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Contingent claims analysis is currently used extensively in natural resource indus-

tries. For example, energy traders often use models suggested by Black (1976), Bren-

nan and Schwartz (1985), Schwartz (1997) and others for risk management as well

as for valuing financial contracts and real investments. These reduced form models,

which assume an exogenous process that is typically calibrated to some combination

of historical prices and observed forward and option prices, have been successful in

valuing and hedging relatively short-term financial contracts. Such models can be

viewed as tools for interpolating among comparable assets that trade in relatively

liquid markets. They are less applicable, however, in situations where prices for di-

rectly comparable assets do not exist. For example, the valuation of an investment to

exploit large oil and gas reserves requires estimates of long dated forward and option

prices for oil and gas. As we show, when these long dated contracts are illiquid, there

are problems associated with using existing pricing models to extrapolate their values

from the observable prices of more liquid shorter term contracts.

To explore these issues in greater detail we develop a general equilibrium model

of an extractable resource market where both prices and extraction choices are de-

termined endogenously.1 The fundamental sources of uncertainty in our model arise

because of fluctuations in aggregate demand and changes in technology. Aggregate

demand is assumed to follow a mean reverting process while changes in technology,

which affect the price of a potential future substitute for the commodity, fluctuate

randomly.2 Price responses to both sources of uncertainty are determined in part by

endogenous supply responses (i.e., how production levels respond to changes in ag-

gregate demand), and these responses are in turn determined by the nature of the

technology for extracting the commodity.

Temporary demand shocks are shown to have a small but permanent effect on

prices when producers can costlessly increase or decrease supply. Conversely, when

the costs of altering current production are sufficiently high temporary demand shocks
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will have a disproportionately larger effect on current prices than on future prices and,

in addition, the spot price will fail to respond to shocks that affect the cost of the

future substitute. Hence, for the equilibrium price process to exhibit the long-term

and short-term effects observed in the historical data,3 producers must be able to

alter production at a cost that is significant but not prohibitive.4

Our analysis is particularly close in spirit to the Weinstein and Zeckhauser (1975)

and Pindyck (1980) models that add demand uncertainty to the seminal Hotelling

(1931) model that describes how the prices of exhaustible resources evolve through

time. These papers show that when competitive risk-neutral producers with zero

marginal extraction costs can make costless supply adjustments that expected prices

(or equivalently, forward prices) rise at the riskless interest rate. The predictions of

this earlier literature are clearly inconsistent with the data since, in reality, forward

curves from oil and natural gas markets can be either backwardated or in contango.5

In addition, since these models assume that changing the extraction rate is costless,

they predict that prices will be subject to only permanent shocks (i.e. price changes

will follow a random walk), whereas existing empirical evidence documents that prices

of exhaustible commodities exhibit both permanent and temporary shocks.

Our model is also related to Litzenberger and Rabinowitz (1995) who argue that

because the option to wait has value in an uncertain environment resources will be

extracted more slowly and prices will appreciate less rapidly than they would in the

Hotelling certainty model. Their model implies that forward prices are always weakly

backwardated, which is true on average for both oil and gas prices, but is quite often

violated for both commodities.6 As was mentioned above, our model predicts periods

during which forward curves will be in weak contango as well as in backwardation

and is, therefore, consistent with this aspect of the data.

A similarity between our model and Litzenberger and Rabinowitz is that we both

consider the possibility that volatility changes over time and examine the relation
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between volatility and the slope of the forward curve. In the Litzenberger and Rabi-

nowitz model the volatility of demand for the commodity changes exogenously, which

in turn causes the forward curve to change. When volatility is high, the value of delay-

ing production increases, causing current prices to increase relative to future prices.

The volatility of demand is constant in our model but production adjustment costs

give rise to endogenous extraction choices, which in turn cause the volatility of re-

source prices to be high when demand is either high or low. These differences between

the Litzenberger and Rabinowitz partial equilibrium model and our general equilib-

rium model are empirically testable. We predict a “U-shaped” relationship between

the basis and volatility, where volatility is high when forward curves are either steeply

backwardated or in contango, whereas they predict a monotonic relationship. With

oil and natural gas price data, we construct a simple test and reject their hypothesis

in favor of ours.

In addition to its theoretical contribution, the structural model developed in this

paper also makes a practical contribution. In particular, we provide a method to ex-

plicitly incorporate information about both supply variables, like production costs

and the costs of close substitutes, and demand variables, like elasticities and income

growth rates, into a model that can be used to value both financial and real invest-

ments. To illustrate the importance of incorporating this kind of information into a

valuation model we compare the option prices generated by our structural model with

the prices generated by the Schwartz and Smith reduced form model, calibrated to a

time series of forward prices generated by simulations from our model.

As we show, with plausible parameters, our model generates prices that are roughly

consistent with observed forward prices for oil as well as with the price processes that

were calibrated in Schwartz and Smith. However, the subtle differences between the

endogenous price process determined within our general equilibrium model and the

exogenous processes assumed in earlier papers can generate significant differences in
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both financial and real option values. For example, although the endogenous price

process generated by our model is qualitatively similar to the price process assumed

by Schwartz and Smith, the functional form of the drift is, in general, non-linear and

generates equilibrium price paths with less extreme realizations than would be gener-

ated by Schwartz’s model. As a result, options, whose payoffs are especially sensitive

to these extreme realizations, are generally less valuable in our general equilibrium

setting where the extreme realizations are observed less frequently.

The format of the paper is as follows. In the next section, we analyze models in

which the production choice is completely flexible. Those models are shown to be in-

consistent with oil and natural gas spot and forward prices. In Section II we present

a general model of the resource. Implications of the equilibrium model for production

decisions, forward prices and price volatilities are presented. Finally, Section III dis-

cusses empirical implications of the model and compares our predictions to those of

Schwartz and Smith (2000).

I. The Resource Extraction Problem with Flexible

Production

This section analyzes four closely related models of equilibrium price determina-

tion in exhaustible resource markets when production rates are flexible and may be

changed at no cost. Each model relies on the same intuition, namely that produc-

ers will shift output between time periods so as to maximize the resource value. This

principle has two important consequences. First, resource prices will have only perma-

nent components regardless of whether demand shocks are permanent or temporary,

i.e. price changes follow random walks. This follows from the fact that with an ex-

haustible good it does not matter whether consumption is motivated by permanent

or transitory shocks since current consumption has a permanent effect on remaining
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supply and, therefore, on all future prices. Second, when demand shocks are tem-

porary optimal supply responses may exhibit non-constant elasticity with respect to

demand, which gives rise to endogenous stochastic volatility in the resource price.

This second effect does not arise in the classical equilibrium models of exhaustible

resource prices.

The following assumptions are in effect throughout this section. First, inverse

demand is given by:

pt =
ea+yt

qγ
t

(1)

where qt is the instantaneous aggregate production rate and γ ≥ 1 determines demand

elasticity. The state variable yt drives demand dynamics. Second, aggregate reserves

are known and finite with endogenous dynamics given by

dRt = −qtdt. (2)

The optimal production rate qt may depend on time, the demand state yt and re-

maining reserves Rt. Third, we assume that all individuals are risk neutral.7 Finally,

producers are assumed to operate in a competitive market where marginal extraction

costs are zero.

In a competitive market where producers maximize firm value, prices are deter-

mined so that there is no incentive to shift production between periods. Under our

assumptions this implies that prices are expected to grow at the constant riskless

rate r. Additionally, the equilibrium aggregate production policy must result in the

eventual extraction of all reserves.8

Forward prices will be determined in equilibrium by risk-neutral traders. We de-

note by ft,u the forward price at date t for a unit of the commodity to be paid for and

delivered at date u > t and assume that these speculators compete to set expected

profits to zero.9 This condition implies the following characterization of forward prices
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in terms of current expectations of future spot prices:10

ft,u = Et(pu). (3)

A. Demand Dynamics with Riskless Innovations

We first consider riskless demand state variable dynamics. Although this model is

well understood, it serves to illustrate the solution methods in the more interesting

cases that follow. As in Hotelling (1931), production is proportional to remaining re-

serves and the resource is depleted at a rate that causes equilibrium prices to increase

at the riskless rate.

Proposition 1 If demand in equation (1) is driven by the state variable yt with

dynamics dyt = gdt where g < r, then there exists an equilibrium in which the resource

is depleted at a rate proportional to remaining reserves:

qt =
r − g

γ
Rt (4)

with reserves at any time given by Rt = R0 exp
(
− r−g

γ
t
)

.

Proof. We will show the existence but not the uniqueness of an equilibrium where

the quantity produced is linear in the reserves level. Assume that the optimal pro-

duction policy has the form qt = βRt. Equilibrium price dynamics must be given by

dpt = rptdt. Furthermore, the dynamic equation for price is implied by a differen-

tial equation that incorporates the functional form of inverse demand, state variable

dynamics and by the production policy:

dpt = ptdy − γβ
pt

βRt

dRt (5)

= (g + γβ)ptdt. (6)
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This differential equation identifies the optimal extraction rate, since for prices to

grow at the riskless rate, g+γβ = r or equivalently β = (r−g)/γ. Reserves dynamics

are given by dRt = −qtdt = − r−g
γ

Rtdt and the stated relationship between reserves

and time solves this differential equation. The second requirement for equilibrium

production is satisfied since, by inspection, reserves approach zero in the limit as

time approaches infinity.

Forward prices in this setting follow from equation (3) which requires that the

expected contract value at initiation is zero. For a contract established at date t

expiring at date t+m the forward price is ft,t+m = pte
rm. The “slope” of the forward

curve is thus constant and equal to the riskless interest rate.

B. Demand Dynamics with Risky, Permanent Innovations

We now consider demand state variable dynamics with only permanent compo-

nents, which is a special case of a problem previously analyzed by Pindyck (1980).

Under our specific set of assumptions, however, we are able to explicitly solve for

price, production, and reserve dynamics.

Proposition 2 If demand in equation (1) is driven by the state variable yt with

dynamics dyt = gdt + σdWt where r > g + 1
2
σ2 and dW are increments to a standard

Brownian motion, then in equilibrium the resource is depleted at a rate proportional

to remaining reserves:

qt =
r − g − 1/2σ2

γ
Rt (7)

with reserves at any time given by the deterministic function Rt = R0 exp
(
− r−g−1/2σ2

γ
t
)

.
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Proof. As in the certainty case, we verify that the equilibrium production policy

has the form qt = βRt. Applying Ito’s lemma, price dynamics are given by

dpt = ptgdt + ptσdWt +
1

2
ptσ

2dt + γβptdt (8)

= (g +
1

2
σ2 + γβ)ptdt + σptdWt. (9)

In order for prices to increase at the riskless rate, optimal extraction must solve

g + 1
2
σ2 + γβ = r so that production at any date is given by qt = r−g−1/2σ2

γ
Rt.

The stated formula relating reserves and time is determined by integration. Again,

reserves approach zero as time approaches infinity and the stated production policy

is an equilibrium.

In this setting the production policy and the associated reserve dynamics are

deterministic even though prices are stochastic. Permanent demand shocks imply that

when demand is currently high, it is expected to be high in all future periods. Thus,

there is no need to respond to higher demand by increasing production. Production

is thus equal to that in the certainty case, with a minor adjustment to account for

the impact that convexity in inverse demand has on expectations of future prices.

Futures prices are proportional to spot prices as in the certainty case (ft,t+m =

pte
rm) and shocks to current demand move the entire forward curve up or down

without any effect on the slope; hence, the elasticity of futures prices with respect

to spot prices is one and, using the Bessembinder et al. (1995) definition, no mean

reversion is present in the commodity price. This in turn implies that the volatility

of futures prices and spot prices are constant and equal so the volatility of futures

prices is constant for all maturities. In other words, the Samuelson (1965) effect is

not present in this setting.
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C. Demand Dynamics with Risky, Temporary Innovations

We now assume that the demand state variable has Ornstein-Uhlenbeck dynam-

ics where temporary shocks to demand decay at an exponential rate. In this case,

although the optimal production policy has no closed form solution, it is possible to

determine some of its basic properties. The following proposition establishes that the

extraction rate is proportional to reserves and that an ordinary differential equation

characterizes the dependency on demand:

Proposition 3 If demand in equation (1) is driven by the state variable yt with

dynamics dyt = −κytdt + σdWt where κ > 0 and dW are increments to a standard

Brownian motion, then in equilibrium the resource is depleted at a rate proportional

to remaining reserves, qt = eβ(yt)Rt where the function β(yt) solves the second-order

ordinary differential equation:

−κyt(1− γβ′(yt)) +
1

2
σ2(−γβ′′(yt) + (1− γβ′(yt))

2) + γeβ(yt) = r. (10)

Proof. We verify that the equilibrium production policy is of the form qt =

eβ(yt)Rt. In this case production is linear in reserves and a non-constant, non-linear

function of the demand state. Applying Ito’s lemma, price dynamics are given by

dpt = [pt − γβ′(yt)pt]dy +
1

2
σ2

[
−γβ′′(yt)pt + (1− γβ′(yt))

2
pt

]
dt− γ

pt

Rt

dRt

=

[
−κyt(1− γβ′(yt)) +

1

2
σ2(−γβ′′(yt) + (1− γβ′(yt))

2) + γeβ(yt)

]
ptdt

+σ(1− γβ′(yt))ptdWt. (11)

Equilibrium requires that dpt = rptdt+σ(yt)dWt. Equating the drift terms gives rise to

equation (10), a non-linear second order differential equation in yt only, with solution

β(yt) that characterizes the equilibrium production rate. A boundary condition is

required to ensure that the resource is exhausted in the limit (
∫∞

0
eβ(yt)Rtdt = R0)
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so that the resulting production policy holds in equilibrium. The second boundary

condition ensures that there is a solution to the differential equation for all levels

of the state variable y. This is achieved by requiring limyt→−∞ 1 − γβ′(yt) = 0, a

necessary condition for the first term of the differential equation (10) to approach r

as y → −∞. Intuitively, this condition ensures that price, which is proportional to

ey−γβ, is insensitive to changes in demand thus allowing prices to grow at the rate r

when the drift of y becomes large.

In this equilibrium, prices are expected to rise at the riskless interest rate and, as

in the case where demand shocks are permanent, forward prices are stochastic. The

forward curve slope is not stochastic, however, because of the effect of production

responses that convert temporary demand shocks to permanent price shocks. Panel

A in Figure 1 presents an example of an optimal production policy given one parame-

terization of the model.11 Holding reserves constant, when demand is high production

is high. In these states the sensitivity of production to the demand state variable is

also high. It is this sensitivity, as measured by the slope and convexity of (log) pro-

duction, that gives rise to an endogenous price process with constant drift r, a point

made formal by the ODE (10).

A key difference between this equilibrium and those considered in previous sub-

sections is that volatility of changes in price are stochastic:

Corollary 4 The diffusion of the log price process is related to the demand state

variable by the following equation:

σp(yt) = σ(1− γβ′(yt)). (12)

Proof. Follows from inspection of equation (11).

The state dependence of volatility is illustrated in Panel B of Figure 1 which plots

the diffusion equation (12) relating the stochastic demand state variable to price
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volatility. Production responses are again responsible for this phenomenon. The intu-

ition follows if one recognizes the derivative β′(yt) as the elasticity of production with

respect to demand. Equation (12) then states that (constant volatility) changes in

demand are converted into highly volatile equilibrium price changes in states where

production is most sensitive to the demand state variable. The reverse is true where

the elasticity of production with respect to demand is low. We therefore have a struc-

tural model of resource price dynamics with mean-reverting stochastic volatility, since

1− γβ′(yt) is monotonic in the mean reverting yt state variable.

The predictions of this model are consistent with empirical characteristics of pre-

cious metal markets, where supply is relatively flexible and storage costs are low

relative to their value. As noted by Fama and French (1987, 1988), the slope of the

gold and silver futures term structure is well described by the term structure of risk-

less interest rates. Consistent with the prediction of mean reverting volatility, price

changes for these commodities also exhibit GARCH effects (Ng and Pirrong, 1994).12

Thus, as predicted by Corollary 1, price dynamics with only permanent components

can be coupled with mean reverting stochastic volatility, in markets with flexible

production.

Prices of other commodities, in particular oil and natural gas, have more com-

plex dynamics exhibiting both permanent and temporary components (e.g. Schwartz,

1997). Engineers must deal with the complex physics of fluid dynamics when extract-

ing these commodities, and such considerations place restrictions on the flexibility

of supply. Section II considers these restrictions by adding an adjustment cost de-

termined by historical production rates. These adjustment costs limit production

responses and restrict their ability to transform temporary demand shocks to perma-

nent price shocks.
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D. Demand Dynamics with Risky, Independent Innovations

We now consider a simplified demand process that allows for closed form solutions

in discrete time. Specifically, we measure the demand state process yt at regular

time intervals and assume these observations are independently distributed. These

i.i.d. demand shocks, which are an extreme example of temporary shocks, can be

interpreted as the limiting case of the previous class of mean-reverting shocks in

which the rate of mean reversion, κ, is large.

The timing of the information and decisions is as follows: at the beginning of

each decision period, t, the current level of reserves is known to be Rt. Producers

observe a shock to the demand curve, yt, and make their optimal production decisions.

The resulting market clearing price is given by pt = pt(qt). Immediately after the

production decisions are made, the level of reserves drops to Rt+1 = Rt − qt.

The following proposition characterizes the equilibrium price dynamics in this

simplified case.

Proposition 5 If inverse demand is given by equation (1) where {yt}∞t=0 are inde-

pendent random variables with E(eyt) = 1∀t and where γ = 1, then discounted prices

in a competitive equilibrium are martingales. Thus, for u > t

Et(e
−rupu) = e−rtpt. (13)

Moreover, the price of the commodity at an arbitrary time is a function of two random

state variables, yt and Rt:

pt = (k + eyt)
ea

Rt

(14)

where k = 1
er−1

.

Proof. See the Appendix.

Again, the discounted expected value of the future spot price is the current spot
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price and at every point in time prices are expected to rise at the riskless interest

rate.13 Thus, the forward curve is defined by:

ft,u = Et(pu) = er(u−t)pt. (15)

This illustrates again that uncertainty cannot, by itself, generate the backwardation

result in Litzenberger and Rabinowitz (1995). Indeed, supply responses turn tem-

porary demand shocks into permanent price shocks. Prices are martingales because

shocks to demand are met by an immediate change in quantity which is then trans-

mitted to all forward prices through the impact on reserves.14

Given the equilibrium price function (14), it is easy to characterize the variance

of both spot and forward prices.

Proposition 6 At any point in time the conditional variance of next period’s spot

price is given by:

vart(pt+1) =
e2avar(eyt+1)

R2
t+1

. (16)

and we can calculate the variance of the logarithm of the future spot price as:

vart (log pt+u) = σ2
y + (u− t)σ2

η (17)

where σy and ση are constants.

Proof. See the Appendix.

Remember that Rt+1 = Rt − qt is in the information set at time t. The first part

of the proposition illustrates that the effect of a demand shock is greatly attenuated

by supply responses. To see this, consider what would happen in the following period

were producers not to alter their production from the current level. In this case, the

variance of the next period price would be e2avar(eyt+1)/q2
t which is clearly higher

since current production is much lower than the total remaining reserves. The second
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part of Proposition 6 illustrates that supply responses cause the variance of the log

of the future spot price to be linear in the holding period. This again reflects that

equilibrium prices have only permanent components.

II. The Resource Extraction Problem with

Adjustment Costs

We now introduce and analyze a model where adjustments to production are

costly.15 As we will show, this modification causes stochastic resource prices to en-

dogenously exhibit both temporary and permanent factors, which is consistent with

the empirical findings of Schwartz and Smith (2000).16 Finally, our model with adjust-

ment costs generates stochastic volatility that is related to the forward curve slope,

an empirically relevant feature that is not currently incorporated in reduced form

pricing models.

A. The Economy

The economy is defined in continuous time with an infinite horizon. Instantaneous

borrowing and lending is possible at a constant interest rate, r. There is a finite

reserve R0 of a commodity, owned by a continuum of price-taking producers, and

an inexhaustible supply of a substitute good. Once extracted, we assume that the

commodity cannot be stored. The cost of extraction is assumed to be constant across

time, but may differ by producer. In equilibrium low cost producers extract their

reserves first, so the unit cost of extraction may be of an arbitrary form, C(Rt), but

will increase monotonically as reserves are depleted.17

In addition to marginal extraction costs, we assume that producers incur a cost

when aggregate production rates increase but not when they decrease. Although the

study of more general adjustment costs is possible, we assume that this cost is pro-
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portional to the magnitude of the increase in production over its historical average:

A(qt; zt) = δ max{qt − zt, 0} ≡ δ(qt − zt)
+ (18)

where δ is a constant, qt is the chosen aggregate production rate and zt is the historic

weighted average production rate

zt = φ

∫ t

−∞
eφ(u−t)qudu

with deterministic dynamics:

dzt = φ(qt − zt)dt. (19)

The form of this cost function is meant to capture the cost of developing new reserves

in a reduced form.18

The dynamics of the reserve process define how the reserves are depleted over time

and can be expressed as:

dRt = −qtdt (20)

where qt is the production process and R(0) = R0. Note that there is no exogenous

uncertainty in this process.19 However, the reserves process will be random since pro-

duction rates will depend on the stochastic demand state variable. Given a production

policy, the time to exhaustion of the reserves, τ , is defined implicitly by:

R0 =

∫ τ

0

qtdt. (21)

The planning horizon defined by this stopping time may or may not be finite.

The (inverse) demand function for the commodity is assumed to be of the form,

pt = g(qt; yt). The parameter yt characterizes inter-temporal demand shocks that
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arrive according to the process:

dy

y
= µy(y)dt + σy(y)dWy (22)

We focus on the case where this process is mean-reverting with constant volatility, so

that µy(y) = κy(µy − ln(y)) and σy(y) = σy.

We assume that a substitute for the commodity exists with effectively infinite

reserves. One might, for instance, want to think of the commodity that we examine

as oil and the substitute commodity as a high cost alternative to conventional reserves,

like oil shale. The substitute may not be currently produced because of its excessive

marginal extraction costs, st. We specify a high price for the substitute good to

ensure that the marginal value of reserves is large enough to provide incentive to

delay extraction, as we have in mind a setting where its predominant use will be in

the distant future. Innovations arrive stochastically and affect this cost as expressed

below:
ds

s
= µs(s)dt + σs(s)dWs. (23)

We focus on the case where this process is a geometric Brownian motion with constant

drift, µs(s) = µs and volatility, σs(s) = σs. This uncertainty may be driven by

technological factors that reduce costs and, for example, environmental externalities

that raise them.

The substitute commodity essentially caps price at its marginal cost. Thus, the

effective market demand function is of the form:

p(q; y, s) = min

(
s,

y

q

)
(24)

where q is the current amount produced from conventional reserves.
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B. Equilibrium in the Economy

Producers, who are assumed to be price-takers, make output decisions that max-

imize the market value of their reserves net of the expected costs of extraction. Since

the market value of reserves is a function of the equilibrium price, optimal production

decisions and market clearing prices are determined simultaneously. In equilibrium,

at each point in time and in each state, producers correctly conjecture the future

evolution of prices and incorporate this information into their production decision.

To solve for the equilibrium prices and quantities, we solve the related problem

of a Social Planner who maximizes the discounted expected consumer plus producer

surplus. At a given point in time this social surplus, SS, is defined as:

SS(qt; yt, st, Rt, zt) =

∫ qt

0

p(x; yt, st)dx− C(Rt)qt − A(qt; zt) (25)

and the social planner chooses production rates to maximize its discounted expected

value:

V (Rt, yt, st, zt) = max
qu≥0

Et

∫ τ

t

e−r(u−t)SS(qu; yu, su, Ru, zu)du (26)

subject to the dynamic equations for y, s, r, and z and where τ is a stopping time

indicating the date at which reserves are fully depleted. Under conditions outlined

in Dixit and Pindyck (1994), the solution to this problem coincides with production

policies generated within a competitive equilibrium.20 By casting the problem in terms

of maximizing social welfare, traditional dynamic programming techniques can be

applied to solve the problem numerically.

C. Computation and Calibration of the Equilibrium

The equilibrium, characterized by the solution to the constrained social planner’s

problem defined by Equation (26), is conceptually straightforward to solve using the

standard recursive techniques of dynamic programming. Specifically, given an initial
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estimate for the value function in any state, V0(R, y, s, z), we apply policy iteration

techniques in order to converge to the fixed point that characterizes the production

policy associated with the optimum (see, for example, Puterman (1994)). Using the

optimal production policy, it is then possible to determine equilibrium prices as a

function of the state variables, as well as to describe the equilibrium price dynamics,

by working with the transition density of the resulting Markov chain.

Forward prices and volatilities may be determined from state-dependent simu-

lations of spot price paths. Applying the definition in equation (3), cross sectional

averages of the simulated future spot prices provide estimates of forward prices. For-

ward term structures are computed in this manner. In addition, and as is standard,

the term structure of volatility is defined by:

TSOV(u) ≡
√

vart (log(pt+u))

u
. (27)

We calculate this function, again using simulated data, by averaging the squared

differences between realized future spot prices and the associated forward price.

Although no complex theoretical issues arise in solving for the equilibrium, there

are considerable practical problems that must be addressed to numerically implement

the solution due to the fact that our problem has four state variables, (R, y, s, z), and

one continuous choice variable, the production rate. The Appendix describes how

we deal with the “Curse of Dimensionality” and provides details on our numerical

technique.

To parameterize the model we proceed as follows.21 First, our model implies a

region where quantities are constant so that price dynamics exactly mimic those of

the demand variable y. Therefore, we choose a rate of mean reversion for demand, κy,

and of instantaneous variance σy that approximates that reported for resource prices

in the empirical literature (see for example Casassus and Collin-Dufresne (2005)). We

also choose the mean level to which (log) demand mean reverts, µy, to reflect prices
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consistent with a commodity like oil. Second, since we have in mind an application

where the use of the substitute good is reserved for the distant future there is little

directly measurable evidence on which to base its calibration. We set its drift, µs, to

zero and its diffusion, σs, to 5% per year. Finally, given the choice of the risk free

rate, the weight on historic production and the cost of increasing production were

chosen to generate futures backwardation and contango roughly consistent with what

is empirically observed. Table I summarizes these parameter choices.

D. Optimal Production with Adjustment Costs

In this subsection, we utilize the numerically solved model and analytically de-

rived expressions to demonstrate the properties of the endogenous supply responses

when adjustment costs are present. This analysis leads to empirically relevant pre-

dictions regarding the dynamics of resource prices which will, in turn, affect values of

observable financial derivatives (like futures and options prices) and real assets (like

natural gas wells).

We begin the analysis with the Hamilton-Jacobi-Bellman equation for the Social

Planner’s problem, which characterizes the value of the resource, V :

rV = max
q

SS(q)− qVR + φ(q − z)Vz + µyVy + 1/2σ2
yVyy + µsVs + 1/2σ2

sVss. (28)

Dependencies on the state (Rt, yt, st, zt) have been suppresed to enhance readability

and subscripts denote partial derivatives.

Necessary conditions for an optimum are summarized in the following proposition:

Proposition 7 At each point in the state space one of the following three conditions

will hold:
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a) Output will satisfy qt < zt with

p(qt; yt, st) = VR(Rt, yt, st, zt)− φVz(Rt, yt, st, zt), (29)

b) Output will satisfy qt > zt with

p(qt; yt, st)− δ = VR(Rt, yt, st, zt)− φVz(Rt, yt, st, zt), (30)

or,

c) Output will satisfy qt = zt with

p(zt; yt, st)− δ < VR(Rt, yt, st, zt)− φVz(Rt, yt, st, zt) < p(zt; yt, st). (31)

Proof. Follows from differentiating the HJB equation (28) to obtain necessary

conditions for optimal production.

Figure (2) illustrates this proposition under the parameterization in Table I. The

downward sloping discontinuous solid line represents (net) price as a function of out-

put quantity and the upward sloping curve VR − φVz represents the marginal cost

of output as a function of its historical average. If current demand is low (see the

dashed curve labeled “p(q) when y is low”) then production is reduced relative to

its historic average, zt and the first order condition specified in Equation (29) is in

effect. In this case, the marginal benefit of producing a unit of the resource is its price

and the first-order condition equates this with the marginal cost (VR − φVz) which

has two components that relate to the effect of production on the state variables R

and z. (These mechanics are illustrated in the figure by the arrows originating at

(zt, VR−φVz) pointing left and down.) Alternatively, if current demand is sufficiently

high (see the dashed curve labeled “p(q)− δ when y is high”) then production is in-

creased, which implies that the first order condition specified in Equation (30) must
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be satisfied. Adjustment costs are incurred in these states so that the marginal benefit

of producing a unit is price less the adjustment cost. (These mechanics are illustrated

in the figure by the arrows pointing right and down from the point (zt, VR − φVz).)

Finally, at intermediate levels of demand, the state variables y and s may be in a

region described by the inequalities (31). Within this region, production is set equal

to zt since the benefit of producing at a lower rate is high relative to the implicit cost,

and the benefit of producing at a higher rate is too small.

The form of the optimal production policy and, in particular, the presence of

a “no response” region has important implications for output and price dynamics,

which translate into predictions for the state dependence of forward prices and price

volatility. In contrast to the models without adjustment costs, prices are expected to

grow at the riskless rate only in states where production flexibility has an economically

insignificant impact on the potential of incurring future adjustment costs. This may

occur, for example, when current output is significantly below its historic average, so

that the term Vz from Equation (29) is small. In such states, this first order condition

equates prices with the marginal value of reserves, just as was the case for the models

analyzed in Section I.

Adjustment costs thus give rise to interesting state dependencies in the level and

shape of spot and forward prices. Furthermore, because they endogenously restrict

production flexibility in certain states, adjustment costs also affect the dynamics

of price volatility. These implications are explored in the following two subsections,

which undertake a numerical analysis of the equilibrium and then analyze the model’s

time series properties by utilizing impulse response functions.

E. A Numerical Analysis of the Equilibrium

We begin by demonstrating that equilibrium forward prices are qualitatively con-

sistent with the empirical specification of Schwartz and Smith (2000) under our base-

21



case calibration.

Observation 1 (Forward Curves) The forward curves in the economy can be in

backwardation or in contango (see Figure 3).

The forward curves are in backwardation or contango depending on whether the

demand shock process is above or below its long-run mean. Backwardation occurs

because producers are (optimally) reluctant to increase output in some high demand

states. A less obvious effect occurs because producers also foresee that reducing cur-

rent production when demand is low will increase the possibility of incurring adjust-

ment costs if high demand is realized in the future, so in these states forward curves

may be in contango. The result is that equilibrium prices may inherit some of the

properties of the exogenous demand shock, a prediction that contrasts with those

made by models with flexible production.

Observation 2 (Reserve Levels) All forward prices rise as reserves are consumed

(see Figure 4, Panel A).

Intuitively, as reserves are consumed we would expect to see the level of prices

increase. This is indeed the case as shown in Figure 4 where Panel A shows forward

curves at high and low reserve levels. Notice that prices at both the short and long

end of the forward curve are higher when reserves are low.

Observation 3 (Interest Rates) A decrease in the level of the interest rate in-

creases prices and decreases the slope of the forward curves in the long run (see

Figure 4, Panel B).

This observation is consistent with the standard Hotelling result on the slope of

the forward curve. The reason for the increase in prices is clear if one considers a

two period model. In the last period, all reserves will be produced. Due to the fact
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that reserves are limited, this will result in a “scarcity rent” for the resource owners.

The present value of this scarcity rent governs the first period production choice. If

interest rates fall, the benefit of holding reserves for another period rises. Thus, fewer

producers extract the resource in the first period, increasing the current price.

We can further clarify the dynamics of the forward curves if we compare the spot

price process to the forward price process. When adjustment costs are present, the

spot price process may be considerably more volatile than the forward price process,

indicating that prices have a mean reverting tendency.

Observation 4 (Term Structure of Volatility) The term structure of volatility

is downward sloping at short to intermediate horizons (see Figure 3) and upward

sloping at very long horizons (see Figure 5).

The reason for the higher short run volatility is that current supply responses are

constrained and hence exogenous shocks cause increased volatility at the short end

of the curve. At intermediate horizons the curve exhibits lower volatility since the

effect of exogenous shocks is dampened by producer’s supply responses. At very long

horizons, when reserve levels are likely to be low, the volatility of the future price

of the substitute good drives the term structure of volatility. In the limit, spot price

volatilities rise to the volatility of the marginal cost of the substitute good, provided

the volatility of the substitute good is sufficiently high.22

Observation 5 (Demand Shock Volatility) A decrease in demand volatility has

a small effect on forward prices and causes price volatilities to decrease. (See Figure

6).

In theory, price levels will depend on exogenous demand volatility (as shown in

Section I), but with the current parameters the magnitude of this effect is small.

Panel A shows that forward prices are insensitive to a change in demand volatility
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from 15% to 10% per year. There is, however, a direct and intuitive effect on the term

structure of volatility as is illustrated in Panel B.

Observation 6 (Volatility of Alternative Technology) A decrease in the volatil-

ity of the alternative technology has a small effect on forward prices and causes the

long run price volatility to decrease. (See Figure 7).

Panel A shows that forward prices are insensitive to a change in the volatility

from 5% to 2% per year. Notice that, as illustrated in Panel B, the long-maturity

forward contract volatilites are sensitive to this parameter. Just like the base case, as

conventional reserves are exhausted, the alternative source becomes more important

and the term structure rises. However, with less uncertainty in the price at which this

alternative will become available, there is a smaller long-run rise in the term structure

of volatility.

F. The Time Series Properties of Prices

To improve our understanding of the mechanics underlying the model, we study

quantity and price dynamics by applying one-time shocks to the state variables and

then consider their impact over time. This analysis provides insights into the per-

manent versus temporary components of these shocks and thereby sharpens our pre-

dictions about the dynamics of forward curves. Our analysis also highlights how the

state variables influence price volatility in three different regimes. In the first regime,

production is flexible and costless (as described by equation (29)), in the second pro-

duction is flexible and adjustment costs are incurred (as described by equation (30)),

and in the third, production is sticky (as described by equation (31)).

24



F.1. The Impulse Response Function for y

To illustrate the effects of switching between the model’s three regimes, we choose

the steady-state µy as a starting value for yt, and set the other three state variables

(R, s, z) to place the system within the region defined by Equation (31) where pro-

duction is unresponsive to small shocks.23 We focus on the impact of an increase in

y. This variable mean reverts, so it will drift down following such a shock, and since

the inverse demand curve is directly proportional to y, it will also shift up and then

drift down. The improvement in current demand conditions provides an incentive to

increase production, but to understand the response we must also consider the change

in the marginal value of reserves and historical production, which is the right-hand

side of equations (29) and (30). Here, we must rely on numerical results to determine

the impact, since the marginal value of R will increase when demand rises, but so will

the marginal value of z and intuition alone cannot predict which effect will dominate.

To undertake this exercise, we solve for the optimal policy using the procedure

described in Section II. Next, using the numeric output linking the state space to the

optimal policy, we identify specific points at which to perform the analysis.24 We then

trace out the path followed by (R, y, s, z) when no shocks are applied to the dynamic

system, and record the associated time series for optimal quantities and prices, (qt, pt).

Finally, we apply a one-time shock to y, observe the new values, (q′t, p
′
t), generated

by the procedure, and represent impulse response functions as the difference between

the two paths.

Figure (8) presents two such impulse response functions following small and large

increases in y. The top panel traces the change in quantity resulting from the shock

and the bottom panel plots the impulse response of prices. The dashed line applies

for shocks to y that are relatively small (0.05%). In this case, no change in output is

required and the necessary conditions in inequality (31) will continue to hold. Prices

temporarily rise, due to the immediate shift in demand, but then fall, as y reverts
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back to its mean. In this sense, prices are locally mean reverting.25

More interesting mechanics underlie the response to larger shocks (0.5%), illus-

trated by the solid lines in Figure (8). In this case, the first order condition in Equation

(30) will determine the optimal amount that production increases after the shock is

applied and the immediate direct effect of the increase in y is dampened.26

Now consider the impact that remains after some discrete amount of time when z

will have increased, in accordance with its dynamic equation (19). Optimal production

at this point will be above its pre-impulse level and there will have been an increase

in the state variable z. Thus, an innovation in the temporary demand variable y can

imply an upward shift in quantities, q, and a downward shift in prices even when the

demand state y has returned to its long-run mean.27 Negative correlation between

short- and long-term price factors may be offset, however, because higher depletion

rates result in lower eventual reserves, which causes a permanent upward shift in

prices.28

Note that output quantities initially rise dramatically and then subsequently fall

and that prices initially underreact to the shock. This effect is partially due to the

incentive to minimize adjustment costs. Recall that these costs are incurred only when

quantities are above their historical average, which follows current production with a

lag. A cost-efficient way to respond to the shock is to increase production, q, above

its historic average for a short time, during which adjustment costs are incurred, and

then allow the rate of production to fall to a new but higher level of z.29

In sum, the analysis in this subsection identifies three principle implications. First,

prices are locally mean reverting in response to small y shocks. Second, temporary

demand shocks that overcome the adjustment cost hurdle, can cause more persis-

tent changes in production. Finally, we note that prices may initially underreact to

temporary demand shocks.
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F.2. The Impulse Response Function for s

The impact of changes to the state variable s can be best understood in light of its

economic interpretation as a proxy for the costs of supplying a competing substitute

commodity (e.g., s could be the marginal cost of manufacturing oil from tar sands).

An increase in this variable will increase the marginal value of reserves by causing the

transfer of production to states where prices were previously bounded by the lower

value of s.

Figure (9) plots this response, when lagged output z equals current production,

the mechanics of which can be understood using Equation (29). The increase in s has

no direct impact on current demand, but there is an upward shift in the marginal

value of reserves as expressed by VR. This will lead to a decrease in current production

to a new level below its long-run average, which causes the state variable z to drift

down. Shocks to s are permanent, so z will also shift permanently downwards, which

reinforces this effect. The net impact on future prices is an upward shift at all dates,

but in contrast to the model with permanent shocks and flexible production outlined

in Section I this shift will not be parallel. This implies that part of the shock is

incorporated into prices as a temporary increment and the remainder as a positively

correlated permanent increment.30

F.3. The Dynamics of Volatility

Our analysis of responses to exogenous shocks in the preceeding subsection gives

rise to an intuitive explanation of the dynamics of volatility. Consider first the effect

of demand volatility induced by y. In the no-response region, small shocks to y are

directly translated into price volatility, since there is no offsetting quantity change.

However, since production is fixed and s has no influence on demand, small shocks to

s are not directly translated into price shocks in this region. Hence volatility of price

in this region reflects only the constant volatility of the state variable y.
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Volatility dynamics are considerably more interesting when the state variables y

and s are outside the no-response regime, implying that increases and decreases in y

are met by corresponding increases and decreases in q, thereby dampening the effect

of y on price volatility relative to the no-response regime. Quantity adjustments in

response to the state variable s are transmitted to prices in this region, however,

and this gives rise to a second source of price volatility. This response arises from

changes in the marginal value of reserves and historical production as reflected in the

right-hand sides of the equations in Proposition 7.

To summarize, the resource is produced at a constant rate within the no-adjustment

region, the location of which depends on historic production decisions. If the state

variable s hits a critical lower (upper) boundary, where the forward curve slope is

negative (positive), production begins to vary and the system moves into a region

where prices respond to both s and y shocks. (Changes in the state variable y can

also give rise to this behavior.) The production policy, therefore, gives rise to volatility

behavior similar to that of a Markov switching model, but where the forward curve

slope provides information about the average level of volatility. Specifically, when the

forward curve is steeply upward or downward sloping, volatility should be higher than

when it is flat.

Observation 7 (U shaped relationship between slope of forward curve and

spot price volatility) Volatility is stochastic. Specifically, price changes are rela-

tively more volatile when the forward curve is backwardated or in contango. (See Table

II).

To illustrate that the model can deliver this behavior, Table II presents the rela-

tionship between the slope of the term structure and volatility in the base case model.

Six points in the state space were chosen each with different amounts of contango and

backwardation. Backwardation and contango was measured by the percentage differ-

ence between the 12 month forward price and the spot price. For the six points in
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the table, volatility is calculated as the variance of future prices (approximately one

month out) divided by the square root of time to maturity. The annualized volatilities

are reported in Column 2, stated in units of percent per year. The table illustrates

that the model can generate high price volatility, either when the forward curve is in

contango or when it is backwardated.

III. Empirical Evidence and Implications for

Option Pricing

The models with flexible production in Section I show that state-dependent sup-

ply responses serve to undo the effects of temporary demand shocks, implying that

without frictions equilibrium prices have only permanent components. This section

examines oil and natural gas price dynamics where temporary shocks have been shown

to exist. The focus here, therefore, is on predictions of the model in the previous sec-

tion, where the relevant friction was an adjustment cost, incurred when production

rates are increased beyond their historic average.

A. Stochastic Volatility in Oil and Natural Gas Prices

Daily observations of futures prices for NYMEX crude oil and natural gas futures

contracts provide a basis for the analysis. We examine crude oil prices from April

1983 to June 2003 and natural gas prices from June 1990 to June 2003. We follow

standard practice and use the nearest-to-maturity futures to proxy for the spot price.

Realized volatility for a month is calculated by summing it’s squared daily changes

in log prices. This results in two monthly time series of realized volatility, covering

243 months for crude oil and 157 months for natural gas.

The natural gas futures term structures and volatilities exhibit seasonal variation

and, in addition, depend on short interest rates. We wish to focus on the relationship
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between futures prices and spot volatilities as predicted by a model with no seasonal-

ities and where riskless interest rates are constant. We, therefore, remove these effects

by first regressing the series on month dummy variables and on the three-month T-bill

rate. Although seasonal variation is much less evident in crude oil, the deseasonalizing

process was performed on that data as well.

The prior literature provides evidence of stochastic volatility in crude oil and

natural gas spot prices.31 We confirm these findings in Table III, which reports results

from estimating a GARCH model with monthly prices, and in Table IV, which follows

the approach in Andersen et al. (2003) by fitting an ARMA(1,1) model to the realized

volatility series.32 There is strong evidence supporting heteroskedasticity of the spot

return series for both commodities. Lagged volatility and squared price innovations

have a statistically significant impact on return innovations, as evidenced by the

significant coefficients in the GARCH model. The ARMA model for realized volatility

supports this finding, indicating a statistically significant role for lagged volatility.

To test our prediction that prices will be more volatile when the futures term

structure is either strongly backwardated or in strong contango we regress realized

volatility on the deseasonalized futures slope and its square.33 As we report in Table

V, we find a significantly positive coefficient on the second term, which is consistent

with our model.34 Newey-West t-statistics, using 12 lags, confirm that a significant re-

lationship between spot volatility and the futures term structure exists for both crude

oil and natural gas. Furthermore, the negative and statistically significant coefficients

on the squared slope terms are consistent with the prediction of our model. Figure

10 illustrates this relationship in the data, confirming that volatilities are high, both

in times of contango and backwardation.
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B. Option Pricing

In prior sections we explained why the endogenous price process from the equilib-

rium model has both temporary and permanent components. However, in contrast to

the SS2 model, our general equilibrium model generates a short-run price component

whose drift is not always linear. As we saw, with adjustment costs, producers opti-

mally increase (or decrease) production only when large demand shocks arrive. On

the other hand, small demand shocks do not give rise to supply responses. As a result,

the short run component of the equilibrium price process has a drift that is “locally”

linear since if quantity supplied is constant the drift of the endogenous price process

reflects the linearity of the drift in the exogenous demand shock. However, overall

the drift is non-linear since large temporary demand shocks are met by non-trivial

supply responses. An important consequence of the deviation from the SS2 dynamic

specification is that the distribution of prices from our model will have tails that are

truncated relative to those of the calibrated SS2 model. The resulting option prices

predicted by the calibrated SS2 model will, therefore, be higher than the option prices

generated by our model.35

In this section, we calibrate the Schwartz and Smith (2000) two-factor model

(SS2) to a time series of forward prices artificially generated by simulations from our

model. We show that, from a statistical perspective, the SS2 model does a good job of

describing these forward prices. However, the SS2 model has an important source of

mis-specification that shows up when the calibrated model is used to price options.36

Option prices predicted by the SS2 model are biased upwards from the “true” option

prices generated by our model under the base-case parameterization described in

Table I. We demonstrate this with the following experimental design. One hundred

time series consisting of three years of weekly forward curves, each with 24 monthly

contract prices, are artificially generated. This is done by simulating the demand and

marginal cost state variables and then using information from the numerical solution
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to the equilibrium model to map these state variables to forward prices.37 We then

numerically calculate 10 option prices at the final calendar date, one maturing at the

end of each of the 10 years following that date and struck at-the-money using the

associated forward price. Next, the SS2 model is calibrated using the forward price

data.38 Finally, option prices are calculated from the SS2 model and compared to

those from our model.

Table VI describes the distribution of the parameter estimates resulting from

the calibration exercise. The mean point estimates of the parameters are intuitively

reasonable. The rate of mean-reversion of the temporary component (κ = 1.56) is

close to that of the demand shock (κy = 1.0), the drift of the long-run component

(µξ = 0.03) is close to the riskless interest rate (r = 0.05), the volatility of the

short-run component (σχ = 0.07) is somewhat less than that of the demand shock

(σy = 0.15) and supply responses lead to a long-term component with low volatility

(σξ = 0.01). One can also see that the parameters in the SS2 model are measured

very precisely; except for the parameter that measures the correlation between the

long and short-run factor, all the estimates are highly significant.39 Based on these

statistics alone, we would conclude that the SS2 model fits the simulated historical

data very well. However, when the model is used out-of-sample the mis-specification

becomes very apparent.

Table VII demonstrates that the calibrated two factor model over-values a large

class of options with maturities ranging from one to ten years. The pattern of mis-

pricing is non-monotonic. For short-maturity options, the mis-pricing is low,40 re-

flecting the fact that the price processes are well specified in terms of their “local”

behavior. However, as the maturity of the options increase, the SS2 over-prices op-

tions by a significant amount steadily increasing until it reaches a maximum at five

years, then decreasing for options with maturities of six to ten years. This occurs

because in the equilibrium model, when conventional reserves of the resource are de-
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pleted, the volatility of the marginal cost of the alternative technology becomes a

more important component of the resource price process. Given the specification and

parameterization of this price shock, (see Equation (23)) distant spot price volatilities

are driven up. This effect is absent from the SS2 model and, as a result, offsets the

underpricing effect at very long horizons.

IV. Conclusion

This paper develops a general equilibrium model of exhaustible resource prices

that extends the existing literature in a number of directions. Using several exam-

ples we show that uncertainty alone cannot explain the backwardation observed in

resource markets. In fact, for resources with perfectly flexible production processes,

forward prices rise at the rate of interest and temporary demand shocks are uniformly

transmitted throughout the forward curve. In addition, in many of these settings the

term structure of volatility is low and constant. Therefore, to explain the observed

price behaviour of commodities such as oil and gas, a cost of adjusting supply is neces-

sary. Although introducing this extra cost significantly complicates the analysis and

necessitates a numerical solution, it generates endogenous price processes that can

exhibit both backwardation of the forward curve and mean reversion in spot prices.

As mentioned in the introduction, the model provides a practical framework for in-

corporating information about demand and supply functions into valuation problems.

Our simulations suggest that this information is potentially quite important and can

lead to very different option prices than Schwartz and Smith’s (2000) reduced form

model, even when the Schwartz and Smith model provides a very good description of

the process generating both forward and spot prices. In contrast to Litzenberger and

Rabinowitz ( 1995) who take stochastic volatility as exogenous, our analysis shows

that volatility of price changes can arise as a natural consequence of the production

decisions made by value-maximizing resource owners and that this volatility is related
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to the amount of backwardation as well as contango in prices. Our empirical analysis

of oil and natural gas data are consistent with our unique explanation of stochastic

volatility. Specifically, consistent with our model, the volatility of price changes for

these commodities is higher when forward curves are both upward and downward

sloping.

Two possible extensions of the model are left for future research. First, any seri-

ous attempt to apply this model to oil markets would require modelling the strategic

interactions of producers with market power. Although extending the model to the

case of a monopolist is straightforward, requiring only that we modify our objec-

tive function, important theoretical and computational issues arise in an oligopolistic

market structure. In such a setting, production strategies depend on the producers’

reserve levels and the reserve levels of all other producers. This problem is especially

challenging in the realistic case where extraction costs vary among producers.

Second, storage is an important source of flexibility that we have ignored in our

model and Routledge, Seppi and Spatt (2000) show that storage has important im-

plications for forward prices. If adjustment costs are small storage has little value in

our context, since production flexibility is a perfect substitute for inventory. However,

this is not the case when adjustment costs are high. Thus, it would be informative to

analyze the joint optimal production and storage decisions in such cases.
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Appendix

Proof of Proposition 5

We solve for the equilibrium by solving the Social Planner problem as in Section

II, with the simplifying assumption that the demand process is discrete. The following

static variational problem characterizes the equilibrium:

max
qt≥0

E

∞∑
t=0

SS (qt) (32)

subject to
∞∑

t=0

qt = R0 a.s. (33)

where SS is the social surplus function defined by equation (25). Equivalently, con-

sider the following unconstrained problem:

max
qt

∑
ω

{
π (ω)

∑
t

e−rt

∫ qt

0

p (x; ω) dx− λ (ω)

[∑
t

qt (ω)−R0

]}

where λ (ω) is the Lagrange multiplier process and π (ω) is the probability of a path.

This optimization problem implies two first order conditions:

e−rtpt (ω) π (ω) = λ (ω) (34)

∞∑
t=0

qt (ω) = R0 ∀ ω (35)

Now along any path ω, define λ̂ (ω) ≡ λ(ω)
π(ω)

and thus λ̂ (ω) = e−rtpt (ω) . Substitute qt

= ea+yt

pt
= ea+yt

bλ(ω)ert
into Equation (35) and obtain

λ̂ (ω) =

∑∞
t=0(e

a+yt)e−rt

R0

∀ ω
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Let S be the set of ω such that such that Rt = R, εt = ε and pt = p and use Equation

(34) to sum over S:
∑
ωεS

e−rtpt (ω) π (ω) =
∑
ωεS

λ (ω)

which implies,

e−rtpt =

∑
ωεS λ (ω)∑
ωεS π (ω)

=

∑
ωεS π (ω) λ̂ (ω)∑

ωεS π (ω)

=
∑
ωεS

λ̂ (ω) ∗
(

π (ω)∑
ω ε S π (ω)

)

= Et

[
λ̂| R, ε, P

]

However, recall that λ̂ (ω) = e−rtpt (ω). Thus discounted prices are martingales.

To obtain the second part of the proposition note that:

E0

(
λ̂
)

= E0

( ∞∑
t=0

e−rt e
a+yt

R0

)

=

(
ey0 +

∞∑
t=1

e−rt

)
ea

R0

= (k + ey0)
ea

R0

where k =
∑∞

t=1 e−rt. Similarly for any time t,

Et

(
λ̂
)

= e−rt (k + eyt)
ea

Rt

and hence,

pt = (k + eyt)
ea

Rt

Q.E.D.
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Proof of Proposition 6

Given the expression for price pt = (k + eyt) ea

Rt
,we clarify the form of the reserves

process, Rt :

R1 = R0 − q0 = R0
ke−y0

1 + ke−y0

Extending this logic by a simple induction argument, it is apparent that Rt = R0

t∏
i=1

ηt,

where the ηt are IID shocks. Substituting for Rt in the expression for prices we obtain:

pt =
ea+yt

R0

t∏
i=1

ηt

This formula for prices allows computation of the term structure of volatility (17).

Q.E.D.

The Numerical Solution of the Equilibrium with Adjustment Costs

The equilibrium is characterized by the solution to the constrained social planner’s

problem defined by Equation (26). This problem is conceptually straightforward to

solve using the standard recursive techniques of dynamic programming. The first

step in solving these types of dynamic problems numerically is to form a discrete

approximation to the continuous state space (see, for example, Kushner and Dupuis

(1992)).41 In this case the (stochastic) processes consist of the two exogenous demand

varibles, the reserve state variable and the lagged output, thus the state space is four

dimensional. Each point in the state space can transition to eight “neighbouring”

points, two along each dimension.

Given the stochastic differential equations for the exogenous processes, the tran-

sition probabilities between the states are well known (see, for example Kushner and

Dupuis (1992). For the lagged output and the reserve state variable the transition

probabilities depend upon the optimal production in a given state. Thus, we start

by assigning a production level to each state, then the transition probabilities for all
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processes including the lagged output and the reserve variable can be computed from

their stochastic differential equation. Corresponding to this initial production assign-

ment we compute the initial value at each state, V (R, y, s, z). This value consists of

the reward at each node plus a probability weighted average of the value at the nodes

with positive transition probabiities. The reward at each node is computed using the

current production policy as input into the consumer surplus.

Having completed the initial value assignment to the state space, we need to up-

date the optimal production policy at each node. The sparse nature of the transition

matrix mitigates the problems associated with the “Curse of Dimensionality”, al-

though the computational and storage requirements are still considerable. At each

point in the state space we use a first order condition to determine optimal produc-

tion response at each node. The first order condition solves for the updated value at

each node corresponding to a production policy. Recall, that this value consists of

the reward at each node plus a probability weighted average of the values at nodes to

which there is a positive transition probability. The optimal policy is then a function

of the partial derivatives of the value function along the four dimensions, so numer-

ical gradients need to be computed along these dimensions. The resulting optimal

production implies a new “value” at each node, as described above. We then apply

policy iteration techniques in order to converge to the fixed point that describes the

solution as well as the production policy associated with the optimum (see, for exam-

ple, Puterman (1994)). Given the optimal production policy, equilibrium prices are

determined as a function of the state variables, which makes it possible to describe

equilibrium price dynamics by using the transition density of the resulting Markov

chain.

To test our algorithm, we verify that the numeric results without adjustment

costs are consistent with the results from Section 2. In this case forward prices grow

at the rate of interest and the term-structure of volatility is flat. In addition, supply
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responses considerably dampen demand shocks, resulting in price volatilities that are

an order of magnitude smaller than demand volatility. Finally, average production

decreases with time and quantities are about as volatile as demand shocks, indicating

that changes in demand are matched by changes in the quantity supplied.

For our base case, the exogenous structural parameters were chosen to make

the endogenous parameters match empirical moments. We have given considerable

thought to a formal GMM calibration of the structural model to a panel of futures

price data. This approch, however, requires the computation of conditional moments

in the four dimensional state space, which must be estimated numerically at each em-

pirical observation of the futures curve in the cross section and over time. Moreover

they must be repeatedly estimated for multiple candidate optimal parameters; this

makes the time costs prohibitive. In light of the outlined computational complexity,

our efforts at a formal estimation have not been successful.
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Notes

1Deaton and Laroque (1996) and Routledge, Seppi and Spatt (2000) analyze the effect of storage
on commodity price dynamics when production is exogenous. We take the opposite approach, focus-
ing instead on the effect that endogenous production decisions have on commodity price dynamics
when no inventories are present.

2For example, oil shale is a potential future substitute for conventional oil.

3Schwartz (1997) and Schwartz and Smith (2000) show that empirical models of oil prices with
multiple factors, some mean reverting and others permanent, outperform single factor models with
only short-term or long-term effects. Pindyck (1999) utilizes long time series of spot prices for
energy commodities, including natural gas, to estimate variance ratio statistics that are consistent
with short-term and long-term components in prices. Fama and French (1988) and Bessembinder
et. al. (1995) show that many commodity prices, in particular crude oil, have a mean reverting
component.

4Adjustment costs have been used in a number of studies, including Scarf (1960), Grossman and
Laroque (1990) and Caballero and Engel (1999), to describe a variety of economic phenomena. In
addition, Casassus, Collin-Dufresne and Routledge (2004) as well as Kogan, Livdan and Yaron (2004)
study the effects of adjustment costs on futures prices in a production economy with irreversible
investment.

5See, for example, Litzenberger and Rabinowitz (1995). If futures prices are below the current
spot price, the futures curve is said to be backwardated. Litzenberger and Rabinowitz make the
distinction between weak and strong backwardation. If discounted futures prices are below the spot
price, they say the futures curve is weakly backwardated. Contango is the opposite of backwardation.

6Empirical evidence from crude oil futures markets is somewhat consistent with their prediction
during the time period considered: “Between February 1984 and April 1992 the nine months futures
price was strongly backwardated 77 percent of the time and weakly backwardated 94 percent of the
time” (Litzenberger and Rabinowitz (1995), page 1517). In the 1990’s, however, oil futures prices
were often in contango. Between April 1991 and June 1999 the 12 months futures price was strongly
(weakly) backwardated only 56 (75) percent of the time. Natural gas is a depletable resource that is
arguably less susceptible to direct price manipulation by producers. Between April 1991 and June
1999 the 12 months futures price for natural gas was strongly (weakly) backwardated only 45 (60)
percent of the time. Thus, the more recent price data is somewhat at odds with a model that does
not explain the frequent occurrence of weak contango in exhaustible resource prices.

7Our model does not explicitly incorporate a specification of risk premia since our explanation
of the empirical phenomena discussed earlier is not risk based. Under certain specifications of the
market price of risk (e.g., a constant) all our theoretical results will hold with expectations interpreted
as being calculated with respect to the risk-neutral probabilities. The assumption of risk neutrality
eliminates the need to empirically estimate the risk premium in Section III, but the point we make
there is valid regardless of the nature of risk premia.

8In a few cases this condition will be satisfied in finite time, but in many cases the constraint
will hold only as time approaches infinity. Assuming the demand curve is fixed (g=0 in our setting),
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Hotelling shows that, “whether the time untill exhaustion will be finite or infinite turns upon whether
a finite or an infinite value of p will be required to make q vanish”. For the above specification with
γ = 1, qt = ea+yt

pt
which implies that extraction will continue forever. The resource will be extracted

in finite time if for example qt = a− pt.

9We will not make a distinction between forward and futures prices since interest rates are non-
stochastic in our setting.

10Given this relationship, forward prices will depend on the level of all state variables relevant
for forecasting future spot prices. In some cases, the current spot price will be a sufficient statistic
for this forecast and there will be a straightforward relationship between the current spot price and
forward prices. This will not be the case in general, however, and forward prices will typically be
affected by information other than current price.

11In this example, κ = .9, σ = .5, γ = 1, and r = .05.

12Empirical results, not reported here, confirm that these effects remain in data covering a longer
and more recent time period.

13This extension of Hotelling’s (1931) result is also noted in Weinstein and Zeckhauser (1975) and
Pindyck (1980).

14This effect is analogous to the permanent income hypothesis in which transitory income shocks
are capitalized into permanent increases in consumption. However, in our setting a transitory demand
shock is “capitalized” through its impact on reserves and hence the permanent price factor, but the
instantaneous consumer surplus, our analogue of consumption, will reverse itself as the transitory
demand factor declines.

15This is a different type of friction than that considered in Litzenberger and Rabinowitz (1995).
In their model, producers are not able to extract all of an oil well’s reserves at an arbitrary point
in time. That is, although some portion of the reserves can be extracted at will, they effectively
place an upper bound on production rates that ensures all wells will have some productive reserves
available in the future (footnote 12, page 1523). This assumption is key to their backwardation result
(Theorem 1 in their paper) which states that the amount of weak backwardation in forward prices
is equal to the value of a put option on oil with a strike price equal to the extraction costs of the
marginal producer. It is instructive to consider what happens in their setting absent the production
constraint. If infra-marginal producers can extract all their reserves at any given point in time (i.e.,
no production frictions) then the future price of oil will be bounded below by the marginal producer’s
extraction costs. In this case, the relevant put option price is zero and forward prices will not exhibit
backwardation.

16Our results emphasize the role of adjustment costs. Other channels can be used to generate
temporary and permanent components, for example mean-reversion in either marginal extraction
costs or in risk premia. However, these alternatives will not give rise to the Markov-switching behavior
we describe below.

17Pindyck (1980) uses this specification of extraction costs in his model.

18In the limit as φ → −∞ this average approaches instantaneously lagged production. We have in
mind an application where reserves are equally distributed among several identical sources, some of

44



which have been developed and all of which yield identical production flows. In this case, the economy
wide production rate can be increased either by increasing the number of developed sources or by
increasing the production flow from each developed source. Hence, it is possible to interpret our
specification of adjustment costs as either a cost associated with increasing the production flow
from existing sources or with developing new sources. The latter interpretation is only loosely true,
however, because in states where developed reserves are optimally exhausted first, costs would need
to be incurred in order to maintain current production.

19Pindyck (1980) and Sundaresan (1984) analyze models with random reserve processes. These
authors have shown that uncertain supply can give rise to backwardation in forward prices. We have
chosen to focus instead on the effects of randomness in demand and in the marginal cost of the
substitute good.

20See also Weinstein and Zeckhauser (1975).

21We would ideally estimate the model’s parameters using the Simulated Method of Moments. In
light of the computational burden, however, we are forced to adopt an efficient calibration scheme
that does not not require repeated evaluations of the model’s empirically relevant moments.

22As we show in Observation 6, our model generates an (inverted) humped term structure of
volatility even when the substitute good volatility is reduced.

23It may be helpful to refer to Figure 2 while working through this subsection and the next. Impulse
response functions are qualitatively similar to what is described here when historical production is
high or low relative to current production.

24Specifically, we set yt = 40, s = 40, zt = 1.8 and Rt = 18.

25In this case the temporary price factor responds to small y shocks, but the permanent price
factor does not, resulting in a local correlation close to zero.

26In addition to “local” mean reversion, prices will also revert in response to an accumulation of
shocks, in which case a production response occurs and prices react slowly to the direct effect of the
y shock. The mechanics of this mean reversion differs from “local” mean reversion, the first is driven
by a production response, while the latter happens due to the absence of an immediate response.

27Approximately 90% of the initial impulse to y dissipates over the two years impulse horizon
depicted in Figure 8.

28The non-monotonicity in the impulse response function plotted in Figure 8 arises because the
reference quantity q is associated with a smaller level of historical production z and hence leaves
the no-response region earlier than the impacted quantity q′. This effect gives rise to an apparent
increase in relative quantities beginning approximately at post-impulse time t = 0.5.

29Note also that the price impact of y is dampened considerably, but not made completely perma-
nent like in Section I. Inspection of Figure 8 shows that backwardation does exist following a positive
shock, when defined using long-run futures prices less the current spot price, since the overall effect
of the shock is a greater increase in the current price than the future price.

30As can be seen in Figure (9), the shock to s has a relatively large impact on the permanent
price factor so that the impulse will give rise to contango in futures prices. In the case, when lagged
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output is below current production greater portion of the shock is permanent, causing a decline in
the correlation between permanent and transitory price factors. This can be seen with reference to
Figure 2. An increase in s when q is above z will shift the function VR − φVz permanently upwards,
with an accompanying and immediate permanent drop in quantity.

31Duffie, Gray and Hoang (1999) consider a variety of models for dynamic volatility in energy
prices. Litzenberger and Rabinowitz (1995) provide evidence of a dependence between crude oil
backwardation and spot price volatility.

32We use the GARCH specification of Bollerslev (1986): σ2
t = b1 + b2ε

2
t + b3σ

2
t−1 where σt ≡

var(εt+1).

33To check that the empirical significance of the squared slope term arises because of non-
monotonicity and not convexity, we have verified that our result is robust to interacting the squared
slope term with dummy variables for positive and negative slopes. The non-monotonic relation is
also confirmed by Kogan, Livdan, and Yaron (2004) who test our relationship by interacting the
slope term with dummy variables for positive and negative slope.

34Term structure slopes utilitize the nearest and third nearest contracts. This choice provides the
longest possible time series, since both such contracts have been simultaneously trading for the entire
sample periods. Liquidity in the shorter maturity contracts is also high relative to, say, the twelve
month contract, providing further justification for their use in our analysis.

35Schwartz and Miltersen (1998) describe how to use information from a calibrated two-factor
model to price options on commodities. The Fourier inversion approach of Duffie, Pan and Singleton
(2000) can also be applied to price options in this setting.

36It is well known that models consistent with the same forward curve can disagree on option
prices. For instance, such pricing differences are observed within models of the short rate. Here our
point is to clarify the source of such differences.

37Computational complexity limits the size of the experiment we can feasibly undertake.

38See Schwartz and Smith (2000) for the details of this calibration procedure.

39The unconditional permanent-transitory correlation might be close to zero because, as discussed
in Section 3.6, the conditional price correlation can be positive, zero, or negative. Additionally, the
exogenous temporary and permanent state variables, y and s, are themselves uncorrelated.

40For maturities of less than a year, the two models yield very consistent option prices.

41Another common but less direct approach for solving such dynamic programs involves iterating
among approximating functions for the policy function or for the expectation arising in the first-
order conditions (see, e.g., Judd (1998)). In our setting, however, neither of these functions has a
form that is known a-priori. Furthermore, as we will show in later sections, they are not likely to be
well approximated by a low-dimensional polynomial, as is required by these techniques.
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Parameter Name Symbol Value

Risk-free interest rate r 0.05
Long-run average demand µy 3.69
Rate of mean reversion of demand κy 1.00
Volatility of demand σy 0.15
Drift of cap µS 0.00
Volatility of cap σS 0.05
Weight on historic production φ 1.00
Cost of increasing production δ 0.50
Extraction Cost C 0.00

Table I: Parameter values for the base case.

12 Month Volatility
Forward Slope

-1.09 12.85
-0.95 10.96
0.01 0.39
0.92 9.40
1.88 12.49

Table II: Term Structure Slope and Volatility This table presents the relationship
between the slope of the term structure and volatility in the base case model. Six
points in the state space were chosen, that differed in the amount of contango and
backwardation that they exhibited. Backwardation and contango was measured by
the percentage difference between the 12 month forward price and the spot price.
For the six points in the table, volatility is calculated as the variance of future prices
(approximately one month out) divided by the square root of time to maturity. The
annualized volatilities are reported in Column 2, stated in units of percent per year.
The table illustrates that the model can generate high price volatility, either when
the forward curve is in contango or when it is backwardated.
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Crude Oil Natural Gas

Constant 0.0003 0.0163
(1.49) (2.39)

GARCH term 0.602 −0.019
(9.69) (−0.07)

ARCH term .459 0.385
(4.54) (2.12)

Table III: Stochastic volatility of spot returns: GARCH (1,1) model. Coeffi-
cient estimates for a GARCH (1,1) model of deseasonalized spot returns. t-statistics
are provided in parentheses.

Crude Oil Natural Gas

Constant −0.026 −0.004
(−0.20) (−0.06)

AR term 0.894 0.525
(29.94) (4.70)

MA term −0.331 −0.008
(−4.48) (−0.05)

Table IV: Stochastic volatility of spot returns: ARMA model. Coefficient
estimates for an ARMA (1,1) model of realized spot return volatility. t-statistics are
provided in parentheses.

Crude Oil Natural Gas

Constant −0.119 −0.033
(−1.32) (−0.59)

XSSlope −1.44 −0.777
(−1.18) (−2.62)

XSSlope2 66.470 2.702
(3.70) (2.27)

Table V: Futures volatility and term structure slope. Coefficient estimates for
the regression of the realized volatility of log spot prices (deseasonalized) on the fu-
tures term structure slope (also deseasonalized) are provided. Newey-West t-statistics,
utilizing 12 lags, are reported in parentheses.
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Value
Parameter Name Symbol Mean Std. Error

Drift: long-run factor µ 0.03 0.003
Diffusion: long-run factor σ

ξ
0.01 0.002

Rate of mean reversion: short-run factor κχ 1.56 0.190
Diffusion: short-run factor σχ 0.07 0.015
Correlation of factors ρ 0.04 0.060

Table VI: Estimates of parameters from the Schwartz and Smith [14] cali-
bration procedure. Simulated forward prices were used to estimate the parameters
from the Schwartz and Smith [14] two-factor model. Mean values and standard errors
are derived from the distribution of the estimates from 100 independent simulations
of 152 weekly forward prices extending out 24 months.

Time to Median Option Over-pricing (percent)
Maturity Price (dollars) Percentile
(years) Equilibrium Calibration 50 25 75

1 0.1321 0.1319 1 -12 14
2 0.1170 0.1351 15 2 28
3 0.0724 0.1370 86 63 104
4 0.0591 0.1384 135 113 158
5 0.0604 0.1396 138 114 161
6 0.0649 0.1414 123 104 141
7 0.0730 0.1447 101 86 117
8 0.0806 0.1477 186 73 99
9 0.0872 0.1506 74 64 87
10 0.0940 0.1526 65 55 77

Table VII: Comparison of option prices. This table compares the model’s actual
option prices to the option prices generated by a calibration of the Schwartz and
Smith [14] model. The option prices from the calibrated model are, in general, higher
than the actual option prices.
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Figure 1: The optimal production policy and endogenous diffusion with
mean reverting demand. Producers respond to mean reversion in demand by op-
timally adjusting production rates. Panel A displays the relationship between the
demand state yt and the production rate eβ(yt). Panel B displays the relationship be-
tween demand and volatility of log spot price changes. Volatility will be stochastic
and mean reverting because of its monotonic relationship to yt.
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Figure 2: First order conditions for optimal production. This figure illustrates
the effect of changing the exogenous state variables on the first order conditions
specified in Proposition 7.
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Figure 3: Forward prices and the term structure of volatility: the base case.
The top panel presents two forward curves from the model under the base case para-
meterization. Forward curves may be backwardated or in contango. The lower panel
displays the term structure of volatility for the base case. The magnitude of the
volatility is low and declines with time.
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Figure 4: Analysis of changes in the level of reserves and interest rates.
Panel A shows that when reserves drop forward prices rise. Panel B shows that when
interest rates decrease forward prices rise.
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Figure 5: Analysis of the long run sensitivity of the term structure of volatil-
ity to the volatility of the alternative technology. This figure shows that term
structure of volatility rises as reserves approach exhaustion.
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Figure 6: Analysis of a change in the volatility of the demand shock. Panel
A shows that forward prices do not change when the volatility of the demand shock
decreases. Panel B shows that lower demand shock volatilities result in lower price
volatilities.
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Figure 7: Analysis of a change in the volatility of the alternative technology.
Panel A shows that forward prices do not change when the volatility of the alternative
technology decreases. Panel B shows that lower alternative technology volatilities
result in lower price volatilities.
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Figure 8: Impulse response of quantity and price to a shock in y. This figure
shows the effect of an increase in the exogenous state variable y. The top panel
illustrates the differential impact on quantities and the bottom panel illustrates the
impact on prices, where dashed (solid) lines apply to an increase of 0.05% (0.5%).
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Figure 9: Impulse response of quantity and price to a shock in s. This figure
shows the effect of an increase in the exogenous state variable s. The top panel
illustrates the differential impact on quantities and the bottom panel illustrates the
impact on prices, where dashed (solid) lines apply to an increase of 0.05% (0.5%).
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Figure 10: The relationship between empirically measured log volatility and
forward curve slope. The figure illustrates that volatility is high when forward
prices are either backwardated or in contango for both crude oil (Panel A) and natural
gas (Panel B).
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