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1 Introduction

The investment management divisions of banks, mutual funds, and pension funds are

predominantly structured around asset classes such as equities, fixed income, and alternative

investments. To achieve superior returns, either through asset selection or market timing,

gathering information about specific assets and capitalizing on the acquired informational

advantage requires a high level of specialization. This induces the Chief Investment Officer

(CIO) of the firm, for example, to pick asset managers who are specialized in one and only

one asset class and to delegate portfolio decisions to these specialists. The consequence of

this delegation is that asset allocation decisions are made in at least two stages. In the first

stage the CIO allocates capital to the different asset classes, each managed by a different

asset manager. In the second stage each manager decides how to allocate the funds made

available to him to the assets within his class. This two-stage process can induce several

misalignments of incentives that may lead to large utility costs on the part of the CIO. In

this paper we show that designing appropriate return benchmarks and/or optimally selecting

the risk aversion levels of the managers can substantially reduce these costs.

We focus on the following important, yet not exhaustive, list of misalignments of

incentives. First, the two-stage process can lead to severe diversification losses. The

unconstrained (single-step) solution to the mean-variance optimization problem is likely

different from the optimal linear combination of mean-variance efficient portfolios in each

asset class, as pointed out by Sharpe (1981) and Elton and Gruber (2004). Second, there

may be considerate differences in appetites for risk between the CIO and each of the asset

managers. Third, the investment horizons of the asset managers and of the CIO may be

different. Since the managers are usually compensated on an annual basis, their investment

horizon is generally relatively short. The CIO, in contrast, may have a much longer

investment horizon. Finally, when the investment management firm has to meet certain

liabilities (for example pensions or insurance claims) this affects the optimal portfolio choice

of the CIO, but not those of unconstrained asset managers.

In practice, the performance of each asset manager is measured against a benchmark

comprised of a large number of assets within his class. So far, in the literature, the main

purpose of these benchmarks has been to disentangle the effort and achievements of the

asset manager from the investment opportunity set available to him. However, in this paper

we show that an optimally designed unconditional benchmark can also serve to improve

the alignment of incentives within the firm and to substantially mitigate the utility costs of

decentralized investment management.

Our results provide a different perspective on the use of performance benchmarks. Admati
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and Pfleiderer (1997) take a realistic benchmark as given and show that when an investment

manager uses the conditional return distribution in his investment decisions, restricting him

by an unconditional benchmark distorts incentives.1 In their framework, this distortion can

only be prevented by setting the benchmark equal to the minimum variance portfolio. We

show that the negative aspect of unconditional benchmarks can (at least partially) be offset

by the role of unconditional benchmarks in aligning other incentives, such as diversification,

risk preferences, investment horizons, and liabilities.

We use a stylized representation of an investment management firm to quantify the costs

of the misalignments for both constant and time-varying investment opportunities. We

assume that the CIO acts in the best interest of a large group of beneficiaries of the assets

under management whereas the investment managers only wish to maximize their personal

compensation. Using only two asset classes (bonds and stocks) and three assets per class

(government bonds, Baa corporate bonds, and Aaa corporate bonds in the fixed income class

and growth stocks, intermediate, and value stocks in the equities class) the utility costs can

range from 50 to 300 basis points per year. Therefore, we argue that decentralization has a

first order effect on the performance of investment management firms.

We demonstrate that when the investment opportunity set is constant, the CIO can

fully align incentives through am unconditional benchmark consisting only of assets in each

manager’s own asset class. In other words, cross-benchmarking is not required. Optimally

selecting the risk aversion of the asset managers can also mitigate the costs of decentralized

asset management, but can not fully eliminate them when asset classes are correlated.

Furthermore, we derive the perhaps counter-intuitive result that the optimal level of risk

aversion of the asset managers, from the perspective of the CIO, can substantially differ

from the risk aversion of the CIO.

When investment opportunities are time-varying, an unconditional (passive) benchmark

can still substantially, yet not fully, mitigate the utility costs of decentralized investment

management. Optimally selecting the risk aversion of the managers can partially achieve

the same goal. Finally, we show that even when the CIO optimally selects the risk attitudes

of the investment managers, an optimally designed performance benchmark reduces further

the costs of decentralized investment management by 10 to 30 percent, depending on the

CIO’s investment horizon.

The negative impact of decentralized investment management on diversification was first

noted by Sharpe (1981), who shows that if the CIO has rational expectations about the

portfolio choices of the investment managers, he can choose his investment weights such

1See also Basak, Shapiro, and Teplá (2005).
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that diversification is at least partially restored. However, this optimal linear combination

of mean-variance efficient portfolios within each asset class usually still differs from the

optimally diversified portfolio over all assets. To restore diversification further, Sharpe

(1981) suggests that the CIO imposes investment rules on one or both of the investment

managers to solve an optimization problem that includes the covariances between assets in

different asset classes. Elton and Gruber (2004) show that it is possible to overcome the

loss of diversification by providing the asset managers with investment rules that they are

required to implement. The asset managers can then implement the CIO’s optimal strategy

without giving up their private information.

Both investment rules described above interfere with the asset manager’s desire to

maximize his individual performance on which his compensation depends. Furthermore,

when the investment choices of the managers are not always fully observable, these ad hoc

rules are not enforceable. Instead, we propose to change the incentives of the managers by

introducing a return benchmark against which they are evaluated for the purpose of their

compensation. When this benchmark is implemented in the right way, it is in the manager’s

own interest to follow investment strategies which are (more) in line with the objectives of

the CIO. In Section 2, we assume that investment opportunities are constant. This allows

us to the focus on loss of diversification and on differences in preferences in a parsimonious

framework. We then add market-timing skill and horizon effects in Section 3 and study the

role of liabilities in Section 4.

Perhaps one of the most interesting questions is why the CIO should hire multiple asset

managers to begin with. Sharpe (1981) motivates the decision to employ multiple managers

by exploiting their specialization or by diversifying among asset managers. Barry and

Starks (1984) argue that risk sharing considerations may also imply that it is optimal to

employ more than one manager. In Section 3, investment opportunities are time-varying

which is motivated by the increasing empirical evidence that equity and in particular bond

returns are to some extent predictable.2 This allows skilled managers to implement active

strategies which generate, when compared to unconditional (passive) return benchmarks,

alphas. This specific interpretation of alpha may seem unconventional, but it avoids the

question of whether asset managers do or do not have private information. Treynor and

Black (1973), Admati and Pfleiderer (1997), and Elton and Gruber (2004) assume that

managers can generate alpha, but do not explicitly model how managers do so. Cvitanić,

Lazrak, Martellini, and Zapatero (2005) assume that the investor is uncertain about the

2See, for example, Ang and Bekaert (2005), Lewellen (2004), Campbell and Yogo (2005), and Torous,
Valkanov, and Yan (2005) for stock return predictability, and Dai and Singleton (2002) and Cochrane and
Piazzesi (2005) for bond return predictability.
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alpha of the manager and derive the optimal policy in that case. We explicitly model the

time-variation in investment opportunities and assume that the resulting predictability can

be exploited by skilled managers to generate value.

Apart from the tactical aspect of return predictability, time-variation in risk premia can

also have serious strategic consequences. After all, when asset returns are predictable, the

optimal portfolio choice of the CIO depends on his investment horizon.3 It then requires

dynamic optimization to find the optimal composition of the CIO’s portfolio. The resulting

portfolio choice is referred to as strategic as opposed to myopic (or tactical). The differences

between the strategic and myopic portfolio weights are called hedging demands as they hedge

against future changes in the investment opportunity set. These hedging demands are usually

more pronounced for longer investment horizons of the CIO. As the remuneration schemes of

investment managers are generally based on a relatively short period, their portfolio weights

will be virtually myopic. The CIO, in contrast, usually has a long-term investment horizon.

This leads to a third misalignment of incentives.

When unconditional benchmarks are used to overcome costs induced by differences in

investment horizons, a key question is whether (i) the benchmark and/or (ii) the strategic

allocation to the different asset classes exhibit horizon effects. Most strategic asset allocation

papers take a centralized perspective as a starting point in which the tactical and strategic

aspects are in perfect harmony.Once investment management is decentralized, tactical and

strategic motives are separated. We show that both the strategic allocation, i.e., the

allocation to the various asset classes, and the optimal benchmarks exhibit strong horizon

effects. In fact, once investment managers are not constrained by a benchmark, the horizon

effects in the strategic allocation are less pronounced, implying that the strategic allocation

and optimal benchmarks should be designed jointly.

Finally, our paper also relates to the standard principal-agent literature in which the

agent’s effort is unobservable. In the delegated portfolio management context, the agent

should exert effort to gather the information needed to make the right portfolio decisions,

as explored by Ou-Yang (2003).4 we abstract from explicitly modeling the effort choices

of the asset managers. Instead, the managers add value by timing the market, which we

assume the CIO cannot do. The agency problem arises because the investment managers,

whose actions are not always fully observable, wish to maximize their annual compensation,

whereas the CIO acts in the best interest of the beneficiaries of the firm. When designing

3See, for instance, Kim and Omberg (1996), Brennan, Schwartz, Lagnado (1997), Campbell and
Viceira (1999), Brandt (1999,2005), Aı̈t-Sahalia and Brandt (2001), Campbell, Chan, and Viceira (2003),
and Jurek and Viceira (2005), and Sangvinatsos and Wachter (2005).

4Stracca (2005) provides a recent survey of the theoretical literature on delegated portfolio management.
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the benchmark, the CIO faces a tradeoff between (i) letting the investment managers realize

the gains from market timing and (ii) correcting the misalignments of incentives described

above. As a result, the investment problem we solve is non-trivially harder than the problem

with a CIO and a single investment manager. After all, the strategic allocation of the

CIO now results from a joint optimization over the benchmark and the strategic allocation

to the asset managers. For ease of exposition, we confine attention to a tractable CRRA

preference structure and a realistic linear class of performance benchmarks which are assumed

to satisfy the participation constraint of the asset managers. Our work also relates to the

organizational literature of Dessein, Garicano, and Gertner (2005), who investigate a general

manager (in our case the CIO) who attempts to achieve a common goal, while providing

strong performance-linked compensation schemes to specialists (in our case the investment

managers) to overcome the moral hazard problem. They show that to achieve the common

goal, individual incentives may have to be weakened. A common way to align incentives

is to give the managers a share in each other’s output. Our results indicate that in the

portfolio management setting, cross-benchmarking, where the benchmarks of the different

asset managers include assets from other classes, is not required.

The paper proceeds as follows. In Section 2 the model is presented in a financial market

with constant investment opportunities. Section 3 extends the financial market by allowing

for time-variation in expected returns. Section 4 treats several extensions of the basic model

including short sales constraints, risk constraints, and liabilities. Section 5 concludes.

2 Constant investment opportunities

2.1 Financial market and preferences

We assume that the financial market contains 2k + 1 assets with prices denoted by Si,

i = 0, . . . , 2k. The first asset, S0, is a riskless cash account, which evolves as:

dS0t

S0t

= rdt, (1)

where r denotes the (constant) instantaneous short rate. The remaining 2k assets are risky.

We assume that the dynamics of the risky assets are given by geometric Brownian motions.

For i = 1, . . . , 2k, we have:

dSit

Sit

= (r + σ′
iΛ) dt+ σ′

idZt, (2)
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where Λ denotes a 2k-dimensional vector of, for now, constant prices of risk and Z is a

2k-dimensional vector of independent standard Brownian shocks. All correlations between

the asset returns are captured by the volatility vectors σi. The volatility matrix of the first

k assets is given by Σ1 = (σ1, . . . , σk)
′ and for the second k assets by Σ2 = (σk+1, . . . , σ2k)

′.

We consider a parsimonious representation of an investment management firm in which

a CIO acts in the best interest of the beneficiaries of the firm. The CIO employs two asset

managers who, independently of each other, decide on the optimal composition of their

portfolios using a subset of the assets available. The first asset manager has the mandate to

manage the first k assets and the second manager has the mandate to invest in the remaining

k assets. We explicitly model the preferences of the CIO and of the investment managers.

Initially, the preference structures are assumed to be common knowledge. We postulate that

the preferences of the CIO and of the two asset managers can be represented by a CRRA

utility function, so that each solves the problem:

max
(xis)s∈[t,Ti]

Et

(
1

1 − γi

W
1−γi
Ti

)
, (3)

where γi denotes the coefficient of relative risk aversion, Ti the investment horizon, and

i = 1, 2, C refers to the two asset managers and the CIO, respectively. The vector xi

denotes the optimal portfolio weights in the different assets available to agent i. According

to equation (3), the preferences of the CIO and the investment managers may be conflicting

along two dimensions. First, the risk attitudes are likely to be mismatched. Second, the

investment horizon used in determining the optimal portfolio choices are potentially different.

The remuneration schemes of asset managers usually induce short, say annual, investment

horizons. This form of managerial myopia tends to be at odds with the, generally, more

long-term perspective of the CIO. The difference in horizons is particularly important for

CIOs with long-term mandates from pension funds and life insurers.

In this section, we assume that investment opportunities are constant. Section 2.2

solves for the optimal portfolio choice when investment management is centralized, implying

that the CIO optimizes himself over the complete asset menu. In this case, all before-

mentioned misalignments of incentives are naturally absent. However, when the investment

management firm has a rich investment opportunity set and a substantial amount of funds

under management, centralized investment management becomes infeasible. In Section 2.3,

we therefore introduce asset managers for each asset class assuming that the asset managers

operate unconstrained by a benchmark. In Section 2.4, the asset managers are then evaluated

relative to a performance benchmark, and we show how to design this benchmark optimally.
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Finally, in Section 2.5 we show how to optimally select risk attitudes of the investment

managers in absence of a benchmark. The CIO can pick investment managers from a

continuum of investment managers characterized by different risk attitudes. The derivation

of the main results is provided in Appendix A.

2.2 Centralized problem

As a point of reference, we consider first the centralized problem in which the CIO decides

upon the optimal weights in all 2k + 1 assets. The instantaneous volatility matrix of the

risky assets is given by:

Σ =

[
Σ1

Σ2

]
. (4)

If the CIO makes allocation decisions at the asset level and only delegates his decision to

the managers for execution, the optimal portfolio is given by:

xC =
1

γC

(ΣΣ′)−1
ΣΛ (5)

with the remainder, 1 − x′Cι, invested in the cash account. The utility derived by the CIO

from implementing this optimal allocation is:

J1(W, τC) =
1

1 − γC

W 1−γC exp(a1τC), (6)

with τC = TC − t and

a1 = (1 − γC)r +
1

2

1 − γC

γC

Λ′Σ′ (ΣΣ′)−1
ΣΛ. (7)

When investment opportunities are constant, the CIO’s optimal allocation is independent of

the investment horizon, as shown by Merton (1969, 1971).

The asset set contains six risky assets. We assume that only the CIO has access to

a cash account and that, in line with Brennan (1993) and Gómez and Zapatero (2003),

the asset managers cannot borrow. The first three assets are fixed income portfolios,

namely a government bond index and two Lehman corporate bond indices with Aaa and

Baa ratings. The remaining three assets are equity portfolios made up of firms sorted into

value, intermediate, and growth categories based to their book-to-market ratio. The model

is estimated by maximum likelihood using data from December 1973 through November
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2004. The nominal short rate is set to five percent per annum. Finally, to ensure statistical

identification of the elements of the volatility matrix, we assume that Σ is lower triangular.

The estimation results are provided in Table 1. Panel A shows the estimates of the

parameters Λ and Σ. Panel B shows the implied instantaneous expected return and

correlations between the assets. In the fixed income asset class, we find an expected return

spread of one percent between corporate bonds with Baa versus Aaa rating. In the equities

asset class, we estimate a high value premium of 4.8 percent. The correlations within asset

classes are high, between 80 and 90 percent. Furthermore, there is clear dependence between

asset classes, which, as we show more formally later, implies that the two-stage investment

process leads to inefficiencies.

Figure 1 portrays the optimal centralized asset allocation of the CIO for a constant

investment opportunity set. The figure shows the CIO’s mean-variance (MV) frontier, the

tangency portfolio, and the optimal portfolios for risk aversions of two, five, and 10. The

tangency portfolio has the following portfolio weights: 10 percent in government bonds, 52

percent in corporate Baa bonds, −18 percent in corporate Aaa bonds, −66 percent in growth

stocks, 30 percent in intermediate, and 93 percent in value stocks. It has an expected return

of 16 percent with a standard deviation of 14 percent per year.

2.3 Decentralized problem without a benchmark

We now solve the decentralized problem in which the first asset manager has the mandate

to decide on the first k assets and the second asset manager manages the remaining k assets.

Neither of the asset managers has access to a cash account. If they did, they could hold highly

leveraged positions or large cash balances, which is undesirable from the CIO’s perspective.5

The CIO allocates capital to the two asset managers and invests the remainder, if any, in

the cash account.

The optimal portfolio of asset manager i when he is not constrained by a benchmark is

given by:

xNB
i =

1

γi

xi +

(
1 − x′iι

γi

)
xMV

i , (8)

with

xi = (ΣiΣ
′
i)
−1

ΣiΛ and xMV
i =

(ΣiΣ
′
i)
−1 ι

ι′ (ΣiΣ′
i)
−1 ι

. (9)

5A similar cash constraint has been imposed in investment problems with a CIO and a single investment
manager (e.g. Brennan (1993) and Gómez and Zapatero (2003)).
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The optimal portfolio of the asset managers can be decomposed into two components. The

first component, xi, is the standard myopic demand which optimally exploits the risk-

return trade-off. The second component, xMV
i , minimizes the instantaneous return variance,

and is therefore labeled the minimum variance portfolio. The minimum variance portfolio

substitutes for the riskless asset in the optimal portfolio of the asset manager. These two

portfolios are then balanced by the risk attitude of the asset manager.

The CIO has to decide how to allocate capital to the two asset managers as well as to the

cash account. We call this decision the strategic asset allocation. The investment problem

of the CIO is of the same form as in the centralized problem, but with a reduced asset set.

In the centralized setting the CIO has access to 2k+1 assets. In the decentralized case, each

asset manager combines the k assets in his class to form his preferred portfolio. The CIO

can then only choose between these two portfolios and the cash account. The instantaneous

volatility matrix of the two risky portfolios available to the CIO is given by:

Σ̄ =

[
xNB′

1 Σ1

xNB′
2 Σ2

]
. (10)

Thus, the optimal strategic allocation of the CIO to the two asset managers is given by:

xC =
1

γC

(
Σ̄Σ̄′)−1

Σ̄Λ, (11)

with the remainder 1 − x′Cι invested in the cash account.

Throughout the paper, utility costs of decentralized investment management are

calculated at the centralized level. In other words, we use the value function of the CIO

(the principal) to measure the welfare losses.

The value function of the CIO with decentralization is given by:

J2(W, τC) =
1

1 − γC

W 1−γC exp(a2τC), (12)

with τC = TC − t and

a2 = (1 − γC)r +
1

2

1 − γC

γC

Λ′Σ̄′ (Σ̄Σ̄′)−1
Σ̄Λ. (13)

It is straightforward to show that the value function in equation (6) (the centralized problem)

is larger than or equal to the value function in equation (12) (the decentralized problem).

This follows from the fact that the two-stage asset allocation procedure reduces the asset set
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of the CIO as explained above. The CIO can only allocate funds between the two managers

which does not provide sufficient flexibility to achieve the first-best solution.

The two-stage asset allocation results in the first-best outcome only when the asset

managers already happen to implement the proper relative weights within their asset classes.

In this case, the CIO can use the strategic allocation to scale up the asset manager’s weights

to the optimal firm-level allocation. A set of sufficient conditions for this to hold is given by:

Σ1Σ
′
2 = 0k×k (14)

x′iι = γi (15)

with i = 1, 2. Note that even when asset classes are independent, i.e., condition (14) holds,

the first best solution is generally not attainable. This is because of the absence of a cash

account, which implies that the managers allocate their funds to the (efficient) tangency

portfolio and the (inefficient) minimum variance portfolio. Condition (15) ensures that the

investment in the minimum variance portfolio equals zero. If both conditions are satisfied,

the CIO’s optimal strategic allocation to the managers is given by γi/γC , i = 1, 2.

Figure 2 illustrates the solution of the decentralized portfolio problem for a CIO who

hires two investment managers with equal risk aversion of two in the top graph, five in the

middle graph, and 10 in the bottom graph. Each plot shows the MV frontier of the bond

manager, the MV frontier of the stock manager, and the CIO’s optimal linear combination

of these two frontiers. As we argued above, the decentralized MV frontier lies within the

centralized MV frontier. Furthermore, the decentralized MV frontier crosses the MV frontier

for stocks at the preferred portfolio of the stock manager and it crosses the MV for bonds

at the portfolio chosen by the bond manager.

The figure also shows the portfolio choices of the CIO for both the centralized and

decentralized scenario for risk aversion of two in the top graph, five in the middle graph,

and finally 10 in the bottom graph. The results clearly shows that the CIO invests more

conservatively in the decentralized case. In fact, it can be shown in general that the optimal

decentralized portfolio is always more conservative than the optimal centralized portfolio.

In Figure 3, we show the welfare losses caused by decentralized investment management

for various combinations of risk attitudes of the asset managers. The coefficient of relative

risk aversion of the CIO equals γC = 5 in Panel A and γC = 10 in Panel B. We define the

welfare loss as the decrease in the annualized certainty equivalent return at the firm-level.

Interestingly, this loss is not minimized when the risk aversion of the asset managers is equal

to that of the CIO. In fact, the cost of decentralized investment management is minimized
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for a risk aversion of 3.3 for the stock manager and 5.7 for the bond manager, regardless of

the risk aversion of the CIO. Even though the location of the minimum is not dependent of

the risk aversion of the CIO (to be shown formally in Section 2.5), the utility loss incurred

obviously is. When the risk aversion of the CIO equals five, the diversification losses are

eight basis points per year in terms of certainty equivalents. This number drops to four basis

points when the risk aversion of the CIO equals 10 because he moves out of risky assets

and into the riskless asset. The welfare loss can increase to 80-100 basis points even in this

simple example for different risk attitudes of the investment managers. Finally, note that

when the CIO is forced to hire a bond manager who does not have the optimal risk aversion

level, this may influence the CIO’s preferred choice of stock manager and vice versa.

Figure 4 shows the portfolio compositions of the bond manager in Panel A and of the

stock manager in Panel B as functions of their risk aversion. Recall that the managers do

not have access to a riskless asset. Figure 5 shows the fraction of total risky assets that is

allocated to the stock manager as a function of his (and the bond manager’s) risk aversion.

The bond manager receives one minus this allocation. The allocation of capital between the

riskless and the risky assets depends on the risk aversion of the CIO and is not shown.

2.4 Decentralized problem with a benchmark

We now consider the decentralized investment problem in which the CIO designs a

performance benchmark for each of the investment managers in an attempt to align

incentives. We restrict attention to benchmarks in the form of portfolios which can be

replicated by the asset managers. This restriction implies that only the assets of the

particular asset class are used and that the benchmark contains no cash position. That

is, there is no possibility and, as we show later, no need for cross-benchmarking. We denote

the value of the benchmark of manager i at time t by Bit and the weights in the benchmark

portfolio for asset class i by βi. The evolution of benchmark i is therefore given by:

dBit

Bit

= (r + β′
iΣiΛ) dt+ β′

iΣidZt (16)

with β′
iι = 1, for i = 1, 2.

We postulate that the asset managers derive utility from the ratio of assets to the value

of the benchmark. They face the problem:

max
(xis)s∈[t,Ti]

Et

(
1

1 − γi

(
WiT

BiT

)1−γi

)
. (17)
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This preference structure can be motivated in several ways. First, the remuneration schemes

of asset managers usually contain a component which depends on the performance relative to

a benchmark. This is captured in our model by specifying preferences over the ratio of funds

under management to the value of the benchmark, in line with Browne (1999, 2000). Second,

investment managers often operate under risk constraints. An important way to measure risk

attributable to manager i is tracking error volatility. The tracking error is usually defined

as the return differential of the funds under management and the benchmark. Taking logs

of the ratio of wealth to the benchmark provides the tracking error in log returns. Third,

for investment management firms that need to account for liabilities, like pension funds

and life insurers, supervisory bodies often summarize the financial position by the ratio of

assets to liabilities, the so-called funding ratio as further described in van Binsbergen and

Brandt (2006). Hence, the ratio of wealth to the benchmark (liabilities) can be interpreted

as a reasonable summary statistic of relative performance.6

When the performance of asset manager i is measured relative to the benchmark, his

optimal portfolio is given by:

xB
i =

1

γi

xi +

(
1 − 1

γi

)
βi +

1

γi

(1 − x′iι)x
MV
i , (18)

where xi and xMV
i are given in equation (9). This portfolio differs from the optimal portfolio

in absence of a benchmark in two important respects. First, the optimal portfolio contains

a component which replicates the composition of the benchmark portfolio. It is exactly this

response of the investment manager which allows the CIO to optimally design a benchmark

to align incentives. Note that the benchmark weights enter the optimal portfolio linearly.

Second, when the coefficient of relative risk aversion, γi, tends to infinity, the asset manager

tracks the benchmark exactly. Hence, the benchmark is considered to be the riskless asset

from the perspective of the asset manager.

The CIO has to optimally design the two benchmark portfolios and has to determine

the allocation to the two asset managers as well as to the cash account. It is important

to notice that xB
i = xNB

i when βi = xMV
i . That is, the optimal portfolio with and

without performance benchmark coincide when the benchmark portfolio equals the minimum

6In addition, Stutzer (2003a) and Foster and Stutzer (2003) show that when the optimal portfolio is
chosen so that the probability of under-performance tends to zero as the investment horizon goes to infinity,
the portfolio which maximizes the probability decay rate solves a criterium similar to power utility with two
main modifications. First, the investor’s preferences involve the ratio of wealth over the benchmark. Second,
the investor’s coefficient of relative risk aversion depends on the investment opportunity set. This provides
an alternative interpretation of preferences over the ratio of wealth to the benchmark as well as different
coefficients of relative risk aversion for the various asset classes.
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variance portfolio. As such, the benchmark can only reduce the welfare costs of decentralized

investment management. More importantly, when investment opportunities are constant,

the benchmark can be designed so that all inefficiencies are eliminated. The composition of

the optimal benchmark which leads to the optimal allocation of the centralized investment

problem is given by:

βi = xMV
i +

γi

γi − 1

(
xC

i

xC′
i ι

− xNB
i

)
, (19)

where xC
i are the optimal weights for the assets under management by manager i when the

CIO controls all assets as given in (5) and xNB
i is given in (8). The benchmark weights sum

to one because of the restriction that the benchmark cannot contain a cash position.

The two components of the optimal benchmark portfolio have a natural interpretation.

The first component is the minimum variance portfolio. As we pointed out above, once

the benchmark portfolio coincides with the minimum variance portfolio, the benchmark

does not affect the manager’s optimal portfolio. The second component, however, corrects

the manager’s portfolio choice to align incentives. If the relative weights of the CIO and

the portfolio of the manager without a benchmark (i.e., xNB
i ) coincide, there is no need

to influence the manager’s portfolio and the second term is zero. However, when the CIO

optimally allocates a larger share of capital to a particular asset in class i, the benchmark will

contain a positive position in this asset, if γi > 1. The ratio before the second component

accounts for the manager’s preferences. If the manager is more aggressive (i.e., γi → 1),

the benchmark weights are more extreme as the manager is less sensitive to benchmark

deviations. If the investor becomes very conservative (i.e., γ → ∞), we get xNB
i = xMV

i and

the benchmark coincides with the relative weights of the CIO. In this way, the benchmark is

an excellent instrument to adjust the relative portfolio weights chosen by the asset managers.

Finally, the CIO uses the strategic allocation to the two asset managers to implement the

optimal firm-level allocation. The optimal weight given to each manager is given by xC′
i ι,

with i = 1, 2, and the remainder, 1 − xC′
1 ι− xC′

2 ι, is invested in the cash account.

Figure 6 shows the composition of the optimal benchmarks for the bond manager in Panel

A and for the stock manager in Panel B as functions of their risk aversion. The mechanism

through which the benchmark aligns incentives is particularly clear for the fixed income

asset class. Without a benchmark, the bond manager invests too aggressively in corporate

bonds with Baa rating, whereas the benchmark contains a large short position in the same

asset. This reduces the manager’s allocation to Baa rated bonds. For Aaa rated bonds, the

benchmark provides exactly the opposite incentive.
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2.5 Optimal selection of investment managers

The results above show that when investment opportunities are constant, performance

benchmarks can be designed such that the decentralized investment problem coincides with

the centralized problem and all welfare costs of decentralization are eliminated. As an

alternative mechanism to align incentives, the CIO can anticipate the risk appetites of the

investment managers when they are hired. To demonstrate this alternative mechanism, we

assume in this section that the CIO can select asset managers from a continuum of managers

with different levels of risk aversion. We show that optimally selecting the managers only

partially solves the problem, unless the asset classes are uncorrelated.

We solve the decentralized investment management problem in which the CIO not only

decides on the strategic allocation to the asset managers, but also on their risk attitudes,

γi. Equation (8) shows that the optimal portfolio of investment manager i is affine in his

risk tolerance γ−1
i . This implies that different risk attitudes induce different weights placed

on the tangency portfolio and on the minimum variance portfolio. Consequently, the CIO

selecting asset managers on the basis of their risk attitude is equivalent to expanding the

asset set from two to four assets. The CIO can in this case manage the tangency portfolios

and minimum variance portfolios independently, as well as select the fractions allocated to

the different asset classes. Let x̃C denote the optimal allocation of the CIO when he has

four assets at his disposal, namely the two tangency portfolios as well as the two minimum

variance portfolios. This optimal (four dimensional) portfolio composition is given by:

x̃C =
1

γC

(
Σ̃Σ̃′

)−1

Σ̃Λ, (20)

where Σ̃ is defined as:

Σ̃ =

⎡
⎢⎢⎢⎢⎣

(
x1 − (x′1ι)x

MV
1

)′
Σ1

xMV ′
1 Σ1(

x2 − (x′2ι)x
MV
2

)′
Σ2

xMV ′
2 Σ2

⎤
⎥⎥⎥⎥⎦ . (21)

In Appendix A we show that this allocation can be implemented by optimally choosing the

risk attitudes of the two asset managers and by selecting the strategic allocation of capital

to the managers. The optimal coefficients of relative risk aversion are given by:

γ∗1 =
x̃C(2)

x̃C(1)

and γ∗2 =
x̃C(4)

x̃C(3)

. (22)
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The optimal selection of investment managers is independent of the preferences of the CIO.

This is because within an asset class only the relative allocations are important since the

absolute allocations can be adjusted using the strategic allocation to the asset classes. The

optimal strategic allocation xC to the two asset classes is given by:

x1C = x̃C(2) and x2C = x̃C(4). (23)

The corresponding value function of the CIO is:

J3(W, τC) =
1

1 − γC

W 1−γC exp(a3τC), (24)

with τC = TC − t and

a3 = (1 − γC)r +
1

2

1 − γC

γC

Λ′Σ̃′
(
Σ̃Σ̃′

)−1

Σ̃Λ. (25)

Despite the fact that optimally selecting the asset managers according to their risk tolerances

mitigates the inefficiencies induced by decentralized asset management, it generally does not

lead to the first best outcome, unless the asset classes are uncorrelated (see condition (14)).

In the empirical application we find that the optimal risk aversion for the stock manager

is 3.3 while that for the fixed income manager is 5.7. Hence, in this case, the equity class

requires a more aggressive investment manager than the fixed income class. The remaining

utility cost of decentralized asset management depends on the risk aversion of the CIO and

equals eight basis points when γC = 5 and four basis points when γC = 10.

3 Time-varying investment opportunities

3.1 Financial market

In Section 2, investment opportunities are constant through time and there are only two

inefficiencies caused by decentralized investment management, namely loss of diversification

between asset classes and misalignments in risk attitudes. However, the role of asset

managers is rather limited in that they add no value in the form of stock selection or market

timing. In this section, we allow investment opportunities, and in particular expected returns,

to be time-varying and predicted by a set of common forecasting variables. This setting allows

asset managers to implement active strategies which optimally exploit changes in investment

opportunities in their respective asset classes. These active strategies can generate alphas

when compared to an unconditional (passive) performance benchmark. Thus active asset
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management can be value-enhancing.

This extension of the problem adds several new interesting dimensions to the

decentralized investment management problem. First, differences in investment horizons

create another misalignment of incentives. CIOs generally act in the long-term interest of the

investment management firm, while asset managers tend to be more shortsighted, possibly

induced by their remuneration schemes. When the predictor variables are correlated with

returns, it is optimal to hedge future time-variation in investment opportunities.7 As a

consequence, the myopic portfolios held by the asset managers will generally not coincide

with the CIO’s optimal portfolio which incorporates long-term hedging demands. Second,

when a common set of predictor variables affects the investment opportunities in both asset

classes, active strategies are potentially correlated. This implies that even if instantaneous

returns are uncorrelated, long-term returns can be correlated, which means that the loss of

diversification is aggravated. Third, the role of benchmarks is markedly different compared

to the case of constant investment opportunities. For the sake of realism, we restrict

attention to passive (unconditional) strategies as return benchmarks. As we discussed earlier,

Admati and Pfleiderer (1997) show that when the asset manager has private information, an

unconditional benchmark can be very costly. After all, the asset managers base their decision

on the conditional return distribution, whereas the CIO designs the benchmark using the

unconditional return distribution.8 In their framework it follows therefore that unless the

benchmark is set equal to the minimum variance portfolio, it induces a potentially large

efficiency loss. In our model, on the contrary, the benchmark is used to align incentives.

We therefore further explore the role of unconditional return benchmarks and their interplay

with differences in investment horizons.

We now consider a more general financial market in which the prices of risk, Λ, can vary

over time. More explicitly, we model:

Λ(X) = Λ0 + Λ1X, (26)

where X denotes an m-dimensional vector of de-meaned state variables that capture time-

variation in expected returns. Although the state variables are time-varying, we drop the

subscript t for notational convenience. All portfolios in this section are indexed with either

the state realization, X, or the investment horizon, τ , in order to emphasize the conditioning

7See for instance Kim and Omberg (1996), Campbell and Viceira (1999), Brandt (1999), and Liu (2006).
8Although the predictors are publicly observed, we assume that the CIO is time-constrained or not

sufficiently specialized to exploit this information. As such, the conditional return distribution remains
unknown for the CIO and the conditioning information exploited by the asset managers is equivalent to
private information.
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information used to construct the portfolio policies.

Most predictor variables used in the literature, such as term structure variables and

financial ratios, are highly persistent. In order to accommodate first-order autocorrelation

in predictors, we model their dynamics as Ornstein-Uhlenbeck processes:

dXit = −κiXitdt+ σ′
XidZt, (27)

where Z now denotes a (2k+m)-dimensional Brownian motion. The volatility matrix of the

m predictors is given by ΣX = (σX1, . . . , σXm)′. Furthermore, we assume again that only

the CIO has access to a cash account. Finally, we postulate the same preference structures

for the CIO and the asset managers as in Section 2.1.

We estimate the return dynamics using three predictor variables: the short rate, the

yield on a 10-year nominal government bond, and the log dividend yield of the equity index.

These predictors have been used in strategic asset allocation problems to capture the time-

variation in expected returns (see the references in footnote 3). The model is estimated

by maximum likelihood using data from January 1973 through November 2004. Following

Campbell, Chan, and Viceira (2003), we constrain the levels of the predictor variables to

match their sample counterparts. The estimation results are presented in Table 2.

The estimates of the unconditional instantaneous expected returns, Λ0, are similar to the

results in Table 1. The second part of the Table 2 describes the responses of the expected

returns of the individual assets to changes in the state variables, ΣΛ1. We find that the short

rate has a negative impact on the expected returns of all assets except for government bonds.

Furthermore, the expected returns of assets in the fixed income class are positively related

to the long-term yield, while the expected returns of assets in the equity class are negatively

related to this predictor. The dividend yield is positively related to the expected returns of

all assets. The estimates of the autoregressive parameters, κi, reflect the high persistence of

the predictor variables. Finally, the last part of Table 2 provides the joint volatility matrix

of the assets and the predictor variables.

3.2 Centralized problem

We first solve again the centralized investment problem in which the CIO manages all

assets. This solution serves as a benchmark for the case in which investment management is

decentralized. The centralized investment problem with affine prices of risk has been solved

by, among others, Liu (2006) and Sangvinatsos and Wachter (2005). We denote the CIO’s
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investment horizon by τC . The optimal allocation to the different assets is given by:

xC (X, τC) =
1

γC

(ΣΣ′)−1
ΣΛ(X) + ...

1

γC

(ΣΣ′)−1
ΣΣ′

X

(
B (τC) +

1

2

(
C (τC) + C (τC)′

)
X

)
,

(28)

where expressions for B (τC) and C (τC), as well as the derivations of the results in this

section are provided in Appendix B. The optimal portfolio contains two components. The

first component is the conditional myopic demand which optimally exploits the risk-return

trade-off provided by the assets. The second component represents the hedging demands

that emerge from the CIO’s desire to hedge future changes in the investment opportunity

set. This second term reflects the long-term perspective of the CIO. The corresponding value

function is given by:

J1 (W,X, τC) =
1

1 − γC

W 1−γC exp

{
A (τC) +B (τC)′X +

1

2
X ′C (τC)X

}
, (29)

with the coefficients A, B, and C provided in Appendix B.

In Figure 7 we illustrate the composition of the optimal portfolio for different investment

horizons when the coefficient of relative risk aversion of the CIO equals either γC = 5 in Panel

A or γC = 10 in Panel B. Focusing first on the fixed income asset class, we find substantial

horizon effects for corporate bonds. At short horizons, the CIO optimally tilts the portfolio

towards Baa rated corporate bonds and shorts Aaa rated corporate bonds to take advantage

of the credit spread. At longer horizons, the fraction invested in Baa rated bonds increases

even further, while the allocation to Aaa rated corporate bonds decreases. Switching to the

results for the equities asset class, we detect a strong value tilt at short horizons due to the

high value premium. The optimal portfolio contains a large long position in value stocks

and large short position in growth stocks. However, as the investment horizon increases, the

value tilt drops, consistent with the results of Jurek and Viceira (2005).9

9This result is also in line with the findings of Campbell and Vuolteenaho (2004) who explain the value
premium by decomposing the CAPM beta into a cash flow beta and a discount rate beta. The cash flow
component is highly priced but largely unpredictable. The discount rate component demands a lower price
of risk but is to some extent predictable. Campbell and Vuolteenaho (2004) show that growth stocks have a
large discount rate beta, whereas value stocks have a large cash flow beta. This implies that, from a myopic
perspective, value stocks are more attractive than growth stocks. However, the predictability of growth stock
returns implies that long-term returns on these assets are less risky, making them relatively more attractive.
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3.3 Decentralized problem without a benchmark

We now solve the decentralized problem when the CIO cannot use the benchmark to align

incentives. In general, the optimal portfolios of the asset managers depend on both the

investment horizon and the state of the economy. However, to make the problem more

tractable and realistic, we assume that the investment managers are able to time the market

and exploit the time-variation in risk premia, but ignore long-term considerations. That is,

asset managers implement the conditional myopic strategy:

xNB
i (X) =

1

γi

xi(X) +

(
1 − xi(X)′ι

γi

)
xMV

i (30)

with

xi(X) = (ΣiΣ
′
i)
−1

ΣiΛ(X) and xMV
i =

(ΣiΣ
′
i)
−1 ι

ι′ (ΣiΣ′
i)
−1 ι

. (31)

This particular form of myopia can be motivated by the relatively short-sighted compensation

schemes of asset managers. Since the average hedging demands for one-year horizons are

negligible, we abstract from the hedging motives in this part of the problem.

The CIO does account for the long-term perspective of the firm through the strategic

allocation. However, we assume that the CIO implements a strategic allocation that is

unconditional, i.e., independent of the current state. At every point in time, the allocation

to the different asset classes is reset towards a constant proportions strategic allocation, as

opposed to constantly changing the strategic allocation depending on the state. In order to

decide on the strategic allocation, the CIO maximizes the unconditional value function:

max
xC(τC)

E (J2 (W,X, τC) | W ) , (32)

in which J2 denotes the conditional value function in the decentralized problem above.

Obviously, the CIO’s horizon, τC , influences the choice of the strategic allocation.

To review the setup of this decentralized problem, the asset managers implement active

strategies in their asset classes using conditioning information but ignore any long-term

considerations. The CIO, in contrast, allocates capital unconditionally to the asset classes,

but accounts for the firm’s long-term perspective.

In order to determine the unconditional value function, we evaluate first the conditional

value function of the CIO, J2, for any choice of the strategic allocation. In Appendix B we
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show that the conditional value function is exponentially quadratic in the state variables:

J2 (W,X, τC) =
W 1−γC

1 − γC

exp

{
(A (τC , xC) +B (τC , xC)′X +

1

2
X ′C (τC , xC)X

}
. (33)

One aspect of the CIO’s problem is particularly interesting. The active strategy implemented

by the asset managers, xNB
i , is affine in the predictor variables X:

xNB
i (X) = ζNB

0i + ζNB
1i X. (34)

As a consequence, the implied wealth dynamics faced by the CIO are given by:

dWt

Wt

= (r + σW (X)′Λ(X)) dt+ σW (X)′dZt, (35)

with

σW (X)′ = x1C

(
ζNB

01 + ζNB
11 X

)′
Σ1 + x2C

(
ζNB

02 + ζNB
12 X

)′
Σ2. (36)

Since the asset managers condition their portfolios on the state variables, the CIO has to

allocate capital to two assets which exhibit a very particular form of heteroskedasticity.

Hence, despite the homoskedastic nature of the financial market, the CIO is confronted with

heteroskedastic asset returns in the decentralized investment management problem.

We solve for the optimal strategic asset allocation numerically (see Appendix B for further

details). In Figure 8, we present the strategic allocation to the fixed income and equities

classes for different investment horizons. The preference parameters are set to γC = 10 and

γ1 = γ2 = 5. The strategic allocation to the asset classes exhibits substantial horizon effects

and marginally overweighs equities. Recall that the strategic allocation to asset classes is by

construction independent of the state variables because it is unconditional.

Figure 9 provides the annualized utility costs from decentralized asset management for

different risk attitudes of the investment managers. The investment horizon equals either

T = 1 year in Panel A or T = 10 years in Panel B. The utility costs are large and increasing in

the horizon of the CIO. For relatively short investment horizons, the costs closely resemble the

case with constant investment opportunities, with an order of about 40 to 80 basis points per

annum. In contrast, for longer investment horizons, the utility costs are substantially higher,

around 200 to 300 basis points per annum. Note also that for different investment horizons

the costs of decentralized asset management are minimized for different risk attitudes of the

investment managers. The optimal selection of investment managers and the interplay with
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the CIO’s horizon is the subject of Section 3.5.

3.4 Decentralized problem with a benchmark

We show in Section 2.4 that when investment opportunities are constant, a performance

benchmark can be designed to eliminate all inefficiencies induced by decentralized asset

management. This section re-examines this issue for the case of time-varying investment

opportunities. We restrict attention to unconditional benchmarks, meaning the benchmark

is not allowed to depend on the state variables.10 Unconditional benchmarks have the

advantage that they are easy to implement. Moreover, investment managers following an

unconditional benchmark do not have to trade excessively, which could be the case with

a conditional benchmark. Of course, conditional benchmarks are more flexible and may

therefore reduce further or even eliminate the costs of decentralized asset management.

The performance benchmark of asset manager i is given by a k-dimensional vector

of unconditional portfolio weights, βi, with β′
iι = 1. Since the benchmark is chosen

unconditionally, asset managers can outperform their benchmark (i.e., generate alpha) by

properly incorporating the conditioning information. The benchmark dynamics are:

dBit

Bit

= (r + β′
iΣiΛ(X)) dt+ β′

iΣidZt. (37)

To solve for the optimal benchmark, we first determine the optimal response of the asset

managers to their benchmarks (assuming the same preference structure as in Section 2.4).

The optimal conditional myopic strategy of the investment managers with a benchmark is:

xB
i (X) =

1

γi

xi(X) +

(
1 − 1

γi

)
βi +

1

γi

(1 − xi(X)′ι)xMV
i , (38)

with xi(X) and xMV
i given by equation (31). The CIO chooses the (unconditional)

benchmarks and determines the (unconditional) strategic allocation to the asset classes by

maximizing the unconditional expectation of the conditional value function:

max
xC(τC),β1(τC),β2(τC)

E (J3 (W,X, τC) | W ) , (39)

The conditional value function, J3, is again exponentially quadratic in the state variables

and the coefficients are provided in Appendix B. Note that both the strategic allocation and

the benchmarks are allowed to depend on the CIO’s horizon.

10See also Cornell and Roll (2005).
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We use numerical methods to solve for the optimal benchmarks and allocations to the

two asset classes (see Appendix B for further details). Panel A of Figure 10 shows the

optimal performance benchmarks for different investment horizons of the CIO. The CIO’s

risk aversion equals 10 and the managers’ risk aversion is set to five. At short horizons

or if the CIO behaved myopically, the optimal benchmarks are similar as when investment

opportunities are constant. However, the benchmark portfolios exhibit strong horizon effects.

For instance, in the equities asset class, the myopic benchmark reinforces the value tilt

already present in the equity manager’s (myopic) portfolio. The long-run benchmark, in

contrast, anticipates the lower risk in growth stocks and provides an incentive to reduce

the value tilt. This illustrates how performance benchmarks can be used to incorporate the

CIO’s long-term perspective in the short-term portfolio choices of asset managers.

Panel B of Figure 10 provides the corresponding strategic allocation to both asset classes

for different investment horizons. Recall that, when investment opportunities are constant,

the centralized allocation is always more risky than the decentralized allocation without a

benchmark. When investment opportunities are time-varying, we find the initial allocation

with a benchmark to be similar (and even somewhat more conservative) to the allocation

without a benchmark. However, for longer investment horizons of the CIO, the optimal

strategic allocation of the CIO is tilted substantially towards equities.

Figure 11 presents the welfare gains generated by an optimally constructed benchmark.

The CIO’s coefficient of risk aversion equals 10 and the horizon is set to T = 1 year in Panel

A and T = 10 years in Panel B. For the one-year horizon, the value added by the benchmark

is limited to approximately 20 basis points. However, when the investment horizon increases

to 10 years, the benefit of an optimally chosen benchmark increases as the asset managers

become less conservative. In addition, for the short investment problem, optimal selection

of the asset manager is equally important for the two asset classes. When the CIO has a

long-term perspective, optimally choosing the equities manager is far more important.

3.5 Optimal selection of asset managers and benchmarks

We consider two mechanisms for aligning incentives for decentralized investment

management. Above we showed that choosing a benchmark optimally can mitigate the costs

substantially. In this section, we infer the role of optimally selecting the asset managers,

focusing first on the case when the CIO does not use a performance benchmark.

When the CIO can select the investment managers on the basis of their risk attitudes,

he has the ability to independently manage the conditional tangency portfolios and the

conditional minimum variance portfolios. In order to optimally select the managers, the
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CIO maximizes the uncondition value function in equation (32) with respect to both γ1 and

γ2, as well as the strategic allocation xC . When the CIO has a coefficient of relative risk

aversion of γC = 5 and the investment horizon equals 10 years, the optimal risk aversion

levels of the fixed income and equity asset managers are given by γ1 = 2.8 and γ2 = 7.8,

respectively. The corresponding cost of decentralized asset management equals 340 basis

points per year. Similarly, when the CIO’s risk attitude is γC = 10 and the investment

horizon equals 10 years, the optimal risk aversion levels are γ1 = 2.9 and γ2 = 9.6. The cost

of decentralized asset management equals 198 basis points in this case.

Recall that when investment opportunities are constant, the optimal risk attitudes of the

asset managers are independent of the risk attitude of the CIO. This result does not carry over

to the case with time-varying investment opportunities. For a 10-year investment horizon,

Panel B of Figure 12 illustrates that as the risk aversion of the CIO increases, it is optimal

to select more conservative investment managers. This effect is particularly pronounced for

the equities asset class. Moreover, the manager optimally selected for the equities class is

far more conservative than the one optimally selected for the fixed income asset class. In

order to illustrate the role of the investment horizon, we present in Panel A of Figure 12

the optimal risk attitudes of the managers when the CIO has an investment horizon of one

year. We find in this case that the selection of the optimal investment managers is (almost)

independent of the risk aversion of the CIO, in line with the case of constant investment

opportunities. These results imply that for long-term investment management firms, such

as pension funds and life insurers, relating the investment manager’s risk attitudes to the

firm’s long-term preferences is particularly important.

If investment opportunities are constant, the optimally designed benchmark aligns

incentives perfectly. As such, optimally selecting the risk attitudes of investment managers

becomes irrelevant. If investment opportunities are time-varying and we restrict attention

to unconditional performance benchmarks, however, the benchmarks cannot overcome all

inefficiencies and there is still scope for optimally selected asset managers. Table 3 assesses

the value added by performance benchmarks once the risk attitudes of the asset managers

are selected optimally. The results are provided for a range of risk attitudes of the CIO

(γC = 4, . . . , 10) and for horizons of TC = 1 and TC = 10. The first two columns report

the costs of decentralized investment management in annualized terms for optimally selected

asset managers. These costs range from 50 to 100 basis points per year for a CIO with a

one-year investment horizon and from 200 to 400 basis points for an investment horizon of

10 years. Columns 3 and 4 show the costs if the CIO can optimally design unconditional

benchmarks for each of the asset managers. Finally, the last two columns present the value of

a benchmark in absolute terms and relative terms (in parentheses). The value of a benchmark
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ranges from 14 to 35 basis points for a CIO with a one year investment horizon, and from 22

to 47 basis points with a 10 year horizon. The relative improvement (as a fraction of total

costs without a benchmark) varies from 10 to 30 percent.

We conclude that unconditional performance benchmarks are significantly value

enhancing, even when risk attitudes of asset managers have been selected optimally. This

extends the results of Admati and Pfleiderer (1997) concerning the role of performance

benchmarks in delegated portfolio problems. In case of multiple asset managers, performance

benchmarks can be useful in aligning incentives along, at least, three dimensions, namely

diversification, preferences, and investment horizons. Moreover, we show quantitatively that

the benchmark is rather effective in fulfilling this role.

4 Extensions

We extend the baseline results of sections 2 and 3 in several directions. First, managers of

particular asset classes may be constrained from taking on short positions. We discuss the

role of short sales constraints on the manager’s portfolio choice and long-only benchmarks

in Section 4.1. Second, asset managers are generally subjected to risk constraints, such as

tracking error volatility constraints. Section 4.2 solves the problem under both absolute risk

constraints and risk constraints relative to a benchmark. Third, institutional investors like

pension funds and insurers need to account for liabilities in their asset allocation. Section 4.3

illustrates the impact of liabilities on the allocation of the CIO, the misalignments discussed

above, and the role of optimal performance benchmarks in the presence of liabilities. For

ease of exposition we assume that investment opportunities are constant.

4.1 Short sales constraints

Although institutional investors may be less restricted by short sales constraints than

individuals, it is plausible that short-selling assets is costly for certain asset classes. In

this section, we briefly summarize how long-only constraints can be incorporated.

In case of constant investment opportunities, Teplá (2000) shows that dynamic investment

problems can be solved using standard static techniques. Specifically, in our setting, solving

for the optimal portfolio of the asset managers entails solving a sequence of problems as in

Section 2, but with a reduced asset set. Once the portfolio constraints are satisfied, we obtain

a candidate solution and then optimize over all viable candidate solutions. When investment

opportunities are time-varying, we have to resort to numerical techniques. However,

numerical solutions are particularly simple to obtain because of the assumption of managerial
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myopia. Since the asset managers only care about current investment opportunities, we can

solve for their optimal (constrained) allocations without solving a dynamic program.

Unfortunately, our empirical application is not particularly well-suited for imposing

portfolio constraints, since the fixed income manager optimally shorts Aaa rated bonds

to finance investments in Baa rated bonds and similarly for the equity manager for growth

and value stocks. Consequently, we only obtain corner solutions.

4.2 Risk constraints

Apart from designing the optimal return benchmark, CIOs usually employ risk constraints

in order to change or restrict the behavior of asset managers. These risk constraints can

either be formulated in terms of absolute risk, in absence of a benchmark, or in terms of

relative risk, when the asset manager is remunerated relative to a benchmark. Absolute

risk constraints restrict the total volatility of the portfolio return. Relative risk constraints

are concerned with the volatility of the portfolio return in excess of the benchmark return,

as in Roll (1992) and Jorion (2003). We assume that the volatility constraints have to be

satisfied at every point in time. In modern investment management firms, risk management

systems monitor the risk exposures of portfolio holdings frequently, which makes it plausible

to presume that risk constraints have to be satisfied continuously.

The instantaneous volatility of the portfolio return (absolute risk) is given by:

σA (xi) =
√
x′iΣiΣ′

ixi. (40)

The instantaneous volatility of the portfolio return in excess of the benchmark (relative risk),

also called the tracking error volatility, is given by:

σR (xi) =

√
(xi − βi)

′ ΣiΣ′
i (xi − βi). (41)

Using these definitions for absolute and relative risk, we impose risk limits of the form:

σj (xi) ≤ φij, (42)

with j = A, R. To ensure that the optimization problem of the asset managers is well-

defined, we assume that:

σA
(
xMV

i

) ≤ φiA, (43)
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which states that the limit on absolute risk must exceed the volatility of the minimum

variance portfolio. In case of relative risk constraints, we require that φiR ≥ 0, since we

restrict attention to benchmarks that can be replicated by the managers. A relative risk

limit of φiR = 0 implies that the asset manager has the mandate to exactly implement the

benchmark portfolio. We focus on the effect of imposing either of the two risk constraints,

but not both.11

Whenever the unconstrained portfolio choice in absence of a benchmark does not violate

the absolute risk constraint, this portfolio remains optimal for manager i. However, once the

absolute risk constraint is violated, Appendix C shows that the optimal portfolio is:

xNB
i (ξi) =

1

γi (1 + ξi)
xi +

(
1 − x′iι

γi (1 + ξi)

)
xMV

i , (44)

where xi and xMV are given by equation (9) and ξi > 0 satisfies:

σA
(
xNB

i (ξi)
)

= φAi. (45)

This solution shows that the absolute risk constraint induces an effective increase in relative

risk aversion. Using the results of Section 2.5, it is easy to show that absolute risk constraints

can mitigate inefficiencies whenever the investment manager is too aggressive. On the

contrary, when the investment manager is too conservative, absolute risk constraints can

actually aggravate the inefficiencies illustrated in Figure 3.

We also show in Appendix C that the optimal portfolio in the presence of a performance

benchmark and binding relative risk constraints is given by:

xB
i (ξi) =

1

γi (1 + ξi)
xi +

(
1 − 1

γi (1 + ξi)

)
βi +

1 − x′iι
γi (1 + ξi)

xMV
i , (46)

where xi and xMV are given in equation (9) and ξi > 0 satisfies:

σR
(
xNB

i (ξi)
)

= φRi. (47)

In addition, the appendix shows that the relative risk constraint binds for an investment

manager with risk aversion γi once the benchmark is designed on the basis of a higher risk

aversion γ̃i, with γ̃i > γi. This implies that the CIO does not require specific knowledge of the

manager’s risk attitude more than knowing an upper bound. If the benchmark and relative

risk constraint are designed on the basis of this conservative upper bound, the relative risk

11Jorion (2003) infers in addition the effect of both absolute and relative risk constraints.
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constraint binds for more aggressive managers. The binding constraint induces an effective

increase in the manager’s risk aversion to the level for which the benchmark is designed.

Therefore, the results derived in Section 2 hold more broadly using relative risk constraints

and require limited knowledge of the risk preferences of the asset managers.

In order to illustrate empirically the interplay between the managers’ preferences and

both absolute and relative risk, we provide in Figure 13 absolute and relative risks of the

fixed income and stock managers when their relative risk aversion coefficients range from two

to 10. The top graphs plot the absolute volatilities in absence of a benchmark for the fixed

income manager (left) and the stock manager (right). The volatilities are monotonically

decreasing in the risk aversion of the managers and are bounded below by the volatility of

the minimum variance portfolios, with the minimum variance portfolio for stocks obviously

being higher than that for bonds. The bottom graphs depict the relative risks (downwards

sloping curves) and the corresponding absolute risks of the optimal portfolio in the presence

of a benchmark. The relative risks are high for aggressive managers, but sharply decrease as

the managers become more conservative. This holds for both asset classes. The absolute risk

of the portfolios is independent of the risk preferences of the manager because the benchmark

ensures that the manager implements the CIO’s optimal relative portfolio.

4.3 Liabilities

When an investment management firm needs to meet future liabilities, decentralized

investment management may give rise to yet another misalignment of incentives.

Conventional benchmarks do not reflect the risks to which liabilities are exposed, and the

presence of liabilities has therefore no effect on the portfolios of the asset managers. In this

section, we quantify the inefficiencies induced by decentralized investment management in

the presence of liabilities and discuss the design of liabilities-adjusted benchmarks.

We denote the value of the liabilities at time t by Lt and assume that the dynamics of

the liabilities are given by:

dLt

Lt

= µLdt+ σ′
LdZt, (48)

where Z may contain an additional orthogonal Brownian motion to represent the risk in the

liabilities that cannot be hedged. In that case, we add a column of zeros to the volatility

matrix of the assets, Σ. The preferences of the CIO are modified to reflect the presence

of the liabilities. In supervising pension funds and life insurers, it is common practice to

measure the financial state of the fund by the funding ratio, which is the ratio of assets to
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liabilities. We therefore model the problem of the CIO in the presence of liabilities as:

max
(xCs)s∈[t,TC ]

Et

(
1

1 − γC

(
WT

LT

)1−γC

)
. (49)

Using the results of Section 2.4, it is straightforward to show that the optimal portfolio of

the CIO, xL
C , in case of constant investment opportunities is:

xL
C = xC +

(
1 − 1

γC

)
(ΣΣ′)−1

ΣσL, (50)

where xC is given in equation (5) and the remainder, 1−xL′
C ι, is invested in the cash account.

Hence, in the presence of liabilities, the optimal portfolio contains a hedging component to

hedge shocks that affect the value of the liabilities. The corresponding value function is:

J(W/L, τC) =
1

1 − γC

(
W

L

)1−γC

exp(a(x)τC), (51)

with τC = TC − t and

a(x) =(1 − γC) (r + x′ΣΛ − µL + σ′
LσL − x′ΣσL)

− 1

2
γC (1 − γC) (x′Σ − σ′

L) (Σ′x− σL) ,
(52)

where x is the (implied) portfolio choice of the CIO. Since the asset managers are not directly

affected by the liabilities, their optimal portfolios are unaltered. Hence, all results of Section

2 apply in the presence of liabilities, except that the optimal portfolio of the CIO is different.

As the optimal benchmark is designed to implement the CIO’s allocation in Section 2.4, the

composition of the benchmark is influenced by the presence of the liabilities.

In order to assess empirically the impact of liabilities, we assume that the dynamics of the

liabilities equal those of the government bonds, i.e. σL = Σ(1, :)′. Correspondingly, the drift

of the liabilities is given by r+σ′
LΛ. The resulting portfolio of the CIO and, consequently, the

performance benchmarks are tilted towards government bonds. In absence of a performance

benchmark, Figure 14 illustrates the utility costs of decentralized investment management

in the presence of liabilities. The numbers are strikingly higher than when the investment

management firm does not have to account for liabilities. With the CIO’s risk aversion equal

to γC = 5 in Panel A of Figure 14, the costs are in the order of three to four percent per

year. For a more conservative CIO with γC = 10 in Panel B of Figure 14, these costs range

from five to seven percent per year. Therefore, the inefficiencies resulting from decentralized
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investment management are particularly pronounced in the presence of liabilities.

5 Conclusions

We address several misalignments of incentives induced by decentralized investment

management. These misalignments between a CIO and the asset managers he employs

can lead to large utility costs. One straightforward solution is to implement centralized

investment strategies where the CIO attempts to manage all assets himself. However, from

an organizational point of view, decentralized investment management is an inevitable and

stylized fact of the investment industry. We show in this paper that the optimal design of an

unconditional linear benchmark can be very effective in mitigating the costs of decentralized

investment management. Furthermore, the optimal selection of the risk tolerances of the

asset managers can lead to (further) reduction of these costs.

For ease of exposition, we confine attention to CRRA preferences and linear performance

benchmarks. Future work could focus on a more complicated preference structure and/or

non-standard contracts. For example, it seems reasonable that the utility function of the

CIO is kinked as in van Binsbergen and Brandt (2005). The compensation scheme for

the asset managers may also be non-linear and/or asymmetric, as in Browne (1999, 2000),

Carpenter (2000), and Basak, Pavlova, and Shapiro (2005), for example. Another interesting

extension is to assess the asset pricing implications of decentralized investment management.

In delegated portfolio choice problems, Brennan (1993), Gómez and Zapatero (2003),

and Cuoco and Kaniel (2003), illustrate the impact of delegation and benchmarking on

equilibrium asset prices. Stutzer (2003b) shows that multiple benchmarks imply a factor

model with these benchmarks returns as, possibly priced, factors.
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A Constant investment opportunities

A.1 Centralized problem

The centralized problem in Section 2.2 is the standard Merton (1969, 1971) problem. The
dynamics of wealth are given by:

dWt

Wt

= (r + x′CΣΛ) dt+ x′CΣdZt. (A.1)

The CIO can trade all 2k assets and has access to a cash account. The Hamilton-Jacobi-
Bellman (HJB) equation is given by:

max
xC

(
JWW (x′CΣΛ + r) +

1

2
W 2JWWx

′
CΣΣ′xC + Jt

)
= 0, (A.2)

where J denotes the value function. The first-order condition (FOC) is:

xC =
−JW

JWWW
(ΣΣ′)−1

ΣΛ. (A.3)

It is well-known that the value function takes the form:

J(W, τC) =
1

1 − γC

W 1−γC exp(a1τC), (A.4)

with τC = TC − t. Therefore, the composition of the optimal portfolio is given by:

xC =
1

γC

(ΣΣ′)−1
ΣΛ, (A.5)

and the remainder, 1−x′Cι, is invested in the cash account. Substituting the optimal portfolio
into the HJB equation provides the solution for a1:

a1 = (1 − γC)r +
1

2

(1 − γC)

γC

Λ′Σ′ (ΣΣ′)−1
ΣΛ. (A.6)

A.2 Decentralized problem without a benchmark

In order to solve the decentralized problem in Section 2.3 without a performance benchmark,
we first consider the problems of the two asset managers. Recall that both managers are
cash constrained. The CIO then optimizes in the second step the strategic allocation to the
two managers and allocates the remainder to the cash account.

Denote the manager’s portfolio choice by xNB
i , i = 1, 2. The wealth dynamics are:

dWt

Wt

=
(
r + xNB′

i ΣiΛ
)
dt+ xNB′

i ΣidZt, (A.7)

We drop the subscripts i of the asset managers’ wealth in the remainder of the appendices.
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The corresponding HJB equation is given by:

max
xNB

i :xNB′
i ι=1

(
JWW

(
r + xNB′

i ΣiΛ
)

+
1

2
W 2JWWx

NB′
i ΣiΣ

′
ix

NB
i + Jt

)
= 0. (A.8)

The first order conditions of the Lagrangian corresponding to the (constrained) optimization
problem are:

0 = JWW (r + ΣiΛ) +W 2JWW ΣiΣ
′
ix

NB
i − ξι, (A.9)

1 = xNB′
i ι, (A.10)

with ξ denoting the Lagrange multiplier. The value function is of the form:

J(W, τ i) =
1

1 − γi

W 1−γi exp(bτ i), (A.11)

with τ i = Ti − t. The solution to the FOCs provides the optimal portfolio choice of the asse
managers given in equations (8) and (9).

In the second step, the CIO takes the portfolio choice of the portfolio managers as given.
Therefore, the CIO solves an investment problem with two assets and a cash account, where
the two assets have a volatility matrix:

Σ̄ =

[
xNB′

1 Σ1

xNB′
2 Σ2

]
, (A.12)

The results of Appendix A.1 directly apply, which yields the optimal portfolio allocations
and value function given in equations (11)-(13).

A.3 Decentralized problem with a benchmark

We solve the decentralized problem with an optimally designed benchmark of Section 2.4.
We derive first the optimal allocations of the asset managers in the presence of a benchmark.
Define normalized wealth as wit = WitB

−1
it . Recall that the benchmark comprises only

positions in the assets available to the investment managers and no cash. The asset managers
are therefore able to replicate the benchmark. The dynamics of the benchmark is given in
equation (16). Using Ito’s lemma, the dynamics of normalized wealth are:

dwt

wt

=
(
xB′

i ΣiΛ − β′
iΣiΛ + β′

iΣiΣiβi − β′
iΣiΣ

′
ix

B
i

)
dt+

(
xB′

i Σi − β′
iΣi

)
dZt. (A.13)

The corresponding HJB equation is:

max
xB

i :xB′
i ι=1

(
Jww

(
xB′

i ΣiΛ − β′
iΣiΛ + β′

iΣiΣiβi − β′
iΣiΣ

′
ix

B
i

)
+

1
2
w2Jww

(
xB′

i Σi − β′
iΣi

) (
xB′

i Σi − β′
iΣi

)′
+ Jt

)
= 0. (A.14)
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The FOCs are:

0 = Jww (ΣiΛ − ΣiΣ
′
iβi) + Jwww

2Σi

(
Σ′

ix
B
i − Σ′

iβi

)− ξι, (A.15)

1 = xB′
i ι, (A.16)

with ξ denoting the Lagrange multiplier. The value function is of the form:

J(W/B, τ i) =
1

1 − γi

(
W

B

)1−γi

exp(cτ i), (A.17)

with τ i = Ti − t. The solution of the FOCs is given by equation (18).

The CIO has to design the benchmarks, i.e. βi, i = 1, 2, and decide on the strategic
allocation to the managers and to the cash account. Since the managers’ optimal portfolios
are affine in the benchmark weights, see equation (18), the benchmark can be designed to
solve for the optimal relative fractions invested in the different assets present in the asset
classes. The strategic allocation, xC ∈ R

2, can subsequently be used to optimally manage
the absolute fractions allocated to the different assets. More formally, in Appendix A.1, we
show that when the CIO manages all assets individually, the optimal portfolio is:

xC =
1

γC

(ΣΣ′)−1
ΣΛ (A.18)

=

[
x1C

x2C

]
, (A.19)

where xiC denotes the allocation to the assets managed by manager i. We use βi to solve
for the optimal relative fractions invested within the asset class:

xB
i = xiC (x′iCι)

−1
. (A.20)

Therefore, the optimal benchmark weights are given by:

βi =
γi

γi − 1

[
xC

i

(
xC′

i ι
)−1 −

(
1

γi

xi +
1

γi

(1 − x′iι) x
MV
i

)]
. (A.21)

Note that β′
iι = 1, as required. Finally, the optimal allocation of the CIO’s wealth to the

managers is given by x′iCι. For this combination of benchmarks and the strategic allocation,
the decentralized and centralized investment management problems coincide.

A.4 Optimal investment manager selection

We solve for the optimal risk attitudes of the investment managers and the allocation to
the two managers. Define the risk tolerance as ψi = γ−1

i . Given the optimal portfolio of
investment managers without a benchmark in equation (8), the allocation to the different
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assets is given by: [
x1C

(
ψ1

(
x1 − (x′1ι)x

MV
1

)
+ xMV

1

)
x2C

(
ψ2

(
x2 − (x′2ι)x

MV
2

)
+ xMV

2

)] , (A.22)

which we equate to the optimal portfolio of the CIO when he can manage all four assets,
the two tangency portfolios as well as the two minimum variance portfolios, independently.
This results in the solution provided in Section 2.5.

B Time-varying investment opportunities

B.1 Centralized problem

The centralized problem in Section 3.2 relates to the portfolio choice problems in
Sangvinatsos and Wachter (2005) and Liu (2006). The problem is solved using standard
dynamic programming techniques. The joint dynamics of the state variables, X, is
summarized by:

dXt = K (θ −Xt) dt+ ΣXdZt (B.1)

and we assume in the text that K is diagonal and θ = 0m×1. The dynamics of wealth is:

dWt

Wt

= (r + xC(X, τC)′ΣΛ(X)) dt+ xC(X, τC)′ΣdZt, (B.2)

where xC(X, τC) denotes the CIO’s portfolio choice, conditional on both the state variables
(X) and the investment horizon (τC = TC − t). The value function by J1 depends on current
wealth, the CIO’s horizon, and, due to the Markovian structure of the financial market, on
the current value of the state variables. The corresponding HJB equation is:

max
xC

(
JWW (r + x′CΣΛ(X)) + 1

2
JWWW

2x′CΣΣ′xC + Jt+
J ′

XK (θ −X) + 1
2
tr (Σ′

XJXXΣX) +Wx′CΣΣ′
XJWX

)
= 0, (B.3)

where we omit the indices of xC for notational convenience. The affine structure of the
financial market implies that the value function is exponentially quadratic in the state
variables:

J(W,X, τC) =
W 1−γC

1 − γC

exp

(
A(τC) +B(τC)′X +

1

2
X ′C(τC)X

)
. (B.4)

Solving for the FOC of provlem (B.3) and using equation (B.4) to determine the partial
derivatives, we obtain:

xC (X, τC) = 1
γC

(ΣΣ′)−1 ΣΛ(X)+

1
γC

(ΣΣ′)−1 ΣΣ′
X

(
B (τC) + 1

2

(
C (τC) + C (τC)′

)
X
)

= ζC
0 (τC) + ζC

1 (τC)X,

(B.5)
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with

ζC
0 (τC) =

1

γC

(ΣΣ′)−1
ΣΛ0 +

1

γC

(ΣΣ′)−1
ΣΣ′

XB (τC) , (B.6)

ζC
1 (τC) =

1

γC

(ΣΣ′)−1
ΣΛ1 +

1

2

1

γC

(ΣΣ′)−1
ΣΣ′

X

(
C (τC) + C (τC)′

)
. (B.7)

To find the coefficients A, B, and C, we substitute the optimal portfolio, equation (B.5),
into the HJB equation (B.3) and match the constant, the terms linear in X, and the terms
which are quadratic in X. In what follows, we derive the value function for any affine policy,
x (X, τ) = ζ0(τ) + ζ1(τ)X, which turns out be useful in subsequent derivations. The value
function for this particular problem is obtained for ζ0(τ) = ζC

0 (τ) and ζ1(τ) = ζC
1 (τ). The

resulting ODEs are:12

Ȧ = (1 − γC) (r + ζ ′0ΣΛ0) − 1
2
γC(1 − γC)ζ ′0ΣΣ′ζ0 +B′Kθ+

1
4
tr (Σ′

X (C + C ′) ΣX) + 1
2
B′ΣXΣ′

XB + (1 − γ)ζ ′0ΣΣ′
XB,

Ḃ′ = (1 − γC) [ζ ′0ΣΛ1 + Λ′
0Σ

′ζ1] − γC(1 − γC)ζ ′0ΣΣ′ζ1 −B′K+
1
2
θ′K ′ (C + C ′) + 1

2
B′ΣXΣ′

X (C + C ′) +
1
2
(1 − γC)ζ ′0ΣΣ′

X (C + C ′) + (1 − γC)B′ΣXΣ′ζ1,

Ċ = 2(1 − γC)ζ ′1ΣΛ1 − γC(1 − γC)ζ ′1ΣΣ′ζ1 − (C + C ′)K+
1
4
(C + C ′) ΣXΣ′

X (C + C ′) + (1 − γC)ζ ′1ΣΣ′
X (C + C ′) ,

(B.8)

subject to the boundary conditions:

A(0) = 0, B(0) = 0k×1, C(0) = 0k×k. (B.9)

B.2 Decentralized problem without a benchmark

In the decentralized problem without a benchmark of Section 3.3, the asset managers
implement active strategies. In order to solve for the myopic, cash constrained policy, the
managers solve:

max
xNB

i :xNB′
i ι=1

(Lu(Wt)) , (B.10)

with L denoting the infinitesimal generator (which is equivalent to the differential generator
in Merton (1971)). A straightforward application of Ito’s lemma shows that this problem is
equivalent to:

max
xNB

i :xNB′
i ι=1

Et

(
xNB′

i (X)ΣiΛ(X) − γi

2
xNB′

i (X)ΣiΣ
′
ix

NB
i (X)

)
. (B.11)

12We suppress the time indexes of ζ0 and ζ1, as well as the coefficients of the conditional value function.
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As a result, the optimal strategy of the myopic, cash constrained investment managers is
given by:

xNB
i (X) = 1

γi
xi(X) +

(
1 − xi(X)′ι

γi

)
xMV

i

= ζNB
0i + ζNB

1i X,
(B.12)

where xi(X) and xMV
i are given in equation (31) and:

ζNB
0i =

1

γi

(ΣiΣ
′
i)
−1

ΣiΛ0 + xMV
i

(
1 − ι′ (ΣiΣ

′
i)
−1 ΣiΛ0

γi

)
, (B.13)

ζNB
1i =

1

γi

(ΣiΣ
′
i)
−1

ΣiΛ1 − xMV
i

(
ι′ (ΣiΣ

′
i)
−1 ΣiΛ1

γi

)
. (B.14)

These portfolio weights depend on the current value of the state variables and reflects, by
construction, no horizon effects.

Anticipating the allocations of the asset managers, the CIO has to decide on the strategic
allocation, i.e., how to allocate the funds available to the different managers. This strategic
allocation is often fixed for a certain number of years and should reflect at least the firm’s
investment horizon. As such, we consider strategic allocations which are independent of
the current state of the economy, but which do account for the investment horizon of the
CIO. More specifically, we determine the optimal constant proportions strategy for the CIO.
In order to solve for the optimal strategic allocation, we optimize the unconditional value
function, i.e.:

E (J2(W,X, τC) | W ) , (B.15)

with

J2(W,X, τC) = Et

(
1

1 − γC

W
1−γC
t+τC

)
. (B.16)

We first show that the conditional value function is exponentially affine in the state variables
for any constant proportions strategic allocation. We then provide a lemma that can be used
to determine the unconditional expectation of the conditional value function. Denote the
allocation to the ith asset manager by xiC .13 Given the optimal portfolios of the managers
in (B.12), the resulting portfolio is given by:

xImplied
C =

[
x1C

(
ζNB

01 + ζNB
11 X

)
x2C

(
ζNB

02 + ζNB
12 X

)]
= ζImplied

0 + ζImplied
1 X.

(B.17)

Two aspects of the implied portfolio are worth noting. First, the implied portfolio is
again affine in the state variables. Therefore, the conditional value function is of the form
given in (B.4) with ζ0(τ) = ζImplied

0 and ζ1(τ) = ζImplied
1 . We denote the value function in

13We omit the indices of the portfolio strategies in this part of the derivation for notational convenience.
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absence of a benchmark by J2. The ODEs required to determine the coefficients in the value
function are given by equation (B.8). Second, the fact that the asset managers are assumed
to time the market implies that the CIO has to allocate wealth to assets which exhibit a
particular form of heteroskedasticity. Hence, although asset returns are homoskedastic in
our model of the financial market, the timing ability of managers induces heteroskedastic
asset returns at the CIO’s level.

In order to determine the unconditional value function, we employ the following lemma
proved by Ang and Liu (2004).

Lemma 1 Let Y ∈ R
k×1, Y ∼ N (0,Σ), a ∈ R

k×1, and B ∈ R
k×k. If (Σ−1 − 2B) is strictly

positive definite, we have:

E (exp (a′Y + Y ′BY )) = exp

(
−1

2
ln det (I − 2ΣB) +

1

2
a′
(
Σ−1 − 2B

)−1
a

)
. (B.18)

Using this lemma, it is straightforward to obtain the unconditional expectation of the
conditional value function, J2, which results in the unconditional value function. Next,
we use numerical techniques to solve for the optimal strategic asset allocation, xC . It is
important to note that the coefficients in the conditional value function depend on the
CIO’s horizon. The strategic allocation will therefore be different for different investment
horizons, i.e., xC(τC).

B.3 Decentralized problem with a benchmark

In order to solve the decentralized investment problem of Section 3.4, in which a performance
benchmark can be used to align incentives, we can largely use the results of Appendix B.2.
The performance benchmark of manager i is parameterized by a vector of constant portfolio
weights, βi, with the corresponding dynamics specified in equation (37). The asset manager
is interested in wealth relative to the value of the benchmark. The dynamics of normalized
wealth, wit = WitB

−1
it , is given by:

dwt

wt
=

(
xB′

i (X)ΣiΛ(X) − β′
iΣiΛ(X) + β′

iΣiΣiβi − β′
iΣiΣ

′
ix

B
i (X)

)
dt+(

xB′
i (X)Σi − β′

iΣi

)
dZt.

(B.19)

where xB
i (X) denotes the myopic conditional portfolio choice of investment manager i. As

in Appendix B.2 we set up the HJB equation, in which the maximization is subject to the
condition that the managers have no access to a cash account, i.e., xB′

i ι = 1. Solving for the
FOCs and imposing the assumption of myopia, we obtain the optimal strategy implemented
by the asset managers:

xB
i (X) = 1

γi
xi(X) +

(
1 − 1

γi

)
βi + 1

γi
(1 − xi(X)′ι)xMV

i

= ζB
0i + ζB

1iX,
(B.20)
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with xi(X) and xMV
i as in equation (31) and:

ζB
0i =

1

γi

(ΣiΣ
′
i)
−1

ΣiΛ0 +

(
1 − 1

γi

)
βi +

1

γi

xMV
i

(
1 − ι′ (ΣiΣ

′
i)
−1

ΣiΛ0

)
(B.21)

ζB
1i =

1

γi

(ΣiΣ
′
i)
−1

ΣiΛ1 − 1

γi

xMV
i

(
ι′ (ΣiΣ

′
i)
−1

ΣiΛ1

)
, (B.22)

The implication of equation (B.20) is that the optimal portfolio of the managers is again
affine in the state variables. Hence, we proceed as in Appendix B.2. The CIO selects the
optimal constant proportions strategy and the constant benchmarks, β1 and β2 , to optimize
the unconditional value function, i.e. equation (B.15) and equation (B.16). This yields:

xImplied
C =

[
x1C

(
ζB

01 + ζB
11X

)
x2C

(
ζB

02 + ζB
12X

)]
= ζImplied

0 + ζImplied
1 X,

(B.23)

where ζB
0i and ζB

1i obviously depend on the choice of the benchmark. The conditional
value function is exponentially quadratic as in equation (B.4), with ζ0(τ) = ζImplied

0 and
ζ1(τ) = ζImplied

1 . We denote the conditional value function in the presence of a performance
benchmark by J3. The coefficients satisfy the ODEs given in (B.8). To solve for the strategic
allocation and the performance benchmark, we evaluate the unconditional expectation of the
conditional value function using Lemma 1. We then optimize numerically.

B.4 Optimal selection of investment managers

To solve for the optimal choice of asset managers, we use the results of Appendix B.2,
where the unconditional value function is given in (B.15) as a function of the risk attitudes
of the managers and the strategic allocation. Hence, the numerical optimization of the
unconditional value function in equation (B.15) is performed over both the strategic
allocation, xC , and the risk attitudes of the asset managers, γ1 and γ2.

C Extensions

C.1 Risk constraints

We derive in this section the optimal allocations of the asset managers in the presence of
either relative or absolute risk constraints as defined in Section 4.2. We assume investment
opportunities to be constant and asset managers to behave myopically. We maintain in
addition the cash constraint, implying that the portfolio weights have to sum to one.

For the case with absolute risk constraints, asset manager i solves:

max
xNB

i ∈Ai

(Lu(Wt)) , (C.1)
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with L denoting the infinitesimal generator and the set Ai is given by:

Ai =
(
x | x′ι = 1,

√
x′ΣiΣ′

ix ≤ φAi

)
. (C.2)

The objective function in equation (C.1) is equivalent to:

max
xNB

i ∈Ai

(
xNB′

i ΣiΛ + r − γ

2
xNB′

i ΣiΣ
′
ix

NB
i

)
. (C.3)

Consequently, the Kuhn-Tucker FOCs are:

0 = ΣiΛ − γ(1 + ξ1)ΣiΣ
′
ix

NB
i − ξ1ι, (C.4)

1 = xNB′
i ι, φ2

Ai ≥ xNB′
i ΣiΣ

′
ix

NB
i , ξ2 ≥ 0, (C.5)

0 = ξ2

(
φ2

Ai − xNB′
i ΣiΣ

′
ix

NB
i

)
, (C.6)

with ξ1 and ξ2 denoting the Kuhn-Tucker multipliers.14 If the risk constraint is not binding,
the managers’ optimal portfolio is as derived in Section 2.3. Otherwise, the absolute risk
constraint binds and the optimal portfolio is given by the solution to equation (C.4) for
ξ2 > 0 so that the risk constraint holds with equality. This results immediately in the
optimal portfolio given in equation (44).

When the asset managers have to satisfy relative risk constraints, their objective is:

max
xB

i ∈Bi

(
Lu
(
Wt

Bt

))
, (C.7)

where the set Bi is given by:

Bi =
(
x | x′ι = 1,

√
(x− βi)

′ΣiΣ′
i(x− βi) ≤ φRi

)
. (C.8)

Proceeding as above, the FOCs are:

0 = Σi (Λ − Σiβi) − γ(1 + ξ1)ΣiΣ
′
i

(
xB

i − βi

)− ξ1ι, (C.9)

1 = xB′
i ι, φ

2
Ri ≥

(
xB

i − βi

)′
ΣiΣ

′
i

(
xB

i − βi

)
, ξ2 ≥ 0, (C.10)

0 = ξ2

(
φ2

Ri −
(
xB

i − βi

)′
ΣiΣ

′
i

(
xB

i − βi

))
, (C.11)

where ξ1 and ξ2 indicate the Kuhn-Tucker multipliers. Again, if the relative risk constraint is
not binding, the optimal portfolio of Section 2.4 prevails. Otherwise, the optimal investment
strategy of manager i is given by the solution to equation (C.9) with ξ2 > 0 so that the
relative risk constraint is satisfied with equality. This readily implies the strategy given in
equation (46).

Finally, we show that if the benchmark is designed on the basis of a higher risk aversion
level, say γ̃, than the manager’s risk aversion, denoted by γ, the relative risk of the manager’s
portfolio will exceed the risk of a manager with a risk aversion level γ̃. Hence, if the risk

14In fact, ξ2 is the multiplier for the risk constraint scaled by a factor γ/2 to simplify the interpretation.
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limit is constructed as if the manager’s risk aversion equals γ̃, the relative risk constraint will
bind and induces an effective increase in the manager’s risk aversion from γ to γ̃. Towards
this end, note that the difference between the optimal portfolio of the manager, who has
a risk aversion γ, and the benchmark weights, which are designed for a manager with risk
aversion γ̃, is given by:

xB (γ, β (γ̃)) − β (γ̃) =
γ̃

γ̃ − 1

1

γ

{
xi − xC

i

(
xC′

i ι
)−1

+ (1 − ι′xi)x
MV
i

}
, (C.12)

where xB (γ, β(γ̃)) denotes the optimal portfolio choice when the investor has a coefficient
of relative risk aversion γ, but is evaluated relative to a benchmark, β (γ̃), which is based on
γ̃. This immediately implies for the relative risk of the manager’s portfolio:(

xB (γ, β (γ̃)) − β (γ̃)
)′

(ΣiΣ
′
i)
(
xB (γ, β (γ̃)) − β (γ̃)

)
=(

γ̃

γ

)2 (
xB (γ̃, β (γ̃)) − β (γ̃)

)′
(ΣiΣ

′
i)
(
xB (γ̃, β (γ̃)) − β (γ̃)

)
,
(C.13)

i.e. the relative risk of a more aggressive manager under a benchmark designed for a more
conservative manager is larger than when the more conservative manager implements the
strategy, since γ̃ > γ. This implies that when the risk constraint is satisfied with equality
for a manager with risk aversion γ̃, an unconstrained manager with risk aversion γ will
implement a strategy which exceeds the relative risk limit. Consequently, the risk constraint
on the basis of which the benchmark is designed will be binding and induces an effective
increase in the manager’s risk aversion from γ to γ̃.

42



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Standard deviation

E
xp

ec
te

d
 r

et
u

rn

Optimal MV frontier Optimal Sharpe ratio gamma = 2 gamma = 5 gamma = 10

Figure 1: Mean-variance frontier in the centralized problem. Mean-variance frontier of a centralized asset
allocation problem with government bonds, long-term corporate Baa bonds, long-term Aaa bonds, growth
stocks, intermediate, and value stocks. The figure also indicates the portfolio choices of a CIO with risk
aversion of respectively γC = 2, 5, or 10.
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Panel A: The coefficient of relative risk aversion of the CIO equals γC = 5
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Panel B: The coefficient of relative risk aversion of the CIO equals γC = 10
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Figure 3: Losses from decentralized investment management in basis points per year (CE). Diversification
losses due to decentralized investment management as a function of the risk aversion of the investment
managers. The CIO has a risk aversion coefficient γC = 5 in Panel A and γC = 10 in Panel B. The losses
are computed by taking the ratio of the certainty equivalents achieved under centralized and decentralized
investment management after which we subtract one and multiply by -10,000 to express the losses in bp per
year. For example 160 basis points implies a loss in terms of certainty equivalents of 1.6 percent of wealth
per year.
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Panel A: Portfolio composition bond manager
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Panel B: Portfolio composition stock manager
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Figure 4: Portfolio compositions without a benchmark. Portfolio composition of the bond manager in Panel
A and the stock manager in Panel B as a function of their coefficients of relative risk aversion when they are
not restricted by a benchmark. The asset managers do not have access to a riskless asset.
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Figure 5: Fraction of risky funds allocated to the equities asset class if there is no benchmark. Percentage
of total investment in risky assets that is under control of the stock manager as a function of the risk
aversion of the bond and the stock manager.
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Panel A: Composition of the optimal bond benchmark
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Panel B: Composition of the optimal stock benchmark

3 4 5 6 7 8 9 10
−100

−50

0

50

100

150

Risk aversion stock manager

W
ei

gh
t i

n 
th

e 
be

nc
hm

ar
k 

in
 %

 

 

Growth stocks
Intermediate stocks
Value stocks

Figure 6: Composition of the optimal performance benchmarks. Composition of the optimal bond
benchmark in Panel A and stock benchmark in Panel B as a function of the risk aversion of the asset
managers.
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Panel A: The coefficient of relative risk aversion of the CIO equals γC = 5
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Panel B: The coefficient of relative risk aversion of the CIO equals γC = 10
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Figure 7: Optimal portfolio choice in the centralized problem. Optimal allocation to government bonds,
corporate bonds with ratings Baa and Aaa, and three stock portfolios ranked on their book-to-market
ratios (growth, intermediate, and value). The horizontal axis depicts the investment horizon of the CIO
in months. The coefficient of relative risk aversion of the CIO equals γC = 5 in Panel A and γC = 10 in
Panel B.
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Panel A: The investment horizon of the CIO equals T = 1
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Panel B: The investment horizon of the CIO equals T = 10
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Figure 9: Utility costs of decentralized investment management when there is no benchmark. Comparison
of certainty equivalents following from the centralized and decentralized investment management problem
when there is no benchmark and the investment horizon is one year in Panel A and 10 years in Panel B.
The x- and y-axis depict the risk attitudes of the asset managers. The coefficient of relative risk aversion of
the CIO equals 10. The losses are computed by taking the ratio of the certainty equivalents achieved under
centralized and decentralized investment management after which we subtract one and multiply by -10,000
to express the losses in basis points per year.
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Panel A: Composition of the optimal performance benchmarks
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Panel B: Optimal strategic asset allocation of the CIO
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Figure 10: Optimal performance benchmarks and strategic allocation. Panel A portrays the composition of
the optimal performance benchmarks for different investment horizons of the CIO. Panel B presents the
corresponding optimal strategic asset allocation to the asset classes. We plot the benchmark for the stock
and bond manager in the same graph, but there is still no cross-benchmarking. I.e., the benchmark weights
in both asset classes each sum up to 100 percent. The horizontal axis depicts the investment horizon of the
CIO in months. The preference parameters have been set to γC = 10 and γi = 5, with i = 1, 2.
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Panel A: The investment horizon of the CIO equals T = 1
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Panel B: The investment horizon of the CIO equals T = 10
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Figure 11: Value generated by an optimally chosen benchmark. Comparison of certainty equivalents
following from the decentralized with and without an optimally chosen benchmark. We present the annualized
gains in basis points from using the benchmark optimally. The investment horizon of the CIO equals one year
in Panel A and 10 years in Panel B. The x- and y-axis depict different risk attitudes of the asset managers.
The coefficient of relative risk aversion of the CIO equals 10.
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Panel A: The investment horizon of the CIO equals T = 1
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Panel B: The investment horizon of the CIO equals T = 10
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Figure 12: Optimal selection of investment managers. Optimal risk aversion level (from the perspective of
the CIO) of the bond and stock manager for different risk attitudes of the CIO. The investment horizon T
equals one year in Panel A and 10 years in Panel B. The horizontal axis depicts the coefficient of relative risk
aversion of the CIO. The cost is computed by taking the ratio of the certainty equivalents achieved under
centralized and decentralized investment management after which we subtract one and multiply by -100 to
express the cost in percent per year.
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Figure 13: Implied absolute and relative risk levels. The volatility of the portfolio return (absolute risk)
and the volatility of the portfolio return in excess of the optimally designed benchmark return (relative
risk) are provided. The CIO has a risk aversion of γC = 10, while the risk attitudes of the managers are
given by γ1 = γ2 = 5. The two top graphs provide the absolute risks of the portfolios in absence of a
performance benchmark. The two bottom graphs portray the relative risks (downward sloping) and absolute
risks (constant) when the managers operate in the presence of a benchmark. The left graphs correspond to
the bond manager. The right graphs correspond to the stock manager.
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Panel A: The coefficient of relative risk aversion of the CIO equals γC = 5
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Panel B: The coefficient of relative risk aversion of the CIO equals γC = 10
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Figure 14: Utility costs of decentralized investment management in the presence of liabilities. Utility costs
in terms of certainty equivalents of decentralized investment management in absence of a performance
benchmark but in the presence of liabilities. The coefficient of relative risk aversion of the CIO is given
by γC = 5 in Panel A and γC = 10 in Panel B. The losses are computed by taking the ratio of the certainty
equivalents achieved under centralized and decentralized investment management after which we subtract
one and multiply by -10,000 to express the losses in basis points per year.
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Panel A: Model parameters

Source of risk Z1 Z2 Z3 Z4 Z5 Z6

Λ 0.331 0.419 -0.0291 0.126 0.477 0.305

Σ
Gov. bonds 13.5% 0 0 0 0 0
Corp. bonds, Baa 8.2% 5.6% 0 0 0 0
Corp. bonds, Aaa 9.1% 2.7% 2.4% 0 0 0
Growth stocks 3.7% 6.3% 0.3% 16.5% 0 0
Int. stocks 3.6% 6.8% 0.3% 11.7% 7.3% 0
Value stocks 3.6% 7.7% 0.1% 10.4% 6.8% 5.9%

Panel B: Implied parameters

Expected return Correlation

Gov. bonds 9.5% 100% 82% 93% 20% 23% 22%
Corp. bonds, Baa 10.1% 82% 100% 92% 37% 43% 45%
Corp. bonds, Aaa 9.1% 93% 92% 100% 29% 34% 34%
Growth stocks 10.9% 20% 37% 29% 100% 88% 80%
Int. stocks 14.0% 23% 43% 34% 88% 100% 93%
Value stocks 15.7% 22% 45% 34% 80% 93% 100%

Table 1: Estimation results for the financial market in Section 2. Estimation results of the financial market
in Section 2 over the period January 1973 through November 2004 using monthly data. The model is
estimated by maximum likelihood. The asset set contains government bonds (’Gov. bonds’), corporate
bonds with credit ratings Baa (’Corp. bonds, Baa’) and Aaa (’Corp. bonds, Aaa’), and three equity portfolio
ranked on their book-to-market ratio (growth/intermediate (’Int. ’)/value). Panel A provides the model
parameters and Panel B portrays the implied instantaneous expected returns (r + ΣΛ) and correlations. In
determining Λ, we assume that the instantaneous nominal short rate equals r = 5%.
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Source of risk Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Λ0 0.306 0.409 -0.020 0.089 0.498 0.310 0 0 0

ΣΛ1

Gov. Baa Aaa Growth Int. Value κi

Short rate 0.227 -0.964 -0.209 -0.270 -0.249 -0.012 0.36
10Y yield 1.269 1.225 0.893 -0.778 -1.086 -1.010 0.12
DP 0.020 0.071 0.038 0.132 0.121 0.130 0.052

Σ Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Gov. bonds 13.2% 0 0 0 0 0 0 0 0
Corp. bonds, Baa 7.7% 5.4% 0 0 0 0 0 0 0
Corp. bonds, Aaa 8.7% 2.6% 2.4% 0 0 0 0 0 0
Growth stocks 3.1% 5.8% 0.2% 16.5% 0 0 0 0 0
Int. stocks 2.9% 6.2% 0.1% 11.7% 7.2% 0 0 0 0
Value stocks 2.8% 7.1% -0.2% 10.4% 6.7% 5.8% 0 0 0
Short rate -1.1% -0.1% 0.0% 0.3% -0.1% -0.1% 2.3% 0 0
10Y yield 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 1.3% 0
DP -3.0% -6.7% 0.1% -14.0% -2.5% -0.9% 0.0% 0.6% 4.7%

Table 2: Estimation results for the financial market in Section 3. Estimation results of the financial market
in Section 3 over the period January 1973 through November 2004 using monthly data. The model is
estimated by maximum likelihood. The asset set contains government bonds (’Gov. bonds’), corporate
bonds with credit ratings Baa (’Corp. bonds, Baa’) and Aaa (’Corp. bonds, Aaa’), and three equity portfolio
ranked on their book-to-market ratio (growth/intermediate (’Int. ’)/value). In determining Λ0, we assume
that the instantaneous nominal short rate equals r = 5%. We report ΣΛ1 rather than Λ1 as the former
expression is easier to interpret. The short rate, the yield on a 10Y nominal government bond, and the
dividend yield are used to predict returns.
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Managers only Managers/benchmark Value benchmark

γC TC = 1 TC = 10 TC = 1 TC = 10 TC = 1 TC = 10

4 114.7 399.6 80.5 354.6 34.6 (30%) 46.9 (12%)
5 90.9 339.7 63.8 301.3 27.3 (30%) 39.7 (12%)
6 76.2 295.8 53.2 263.2 23.2 (30%) 33.6 (11%)
7 64.5 263.4 44.8 234.6 19.8 (31%) 29.7 (11%)
8 56.8 236.7 39.7 211.8 17.2 (30%) 25.6 (11%)
9 50.8 215.7 35.4 193.1 15.5 (31%) 23.1 (11%)
10 45.6 198.2 31.9 177.1 13.7 (30%) 21.5 (11%)

Table 3: Costs of decentralization with optimally selected managers and benchmarks. Costs of decentralized
investment management for the financial market in Section 3. The first two columns provide the costs (in
basis points) when the CIO only optimizes over the risk attitudes of the investment managers. Column
3 and 4 portray the costs of decentralized investment management when the CIO optimizes over the risk
attitudes of investment managers and their respective benchmarks. The last two columns present the value
(in basis points and as a fraction of total costs in parentheses) of introducing a performance benchmark. All
results are determined for the CIO’s investment horizon equal to TC = 1 and TC = 10 and coefficients of
risk aversion ranging from γC = 4 up to γC = 10.
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