0.5.) 

vii Limiting the number of groups to three is analogous to limiting the two-factor probit model to 

three identified parameter estimates by only using linear terms for the two risk factors. The limit 

of 3 groups was applied by only considering the first two splits in the partition “tree” that 

resulted in maximum expected net benefits.  

viii In this case the groups were defined as follows: Group 1 – TOCGB1 < 4, Group 2 - 

TOCGB1 ≥ 4 and PERF < 0.21, and Group 3 - TOCGB1 ≥ 4 and PERF ≥ 21. The corresponding 

percentages of true positives were 12.7, 13.8 and 31.8 respectively. As before, expected net 

benefit was maximized when only Group 3 was selected for the program. (Note however that in 

the case the ROC4 software produced four groups (i.e., a second-level split in each side of the 

“tree”) so that we had two alternative sets of 3 groups to choose from.) 

ix In the specific example that they analyze, Berk et al. (6) report substantially better predictive 

performance of recursive partitioning (compared to logistic regression). Their measure of 



 32 

                                                                                                                                                             
predictive performance is based on the 0.5 selection risk level rather than an optimal selection 

risk level as developed here. 

x Berk et al. (6) stress the importance of the over fitting problem in the context of recursive 

partitioning and demonstrate the use of “random forests” (11), an extension of standard 

bootstrapping methods, to address the problem. 

 




