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ABSTRACT

Conventional hedonic techniques for estimating the value of local amenities rely on the assumption

that households move freely among locations. We show that when moving is costly, the variation

in housing prices and wages across locations may no longer reflect the value of differences in local

amenities. We develop an alternative discrete-choice approach that models the household location

decision directly, and we apply it to the case of air quality in U.S. metro areas in 1990 and 2000.

Because air pollution is likely to be correlated with unobservable local characteristics such as

economic activity, we instrument for air quality using the contribution of distant sources to local

pollution – excluding emissions from local sources, which are most likely to be correlated with local

conditions. Our model yields an estimated elasticity of willingness to pay with respect to air quality

of 0.34 to 0.42. These estimates imply that the median household would pay $149 to $185 (in

constant 1982-1984 dollars) for a one-unit reduction in average ambient concentrations of particulate

matter. These estimates are three times greater than the marginal willingness to pay estimated by a

conventional hedonic model using the same data. Our results are robust to a range of covariates,

instrumenting strategies, and functional form assumptions. The findings also confirm the importance

of instrumenting for local air pollution.
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1 Introduction 

Since Rosen’s (1974) seminal paper, economists have used hedonic techniques to estimate the 

value of a wide range of amenities, including clean air, school quality, and lower crime rates.  The great 

attraction of the approach is that it uses observed behavior in housing and labor markets to infer the value 

of non-market goods.  On the standard assumption that individuals choose the residential locations that 

maximize their utility, marginal rates of substitution between local amenities and other goods will equal 

the price ratio.  Hence the marginal willingness to pay for those amenities can be measured by their 

implicit prices, as reflected in housing prices and wages. The broad avail of this approach, along with 

considerable practical interest in the estimates it provides, explains the continuing interest among 

economists in the theory and identification of hedonic models.1 

This paper addresses a crucial but often overlooked assumption in hedonic models, and shows 

how that assumption may lead to biased estimates of willingness to pay for local amenities.  Hedonic 

models typically assume that people can move freely among locations when they buy homes and choose 

jobs.  If so, wages and rents must adjust to reflect the implicit prices of local amenities; hence, willingness 

to pay can be inferred from variation in housing prices and income.  The key assumption of perfect 

mobility, however, ignores an important feature of the real world: migration is costly.  Moving to a new 

city entails not only out-of-pocket costs, but (much more important) psychic costs of leaving behind one’s 

family and cultural roots.  Data on residential choices suggests that such costs are significant.  Table 1 

relates birth location to residential location: it shows that great majority of U.S. household heads reside in 

the region of their birth.  A similar pattern holds at the state level.  This strong revealed preference for 

staying close to home belies the assumption that residential choices reflect a simple tradeoff between 

local attributes and prevailing rents and wages.  If migration costs enter into residential location decisions, 

they should be considered by analysts measuring the value of local amenities. 

How will migration costs affect estimates of willingness to pay?  Consider an exogenous 

improvement in air quality in a particular city.  In response, we would expect housing prices to rise and 

wages to fall until a new equilibrium is reached.  If migration is costless, these changes will fully reflect 

the value of the cleaner air.  But if migration is costly, the change in housing prices and wages must be 

smaller: the benefit someone gets from moving to the city must now compensate her not only for the 

higher rents and lower income, but also for the cost of moving.  To see the intuition, consider someone 

born in Detroit who would willingly pay $100 for the gain in air quality that she would get from moving 

to an otherwise identical neighborhood in Tucson.  If the disutility of moving to the new city is $40, she 
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will move only if the difference in housing prices (net of income) is less than $60.  Hence the change in 

housing prices and wages that accompanies a change in air quality will understate willingness to pay for 

clean air.  Notice also that the extent of the understatement depends on the size of migration costs relative 

to the benefits from the amenity – a point to which we will return below. 

Beyond the theoretical questions of identification and estimation, numerical estimates of the 

value of local public goods are of great practical interest.  Again consider the example of air quality, 

whose protection motivates a range of government policies that impose substantial costs on firms and 

consumers. A comprehensive survey of cross-sectional hedonic property value studies found wide 

dispersion in estimated willingness to pay, with many instances of negligible or even negative estimates 

(Smith and Huang 1995).  If those low estimates are reliable, the costs of stringent air pollution regulation 

may outweigh the benefits.  On the other hand, evidence that such estimates understate the value of clean 

air would bolster the case for government policy. 

In this paper, we show how migration costs can be incorporated into a hedonic analysis.  We start 

by incorporating migration into the canonical wage-hedonic model proposed by Roback (1982).  If 

moving is costly, then the sum of the derivatives of housing prices and wages with respect to the amenity 

– the standard hedonic measure of marginal willingness to pay – will no longer equal the implicit price of 

the amenity.  The more costly is migration relative to the marginal benefits of an improvement in the 

amenity, the greater will be the bias from ignoring migration costs in the analysis. 

To allow for costly mobility, we employ a different empirical strategy.  The starting point for our 

analysis is the household location decision, rather than the first order condition implied by a traditional 

hedonic model.  This approach allows us to incorporate migration costs (as the implicit disutility of 

moving various distances from one’s birth state) directly into the household optimization problem. 

We apply our method to the case of air quality – specifically, ambient concentrations of particular 

matter (“PM10”) in metropolitan areas throughout the U.S., for the years 1990 and 2000.  We study air 

pollution in general, and PM10 in particular, for a number of reasons.  First, an estimate of the economic 

value of improvements in air quality is of central importance to the U.S. Environmental Protection 

Agency in the regulation of air pollution under the Clean Air Act and its subsequent amendments.  

Second, air quality improved significantly over the decade studied, providing useful panel variation.  

Third, migration costs are likely to be large relative to the potential gains of changing locations for the 

sake of air quality; hence ignoring such costs is likely to produce substantial bias in estimates of WTP for 

                                                                                                                                                                           

1 The study of the theory and identification of hedonic markets in competitive settings dates back to Rosen (1974).  The topic has 

recently seen a resurgence with methodological papers by Ekeland, Heckman and Nesheim (2004), Heckman, Matzkin, and 

Nesheim (2005), and Bajari and Benkard (2001). 
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air quality.2  Fourth, a long literature, dating back to Ridker and Henning (1967) and Harrison and 

Rubinfeld (1978), has used hedonic methods to value air quality (see Smith and Huang (1995) for a meta-

analysis).  Finally, particulate matter is a natural choice of pollutant: it is the standard measure of air 

pollution used in the literature, and an increasing body of evidence suggests that it is by far the most 

important local air pollutant in terms of health effects. 

Our empirical analysis proceeds in two stages.  First, we use a discrete-choice model to infer the 

utility associated with living in various metropolitan areas.  We then regress these metro-area utilities on 

air pollution concentrations in order to recover the willingness to pay for air quality.  This second stage is 

analogous to the traditional hedonic approach, which regresses housing prices on air pollution.  An 

identification problem thus arises that is endemic to hedonic analyses.  As Chay and Greenstone (2005) 

point out, local air quality is likely to be correlated with unobserved local economic factors that also 

affect housing prices.  If so, naïve estimates of willingness to pay will be biased downward – helping to 

explain the low estimates reported in the existing literature. 

We employ a novel instrumental variables approach to deal with this endogeneity problem.  The 

intuition behind our approach is simple.  Although local emissions (correlated with local economic 

activity) are the major determinant of local air quality, pollution also wafts in from distant sources.  The 

tall stacks of electric power plants spew particulate matter and other pollutants high into the atmosphere, 

where they travel great distances before affecting ground-level air quality.  Distant emissions, however, 

are likely to be uncorrelated with local economic activity – a conjecture that is confirmed by the data.  

Hence pollution from distant sources provides a natural instrument for local air pollution.  We compute 

this instrument using a detailed source-receptor matrix, developed for the U.S. EPA, that relates emissions 

from nearly 6,000 sources to particulate matter concentrations in each county in the U.S. 

Our results demonstrate the importance of accounting for endogeneity and incorporating mobility 

costs.  As a preliminary step, we estimate a traditional wage-hedonic model.  Instrumenting for air 

pollution greatly increases the magnitude of the estimated coefficient on particulate matter concentration 

in a regression of housing prices on local amenities.  The elasticity of housing prices with respect to air 

pollution estimated by instrumental variables is -0.50 to -0.63.  Income is essentially unaffected by air 

pollution.   Since housing accounts for approximately one-fifth of a household’s total expenditures, and 

the hedonic approach assumes that the entire value of local amenities is incorporated into housing prices 

and income, this estimate corresponds to an elasticity of total willingness to pay of -0.10 to -0.13. 

                                                      

2 As a likely contrast, consider the case of households sorting across school districts within a single MSA in response to changes 

in school quality.  Here we would expect that migration costs would be low, and that households would be highly motivated, 

leading to an expectation that the bias may be quite small. 
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These initial results provide a benchmark for assessing the results of our residential sorting 

model.  In line with intuition, the estimated value of clean air rises considerably when migration costs are 

taken into account.  In our full model, the elasticity of total willingness to pay with respect to air pollution 

is estimated to be between -0.34 and -0.43.  In dollar terms, these elasticities correspond to marginal 

willingness to pay between $149 and $185.  By comparison, the marginal willingness to pay estimated 

from the conventional hedonic model is $55.  In other words, the value of clean air implied by our 

residential sorting model is roughly three times greater than that found by applying the standard hedonic 

approach to the same data.  Importantly, we show that our parameter estimates are robust to a range of 

alternative specifications. 

These results suggest that migration costs are large enough (relative to the benefits from air 

quality) that only a third of the total economic value of the improvements in air quality over the 1990s 

was reflected in housing prices.  These results have important implications for policy, suggesting that the 

economic benefits of regulations that reduced particulate matter emissions are substantially larger than 

found in previous studies. 

The remainder of the paper proceeds as follows.  The next section demonstrates the difficulties 

that mobility costs pose for the standard wage-hedonic model, and then develops the alternative 

econometric approach we use in this paper.  Section 3 describes the data we use to identify both models. 

Section 4 details our empirical specification, and Section 5 presents our results.  Section 6 concludes. 

2   Econometric models for valuing local amenities 

2.1 Incorporating mobility costs into the traditional hedonic model 

Consider the following variant of Roback's (1982) model, incorporating mobility costs. We present the 

simplest possible version of this model in order to demonstrate the basic intuition.  At the end of the 

section, we argue that extending the model to make it more realistic will only exacerbate the difficulties 

introduced by mobility costs. 

As in Roback's model, all individuals simultaneously choose their location along with 

consumption of a composite commmodity C and a non-traded good (“housing”) H.  Each location j is 

characterized by a quantity Xj of a location-specific amenity (“air quality”).  In addition, there is a moving 

cost Mj associated with settling in city j.  Following Roback, we assume that individuals have identical 

preferences and abilities.  To keep the model as simple as possible, we suppose that all individuals are 

born in the same place, and that moving costs are a monotonic function of the amenity level.  For 

example, we might imagine that everyone is born in a central location, and that other cities are arranged in 

concentric rings with amenities improving as one moves outward.  While heroic, these assumptions are 

useful in conveying the basic intuition; we discuss the consequences of more general assumptions below. 
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Each individual chooses her location j, along with consumption of C and H, to maximize her 

utility subject to a budget constraint: 

 

(1) 
{ } jjjj

XHC
IHCtsMXHCU

j

=+ ρ..),;,(max
,,

 

 

where Ij  is income in location j; ρj is the price of housing in location j; and the price of the composite 

commodity is normalized to unity.  In equilibrium each individual must be indifferent among locations; if 

not, she would prefer to move. Hence indirect utility, denoted V, is constant: 

 

(2) .),;,( VMXIV jjjj ≡ρ  

 

The individual's problem is to trade off local amenities against wages and rents (which affect the 

budget constraint and determine the individual’s consumption of commodity C). Taking the total 

derivative of equation (2) and using Roy’s Identity to substitute for Ip VVH /−= , we arrive at the 

following equation for the implicit amenity price p*
 : 

 

(3) .*
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Hence p
* is the marginal willingness to pay: more precisely, the change in income that would exactly 

compensate the individual for a marginal change in the amenity at her chosen location.  The first two 

terms on the right-hand side of equation (3) are the familiar terms from Roback’s analysis.  If mobility is 

costless (VM = 0), or mobility costs are constant (dM = 0), then the model is identical to Roback’s.  In 

those cases, the implicit price of the amenity X can be measured as the extra cost of housing minus the 

compensating wage increase. 

When mobility costs are positive and vary with location, the familiar equation no longer holds.  

Suppose that the amenity increases with distance from 0. In this case, VM  < 0 (since mobility is costly) 

and dM/dX > 0. Thus the true value of a marginal change in the amenity, given by p*, is greater than the 

sum of the housing price and wage effects.  Intuitively, when it is more costly to move to locations with 

better amenities, the housing and labor markets will appear to undervalue those amenities: in order to 

induce anyone to move to the more attractive locales, rents must be lower (or wages higher) than they 

would in a world without mobility costs. 
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Even this simple model poses difficulties for empirical analysis.  If moving costs could be 

directly observed, then dM/dX could be estimated much as the housing price (dρ/dX) and income (dI/dX) 

gradients are, and the implicit price p* could be inferred.  But M is likely to be unobservable, since it 

represents the disutility of moving to an unfamiliar place far from home.  Moreover, the restrictive 

assumptions we have made so far amount to the best case scenario for the traditional model.  For 

example, suppose that individuals are born in different locations.  Then the indifference condition (2) 

need no longer hold for all individuals in all locations, invalidating the total differential approach that 

determines the key marginal conditions given by equation (3).  Or suppose that mobility costs do not vary 

systematically with location; then there is no longer any reason to expect that the implicit price must be 

equal across locations, which is the central identifying assumption of the hedonic model.  We conclude 

that when mobility costs are likely to be significant, a different empirical strategy is necessary. 

 

2.2 A model of residential sorting 

To surmount these difficulties, we develop a structural approach that explicitly models the location 

decision as taking place prior to the consumption of housing and the composite commodity. Essentially, 

we push the analysis back a step, examining the utility maximization problem in (1) rather than simply 

analyzing the equilibrium condition implicit in (3).  Estimation proceeds in two steps.  First, we specify a 

discrete-choice model of the household location decision.  Doing so allows us to estimate city-specific 

fixed effects that represent the composite utility of local attributes.  Second, we regress these estimated 

fixed effects on local amenities, using instrumental variables to correct for likely endogeneity. 

We start by assuming the following utility function for individual i living in location j and 

consuming quantities Ci  and Hi  of the numeraire good and housing, respectively: 

 

(4) jijjiXHC
M

jiiji eXHCU ,,

,
ηξβββ ++

=  

 

As before, Xj denotes the local amenity of interest (here, air quality).  Mi,j measures the long-run 

(dis)utility of migration associated with moving from i’s birth location to destination j.  This formulation 

is meant to capture mobility constraints, broadly defined.   Unobservable attributes of location j are 

captured in ξj .  Finally, ηi,j represents an individual-specific idiosyncratic component of utility that is 

assumed independent of mobility costs and city characteristics. 

Individuals maximize their utility subject to the budget constraint in equation (1).  Incorporating 

that budget constraint into the utility function, differentiating with respect to Hi, and rearranging yields: 
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Equation (5) states that housing expenditure accounts for a constant fraction of income, given by βH /(βH + 

βC ). For the sake of exposition, we assume that ρj (the price of housing services in location j) is known; in 

the empirical analysis we will estimate it from the data, as described in Section 4 below.  

Substituting for H* in (4) and using the budget constraint yields the indirect utility function:   

 

(6) jijjXjHjiI
XM

jiji eIV ,, lnln
,,

ηξβρββ +++−
= , 

 

where HCI βββ +≡ .  Marginal willingness to pay (MWTP) for the amenity Xj equals the marginal rate 

of substitution between Xj and income: i.e., for individual i, 
j

ji

I

X

i
X

I
MWTP

*

,

β

β
= .  Note that while the 

coefficient on the amenity, βX, is constant across individuals, MWTP varies with income. 

The analysis so far assumes that income Ii,j is known for every individual in every region. In 

practice, of course, we must estimate what income would have been in regions not chosen.  Thus we 

decompose income into a predicted mean and an idiosyncratic error term: i.e., ji
I

jiji II ,,,
ˆ ε+= .  (In 

Section 4, we describe how we estimate income from the data.) Substituting this into equation (6) and 

taking logs yields: 

 

(7) jijjijiIji MIV ,,,,
ˆlnln υθβ +++=  

 

where 

 

(8) jjXjHj X ξβρβθ ++−= lnln  

 

and 

 

 (9) ji

I
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θj comprises all of the utility-relevant attributes of location j that are constant across individuals.  

Meanwhile, υi,j is an error term that summarizes individual i’s idiosyncratic preferences for location j. 

Each individual chooses her location to maximize her utility. We assume that the idiosyncratic 

city preferences, i.e., the {υi,j}, are independently and identically distributed as type I extreme value.  This 

implies that the share of the population choosing to live in city j is given by a logit specification.  In 

practice, it is convenient to divide the right-hand side of equation (7) by βI, the marginal utility of income.  

Let tildes denote variables multiplied by 1/βI, e.g., Iβθθ /
~

= .  Hence the probability that individual I 

settles in location j can be written 

 

(10) 

∑
=

++

++
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The parameter Iβσ /1≡  is a logit scaling parameter. We estimate equation (10) by maximum likelihood. 

We recover the }
~

{θ  as parameters in the logit estimation.  These city-specific fixed effects 

represent the indirect utility (somewhat loosely, the “quality of life”) from residing in each city, 

independent of mobility costs or income.  In the second stage of estimation, we regress the estimated }
~

{θ  

on local air pollution concentrations and other local amenities.  From equation (8), we have 

 

(11) jjXjHj X ξβρβθ
~

ln
~

ln
~~

++−= . 

 

Notice that 













×=

*

,

~

ji

j

iX
I

X
MWTPβ .  Thus the coefficient on ln Xj in equation (11) provides an estimate 

of the negative of the elasticity of willingness to pay with respect to air quality. 

 

2.3 Relationship between the two approaches 

The discrete-choice model just outlined is closely related to the Roback model.  In the latter setting, all 

individuals are identical (i.e., ηi,j ≡ 0) and indifferent among locations, hence V is constant.  Taking the 

total derivative of equation (6) and setting it equal to zero yields (after some algebra and treating ξj like 

another element of Xj with a coefficient equal to 1): 
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which is identical to equation (3).  Nonetheless, the identifying assumptions of the two models are very 

different.  The Roback model uses individuals’ indifference among locations to derive the result in 

equation (13).  Since in that model individuals equate their marginal rate of substitution with the implicit 

amenity price, estimating the elements of (13) amounts to inferring the marginal willingness to pay. 

In contrast, our discrete-choice model relies on location decisions to reveal preferences about 

local amenities. In our model, individuals sort among locations on the basis of idiosyncratic tastes, and 

thus have strict preferences over location. If we are willing to assume that a city's appeal is a weighted 

sum of the city's characteristics, and that the weights are constant among individuals, then we can identify 

the underlying marginal willingness to pay directly from an equation such as (11).  These additional 

assumptions represent the cost of our approach.  The benefit is that it readily allows us to incorporate 

mobility costs. As we showed above, the presence of mobility costs complicates inference in the 

traditional hedonic model.  In the empirical analysis that follows, we confirm that allowing for mobility 

costs makes a large difference in the estimated value of clean air. 

Our discrete-choice model also highlights the question of how the size of a city should be used in 

inferring the value of local amenities.  City size plays only an indirect role (i.e., through equilibrium 

housing prices and incomes) in the conventional wage-hedonic model.  In contrast, our approach – by 

relying on residential location to reveal preferences – infers higher utility for places chosen by a larger 

share of individuals.  All else equal, bigger cities must have larger estimated values of jθ
~

.  If big cities 

are big because of the observable amenities they offer, then the larger estimated city fixed effects convey 

useful information about how people value local attributes.  On the other hand, city size might enter into 

individuals’ utility directly (e.g., positively through agglomeration effects or negatively via congestion 

costs).  If city size is also correlated with local amenities (e.g., larger cities have more manufacturing 

facilities and thus poorer air quality), then omitting it will introduce bias.  Accordingly, in our empirical 

analysis we report results from specifications with and without population included as a covariate. 

 

2.4  Identification 

Two final econometric issues must be addressed in estimating equation the second stage of our model, 

given by equation (11).  First, the price of housing services, ρj, varies with observable characteristics of 
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city j, and is likely correlated with unobserved local characteristics in ξj.  We solve this (minor) problem 

by moving jH ρβ ln
~

 to the left-hand side of the regression equation.  Note that 
*

,

*
~

ji

ij

H
I

Hρ
β = , the share of 

income devoted to housing.  We set this parameter equal to its median value in our sample, which is 0.2.3 

Second, amenity levels are likely correlated with local unobservable attributes. In our case of air 

quality, local economic activity is likely to be positively correlated with local air pollution as well as local 

rents and wages.  As a consequence, naïve estimation of equation (11) by OLS is likely to yield biased 

parameter estimates.  To address this potential source of bias, previous research has attempted to isolate a 

component of air pollution that is orthogonal to economic activity.  In a recent paper, for example, Chay 

and Greenstone (2005) use discontinuities implicit in the Clean Air Act to isolate a source of pseudo-

random variation in regulatory intensity across similar locations. 

Following Chay and Greenstone, we combine two strategies to deal with this potential 

correlation.  First, we estimate equation (11) in first differences, using panel data from 1990 and 2000: 

 

(14) jjXjHj X ζβρβθ
~~

ln
~~

+=+ ∆∆∆ , 

 

where, for example, 19902000

~~~
θθθ −≡j∆ ; and jζ

~
 is the time varying component of the unobservable 

jξ
~

.  

Note that we have moved jH ρβ ln
~
∆  to the left-hand side of the regression equation. Taking first 

differences eliminates any bias due to correlation between persistent air pollution and permanent 

unobserved city characteristics – for example, a concentration of highly polluting manufacturing 

industries, or perennial traffic congestion.  However, one might still worry about potential correlation 

between jζ
~

 and ∆Xj.
4  Hence we also need to find an instrument for air pollution. 

We develop a novel instrument that exploits the geography of particulate matter formation and 

transmission.  Pollution travels long distances: particulates emitted from Midwestern power plants, for 

example, contribute substantially to air pollution in the Northeast and Mid-Atlantic.  At the same time, 

such emissions are likely to be uncorrelated with housing prices or local economic activity.  Drawing on 

this intuition, we instrument for changes in local air pollution using changes in particulate matter 

                                                      

3 The estimate of 0.2 corresponds to the share of income spent on housing in our sample of individuals in the microcensus data, 

using a 30-year fixed mortgage rate of 9%, which is the average of the values in 1990 and 2000.  In our empirical analysis, we 

show that our results are robust to other choices of this parameter. 

4 Suppose, for example, that 
jζ

~
 includes the effects of an economic recession in location j.  If reduced economic activity is 

correlated with reductions in PM pollution from reduced economic activity, the estimate of 
Xβ

~
 may be biased upward 
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originating from distant sources.  In particular, for the years 1990 and 1999, we compute the particulate 

matter in location j that is attributable to all sources located at least 80 kilometers from that location, and 

use the difference between the two measures as our instrument for the change in air pollution.  We 

describe the construction of the instrument in detail in Section 3.  The key step is the use of a county-to-

county source-receptor (S-R) matrix developed for the U.S. Environmental Protection Agency.  This 

matrix relates emissions from nearly 6,000 sources throughout the U.S. to pollution concentrations in the 

3,080 receptor counties.  By excluding sources within a chosen radius, we can construct a measure of the 

pollution concentration for a given city that is attributable to distant sources. 

Figure 1 illustrates our instrumenting strategy.  The figure depicts the computed contributions of 

emissions from counties more than 80 kilometers away to local air quality in the Raleigh-Durham (NC) 

MSA.  Darker shading represents source counties with greater contributions to the ambient concentration 

of particulate matter.  Because the prevailing winds in the United States blow from west to east, the 

greatest sources of pollution are counties to the west of Raleigh-Durham.  As might be expected, two 

urban counties in North Carolina contribute the most pollution: Mecklenburg County to the southwest 

(whose seat is the city of Charlotte) and Forsyth County to the west (Winston-Salem).  However, the third 

most significant contributor to ambient particulate matter concentrations in the Raleigh area is nearly 800 

km away in western Tennessee: the enormous coal-fired Johnsonville power plant operated by the 

Tennessee Valley Authority. 

3 Data 

3.1  Primary data sources 

The data used for this analysis come from several sources, all publicly available.  For the discrete choice 

model of residential location decisions, as well as the regressions used to estimate individual income and 

the price of housing services at the MSA level, we draw on the one and five percent micro data samples 

of the 1990 and 2000 U.S. Population Censuses, respectively.  The census data describe attributes of the 

household head along with the household’s composition.  The data set we use for our analysis consists of 

random samples of 10,000 household heads in each year who are under the age of 35 and reside in one of 

242 metropolitan statistical areas.  We treat the household head as the decision-maker, and focus on 

his/her attributes, along with those of the dwelling in which the household resides.  Migration variables 

are calculated from data describing the household’s state of birth and the location of each MSA.  We 

exclude household heads over 35 years old to ensure that location decisions are driven by current local 

attributes.  The 242 MSAs that comprise our choice set include the larger U.S. cities, and contains 

approximately 86 percent of the total U.S. metropolitan population in both 1990 and 2000.  Appendix 

Table A1 describes the key census variables used in the analysis. 
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To estimate willingness to pay for air quality, we require data on pollution, local economic 

activity, and a range of local amenities.  We describe the construction of our air pollution measures and 

instruments in detail below.  Information on income, population, and employment comes from the 

Regional Economic Information System database maintained by the Bureau of Economic Analysis.  Data 

on other local amenities are taken from various editions of the County and City Data Book and the Places 

Rated Almanac (Savageau and Boyer 1993; Savageau and D’Agostino 2000).5  Table 2 presents summary 

statistics and a full description of the variables used in the analysis. 

 

3.2  Air quality measures 

Our measure of air pollution is the ambient concentration of particulate matter.6  Particulate matter refers 

to airborne small particles, fine solids, and aerosols that form as a result of activities as diverse as the 

fossil fuel combustion, mining, agriculture, construction and demolition, and driving on unpaved roads.  

While most of the particles resulting from these processes are relatively large in size (i.e., approximately 

1/7th the diameter of a human hair), smaller particles result from chemical processes that occur when 

sulfur dioxide, nitrogen oxides, and volatile organics react with other compounds in the atmosphere.  The 

result is an array of pollutants, collectively known as “PM10” (because they are all smaller than 10 

micrometers in size), that carry with them serious health consequences.7 

                                                      

5 Data from the REIS and CCDB are at the county level.  We aggregate up to the metro-area level using the same MSA 

definitions as we use in the pollution data (based on MSA designations in 1990).  Doing so ensures that our definitions of MSAs 

remain constant in both years, even as the official Census designations changed. 

6 In an ideal world, we would estimate our model on other measures of ambient air pollution as well, such as sulfur dioxide (SO2) 

or ground-level ozone (O3).  However, we are unaware of any fine-grained source-receptor matrix for other pollutants 

comparable to the PM10 S-R matrix we use here.  This prevents us from implementing our instrumental variables strategy for 

other pollutants; our empirical results confirm the importance of doing so.  A consolation is that PM10 is far and away the most 

important air pollutant in terms of human health effects.  Moreover, it is the pollutant that has been most commonly studied in the 

previous literature (albeit under its previous guise of “Total Suspended Particulates,” or TSP.)  Finally, to the extent that PM10 

concentrations are correlated with other important pollutants, our results will apply more broadly.  Such correlation is probably 

more likely for SO2 (which results from similar anthropogenic processes and transported similar distances) than for O3, whose 

creation depends on poorly understood interactions between manmade NOx emissions and biogenic volatile organic compounds. 

7 Beginning with the Harvard Six City Study (Dockery et al., 1993), thousands of analyses have found serious health effects from 

atmospheric particulate matter.  These are most severe for the young and the elderly – especially those suffering from asthma 

(Lin et al., 2002; Norris et al., 1999; Slaughter et al., 2003; Tolbert et al., 2000).  Fine particles have been shown to enter the 

bloodstream, increasing the risk of heart attacks and strokes (Hong et al., 2002; Tsai et al., 2003; D’Ippoliti et al., 2003).  Studies 

have also found evidence of lung tissue inflammation (Ghio et al., 2000), reduced lung function in children (Gauderman et al., 

2002), increased risk of lung cancer (Pope et al., 2002), and even the possibility of heritable diseases (Samet et al., 2004).   



13 
 

We estimate ambient pollution concentrations for each MSA in 1990 and 1999 using data on 

emissions of particulates and sulfur dioxide (a precursor to PM10).8  The data are taken from the National 

Emissions Inventory maintained by the EPA.  To translate emissions into concentrations of particulate 

matter, we use the PM10 module of the Source-Receptor (S-R) Matrix Model, described in Latimer 

(1996) and Abt (2000).9  This model, used by EPA and its contractors to estimate the health effects of 

particulate emissions, draws on an atmospheric model called the Climatological Regional Dispersion 

Model (CRDM).  The great advantage of this S-R matrix is its fine-grained resolution: it is a source-to-

county matrix of transfer coefficients, where cell (s,r) contains the transfer coefficient relating emissions 

of  a particular pollutant in source county s to PM10 concentrations in receptor county r.  The full matrix 

for each pollutant includes a transfer coefficients from 5903 sources to 3080 receptor counties.  The 

coefficients account for “area sources” in each of 3080 counties (stationary sources of pollution too small 

to be individually identified – e.g., construction sites); 565 individually identified major point sources 

(e.g., tall stacks at electric power plants); and miscellaneous smaller point sources grouped at the county 

level in 2228 counties (e.g., shorter stacks at manufacturing facilities). 

With these matrices in hand, generating estimated PM10 concentrations in each county for each 

year is simply a matter of matrix algebra.  Let St
PM and St

SO2 denote the (1 x 5903) vectors of emissions of 

particular matter and sulfur dioxide, respectively, from all sources in year t; and let ΓPM and ΓSO2 denote 

the corresponding S-R matrices.  Then the estimated vector of county-level PM10 concentrations in year t 

is PMt = St
PM 
Γ

PM + St
SO2 
Γ

SO2 .   We calculate the metro-area concentration by averaging across the 

constituent counties in each MSA.  These computed concentrations provide our measures of air pollution 

in a given location in a given year.  They represent average ambient concentrations of particulate matter 

throughout the year, based on actual emissions and prevailing meteorological patterns.10 

Figures 2 and 3 illustrate our pollution data, depicting computed PM10 concentrations in 1999 for 

each of the 242 MSAs in our data.  Darker shadings correspond to greater concentrations of particulate 

matter.  The western and eastern United States are depicted separately, but the same shading gradient is 

used.  Note that ambient concentrations of particulates generally increase from west to east, mirroring the 

                                                      

8 We use data for 1999 rather than 2000 because the National Emissions Inventory is collected at three-year intervals. 

9 We thank Wayne Gray and his co-authors for generously sharing the S-R matrix with us.  The discussion of the matrix is based 

in part on the discussion in Shadbegian, Gray, and Morgan (2004). 

10 We use the predicted measures for two reasons: first, they do not depend on the placement of particular air monitors or 

idiosyncratic weather events and wind patters; second, they lend themselves well to our instrumental variables strategy.  

Importantly, our computed measures of air quality are positively correlated with EPA data based on air quality monitors, with 

correlations significantly different from zero at p < 0.001. 
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underlying weather patterns.  Thus the cities of the West Coast have relatively low levels of particulates 

on the whole, while the nation’s highest concentrations occur in Atlanta and New York. 

 

3.3  Instrumental variables approach 

To create our instruments, only a slight twist is needed.  First, we calculate distances from the center of 

each source county (or the actual location of point sources) to the center of each receptor county.11  Given 

some distance D, we then compute PMt
D

 = St
PM 
ΓD

PM + St
SO2 
ΓD

SO2 , where ΓD
PM  (for example) is the S-R 

matrix for particulate emissions, with the transfer coefficient in cell (s,r) replaced by a zero if the distance 

from source s to county r is less than D.  In the empirical analysis, we use a distance of D = 80 km (50 

miles).  Since the regressor is the change in the natural logarithm of PM10 concentrations (i.e., ∆lnPM), 

we use as the basis for our instrument the corresponding change in the estimated logarithm of the 

contribution of distant sources, i.e.,  −≡ )ln()ln(ln 80
1990

80
1999

80 PMPMPM∆ . 

The validity of this approach depends on the orthogonality of distant pollution and local 

economic activity.  One potential concern in this context might be regional variation in how distant U.S. 

sources affect local air pollution.  Because prevailing winds blow from west to east, the contribution of 

distant sources to local air pollution increases in the same direction.  For example, the relative importance 

of distant sources is likely to be very different in Syracuse than in San Diego.  If cities in a given region 

also experience common economic shocks, our instrument may fail the exclusion restriction.  To solve 

this problem, we take two important steps.  First, we condition the full analysis on a set of nine Census 

regional dummies.  Second, in creating our instruments, we interact our estimates of “distant pollution” – 

i.e., the vector ∆lnPM
80

 – with dummy variables for the nine census regions used in the analysis.  Thus 

our instrument for ∆PM is R×≡ 8080 PMPM ∆∆ R , where R is a 9×J  matrix with cell R(j,r) equal to 1 if 

city j is in region r, and zero otherwise.  This approach is a conservative one.  Having conditioned on 

region, our model must identify the effects of air pollution entirely off of intra-regional effects.  

Moreover, as we show in the empirical analysis, our results are robust to using the “unconditional” 

instrument – that is, the measure of distant air pollution alone, without regional interactions. 

Table 3 presents evidence supporting our instrumenting strategy.  The table reports correlations 

between three measures of air pollution and observable characteristics at the metro-area level.  We present 

three measures of pollution: estimated pollution from all sources (i.e., PM); the estimated contribution to 

air pollution from sources greater than 50 km distant (i.e.,  PM
50); and the estimated contribution from 

sources greater than 80 km distant (i.e., PM
80).  Note that the first of these is our measure of ambient air 

                                                      

11 For MSAs with multiple counties, we apply the distance exclusion for each source uniformly for all counties within the MSA, 

based on the distance of the nearest county in the MSA to the particular source. 
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quality, while the third is the basis of our instrument.  We consider correlations between these measures 

of air quality and local economic activity, as measured by the number of manufacturing establishments, 

total employment, and total income.  We report correlations for the years 1990 and 1999, and for the 

change between those years.  For our instruments, we report correlations with and without conditioning 

on the census region.  Numbers in boldface are significantly different from zero at the 5% level. 

 The first column of the table shows correlations between local economic activity and the 

computed MSA PM10 concentration.  Local pollution and local economic activity are strongly and 

positively correlated in the levels.  This confirms the intuition that a naïve regression of housing prices (or 

city fixed effects) on local air quality is likely to yield biased results.  Note that we find a strong but 

negative correlation in the differences, for total employment and income.  This result is driven by falling 

PM10 concentrations and growing economic activity in four of the largest cities in the U.S. (New York, 

Los Angeles, Chicago, and Houston). 

The cells in the next four columns and the bottom set of rows report correlations between local 

economic activity and variations on our instrument.  As shown in the far right-hand column, our primary 

instrument (based on pollution from sources more than 80km away and conditional on region) is 

essentially uncorrelated with manufacturing establishments, employment, or income.  These near-zero 

correlations suggests that the portion of PM10 concentration due to sources outside 80km is uncorrelated 

with local economic activity and thus is a reasonable instrument.  The correlations are somewhat larger 

(but still insignificant) for the less restrictive instrument that excludes sources within 50 kilometers. 

Table 3 illustrates as well the importance of conditioning the analysis on regional dummies; 

compare the correlations in columns (4) (without regional controls) and (5) (with regional controls).  Of 

course, the ultimate source of concern is the correlation between our instrument and unobservable 

characteristics of metropolitan regions.  Nonetheless, Table 3 provides as much support for our approach 

as observable data might be expected to provide. 

4 Econometric specification 

Several steps are needed to implement the residential sorting model outlined in Section 2.  First, we must 

estimate housing prices and incomes in each location.  Next, we must choose a representation of mobility 

costs.  We can then use a logit model of location choice to estimate the city-specific fixed effects.  

Finally, we regress those fixed effects on local attributes.  We discuss the details of each step in turn.  

Throughout this analysis, we use i to index households, j to index locations (MSAs), and t to index the 

year (1990 or 2000).  We will often pool data from both years.  Note that while the set of metropolitan 

areas is the same in each year, the set of households is not. 
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One approach to housing prices would be to take an aggregate measure of housing prices – for 

example, the median value of a home in each MSA.  However, such an approach raises potentially serious 

problems of aggregation bias.  In particular, home values might rise because of unobserved changes in the 

quality of the housing stock, rather than changes in local amenities.  If these changes in housing supply 

are correlated with local amenities, an endogeneity problem arises.12 

We employ a different approach that takes explicit account of the characteristics of individual 

homes.  Let Pi,j,t denote the value of the home owned by household i in location j appearing in year t, 

which we define as the value of the house (for owner-occupied housing) or monthly rent (for rental units).  

We model Pi,j,t as a function of the characteristics of the dwelling, given by a vector hi,t, and a scaling 

parameter ρj,t specific to city j and year t: 

 

(15) 
H

tjititjtteP tjtji

,,,,,

,,,

ελ
ρ

+Ω+
=

φh i . 

 

Ωi,t is a dummy variable that equals 1 if household i owns its home and 0 otherwise; thus λj,t measures the 

premium on owned housing.  Taking logs, equation (15) becomes: 

 

(16) 
H

tjitttitjtjtjiP ,,,,,,,, lnln ελρ ++Ω+= φhi . 

 

Along with housing characteristics, the parameters φt yield an index of “housing services” each period, 

defined as )exp( ,, tttiH φh i= .  Hence the parameter ρj,t measures the effective “price of housing services” 

in a particular location and a particular year.  Because we control for the bundle of housing services, these 

prices provide a consistent measure of the true price of housing across metropolitan areas with different 

housing stocks.  We can readily estimate these prices as the MSA and time specific intercepts in a 

regression of equation (16), using the census microdata described in Section 3. 

Next, consider income.  We do not observe the income that a given individual would earn in 

every location, but only what he earns in his chosen city.  In the micro-data used for estimation, however, 

household heads with similar characteristics are scattered among locations.  Hence we can impute the 

income each individual would earn in every location by estimating a series of location-specific 

regressions of incomes on a set of individual attributes: 

                                                      

12 Chay and Greenstone (2005) use median home prices at the county level as their dependent variables in hedonic estimation, 

controlling for the potential bias by including a range of county-level characteristics of the housing market.  As they argue, their 

instrumental variables strategy should also help eliminate the bias.   
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The terms )|,(,,1 EDRRP DBtjPα  and 2

,,2 )]|,([ EDRRP DBtjPα  are semi-parametric controls for non-random 

sorting of individuals across locations, following Dahl (2002).  )|,( EDRRP DB
 is given by: 

 

(18)    
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and measures the observed percentage of individuals with education level ED, born in region RB, that are 

found to be living in region RD.  This correction therefore requires that our data include individuals of 

each education type migrating from every region to every region – a condition that is satisfied in the 

census data for our nine-by-nine regional grid.  We estimate the income equation (17) using the census 

microdata.  We use the results to generate predicted income 
tjiI ,,

ˆ .13 

Next, consider mobility costs.  Table 1 suggests that households tend to settle close to where the 

household head was born.  We capture this feature of the data with a flexible migration cost matrix: 

 

(19) 
2
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where di j t

S

, , = 1  if location j is outside individual i’s birth state ( = 0 otherwise), di j t

R

, ,

1 1=  if location j is 

outside individual i’s birth region as defined in Table 1 ( = 0 otherwise), and di j t

R

, ,

2 1=  if location j is 

outside individual i’s macro-region ( = 0 otherwise).14  We normalize migration costs to zero if the 

household head does not leave his birth state. 

We now turn to estimation of the parameter vector }
~

,,~,~,~{ 21 θσµµµ RRS .  On the assumption that 

preferences are stable over time, we can estimate a single set of behavioral parameters (the mobility 

                                                      

13  Note that, in fitting 
tkjI ,,

ˆ , one omits the Dahl correction terms described in the next paragraph of the text.  These serve only to 

give the error in equation (15) the needed properties for unbiased OLS estimation. 

14 There are four macro-regions defined by the U. S. Census Bureau: (1) Northeast, (2) Midwest, (3) South, (4) West.  
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parameters in µ and the scaling parameter σ) for both years 1990 and 2000.  We do this by pooling the 

data over the two years, and calculating a single likelihood function: 
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where χi,j,t is an indicator function that equals one if household i observed in year t chooses location j, and 

zero otherwise.15,16 

Recall that the }
~

{ ,tjθ  represent composite city-level attributes.  Let PMj,t denote the air pollution 

(PM10) concentration in location j and period t, computed as described in Section 3.  Note that higher 

values of PMj,t correspond to worse air quality, so that 0
~

<PMβ  if individuals are willing to pay for better 

air quality.  Let Zj,t denote a vector of other observable city attributes.  The equation to be estimated in the 

second stage is thus (updating equation (14)) 

 

(21) 
jZjjPMjj PM ζβρθ

~~
ln

~
ln2.0

~
++=+ βZ∆∆∆∆ . 

 

We estimate equation (21) by instrumental variables, using  80
,ln jRPM∆  as our instrument for jPMln∆ .  

The covariates in Zj,t include a range of local characteristics of metropolitan areas, including local 

economic activity, crime, local government tax and expenditure data, and rankings of MSAs in various 

categories of quality of life such as health care provision, arts, and transportation infrastructure. 

5 Estimation Results 

5.1 Housing price and income regressions 

Results from the housing price regressions described in equation (16) are reported in Table A2 for each 

year.  Results are as expected.  Bigger, newer houses yield more housing services, as do houses on larger 

plots and with complete kitchen and plumbing facilities.  An inspection of the most and least expensive 

                                                      

15 In practice, when the choice set is large (as it is in our application), estimating the full vector θ
~

 by maximum likelihood can be 

computationally prohibitive.  Berry (1994) provides a computational algorithm whereby these values are imputed indirectly.   



19 
 

cities in the U.S. in terms of the price of housing services corresponds to conventional wisdom.  The 

average price of housing services (in logs) rises from 3.72 in 1990 to 4.48 in 2000, while the premium on 

owned housing rises from 5.27 to 5.41.  All estimates are statistically significant at the usual levels. 

Table A3 summarizes the results from the MSA-specific income regressions described in 

equation (17).  Men earn more than women; whites earn more than minorities; and income increases with 

education.  Income falls significantly for those over age 60, reflecting retirement patterns.  The premiums 

for white and male, along with the age penalty, all diminish between 1990 and 2000.  In the case of the 

age penalty, this fall may reflect growing participation in the labor market after age 60.  Over the same 

time period, the premium for college education rises, while that for a high school diploma falls. 

 

5.2 Estimates from the conventional model 

As a benchmark for comparison with our residential sorting model, we estimate a conventional hedonic 

model without mobility costs.  We estimate the model with and without instruments for air pollution, as a 

preliminary assessment of the severity of the bias and the success of our instrumenting strategy. 

Recall that in the conventional model with costless migration, the implicit price of local amenities 

– and hence marginal willingness to pay – can be estimated as the sum of the housing price and income 

gradients with respect to a given amenity.  Accordingly, we regress the log of per capita income in MSA j 

(denoted Yj) and the price of housing services ρj (the MSA-specific intercept from the housing price 

regressions) on particulate matter concentrations PMj  and the matrix of regional dummies R.  We 

estimate these equations in first differences:  

 

(22) Y
jjR,YZjjYPMj uRγPMY +++= βZ

~
ln ln , ∆∆∆ γ  

(23)  ρ
ρργρ jjR,ZjjPMj uRγPM +++= βZ

~
ln ln , ∆∆∆  

 

Table 4 reports OLS and IV estimates of the coefficients on PM10 concentrations, i.e., YPM ,γ  and 

ργ ,PM .17  Both OLS estimates are negative and significantly different from zero.  Taken at face value, 

                                                                                                                                                                           

16 Note that there is an arbitrary normalization of one of the 
tj ,

~
θ  values: raising the utility of all locations by a constant amount 

leaves location decisions unchanged.  We set 
tj ,

~
θ  equal to zero for the Houston, TX MSA. 

17 For the housing price regression, the covariates in the specifications reported in columns (2) and (4) are the same as in the main 

results from the residential sorting model (refer to Table 6).  For the income regression, the employment rate and number of 

manufacturing establishments are omitted because they are simultaneously determined with wages and salaries.  
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these coefficients imply that both housing prices and wages rise when air quality improves.  The former 

effect is consistent with expectations, but not the latter. 

The effects of instrumenting for air pollution suggest that the OLS estimates are indeed biased.  

The estimated elasticity of housing prices with respect to air pollution more than doubles in magnitude, 

going from -0.30 in the OLS regression to -0.63 in the IV estimates.  Meanwhile, the effect of air 

pollution on per capita income vanishes. We ignore the results from the income equation in computing 

MWTP.18  This is a conservative approach: since the estimates are negative, excluding them inflates the 

estimates of MWTP from the conventional model.  This closes the gap between those estimates and those 

from our discrete choice model below, leading us to understate the importance of migration costs. 

 

5.3 Estimates from the residential sorting model 

Table 5 reports parameter estimates from the first-stage residential choice equation (20).  Estimates are 

highly statistically significant and have the expected signs.  There is a significant utility cost (-4.31) 

associated with leaving one’s birth state.  Costs continue to rise with leaving one’s birth region and 

macro-region, but at a declining rate (i.e., -5.58 and -6.46, respectively). The estimate of the scaling 

parameter σ is 0.67.  The results of primary interest from the first stage, of course, are the MSA-level 

fixed effects.  These are summarized in Table 2, but can be illustrated by some examples.  Controlling for 

population, the three least attractive metropolitan areas in the year 2000 (those with the most negative 

values of jθ
~

) were New Bedford, MA; Danbury, CT; and Detroit, MI.  Cities near the median included 

Memphis, TN (#116 out of 242) and Hartford, CT (#125).    Portland, OR and Providence, RI ranked 

among the top five.19 

These estimated MSA-level fixed effects are used as the dependent variables in the second-stage 

estimation of equation (21).  Table 6 reports results for a range of specifications.  Columns (1) and (2) 

present OLS estimates; columns (3)-(5) report results from instrumental variables estimation.  To account 

for the potential role played by city size, we include the logarithm of population as a covariate in the 

specifications reported in columns (2) and (5). 

The estimated coefficients on ∆ln(PM) are presented in the first row of the table.  These 

coefficients represent the elasticity of willingness to pay (WTP) with respect to air pollution 

concentrations.  As in the housing price regressions (Table 4), OLS yields statistically significant 

                                                      

18 Chay and Greenstone (2005) report a similar finding, and likewise ignore the income estimates in computing MWTP. 

19 In the raw rankings, city size makes a big difference, as we discussed above  in Section 2.3.  Without controlling for 

population, the cities with the highest estimates of 
tj ,

~
θ  are Los Angeles, Chicago, and New York.  Of course, controlling for 

population has a much smaller effect on the change from 1990 to 2000. 
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estimates with the expected sign.  Once again, a comparison with the IV results reveals strong evidence of 

endogeneity bias.  When we instrument for air pollution, the estimated elasticity nearly triples in 

magnitude: the OLS estimates are -0.13 to -0.16, while the IV estimates range from -0.34 to -0.42. 

Note that these WTP elasticities are not directly comparable to the elasticities of housing prices 

reported in Table 4.  The estimates from the conventional model represent the percent change in housing 

expenditures associated with a one percent change in air pollution.  In contrast, the elasticities estimated 

by the residential sorting model incorporate not only changes in housing prices, but also foregone income 

and the disutility from moving.  Thus the relative magnitudes of the raw parameter estimates in the 

conventional model are misleading; in dollar terms, as we shall see below, the results from the residential 

sorting model are more than three times as large as the results from the conventional approach.  Hence 

including mobility costs matters greatly for our estimates. 

For some perspective on what these estimates imply, consider a concrete example.  In 1990, the 

computed PM10 concentration in the New Haven-Meriden MSA was 62.2 µg/m3.  In the same year, the 

computed PM10 concentration in the Raleigh-Durham-Chapel Hill MSA was 44.0 µg/m3 – roughly 30% 

lower than in New Haven, or almost exactly one standard deviation away.  (The standard deviation of 

PM10  in the sample is 18.8 is µg/m3.)  The estimated elasticity in the full specification is -0.34 (Table 6, 

column 5), implying that the increase in air quality moving from New Haven to Durham would 

correspond to increase in willingness to pay of 10%.  Per-capita income in 1990 in New Haven was 

$23,558 (in current dollars).  Hence the air quality benefits of moving from New Haven to Durham were 

worth roughly $2,360 in foregone consumption. 

The estimated coefficients on other local amenities included in the regressions (the covariates in 

Zj) vary in significance, but most have the expected signs in the IV estimates.  Metropolitan areas with 

higher government expenditure per capita are significantly more appealing; the fraction of revenue raised 

by property taxes also has a positive effect.  Areas with better health care attract more residents; note that 

a positive value for ∆(Health ranking) corresponds to a worsening of health care (and likewise for the arts 

and transport variables).  Culture and transportation are also valued, although the estimates are imprecise.  

In the specification of column (4), the size of the local economy (as measured by manufacturing 

establishments) is positively and significantly correlated with the appeal of an area, but the effect vanishes 

when population is included (the two variables are strongly correlated).  Our other measure of local 

economic activity (i.e., employment as a fraction of the total population) turns out to be insignificant. 

Importantly, the inclusion of metropolitan area characteristics in general has only a small effect on the 

estimated coefficient on ∆lnPM.  This robustness provides additional support for our instrumental 

variables strategy.  Finally, the coefficient on population is highly significant, in line with expectations.  
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Controlling for population reduces the magnitude of the estimated impact of air quality by just under 

20%.  Thus the specifications with and without population define the range of willingness to pay. 

The coefficients on these covariates allow the computation of elasticities with respect to local 

amenities other than air quality.  For example, the median value of the health care ranking (across both 

years) is 145.5.  Thus the estimated coefficient of -0.001 on ∆(Health) from the full specification implies 

that a one percent increase in a city’s health care ranking translated into a 0.15% increase in its 

attractiveness, as measured by willingness to pay.  Similarly, the elasticity of willingness to pay with 

respect to government spending (at the sample median of 1.34, in thousands of dollars) is 0.23.  By 

comparison, the WTP elasticity with respect to air quality is larger but of the same general magnitude.  

Alternatively, we can estimate the percentage increase in willingness to pay that resulted from the median 

change in local amenities in the data.  For government expenditures, the median change was 0.22, 

corresponding to a 4% increase in WTP.  The median change in PM concentration was a reduction of 5.7 

µg/m3 – which translates into a 5% increase in WTP.  Thus the median improvement in air quality was 

comparable, in quality-of-life terms, to the median increase in per-capita government expenditure. 

 Table 7 presents estimated WTP elasticities from a range of other empirical specifications.  

Panels (b) and (c) represent variation in the dependent variable: in particular, they assume a higher or 

lower share of expenditures devoted to housing.  The results change very little.  The parameter estimates 

are also robust to the precise design of the instrument.  The results are very close to the base case when 

we employ the unconditional instrument (i.e., ∆lnPM
80, without regional interactions; see panel (d)).  The 

parameter estimates are slightly smaller when we use a less restrictive exclusion distance of 50 kilometers 

in constructing the instrument (i.e., ∆lnPM
50; see panel (e)).  Indeed, this is exactly as we should expect, 

since the smaller exclusion distance renders the instrument and the regressor more alike. 

Finally, consider the choice of functional form.  In the bottom panel of the table, we report results 

when the change in PM10 concentration enters linearly (rather than in logs).  The main effect is to 

amplify the importance of the covariates.  Without controlling for MSA characteristics and other 

amenities, the estimated elasticity is close to that in the corresponding base specification.  With covariates 

included, however, the log-linear specification yields a much higher estimated elasticity.  This is 

presumably explained by the greater weight that the log-linear specification gives to outliers – in 

particular, to a handful of large cities that experienced large drops in computed PM10 concentrations. 

Based on the evidence presented in Table 7, we conclude that our base specification is a 

reasonable one, and that our conclusions are robust to the choice of empirical strategy in the second stage. 
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5.4 Marginal willingness to pay 

In our residential sorting model, PMβ
~

 measures the elasticity of willingness to pay with respect to PM10 

concentrations; thus we can recover an estimate of marginal willingness to pay for air quality, in dollar 

terms, by multiplying PMβ
~

−  by household income and dividing by the PM10 concentration. To calculate 

a comparable MWTP for the conventional wage-hedonic model, we must first account for the share of 

expenditure in housing.  Since the wage-hedonic model ignores mobility costs, it assumes that 

individuals’ entire willingness to pay is captured in housing prices and incomes.  To translate the 

estimates of housing price elasticities into willingness to pay, therefore, we must first multiply the 

coefficients from the conventional hedonic model by the share of income devoted to housing 

expenditures, or 0.2.  Multiplying the resulting elasticity of willingness to pay by income, and dividing by 

the PM10 concentration, yields estimated MWTP, just as in the residential sorting model.20
 

 Table 8 reports the results of these computations, using the median values of household income 

($15,679) and PM10 concentration (36.0) in our sample as our measures of income and air pollution, 

respectively.  Thus the reported figures for MWTP represent the median household’s willingness to pay 

for a 1 µg/m3 reduction in ambient PM10 concentrations, expressed in constant 1982-1984 dollars.21  For 

reference, we have also included the elasticities estimated from the regressions (expressed in terms of air 

quality rather than air pollution). 

 The results provide striking evidence of the importance of accounting for endogeneity and 

mobility costs.  When we instrument for air pollution in the full model, the estimated MWTP more than 

doubles, increasing from $69 to $149.  Incorporating mobility costs matters even more.  The marginal 

willingness to pay estimated by our residential sorting model is much larger than the comparable estimate 

from the conventional hedonic model: MWTP increases from $55 to $149 in comparable specifications 

(compare columns (3) and (4) of Table 8).  We also present MWTP for the IV specifications with other 

sets of covariates (columns (3) and (4) in Table 6).  The estimated elasticity of 0.38 from the specification 

without MSA covariates implies a MWTP of $165. When local attributes other than population are 

included, estimated MWTP rises to $185.  

                                                      

20 An alternative approach, more directly in line with theory (see, e.g., eqn (3)) is to calculate MWTP for the conventional model 

by multiplying the estimated coefficients in Table 4 by the price of housing divided by PM10 concentration (to recover an 

estimate of the derivative of housing prices with respect to air pollution) and then multiply by the bundle of housing services, H*.  

Of course, this amounts to essentially the same thing; and when we carry out those calculations, using median values, we get 

nearly identical estimates of WTP.  

21 Measurement in 1982-1984 dollars facilitates comparison with the numbers reported by Smith and Huang (1995) and Chay and 

Greenstone (2005). 



24 
 

Thus a broad statement of our results is that we find an estimated MWTP for air quality ranging 

from $149 to $185, in constant 1982-1984 dollars, for a household whose head earns the median income 

of $15,679.  These estimates are large relative to the previous hedonics literature.  Chay and Greenstone 

(2005), for example, report an elasticity of housing prices with respect to particulate matter concentrations 

of -0.20 to -0.35 – half as large as our conventional hedonic estimates, and roughly one-sixth the size of 

the elasticities estimated by our residential sorting model. 

The discrepancy is even larger in dollar values.  Our model identifies marginal willingness to pay 

in terms of foregone consumption of housing services and other goods.  As a result, our estimates 

correspond to annual marginal willingness to pay – equivalently, the willingness to pay for a one-unit 

improvement in air quality that lasts for one year.  The comparable estimates in Chay and Greenstone 

correspond to a marginal willingness to pay of $22 for a reduction in PM10 concentrations – one-seventh 

the size of our lower estimate.22   Moreover, the estimates by Chay and Greenstone were themselves much 

larger than the previous literature.  Part of the discrepancy between their estimates and our estimates 

using the conventional hedonic approach can be explained by rising willingness to pay between the 1970s 

and 1990s due to rising incomes; Smith and Huang (1995) report finding such an effect in their 

comparative analysis of the previous literature. Moreover, our MWTP estimates likely capture the effects 

of other pollutants whose concentrations are correlated with PM10. 

The internal comparison between our estimates from the wage-hedonic model and the residential 

sorting model remains striking.  Incorporating mobility costs yields estimates of marginal willingness to 

pay that are more than three times as large as estimates from a conventional model.  In other words, 

assuming that migration is costless would result in understating willingness to pay for air quality by 

roughly two-thirds. 

6 Conclusions 

This paper argues that mobility constraints hinder the use of conventional wage-hedonic techniques to 

estimate household willingness to pay for local amenities such as clean air.  We develop and implement a 

discrete-choice model that uses data on residential patterns, along with a flexible model of migration 

costs, to infer the utility of living in individual metropolitan areas across the U.S.  We then estimate the 

marginal willingness to pay for a reduction in air pollution, as measured by the ambient concentration of 

particulate matter (PM10), using the contribution of distant sources to local air pollution as an instrument. 

                                                      

22 Like the literature before them, Chay and Greenstone frame their results in terms of total suspended particulates (TSP), which 

was the preferred measure of particulate pollution prior to 1987.  In order to convert our WTP estimates to results in terms of 

TSP, one should divide our measures by approximately 1.82. 
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Our results suggest that the conventional approach (ignoring mobility costs) substantially 

understates the true willingness to pay for air quality.  Our estimates imply that the median household 

would pay $149 to $185 for a one-unit reduction in PM10 concentrations, in constant 1982-1984 dollars.  

These estimates are three times as large as the corresponding estimate of marginal willingness to pay from 

a conventional hedonic model estimated using the same data.  Instrumenting for local air pollution makes 

a large difference in both models – confirming the findings of Chay and Greenstone (2005). 

These findings highlight the potential importance of incorporating mobility constraints into 

hedonic models.  We suspect that the consequences of ignoring mobility costs will be greater, the larger 

are those costs relative to the benefits at stake.  For example, while households value clean air, few are 

likely to leave behind their hometowns and families purely for the sake of modest reductions in air 

pollution.  More generally, mobility costs are more likely to constrain choices among metropolitan areas, 

rather than among neighborhoods within a metropolitan area. 

The adverse health impacts of air pollution have prompted a wide array of legislative responses at 

both the state and federal levels over the last thirty years.  Evaluated according to simple criteria (i.e., 

emissions reductions and cost-effectiveness), these policies are generally considered to have been 

successful.  Even so, studies find that over 81 million Americans face unhealthy short-term exposure to 

PM, while 66 million live with chronically high exposure (American Lung Association, 2004).  This is 

cause for concern, particularly in light of current legislative efforts that would reduce the capacity of the 

EPA to regulate certain pollution sources (i.e., new power plants).  While most of these legislative efforts 

arise out of concern for the cost of compliance with EPA regulations, little is known about the size of the 

benefits.  This complicates careful evaluation based on efficiency criteria.  The present study suggests that 

the true value of clean air may be substantially greater than has been recognized. 
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Table 1 – Regional Mobility Patterns 
Percent birth region by residence region as of the year 2000 (U.S. Census data) 

 
 RESIDENCE IN 2000 

 
New 

England 
Mid-

Atlantic 
East North 

Central 

West 
North 

Central 

South 
Atlantic 

East South 
Central 

West 
South 

Central 
Mountain Pacific 

New 
England 

65.02 5.87 2.35 0.94 12.68 0.47 1.88 3.05 7.75 

Mid-
Atlantic 

4.03 63.34 4.55 1.03 18.04 0.22 2.13 2.49 4.18 

East North 
Central 

0.59 1.60 73.42 2.83 9.84 2.09 2.78 2.94 3.90 

West 
North 

Central 
0.36 1.77 7.80 57.62 7.27 1.24 5.85 8.51 9.57 

South 
Atlantic 

0.99 3.59 4.50 0.84 79.47 2.82 2.67 1.60 3.51 

East South 
Central 

1.72 1.29 7.08 0.86 15.45 63.73 4.94 1.29 3.65 

West 
South 

Central 
0.47 1.54 2.13 1.42 6.51 2.49 77.75 3.31 4.38 

Mountain 
 

0.89 1.11 3.54 2.43 3.54 1.11 5.09 69.03 13.27 

 

Pacific 
 

0.86 1.61 3.42 1.52 5.13 1.14 2.75 7.69 75.88 

 

Notes:  Rows indicate birth regions; columns denote current residence.  For example, the upper-left-hand cell indicates that 65.02% of household heads born in New England were 
living in the region during the 2000 Census.  Regions are assigned according to Census definitions: Regional Definitions: (1) New England (CT, ME, MA, NH, RI, VT), (2) 
Middle Atlantic (NJ, NY, PA), (3) East North Central (IL, IN, MI, OH, WI), (4) West North Central (IA, KS, MN, MO,NE, SD, ND), (5) South Atlantic (DE, DC, FL, GA, MD, 
NC, SC, VA, WV), (6) East South Central (AL, KY, MS, TN), (7) West South Central (AR, LA, OK, TX), (8) Mountain (AZ, CO, ID, MT, NV, NM, UT), and (9) Pacific (AK, 
CA, HI, OR, WA). 
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Figure 1 
Contribution to PM10 Concentration in Raleigh-Durham MSA 

From Sources at Least 80 km Away 
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Figure 2 

Computed PM10 Concentrations in the Eastern United States23 
 

 

 
 

                                                      

23 PM10 concentrations are computed with actual emissions data and county-to-county source-receptor matrix. 
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Figure 3 

Computed PM10 Concentrations in the Western United States24 
 

                                                      

24 PM10 concentrations are computed with actual emissions data and county-to-county source-receptor matrix. 
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Appendix 
 

Table A1 – Data Summary 

 

Variable Mean Description 

HSDROP 0.175 High school dropout 

HS 0.249 High school graduate 

SOMECOLL 0.291 Completed some college (not four year degree) 

COLL 0.286 College graduate 

WHITE 0.770 Race = White 

BLACK 0.125 Race = Black 

ASIAN 0.038 Race = Asian (Chinese, Japanese, other Asian or Pacific Islander) 

OTHER 0.063 American Indian and other racial categories 

AGE 49.36 Age of the household head 

MALE 0.651 Sex of the household head (1 = MALE, 0 = FEMALE) 

INCTOT 42305 Total income from employment 

ROOM2 0.047 2 rooms in dwelling 

ROOM3 0.096 3 rooms in dwelling 

ROOM4 0.148 4 rooms in dwelling 

ROOM5 0.192 5 rooms in dwelling 

ROOM6 0.194 6 rooms in dwelling 

ROOM7 0.128 7 rooms in dwelling 

ROOM8 0.088 8 rooms in dwelling 

ROOM9 0.086 9+ rooms in dwelling 

BED2 0.130 1 bedroom dwelling 

BED3 0.268 2 bedroom dwelling 

BED4 0.385 3 bedroom dwelling 

BED5 0.151 4 bedroom dwelling 

BED6 0.035 5+ bedroom dwelling 

YR1 0.018 0-1 year-old dwelling 

YR2 0.070 2-5 year-old dwelling 

YR3 0.070 6-10 year-old dwelling 

YR4 0.157 11-20 year-old dwelling 

YR5 0.176 21-30 year-old dwelling 

YR6 0.147 31-40 year-old dwelling 

YR7 0.138 41-50 year-old dwelling 

UNITS2 0.001 Boat, tent, van, other 

UNITS3 0.590 1 family house, detached 

UNITS4 0.066 1 family house, attached 

UNITS5 0.046 2 family building 

UNITS6 0.048 3-4 family building 

UNITS7 0.045 5-9 family building 

UNITS8 0.043 10-19 family building 

UNITS9 0.035 20-49 family building 

UNITS10 0.058 50+ family building 

ACRE1_9 0.104 Acreage of property 1-9 acres 

ACRE10 0.024 Acreage of property 10+ acres 

NOKITCH 0.007 Dwelling does not contain complete kitchen facilities 

NOPLUMB 0.005 Dwelling does not contain complete plumbing facilities 

OWNER 0.661 Dwelling owned 

RENTER 0.339 Dwelling Rented 

MSA_ID  Metropolitan Statistical Area identification number 

BLP  Birth state 
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Table A2 – Housing Services Index Parameters 

 

 
1990 (N=638159) 

 

 
2000 (N=3674433) 

 

Estimate t-statistic Estimate t-statistic 

CONSTANT 4.035 477.04 4.982 1504.54 

ROOM2 0.033 2.50 0.096 19.17 

ROOM3 0.058 4.04 0.115 22.18 

ROOM4 0.123 8.32 0.126 23.28 

ROOM5 0.217 14.51 0.208 37.57 

ROOM6 0.362 23.85 0.347 61.66 

ROOM7 0.524 34.16 0.495 86.81 

ROOM8 0.665 42.73 0.634 109.32 

ROOM9 0.857 54.55 0.855 145.26 

BED2 0.056 4.54 0.029 6.56 

BED3 0.124 9.41 0.107 22.67 

BED4 0.135 10.01 0.155 31.90 

BED5 0.162 11.68 0.221 43.95 

BED6 0.168 11.42 0.281 51.12 

YR1 0.534 79.52 0.479 161.47 

YR2 0.514 139.19 0.428 238.24 

YR3 0.384 104.74 0.363 206.21 

YR4 0.287 97.37 0.250 179.26 

YR5 0.209 69.61 0.129 97.76 

YR6 0.138 45.88 0.092 67.54 

YR7 0.056 15.93 0.064 47.10 

UNITS2 1.018 103.35 -0.449 -34.18 

UNITS3 1.154 261.36 0.748 460.14 

UNITS4 1.027 186.73 0.628 281.46 

UNITS5 1.283 217.15 0.873 344.37 

UNITS6 1.310 220.37 0.891 356.72 

UNITS7 1.297 217.80 0.886 351.96 

UNITS8 1.347 224.03 0.917 348.26 

UNITS9 1.304 204.79 0.842 302.06 

UNITS10 1.267 203.63 0.873 351.96 

ACRE1_9 0.086 28.99 0.164 120.88 

ACRE10 0.124 24.75 0.252 88.90 

NOKITCH -0.091 -7.53 -0.041 -7.38 

NOPLUMB -0.448 -36.09 -0.258 -44.53 

R2 0.942 0.926 
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Table A3 – Summary of Income Regressions 
 

1990 2000  
 

Variable 
Average 

Parameter 
Estimate 

Standard  
Deviation of 

Estimates 

Average 
Parameter 
Estimate 

Standard  
Deviation of 

Estimates 

Constant 8.586 0.368 8.982 0.259 

MALE 0.621 0.121 0.549 0.098 

AGE>60 -0.072 0.142 -0.039 0.149 

WHITE 0.303 0.228 0.266 0.133 

HS 0.368 0.120 0.352 0.114 

SOMECOLL 0.515 0.175 0.537 0.164 

COLLGRAD 0.949 0.185 1.009 0.158 

 
 
 




