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ABSTRACT

This study empirically investigates the value employees place on stock options using information

from the option exercise behavior of individuals. Employees hold options for another period if the

value from holding them and reserving the right to exercise them later is higher than the value of

exercising them immediately and collecting a profit equal to the stock price minus the exercise price.

This simple model implies the hazard describing employee exercise behavior reveals information

about the value to employees of holding options another time period. We show the parameters of this

model are identified with data on multiple option grants per employee and we apply this model to

the disposition of options received in the 1990s by a sample of over 2000 middle-level managers

from a large, established firm outside of manufacturing. Exercise behavior is modeled using a

random effects probit model of monthly exercise behavior that is estimated using simulated

maximum likelihood estimation methods. Our estimates show there is substantial heterogeneity

(observed and unobserved) among employees in the value they place on their options. Our estimates

show most employees value their options at a value greater than the option's Black-Scholes value.
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The Value of Stock Options to Non-Executive Employees 

  
 Over the past 20 years there has been dramatic growth in the use of stock options for senior-level 

executives (e.g. Hall and Leibman, 1998 and Murphy, 1999) and by the mid-1990s substantial growth in 

the use of options for non-executive employees had begun that has recently been dampened due to a 

number of factors including the market adjustment of 2001 and changes in Financial Accounting 

Standards Board (FASB) rules. Using Black-Scholes to value options, stock options to managers and 

employees who are not among the top 5 highest paid employees in the firm grew from less than 85 

percent of total options granted to employees in the mid-1990s to over 90 percent by 2002 (Hall and 

Murphy, 2003). A variety of explanations have been offered for the growth in employee stock options 

including providing incentives to employees, motivating employees to sort, employee retention, and 

financing constraints (Bergman and Jenter, 2005, Core and Guay, 2001, Kedia and Mozumdar, 2002, 

Lazear, 2003, and Oyer and Schaefer, 2005a,b).    

Understanding the specific reasons for the use of employee stock options by firms requires 

knowledge of the costs and benefits to both firms and employees of options relative to cash or other forms 

of compensation.  Because the payoff to an employee from stock options depends on the firm’s stock 

price which is beyond the complete control of even the most senior manager, option based compensation 

exposes risk averse employees to uncertainty that they must be compensated for to make them indifferent 

between an option and cash compensation costing the firm an equal amount.  Economically rational 

explanations for the use of stock options require that the risk premium a firm pays to employees to accept 

options instead of cash is offset by the benefits the firm expects to receive from granting the options.  

These benefits from options may be reflected in lower agency costs, lower turnover, increased 

commitment by workers to the firm, etc.1   

Understanding where firms use stock options requires estimates of both the dollar value 

employees place on options and the magnitude of the benefits firms receive by granting stock options to 

                                                 
1 We do not investigate some potentially important tax issues in this paper. 
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employees.  In this study we take a step toward making this evaluation by empirically estimating the 

value a sample of middle managers place on the stock options they received from their employer.  

Previous research emphasizes the distinction between the cost of options to firms and the likely lower 

value employees place on options due to employee risk aversion and the characteristics of employee stock 

option grants (Lambert, Larcker, and Verecchia, 1991, and Hall and Murphy, 2000, 2002, 2003).  

However, this research has not produced an estimate of the value employees place on options inferred 

from the observed behavior of a sample of option holders.  Hall and Murphy (2002) calculate the value 

executives place on options by making assumptions about the form of an executive’s utility function, their 

level of risk aversion and the share of their wealth invested in their firm’s stock.  While this research 

provides valuable insight into the possible trade-offs between options and cash compensation, their 

calculations are a function of the assumptions they make about executives and are not directly inferred 

from the behavior of a sample of employees who have received options. 

In this study we empirically estimate the dollar value employees place on employee stock options 

(ESO) at a particular time for a particular set of employees using a method that requires few assumptions 

about the form of the utility function or the level of employee risk aversion. Our method generalizes to 

any other situation where employees are given options.  Our analysis is based on the observation that an 

employee will choose to hold an option for another period (e.g. day, week, or month) if the utility of the 

income she would receive (e.g. stock price – exercise price) by immediately exercising the option is less 

than the value from holding the option and reserving the right to exercise it on a later date.  Conversely, if 

she exercises in the current period, then we know the value from not exercising the option is less than 

what she gains now by exercising the option and receiving an amount equal to the stock price minus the 

exercise price.  Our model implies the decision to exercise or hold an option for another period provides 

the critical piece of information needed to infer the value employees place on an option at any point in 

time when the option could be exercised for a profit (e.g., stock price – exercise price > 0).  

 The rest of the paper is organized as follows.  In section I we introduce the theoretical model used 

to estimate the value employees place on options.  Section II discusses model identification and 
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estimation methods.  The data are described in Section III and Section IV presents the results.  Section V 

examines the late exercise activity by employees from one option grant using a simple analysis that is 

consistent with the more elaborate model presented in Sections I-IV.  Section VI summarizes our research 

and discusses the implications of our findings for additional research and the current public policy debate 

regulating the information firms are required to disclose about the cost of employee stock options. 

  

I.  A Model of Employee Exercise Decisions 

Like virtually all previous discussions of the value of stock options to employees, the starting 

point for this research is the pioneering work of Black and Scholes (1973) and Merton (1973) who 

describe how rational investors holding a diversified portfolio value tradable stock options.  The famous 

diagram shown in Figure 1 summarizes the basic relationship between the Black-Scholes value (BSV) of 

a call option and the firm’s stock price and the option’s exercise price. The Black-Scholes model assumes 

stock returns each period are normally and independently distributed so the expected stock price on the 

expiration date of the option is greater than the exercise price described by the mean of a truncated log 

normal distribution truncated at the exercise price.  Mathematically, the Black-Scholes value (BSV) of the 

option in Figure 1 at any current stock price is equal to the expected value of E[Max((SPT – EP),0)] 

discounted from the expiration time T to the present at the risk free interest rate. They show the value of 

holding an option is a function of six variables- the risk free interest rate, the expiration date of the option, 

the variance in the firm’s stock returns, the firm’s dividend rate, the option exercise price and the current 

stock price. The BSV declines or shifts in toward the kinked intrinsic value line (e.g.,  Max((SPt – EP),0)) 

as the option expiration date approaches, the firm’s dividend rate increases, the risk free interest rate 

increases or the variance in the firm’s stock returns declines. 

The Black-Scholes model predicts that a diversified investor will never exercise an American call 

option prior to the moment before it expires because at any earlier date the expected gain from holding the 

option until the expiration date is greater than the intrinsic value of the option.  In other words, the 

possibility of a stock price increase between now and the expiration date makes the Black-Scholes value 
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greater than the profit that could be made by immediately exercising the option and receiving the option’s 

intrinsic value, (SPt -EP).  It is important to note that the model makes no prediction about how long an 

individual investor will own a market traded option.  The model only predicts that prior to the expiration 

date an investor will sell the option rather than exercise an option to increase liquidity or rebalance his 

portfolio.   

Applying Black-Scholes to ESO is thought to give a poor estimate of the value of the option to an 

employee who receives it as part of her compensation package.  The empirical evidence cited to support 

this conclusion is that employees frequently exercise ESO “early” or well before the option’s expiration 

date (Huddart and Lang, 1996; Carpenter 1998).  In the firm we study 86 percent of employees exercised 

their options prior to the month before the options expired and half of the sample exercised some of their 

options at least 27 months prior to their expiration.2  In a simulation study, Hall & Murphy (2002) show 

risk averse executives who also have a substantial portion of their portfolio invested in the firm may 

exercise “early” to lock-in gains from large stock price increases and diversify their portfolio.  Heath, 

Huddart and Lang (1999) find that employees tend to exercise options when the firm’s stock price 

exceeds a target or referent price based on recent stock price highs.  Since an employee must typically 

forfeit her options if she leaves the firm, early exercise decisions may also be caused by voluntary or 

involuntary employee turnover (Carpenter 1998).   

The observation that employees frequently exercise ESOs “early” compared to the Black-Scholes 

prediction for market traded options reflects the fact that employees cannot sell the options they receive 

from their employer and must exercise the options if they wish to liquidate their position to diversify their 

portfolio, meet a budget constraint or prepare for an anticipated departure from the firm.  This 

fundamental feature of ESOs is the basis for our model because it implies valuable information about the 

option’s value to an employee is revealed each period by observing whether or not a vested option is 

exercised.  If an option is not exercised in a period then a researcher can conclude the value to the 

employee of holding the option and reserving the right to exercise it in a later period is greater than the 
                                                 
2 These data are for the first large ESO grant awards made to the middle level managers included in this study. 
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value of exercising the option and receiving the option’s intrinsic value.  On the other hand, if an 

employee exercises an option in a period, then the observer knows the value of holding the option another 

period is less than what is gained by exercising the option and receiving a payment equal to the stock 

price minus the exercise price.  Thus, the decision to exercise or hold an option for another period is an 

indicator of the value an employee places on an option at a point in time.  Therefore, the exercise hazard 

rate for an option grant to a firm’s employees reveals information about employee heterogeneity in the 

value they place on the options.  

 Formally, define the following terms: SPt = stock price at time “t” where “t” indexes the time 

since the option vested, EPk,j = exercise price for option “k” granted to employee “j” , EVFk,j,t = Employee 

Value Function (EVF) or the utility (in dollars) to person “j” in period “t” from holding option “k” 

another time period.  For vested options held by an employee, in each period “t” we assume the employee 

decides whether to hold the option another period or to exercise the option by comparing the utility from 

exercising the option with the utility of holding the option for another period.  Since SPt – EPk,j equals the 

certain cash payment the employee receives from exercising the option, the option will be exercised if this 

cash payment is greater than the monetary value to the employee of holding the option another period: 

(1a) tjkjkt EVFEPSP ,,, )( >−  

and the option will be held another period if 

(1b) .)( ,,, tjkjkt EVFEPSP ≤−  

 Let EVFk,j,t  be a linear function of a set of observable characteristics of the employee, the option 

and the market (X) and an unobserved randomly distributed error term that is indexed by option grant, 

person and time:  

(2) tjktjktjk vXEVF ,,,.,, += β ,  where � ~ N(0,�2
v). 

Equations (1) and (2) describe the probability an option will be exercised in period “t” conditional on the 

exogenous variables.  Let Ik,j,t = 1 if option “k” held by employee “j” is exercised in period “t”, and zero 

otherwise.  The probability Ik,j,t  = 1 is: 
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(3a) ))Pr(()1Pr( ,,,,, tjkjkttjk EVFEPSPI >−==  

(3b) ])Pr[()1Pr( ,,,,,,, tjktjkjkttjk vXEPSPI +>−== β  

(3c) )])(Pr[)1Pr( ,,,,,,, βtjkjkttjktjk XEPSPvI −−<==  

(3d) ]/)))[(()1Pr( ,,,,, νσβtjkjkttjk XEPSPI −−Φ== , 

where �(.) is the CDF for a standard normal variable.  

The right hand side of equation (3d) shows the probability an option is exercised in period t 

depends on the difference between the value from exercising the option immediately (SPt – EPk,j) and 

holding the option for another period.  This is shown in Figure 2.  The probability the option is exercised 

is the shaded area or the probability that tjkv ,, is sufficiently small to cause EVF to be less than SP-EP.    

 For model identification and estimation reasons that are explored in the next section, the error 

term in the preceding model is assumed to be normally distributed.  This assumption implies the value to 

an employee of holding an option another period could assume either very “large” or “small” values that 

are inconsistent with previous predictions made about the value employees place on options.  As noted 

earlier, previous research (e.g. Lambert, Larcker, and Verecchia, 1991) has assumed the value of an 

option to an employee is less than the option’s Black-Scholes value because of the design of employee 

stock option plans and the risk aversion of employees.  Employees receiving stock options are likely to be 

“over-invested” in their firm relative to an outside investor because they cannot sell the options and are 

heavily invested in the firm through firm specific human capital and implicit or explicit deferred 

compensation (pensions) that depend on the success and survival of the firm.  This lack of diversification 

and the possibility of having to exercise “early” because of turnover risk leads to the prediction that 

employees value options at less than their BSV.  One way of imposing the constraint that EVF < BSV in 

the empirical analysis is to let the X variables equal just a single variable, the option’s BSV, and constrain 

the coefficient on this variable to be less than one.  

 While there are strong theoretical reasons to believe economically rational employees will value 

their options at less than their BSV, in practice employees may have great difficulty using Black-Scholes 
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as a benchmark in their personal valuations because of the limited information employees have about the 

option market and option valuation theory.  These judgments are difficult because there is no market 

information that employees can use to aid their valuation because the 10 year term of a typical ESO is far 

longer than market traded options that may exist for the firm.  Employees also have no way of 

determining the value an outside investor or lender would place on the option since employees cannot sell 

their options or use them as collateral for a loan. Without market information, it is unlikely the typical 

employee will be knowledgeable about option pricing theory or able to solve an option pricing problem 

that won a Nobel Prize in economics for Merton and Scholes.  Therefore, we estimate an unconstrained 

model using Eq 2 and 3a where EVF is an unconstrained function of BSV, BSV2 and BSV3,  a 

constrained model where the coefficient on BSV is constrained to be less than one and a “truncated 

model” described in the next paragraph3   

 The one piece of market information employees do observe when making their exercise decisions 

is the firm’s stock price.  Standard results in finance show any rational model employees use provides an 

option value less than the firm’s stock price because an employee is always better off owning the share of 

stock when given the choice between an option and share of stock each priced at SP  (Brealey, Myers & 

Marcus 1995).  If SP � EP on the expiration date the option is worth nothing but the share of stock is still 

worth SP>0.   If SP > EP the share of stock is also worth more than the option as the option is worth SP-

EP and the share of stock is worth SP.  Thus, a rational employee will never value an option at more than 

the stock’s current price.  This fact is used to specify a truncated model where EVF cannot exceed the 

firm’s stock price.  The distribution of EVF when truncated at SP is  

(4a) tjtjtjk vCXEVF ,,,, +=  

(4b) f(� | EVFk,j,t  < SPt) = (1/��) f((EVFk,j,t – Xj,tC)/�� ) �((SPt  –Xj,tC)/��) 

The probability an option is exercised in period t conditional on (SP-EP) and X is: 

                                                 
3 The constrained model was estimated by letting the coefficient on BSV equal 1/(1+exp(�BSV)). 
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and the probability an option is not exercised in period t is ))EPSP(EVFPr( j,ktt,j,k −> .  We refer to this 

model as the truncated model.  In summary, we estimate three basic theoretical models; one model (“�BSV 

< 1 model”) where the coefficient on an option’s BSV in the employee value function is constrained to be 

less than one, a second model that constrains the employee value function to be less than the firm’s stock 

price (“truncated model”) and a third model that imposes neither of these constraints (“unconstrained 

model”).  Our preferred model is the truncated model because it is theoretically supported but still flexible 

enough to allow the data to test whether the EVF is greater or less than an option’s BSV. 

 

II. Model Identification and Other Econometric Issues 

In the models developed above exercise decisions each period are based on whether or not the 

EVF is greater or less than a threshold value equal to the option’s intrinsic value, (SP-EP).  In the typical 

study where the dependent variable is a discrete, binary outcome, only the standardized coefficients, �/�, 

are identified in the probit model because the threshold determining which outcome is observed is 

unobserved and arbitrarily set to zero.  While the standardized coefficients are sufficient to predict 

exercise decisions, inferring the dollar value of an option from exercise behavior requires estimates of the 

unstandardized coefficients, the Cs and ��.  Because the exercise decision is based on the value of EVF 

relative to an observed threshold (SP-EP), the unstandardized coefficients are identified in the probit 

model if options data have different exercise prices.   

A natural way to parameterize the EVF is to make it a function of the Black-Scholes value of the 

option because it reflects rational expectations about the value of the option on its expiration date to a 

diversified investor, or: 

(6) tjktktjk vBSVEVF ,,,,, )( += α  

In this specification the probability an option is exercised in period t equals: 
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(7) )
)(

())(Pr( ,
,

,,, tk
jkt
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−
−

Φ=−<  

This equation shows � and �v are separately identified if (SP-EP) varies in the data because the parameter 

on (SP-EP) equals 1/�v and the parameter on BSV equals �/�v.  Alternatively, if all the options in the 

dataset have the same exercise price then in any period “t” (SP-EP) is a constant, making �v unidentified 

which, in turn, means � is unidentified and only the standardized coefficient on BSV, �/�v , can be 

estimated.4  Thus, option data with multiple exercise prices is required to estimate the “structural” 

parameters of the EVF described by Equation (1). 

 In most ESO plans the exercise price and expiration date for options granted to employees on a 

specific date are identical for all employees.  The exercise price is typically set equal to the firm’s stock 

price on the grant date and the options expire on the same day 6-10 years later.  Exercise data with only 

one grant and expiration date creates a second identification problem for Eq. (7).  If the dataset includes 

options that have the same exercise price and expiration date, then all the options have the same Black-

Scholes value in any period.  Thus, even if (SP-EP) were excluded from the probit equation the 

relationship between EVF and the option’s EVF could not be estimated without variation in the time 

remaining until the options expire.  We overcome this identification problem by using data on options 

granted to a common group of employees on multiple dates.  Since all of the options in our sample expire 

10 years from their grant dates, the time left until the options expire produces different Black-Scholes 

values on day “t” and identifies how exercise decisions are affected by difference in the Black-Scholes 

value of an option.  To summarize, it is possible with data on grants with different exercise prices and 

expiration dates to identify the EVF in period “t” and permit the EVF to be a function of the Black-

Scholes value of the option in period “t” using only information on whether or not options are exercised 

in period “t”.     

                                                 
4 There are other settings where researchers have been able to identify � in a probit model.  For example, empirical 
studies of the fair wage beliefs of arbitrations under final offer arbitration identify � from variation in the final offers 
presented to arbitrators.  See Ashenfelter & Bloom (1984) and Olson & Jarley (1991).    
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 We now sketch a slightly more formal proof of how � and �v in Eq. (7) are identified using 

exercise activity in period t for options that have different exercise prices and expiration dates.  Assume a 

firm provides one option to each employee under two option grant plans – plan “A” and “B”.  Options in 

the two plans are granted on two different dates, at different exercise prices and all options expire after 10 

years.  In period “t” when the options are “above water” (e.g., SP>EP), data are collected on the fraction 

of unexercised options that are exercised in period “t” from each option plan.  Thus, we have the 

following data: (SPt-EPA), (SPt-EPB), BSA, BSB, PA and PB where Pk is the fraction of unexercised options 

from grant k exercised in period t.  Equation (7) shows the relationships between these variables is 

described by the following two equations: 

( )A
At

A BS
EPSP

P
νν σ

α
σ

−
−

Φ=
)(

 and ( )B
Bt

B BS
EPSP

P
νν σ

α
σ

−
−

Φ=
)(

. 

The two unknown parameters, � and �v, can be solved from these two equations.  

 The constraint in the truncated model that the EVF is less than the firm’s stock price provides an 

additional source of identification for �v that is not part of the other two models.  The preceding 

discussion shows that �v is identified in the unconstrained model from two option grants based on 

differences in the probabilities (PA and PB) the EVFs are less than the options’ intrinsic values and the 

shape of the lower tail of the normally distributed error term, �, below (Intrinsic Value)A and (Intrinsic 

Value)B.   As the variance in � increases, PA and PB increase by different quantities because of the 

nonlinearities in the normal distribution.  In the truncated model identification of �v is helped further by 

the constraint that EVF is less than the stock price.  Equation (5) shows the probability an option is 

exercised is a function both the Pr(EVF < EP) and Pr(EVF < SP).  The exercise probability increases as �v 

increases because the numerator ( Pr(EVF < EP)) increases and because the denominator (Pr(EVF < SP)) 

declines.    The truncated model shown in Figure 3 describes two options that have different exercise 

prices.   This figure shows the exercise probability for each option is a function of both Pr(EVF < EP) and 

Pr(EVF < SP);  option A has a greater probability of being exercised even though Pr(EVF < EP)A and  

Pr(EVF < EP)B are approximately equal because Pr(EVF < SP)A <   Pr(EVF < SP)B.   Thus, in the 



 11 

truncated model �v is identified from the normality assumption and differences in both tails of the error 

term across a sample of options with different terms.   

The preceding discussion describes the data necessary to estimate the parameters of the EVF 

using data on exercise activity from a single period for two samples of options that have different terms.    

The data for this study is for exercise decisions over all or part of an 8 year exercise window and we 

estimate the time until an employee first exercises at least one option from grant k.  This is accomplished 

by dividing the 8 year exercise window into 96 months and estimating discrete time hazard models for the 

first month in the exercise window that an option from a grant is exercised.  The probability an option 

from grant k=1 to employee “j” is first exercised in period M1 and an option from grant k=2 is first 

exercised in period M2 is equal to the probability an option from the first grant is not exercised in periods 

1 through M1-1 and then exercised in period M1 and the probability an option from the second grant is not 

exercised in periods 1 through M2-1 and then exercised in month M2.  If Dk,j is the month an option from 

grant k is first exercised, then this sequence of events occurs with the following probability  

(8) Pr(D1,j = M1, D2,j=M2) = Pr[ (SP1-EP1,j,1) < EVF1,j,1,  (SP2-EP1,j,2) < EVF1,j,2,….(SPM-1-EPk,j,M1-1) < 

EVFk,j,M1-1, (SPM-EPk,j,M1) � EVFk,j,M1 , (SP1-EP2,j,1) < EVF2,j,1,  (SP2-EP2,j,2) < EVF2,j,2,….(SPM2-1-EP2,j,M2-1) 

< EVF2,j,M2-1, (SPM-EP2,j,M2) � EVF2,j,M2] 

Several adjustments were made to Eq. (8) to account for months when the model is unidentified 

and nothing can be learned about exercise behavior.  In months in the interval [1,Mi] when an option is 

“below water”, (e.g., SP-EP < 0), nothing can be learned about the value of holding an option another 

period because no one will exercise their options at a loss.5  Also, in month 96 when options from a grant 

expire rational employees will always exercise their outstanding options if at that time SP > EP.  

Therefore, month 96 is excluded from the likelihood function and the contributions to the likelihood 

function for grants not exercised in periods 1-95 are treated as right censored in month 95.  The last 

adjustment was for unexercised options that had not expired by the end of the study period.  These grants 

                                                 
5 In our sample the options were always “above water” during the study period so this constraint was never binding. 
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were also treated as right censored in the last observed time period (i.,e., the last term in Eq (8) was (SPM-

EPk,j,M) < EVFk,j,M.). 

 The major methodological issues yet to be discussed are the assumptions made about the structure 

of the error term in Equation (1) and the related issue of how to estimate the model.  First, we assume the 

error term is normally distributed.  If we also assume the �’s are normally and independently distributed 

across option grants, time periods and employees the estimation reduces to an independent Bernoulli 

model (Heckman 1981a) and Equation (8) equals the product of M1+M2 individual binary probit functions 

or: 

(9) Pr(D1,j = M1, D2,j=M2) = Pr[ (SP1-EP1,j,1) < EVF1,j,1] x Pr[ (SP2-EP1,j,2) < EVF1,j,2] x… 

            Pr[ (SPM1-1-EP1,j,M1-1) < EVF1,j,M1-1] x Pr[(SPM1-EP1,j,M1) � EVF1,j,M1 ] x Pr[ (SP1-EP2,j,1) < EVF2,j,1]  

            x…….Pr[ (SPM2-EP2,j,M2) � EVF2,j,M2] 

This model is easily estimated by “pooling” the data across option grants, employees and months and then 

estimating the parameters � and � using a standard probit model.  

Previous research on modeling state dependence in discrete time processes suggests this 

specification of the exercise hazard is likely to be incorrect because the error terms each period are 

correlated across observations (Heckman 1981a).  Previous research suggests this correlation reflects, 

among other factors, unobserved employee risk aversion. More risk averse employees are more likely to 

have negative values of � or a “low” EVF (conditional on the observables) and seek to “lock-in” options 

gains by exercising options earlier relative to less risk averse individuals with “large” values of � (Hall & 

Murphy, 2002).  A positive correlation between the error terms in Eq. (8) across time periods and option 

grants for an individual will produce biased estimates of the exercise decision process (Heckman 1981b) 

if this unobserved heterogeneity is not accounted for in the estimation. 

 A more realistic but still tractable assumption for the error term is a random effects (RE) 

specification where �k,j,t =   uj + 	k,j,t. and u and 	 are each normally distributed.  Constant unobserved 

individual effects are captured by uj and 	k,j,t captures purely random factors independent across time 

periods, individuals and option grants.  For an individual, the diagonal elements of the error variance-
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covariance matrix equal (�2
u + �2 	), the off-diagonal covariance terms equal �2

u, and across individuals 

the covariance terms are equal to zero.  The constant covariance terms for an individual reflects the 

unobserved individual effects like risk aversion and causes the error terms to have a constant correlation 

equal to �2
u/(�2

u + �2 	) across time periods and grants for an individual (Heckman, 1981a).  To estimate 

this correlation and control for the constant, unobserved individual heterogeneity requires data for a 

sample of individuals that receive and exercise option grants on several occasions over the study period.  

In the firm we study most employees in the sample received options from two grants on two different 

dates in the early 1990s. 

  One way of estimating the model that controls for the unobserved individual component is to 

estimate a fixed effect model that includes a set of dummy variables for each person.  While this strategy 

provides unbiased estimates in a linear model, it does not give consistent estimates for nonlinear models 

such as a probit model (Heckman 1981b).  The alternative to the fixed effect model which does produce 

consistent estimates is a random effect (RE) probit model (Heckman, 1981a).  Since the probability 

described by Eq. 8 is person j’s contribution to the likelihood function, estimating the parameters of the 

model by MLE requires the integration of an M1 + M2 dimensioned multivariate normal distribution.   

Good numerical approximations exist for calculating this integral with two or three time periods and for 

up to, perhaps, 4-5 dimensions, Gaussian quadature procedures produce accurate estimates of the 

underlying probability (Moffit & Butler, 1982).6  In this study option exercise decisions from a grant can 

be exercised anytime during the 96 month exercise window and most employees in our sample hold 

options from two different option grants.  Thus, we need to estimate probabilities for a multivariate 

                                                 
6 This is the method used by the xtprobit command in STATA.  As the Stata v. 7.0 manual on the xtprobit command  
notes “The quadrature formula requires that the integrated function be well approximated by a polynomial.  If the 
number of time periods becomes large (as panel size gets large), [the function] is no longer well-approximated by a 
polynomial.”  We found the parameter estimates for the unconstrained model produced by the simulated maximum 
likelihood estimation method described in the next paragraph produced values very close to those given by xtprobit 
in Stata.  However, because the constrained and truncated models could not be estimated using xtprobit we use the 
simulated maximum likelihood estimates for all of the models so the relative performance of the different models 
can be compared.  
 



 14 

normal distribution with more dimensions than can be feasibly calculated using existing numerical 

methods.   

Research over the last 25 years (Lerman & Manski 1981, Geweke 1991, Hajivassiliou and 

McFadden 1990, Keane 1994) and the speed of desktop computers makes simulation estimation methods 

a feasible way to estimate our model.   The GHK (Geweke, Hajivassiliou & Keane) estimator appears to 

be the preferred estimator when the error structure is relatively unrestricted.  However, the random effects 

specification permits a simpler and faster simulation method described by Train (2003, chpt 5).7   If an 

analyst could observe uj, then  

(10) Pr(D1,j = M1, D2,j=M2| uj=u*
j) =   

xuXEPSPIuXEPSPI
Mt

jtjjttjjtjjttj∏
=

−−−Φ+−−−Φ−−
1,1

*
,,1,1,,1

*
,,1,1,,1 )]/))((([)]/))(((1)[1( εε σβσβ

∏
=

−−−Φ+−−−Φ−−
2,1

*
,,2,2,,2

*
,,2,2,,2 )]/))((([)]/))(((1)[1(

Mt
jtjjttjjtjjttj uXEPSPIuXEPSPI εε σβσβ

 

An estimate by simulation of Pr(D1,j = M1, D2,j=M2) for a particular value of uσ~  is obtained by: (a) 

creating a 1 x N matrix of uj values randomly drawn from )~,0( 2
uN σ , (b) calculating Eq. (10) for each of 

the N possible values of uj and (c) taking the mean of the N values from step (b) as an estimate of Eq. (8) 

(d) repeating steps (a)-(c) for each individual within each iteration of the maximum likelihood routine 

when an estimate of Eq (8) is required.8    

 For the unconstrained model a “standard” RE probit model was estimated by setting �	=1 so the 

coefficient for variable Xi was “standardized” or equal to -�i/�	, the coefficient on (SP-EP) equals 1/�	 and 

the within person correlation between the error terms is �2
u/(1+�2

u).  Since �	 is identified in our data 

because of sample variation in the options’ intrinsic value, the unstandardized coefficients (�is), �2
u and 

                                                 
7 See also Guilkey & Murphy (1993).   
8 We used an N of 200.  To improve the performance of the estimation process antithetic draws were made when 
selecting the uis.  Estimating the unconstrained model by simulated maximum likelihood took 5-10 hours of 
computing time on a 2.4 GHz Pentium 4 single processor computer using GaussTM v. 6.00.  Estimating the truncated 
model took about 16 hours.  Analytic derivatives of the likelihood function were used in the estimation. 
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�
2
	 were estimated.     When the truncated probit model was estimated Eq. (10) was appropriately 

modified using Eq. 5.9   

 

III. The Data and Empirical Specification 

 We have collected a set of very specific information on stock option grants made to a sample of 

2180 middle level managers in a large, established firm outside of manufacturing that has many tens of 

thousands of employees, billions of dollars in sales and locations throughout the United States.10  The data 

we use are from several stock option grant programs where a group of middle level managers were given 

the opportunity to receive options as part of a stock purchase plan where participants were eligible to 

receive options proportional to their salary.  As discussed above, an important issue required to identify 

the model is data on options granted at different exercise prices.  In our sample employees received 

options at 13 different exercise prices on 13 different days with the majority of the grants occurring on 

two calendar dates where one exercise price was almost twice the magnitude of the other exercise price.11  

We use data on the exercise decisions made by employees for options received in at least the first two 

grants an employee participated in during the 1990s where the options from the grants had vested before 

the fall of 2003.  Table 1 contains descriptive statistics on the sample of option grants.   A total of  3712 

options grants were received by the 2180 employees and all but 1127 of these grants were exercised 

during the study period (e.g., were not right censored).  An interesting feature of the experience in this 

firm is that not all options from a grant were exercised in the same month.  In about 58 percent of the 

option grants where we observe the first exercise date (e.g., the exercise time is not right censored), the 

employee exercised all of the options in the grant and options exercised on the first exercise day account 

                                                 
9 Because uj represents constant, unobserved individual characteristics, the error truncation in the truncated model 
cannot occur on uj because this would imply the unobserved person effects are not constant from one period to the 
next.  Therefore, we assumed the error truncation was on  	  so that Pr(D1,j = M1, D2,j=M2) was calculated by the 
steps a-d where uj was drawn from an untruncated normal distribution.    
10 A condition for obtaining data from the firm included a promise that we would not reveal the identity of the firm.  
Therefore, we cannot provide a more detailed description of the firm or make the data available to other researchers. 
11 In all cases the options were granted  “at the money.” That is, the exercise price was equal to the firm’s stock price 
on the day of the grant. 
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for 77 percent of the total options that could have been exercised.  For this reason only the time until the 

first option from a grant is exercised is examined.   

In addition to the terms of each option grant (exercise price, vesting date, expiration date and 

number of options in the grant), we also have information on the employee’s salary and tenure with the 

firm.  A final important feature of the sample is that it excludes managers who joined the firm during the 

1990s and managers who received options during the 1990s but left the firm before the Fall of 2003.  

Thus, this analysis focuses on the exercise decisions of long-tenured, stable employees who were not 

exercising options in anticipation of leaving the firm.  Excluding option recipients who left the firm 

during the study period simplifies the analysis because we don’t have to jointly model turnover and 

exercise decisions.12 

 Figures 4a and 4b report data on the exercise decisions made by employees in the sample.  Figure 

4a is the survival curve for the time to the first exercise date for the 3712 option grants.  Twenty-five 

percent of the grants are exercised by the 34th month following vesting, the median exercise time is 69 

months and the 75th percentile of the exercise distribution is 90 months.  Figure 4b plots the smoothed 

hazard rate over the first 95 months and shows a relatively stable but low hazard rate during the first 72 

months and then a sharp increase in the final year as unexercised options are exercised before they 

expire.13 Over the first 72 months of the exercise window an average of 1.11 percent of unexercised 

option grants were exercised for the first time in each month. 

 The exogenous variables in the model determining the EVF fall into three categories; 

characteristics of the option grant, characteristics of the employee, and financial market indicators that 

may influence employee exercise decisions.  The characteristics of the option include the BSV of the 

option, BSV squared and cubed, and the number of options the individual received in the option grant. 

                                                 
12 Firms often report that they provide options to improve employee retention.  Modeling option exercise decisions 
and turnover is difficult.  While options might reduce turnover, employees that are planning to leave the firm can be 
expected to exercise vested options before their departure.  This creates a positive correlation between exercise 
decisions and the probability of turnover in the “near term.”  Modeling exercise decisions and turnover behavior 
jointly would require a more elaborate competing risk framework and data on employees who did not receive 
options. 
13 The hazard rate for month 96 is equal to one and is excluded from the smoothed hazard in Figure 4b. 
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The closed-form solution for the Black-Scholes value of the option was computed for each month the 

option was at risk of being exercised using the maximum closing stock price during the month.14  The 

number of shares in the option grant was included to capture the possibility that an employee holding 

more options may exercise earlier to “lock-in” gains and diversify her wealth.   

  While the time until the option expires is included in the Black-Scholes formula, Figures 4a and 

4b suggest time since vesting should be included separately to fully capture the increase in exercise 

activity as the expiration date approaches.  Therefore, the model includes a linear time trend (T) 

measuring months since the option vested and the following four splines: Max(0,T-36), Max(0,T-48), 

Max(0,T-60) and (Max(0,T-60))2/100.  The EVF function also includes a dummy variable equal to “1” in 

the first month the option grant is vested to capture the possibility of a spike in exercise activity caused by 

the two year vesting period and unobserved individual heterogeneity.  For each month an option’s 

intrinsic value and BSV were calculated using the maximum stock price in the month.  

The market condition variable included in the EVF was the monthly return to holding a portfolio 

equal to the Dow Jones Industrial Average and the monthly return for the firm.  If employees compare the 

return to holding stock in the firm with market alternatives, the probability an option is exercised may 

increase with the return on the overall market (holding the firm’s return constant).  The individual 

characteristics in the EVF were the employee’s tenure with the firm and the natural log of his/her monthly 

salary.  The tenure variable was calculated each month and the salary variable was adjusted annually to 

reflect salary changes over the study period.  Since the analysis compares the maximum profit that can be 

made by exercising an option grant in a month with the value an individual places on holding the grant 

another period for each month over potentially a 10 year period, for each calendar month the (SP-EP), the 

Black-Scholes value and the employee’s salary were converted to real dollars using the CPI.   

                                                 
14  The other parameters used to calculate the Black-Scholes value in each month in the exercise window are the 
usual values – the firm’s observed dividend rate, a risk free rate of return equal to the yield on 10 year treasury 
bonds and the standard deviation of yearly firm returns. 
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IV. Empirical Results 

 Table 2 reports estimates of the parameters of the EVF for different specifications of the 

unconstrained model of employee exercise decisions.  The first three columns report the “standardized” 

coefficients in the employee value function or �i/�	.  Since the probability an option is exercised equals 

�((SP-EP)/�	- X�*) where �* is the vector of “standardized” coefficients in the EVF15, a positive 

coefficient leads to a predicted increase the EVF in Figure 2 and reduces the probability an option is 

exercised.  The estimates in column 1 report results for a simple specification where the employee value 

function is a linear function of an option’s Black-Scholes value.  These estimates imply �	 equals $3.91 

(1/.2558), the unstandardized coefficient on BSV is therefore 0.2314/0.2258 = $0.90, the estimated 

unstandardized intercept term is 2.4387/0.2258 = $9.53.  In addition �u = $1.79.  Constraining the 

coefficient on BSV to equal one is equivalent to constraining the coefficient on the Black-Scholes 

variable to be equal to the coefficient on (SP – EP).  This constraint is imposed in column 2.  A likelihood 

ratio test comparing the estimates decisively rejects the constraint (p < .0001) that E(EVF) changes dollar 

for dollar with a change in the option’s Black-Scholes value. 

Back to column (1), the $.90 = 0.2314/0.2258 increase in an option’s value to employees for a 

dollar increase in the option’s BSV is consistent with the prediction that employees value option’s at less 

than the value of equivalent market traded options.  However, the large intercept term in the EVF ($9.53) 

implies that an option’s BSV is less than the option’s predicted value to employees.  An option with a 

BSV of $15-$20 would be a representative option in the sample and for such an option its predicted value 

to employees would be $23 - $28 using the estimates in column 1.  Thus, this simple specification 

suggests employees valued their options at substantially more than the option’s BSV.   

 Column 3 adds the complete set of exogenous variables to the employee value function to 

produce estimates of the unconstrained EVF model.    The estimates in column 3 are the standardized 

                                                 
15 This is a version of equation (3b) where *β = σβ / . 
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EVF coefficients ( *β ) and column 4 reports the unstandardized coefficients β = σβ* .16  Comparing the 

estimates in column 1 with the estimates in columns 3 or 4 shows the specification with the larger set of 

variables does a much better job of predicting exercise decisions compared to a model where EVF is only 

a linear function of the BSV.  The difference in the values of the log-likelihood functions between the 

models in columns 1 and 3 clearly rejects the hypothesis that the coefficients on these additional variables 

are jointly equal to zero.  While the likelihood ratio test favors the more richly specified model, the 

estimates generated from the model with more covariates yield estimates of �	 and �u are 3 to 5 times 

larger than the estimates in column 1.    These results are surprising; as we expected the estimates of �	 

and �u to decline when additional variables were added to the model.  The large estimate of the standard 

deviation in both unobserved individual heterogeneity ($10.26) and random factors independent across 

time, options and persons ($15.28) implies many individuals irrationally value their options at an amount 

substantially greater than the firm’s stock price and there are large month to month swings in the EVF for 

an individual that are independent of the observables in the model.     

      

Comparing the Unconstrained to the Constrained Models    

Table 3 reports the estimates for the constrained model where the coefficient on the option’s BSV 

is constrained to be less than one (column 1) and the model where EVF for each individual is constrained 

to be less than the firm’s stock price (columns 2 & 3).  The estimates that constrain the coefficient on 

BSV to be less than one are consistent with the estimate in column 1 of Table 2 and show the EVF 

increases by $.91 for each dollar increase in an option’s BSV.  Compared to the more fully specified 

unconstrained model in Table 2, this constrained model gives more plausible estimates of �	 and �u ($3.42 

and $2.22).  On the other hand, the difference (156.5) between the log-likelihood values between these 

                                                 
16 The coefficients in column 4 are not exactly equal to �*�	 from the estimations in Equation 3 because of slight 
differences from maximizing the highly nonlinear likelihood functions for the standardized and unstandardized 
models. 
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two models shows exercise behavior is better predicted by the model that does not constrain the 

coefficient on BSV to be less than one.17     

To compare the three models (unconstrained, constrained so the coefficient on BSV < 1, 

constrained so the Employee Value Function is truncated at the stock price) we first examine how well 

each model predicts the exercise behavior in the data relative to the actual exercise behavior in the 

sample.  This comparison was accomplished by comparing the actual survival curve in the data with the 

predicted survival curve from each of the models.  The predicted survival probability for period T for 

individual j from a model is simply the predicted probability an option had not been exercised by the end 

of period T or the probability it was not exercised in period T given that it had not been exercised in 

periods 1 through (T-1).  Without unobserved heterogeneity, this predicted survival probability is easily 

calculated for each period and individual in the sample.  Deriving the estimated survival probabilities in 

this study is more complicated because of the unobserved individual heterogeneity in each person’s 

valuation of an option.  Estimating the predicted survival probabilities in the presence of unobserved 

heterogeneity poses the same problem encountered when calculating the exercise probabilities in the 

likelihood function when estimating the model.  Let Sm
k,j,t  equal the estimated survival probability for 

period t from model m for an option from grant k to individual j.   The estimated survival probability for 

period T in the exercise window equals  

Sm k,j,t = Pr[ (SP1-EPk,j) < Xk,j,1bm +uj,  (SP2-EPk,j) < Xk,j,2bm +uj , (SP3-EPk,j) < Xk,j,3bm +uj, 

                    …..(SPT-1-EPk,j) < Xk,j,T-1 bm  +uj, (SPT-EPk,j) < Xk,j,T bm  +uj], 

If uj was observed this equation would simplify to the product of T normally and independently 

distributed CDFs similar to Eq. 9 and could be easily calculated.   Because the ujs are unobserved, a 

different procedure comparable to the simulation estimation procedure was used to produce the estimated 

survival probabilities.  For each person a random error component, ),(~ mu j   was drawn from a N(0,�2
u(m)) 

                                                 
17 The model that constrains the coefficient on BSV to be less than one is nested in the unconstrained model in 
columns 3 and 4 of Table 2. 
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distribution where “m” refers to one of our three empirical models, m.   The predicted survival probability 

for period T conditional on u j =   ju~  is 

)))(u~()Pr((....))j(m)u~()Pr((
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For each randomly drawn value of uj(m) survival probabilities were calculated for each period from 1 

through T for an option exercised in period T by person j.  Estimated survival probabilities for each 

period from 1 to T were calculated 50 times by drawing 50 different values of  )(~ mu j  for each person j.18  

The estimated average survival probability for person j, grant k in period t is then estimated as the average 

survival probability over the 50 simulated conditional survival probabilities: 

�
=

==
50,1

)nu~|,,()50/1(,,
n jutjkmSxtjkmS . 

Since these calculations are done for each of the T periods, the result is an estimated survival curve for 

model m for option k held by individual j.   Estimates of the average survival probability for period 1 

through T were obtained for each person in the sample and for each of the three models.  After the 

estimated survival curves are calculated for each person in the sample, the estimated aggregate sample 

survival probability for period t was calculated as the mean of  Sm
k,j,t  over all subjects who were  at risk of 

exercising their options in period t. 

 Figures 5a – 5c show the estimated survival curves for each model and the actual sample survival 

curve.  Two conclusions follow from this set of figures.  First, the model constraining �BSV < 1 (Figure 5c) 

does a poor job of predicting exercise activity in the sample compared to the other two models and 

substantially under-predicts exercise probabilities.  Second, the predicted survival curves for the 

unconstrained and the truncated models (Figures 5a and 5b) closely track each other and the actual sample 

survival curve.  Based on these comparisons and the likelihood ratio test discussed earlier, we conclude 

                                                 
18 There are 2088 distinct individuals in the data and, therefore, 104,400 = 50 x 2088 values of uj were randomly 
selected. 



 22 

the data are inconsistent with the model that constrains the coefficient on BSV to be less than one and 

focus the rest of our discussion on the unconstrained and truncated models. 

 Since the purpose of this analysis is to use exercise activity to identify the dollar value employees 

place on holding an option, it is important to compare the estimated structural parameters of the EVF for 

the unconstrained and truncated model in addition to how well each model predicts exercise behavior.  

This was accomplished by comparing the models’ predicted EVF for different but plausible values for 

exercise times, stock prices and exercise prices.  Figures 6a and 6b show E(EVF | u=0) for an employee 

with average observable characteristics over the 96 month exercise window for an option with an exercise 

price of $5 and a constant stock price of $20.19  Figure 6a shows the unconstrained model produces 

estimates of E(EVF) that far exceeds the firm’s stock price of $20 over the first 60 months, the predicted 

EVF then drops sharply in the last three years and in the last 6 months of the option’s term the value of 

holding the option is less than the option’s intrinsic value. Also, recall that the estimated value of �u is 

about $10.  Therefore, for the 14 percent of the sample with a value of uj greater than $10, these estimates 

imply that at a stock price of $20, in month 48 the option is valued by these employees at more than twice 

the firm’s stock price and almost three times the option’s intrinsic value.  Simply put, the unconstrained 

model estimates imply widely irrational beliefs by employees.  While economic theory predicts no 

rational valuation of an option can exceed the firm’s current stock price, the estimates from this simple 

empirical model imply that over 84 percent of employees value their option’s at more than the firm’s 

stock price.20  The valuation implied by the model in the last 6 months of the option’s term is equally 

implausible as it yields valuations substantially less than the option’s intrinsic value that could be earned 

immediately just a few months before the option expires.  Finally, the very large estimate of �	 ($15) 

implies potentially large random month to month shifts in option valuation around the line shown in 

Figure 6a for each individual.  These results and the fact that the unconstrained model does not take 

                                                 
19 An “average” employee has values of tenure, wages, and options owned equal to the sample averages.  A real 
stock price of $20 and an exercise price of $5 are close to the average values in the sample. 
20 Figure 6a shows that up to about month 72 the E(EVF|u=0) is at least $10 above the firm’s stock price.  Since the 
estimated value of �j is $10.26, 85 percent have an estimated value of EVF greater than the stock price (1-F(-1) = 
.841. 
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advantage of an important theoretical prediction, leads us to conclude the unconstrained model of the 

EVF is implausible. 

 Figure 6b shows estimates of E(EVF | EVF<SP, uj = 0)  from the truncated model.  The 

econometric specification of this model, which is dictated by the theoretical prediction in finance, must 

produce predicted values of the EVF that fall below the firm’s stock price. Since the data decisively 

rejected the model that forced �BSV < 1, the truncated model does not constrain the coefficient on an 

option’s BSV.  The portrayal of the estimates in Figure 6b show employees over-value their option’s 

compared to the value of a comparable market traded option.  On the option’s vesting date the E(EVF) is 

about $1.50 (about 9 percent) more than the option’s BSV.  Over about the first 84 months of the window 

the over-valuation increases because the option’s BSV declines with the approaching expiration date 

while the EVF remains basically unchanged.  In the final year the EVF declines but remains 

approximately $2.00 greater than the option’s BSV and the certain, intrinsic value that could be obtained 

by exercising the option immediately before it expires.  While these estimates do suggest the average 

option recipient over-values the option’s they receive, the estimates do not imply the level of irrationality 

suggested by the unconstrained model and Figure 6a.  Truncating the EVF at the firm’s stock price 

appears to aid in the identification �u and �	 and certainly produces much smaller and more plausible 

values of unobserved constant individual heterogeneity and the period to period random shocks.  The 

estimated value of �u ($2.20) implies that for the example shown in Figure 6b the EVF on the vesting date 

is less than the option’s BSV for a substantial minority (16.5 percent) of the sample.21 

 Figures 7a-7c show additional estimates of the EVF, using the truncated model, where the firm’s 

stock price is allowed to vary and EVF is estimated for months 2, 24, 48 and 94 months.  The EVF 

increases linearly with the firm’s stock price and at 24 and 48 months the EVF is $1 to $2 greater than the 

option’s BSV.  By month 94 the EVF is very close to both the option’s intrinsic value and BSV.  

                                                 
21 The fraction of employees for which EVF < BSV cannot be analytically derived because of uj.  If uj is set to zero 
then the fraction below BSV can be calculated using the CDF of a normal distribution truncated at the stock price.  
This gives the probability EVF < BSV for an “average” employee but not the probability EVF<BSV averaged over 
the sample where uj varies.  Therefore, the 16.5 percent was calculated from a simulation using a sample of 200,000 
draws. 
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Although it is difficult to see in Figures 7a and 7b, the difference between EVF and an option’s intrinsic 

value narrows slightly as the stock price increases.  Overall, Figures 7a-d are consistent with Figure 6b 

and predict employees have overly optimistic beliefs about the value of their options over most of the 

exercise window.   

 

The Truncated Model Estimates 

Several features of the truncated model estimates other than the results shown in Figures 6 and 7 

deserve discussion.   The truncated model estimates show significant constant unobserved individual 

heterogeneity in value of holding an employee stock option.  The estimated standard deviation of ui is 

$2.20 and the estimate standard deviation of the error component that is independent across time, grants 

and individuals is $2.67.   These parameters yield a within person error correlation of .41 (i.e., �2
u /(� 2u + 

�
2
	)).  This correlation means the exercise probability in one month for an individual is positively 

correlated with the probability in the next month and that over the two option grants that are available for 

most of the sample, this positive correlation implies employees who exercised options “early” from their 

first grant are also likely to be “early” exercisers of options from their second grant for reasons not 

controlled for by the observables in the model.  The significance of these unobserved individual effects 

highlights the importance of unobserved factors such as employee risk aversion and liquidity constraints 

that cause individuals to systematically differ in their willingness to hold an option.  For example, if risk 

aversion is one of the important variables in uj the estimates imply individuals more risk averse than 

average will have negative values of uj and a greater probability of exercising their option’s early in the 

exercise window.  Individuals less risk averse than average will dominate the sub-sample of individuals 

that hold their options to the end.  

One way to illustrate the impact of this unobserved person heterogeneity on the distribution of 

exercise times is to use the model’s estimated parameters to simulate exercise decisions and then compare 

the values of uj at different exercise times.  We first constructed 10,000 10 year daily stock price paths 

based on the historical mean and variance of firm returns.  From these daily price paths we constructed 
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10,000 monthly stock price paths of the maximum price in each month.  Then for each stock price path 

the exercise decisions of 150 “individuals” was constructed in the following steps.  First, for each price 

path 10 values of uj were randomly drawn from the N(0,�2 u) distribution.  Second, for each value of  uj  

96 values of 	 j,t were drawn from a truncated normal distribution based on N(0,�	) where the truncation 

point ensured that XC + uj + 	 < SP.  Third, an individual’s exercise month was determined by the first 

month where XC + uj +  	 j,t < (SP – EP).  Fourth, for each value of uj 15 different (1 x 96) vectors of 	 j,t 

were drawn to produce 150 exercise decisions for each stock price path.  This exercise produced 1.5 

million (10,000 x 15 x 10) exercise decisions.    

  Figure 8 shows the relationship between uj and the exercise month over these simulated 

decisions.  The individual data points in the graph correspond to a one percent random sample of the (uj, 

Exercise Times) points generated from the simulation and the line in the graph is the OLS regression 

between the two variables calculated from all the data in the simulation.  The regression line shows that 

when an option first vests the average value of uj for exercisers is $1.60 below the sample average.  By 

month 94 the average exerciser has a value of uj equal to $.51.  These results have important implications 

for interpreting Figures 6b and 7 where uj was held constant at zero.  As the expiration date approaches 

the self-selection on uj means the pool of people that have not yet exercised their options will on average 

have positive values of uj and value options at higher values in the later months than those shown Figures 

6b and 7.  

The one observable individual characteristic that had a statistically significant effect on EVF was 

the employee’s salary (see Table 3).  The impact of a change in wages on EVF and the exercise 

probability was calculated assuming the stock price is $7.50 and the exercise price is $5 and the month in 

the exercise window is 48.22  A ten percent increase in an average employee’s salary increases E(EVF | 

EVF < SP, uj = 0) by E(EVF) by $.016 or .25 percent and lowers the exercise probability by 3.7 percent 

from .0997 to .096.  The positive impact of salary on EVF is consistent with a negative correlation 

                                                 

22 The E(EVF | EVF < SP, uj =0) = XC – �	 [(f(SP-XC)/ �	 )/(F(SP-XC)/�	 )] where f(.) and F(.) are the pdf and cdf 
of a standard normal variable.  The exercise probability is described by Equation (5).   
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between salary and risk aversion or salary and the presence of a binding household liquidity constraint.  

We are mildly surprised by this finding in this sample because this is a relatively homogeneous group of 

middle managers.  These estimates imply the exercise behavior of senior managers may be very different 

from middle managers because of the more substantial salary and wealth differences between executives 

and middle managers.   

Figures 7a-7d show how the E(EVF) changes over the exercise window and changes in the firm’s 

stock price.  However, these Figures do not show how the exercise probability differs as the stock price 

moves.  Understanding this relationship is important in understanding how much options cost the firm 

since option costs depend on both the timing and stock price at which employees exercise their options.  

The earlier discussion of Figure 7 noted the gap between E(EVF) and the option’s intrinsic value declines 

slightly as the stock price increases and in the untruncated model this means the exercise probability 

increases as this gap declines.   However, in the truncated model the exercise probability, which is 

described by Equation (5), also depends on the gap between the stock price and E(EVF).  Since the 

numerator in Equation (5) increases as the stock price – E(EVF) gap increases which then lowers the 

exercise probability, it is not obvious from the Figures what the relationship is between the stock price 

and the exercise probability.  One clear thing that could be done is to take the derivative of Equation (5) 

with respect to the stock price.  This, however, gives the change in the exercise probability for only a 

single period and does not describe how stock price changes alter the exercise time over a 96 month 

exercise window.  Therefore, we examined this relationship by simply plotting the predicted survival 

curve implied by the parameter estimates for a “high” and “low” stock price path over the 120 month term 

of an option that vests after 24 months.    Based on historical price data for the firm over a 15 year period 

that included the study period we selected two monthly rates of return (1.5 percent 1.7 percent) that 

generated ending period stock prices over 120 months that respondents observed over the terms of their 

options.  The predicted survival curves for the two price paths for an average sample member are shown 

in Figure 9.   The exercise pattern for these two price paths are very different;  when confronted with the 

price path with higher returns employees hold onto their options longer and in this example 59 percent of 



 27 

the time the option is held until it expires.  In contrast when the price path is generated by lower monthly 

returns employees exercise earlier and 36 percent of the time the option is held until the option expires.  

These results have important implications for the cost of options to the firm because the firm’s costs are 

positively related to both the length of time employees hold their options and the exercise price (Hall & 

Murphy, 2002).       

 

V. An Alternative Evaluation of Employee Exercise Behavior and Expectations 

 The interpretation of the estimates for the different models reported in the preceding section and 

our preference for the truncated model suggests employees from the studied firm valued options at more 

than what would be expected if these employees behaved in an economically rational way.  The truncated 

model estimates show that an average employee values employee stock options at less than the option’s 

stock price but greater than the option’s Black-Scholes value.  We believe there are plausible reasons to 

believe E(EVF) > BSV because employees lack any market signal other than the firm’s stock price when 

evaluating their employee options.  

Our results may trouble some readers and raise concerns about both our model and methods.  The 

estimates depend on the validity of a variety of assumptions, the most important of which may be the 

assumed normality of the two error terms, uj and 	k,j,t and our ability to identify �u and �	 from the pattern 

of exercise decisions.23   The assumption that �k,j,t. is normally distributed is critical because the structural 

parameters of the employee value function are identified from the “standardized” probit coefficients only 

because �	 is identified from sample variation in the intrinsic value of options, the normality assumption 

and the constraint that EVF < SP.   While we cannot test the validity of these assumptions, there is 

additional sample evidence that is consistent with the econometric results reported above. 

 In the dataset the entire exercise history is observed for one of the option grants in which a large 

number (N=1735) of employees participates.  Out of the 1735 participants in this grant, 318 or 18.3 

                                                 
23 For example, Heckman & Singer (1986) show hazard model estimates are very sensitive to assumptions made 
about the unobserved heterogeneity distribution.   
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percent had not exercised their options at the start of month 94 of the 96 month exercise window.  For this 

option grant the intrinsic value of the option at the start of month 94 was about $25 per option.  Thus, 

almost 20 percent of the sample were willing to forego the $25 at the start of month 94 in order to capture 

the expected gain from holding the option for at most 3 more months.  What could employees expect to 

gain over this 3 month period and what does their behavior imply about their risk aversion or their 

expectations about the firm’s future stock price? 

 Assuming the stock price at the beginning of month 94 equals $3024 and the exercise price equals 

$5, the Black-Scholes value of an option expiring in three months is $25.05 using reasonable values for 

the other Black-Scholes parameters.25  Thus, a diversified, risk-neutral investor would be willing to hold 

this option for the remaining three months to collect the expected gain of a nickel or a return of 0.2 

percent above what could be earned by immediately exercising the option.   

 This BSV for an option expiring in 3 months can be compared with the certainty-equivalent 

dollar value of the option to a risk-averse employee using the Hall and Murphy (2002) methodology.  Hall 

and Murphy assume the utility of “$w” to a risk-averse employee is (w(1-ra))/(1-ra) where ra is the risk 

aversion parameter.26   Using this utility function, they calculate the certain cash payment an executive 

would have to receive to be indifferent between an immediate cash payment and holding a block of 

options until the option’s expiration date where they assume a substantial portion of the executive’s 

wealth is invested in the firm and their risk aversion parameter equals either 2 or 3.  We apply the Hall 

and Murphy methodology to our sample but assume employees have none of their non-human capital 

wealth invested in the firm’s stock because they are middle managers.  Table 4 shows the certainty-

equivalent value of the option at the beginning of month 94 assuming different levels of risk aversion and 

assuming employees have rational expectations about what will happen to the firm’s stock price over the 

                                                 
24 Again, we do not report the actual number since we are unable to disclose the name of the firm. 
25 This assumes the short-term risk-free interest rate equals 4 percent/year and the standard deviation of yearly firm 
returns equals .30.  These numbers are roughly representative of the firm and time period for this option grant. 
26 If ra=1 then U(w) = ln(w). 
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remaining three months of the option’s term.27  The first column shows the certainty equivalent value of 

the option before discounting.  It is computed by approximating the log-normal price distribution in three 

months using a binomial price tree with 80 terminal prices.  The second column discounts the “month 96 

values” in column one to the beginning of month 94 using a 4 percent per year discount rate.  At a risk 

aversion parameter of 2.0, which is the lower bound value Hall and Murphy assume for senior executives, 

the certainty-equivalent value of the option to an employee is $0.16 below ($24.84) what the employee 

could get by immediately exercising the option.  Any risk aversion parameter greater than 1.60 produces a 

certainty-equivalent value of less than $25.  

One of two conclusions can be drawn from Table 4.  First, if these employees had unbiased 

expectations about the firm’s future stock price, then none of these employees should have held on to 

their options past month 93 unless they were significantly less risk averse (ra < 1.6) than the lowest level 

of risk aversion Hall & Murphy (2002) use when predicting the behavior of very wealthy senior 

executives.  The other possibility is that these employees had expectations about what would happen to 

the firm’s stock that exceeds the historical average for the firm.  With the firm’s risk premium of 

approximately 8 percent and an employee risk aversion parameter of 3.0, an employee would have to 

believe annual returns were drawn from an annual return distribution centered at 19.5 percent or more to 

prefer holding the option beyond the end of month 93 and forego the $25 that could be earned 

immediately by exercising the option.  Since we have no reason to believe this sample of middle-level 

managers are significantly less risk averse than executives, these calculations suggest employees had 

overly optimistic expectations about what would happen to the firm’s stock price and cause them to value 

their options at more than the option’s value to an outside investor with rational price expectations.  Such 

                                                 
27 By rational expectations about the firm’s stock price at the end of month 96 we mean that employees believe 
returns over the next three months are drawn from a normal distribution centered around a return equal to the risk 
free return plus a return for market risk that corresponds to the firm’s risk premium.  On an annual basis we assume 
a 4 percent risk free return and an 8 percent risk premium. 



 30 

optimism is consistent with the truncated model estimates that place the employee value function for most 

employees above the option’s BSV.28 

 

VI. Summary and Conclusion 

 For more than thirty years, economists and others have valued stock options using the pioneering 

work of Merton (1973) and Black and Scholes (1973).  Their techniques are ideal for pricing stock 

options to diversified investors who are free to trade their options.  However, when firms provide stock 

options to their employees they place limits on how quickly employees can exercise their options in an 

effort to encourage employees to behave in ways consistent with the interests of shareholders.  For this 

reason, Lambert, Larcker, and Verrecchia (1991) and others have recognized that the value employees 

place on options may be different from the value placed on options by outside investors.  To the best of 

our knowledge, ours is the first study that uses actual employee exercise behavior to estimate the value 

employees place on holding employee stock options.  We show it is possible to identify the value of 

options to employees using a simple theoretical model, a discrete time statistical hazard model of exercise 

behavior and a study design with several key features. 

The model that we use is built around the recognition that the prediction from the Black-Scholes 

model that market traded options will never be exercised prior to their expiration date cannot be used to 

make a prediction about how employees will behave when deciding when to exercise their untradeable 

employee stock options.  Black-Scholes makes no prediction about how long individuals will own market 

traded options.  It only predicts individuals will sell rather than exercise their options to liquidate their 

options because the options can always be sold for more than the profit that can be made by exercising 

them (e.g., BSV > max(0,SP-EP)).  Since employees can’t sell their options, exercising their options is 

their only choice if they wish to profitably dispose of their options.  This leads to our model which 

                                                 
28 It is also possible that this could be a type of “loyalty” effect, where employees are expected (by senior 
management) to hold their options.  Given our discussions with managers at this firm, we do not believe this is the 
case in our situation. 
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predicts an employee will choose to hold an option for another period if the value from exercising the 

option is less than the value of holding the option and reserving the right to exercise it at a later date.      

The data required to identify and estimate the value to employees of holding an option, the 

Employee Value Function (EVF), from a hazard model of the option exercise decisions must have two 

characteristics: (a) the data must include options granted to employees at different exercise prices and 

expiration dates, and (b) employees in the dataset must receive options from multiple grants.  Data 

condition (a) permits a researcher to separately identify how changes in the benefit from holding the 

option another period change compared to the gains from immediately exercising the option.  These 

identifying conditions permit us to estimate the E(EVF),  the variance around this expected value and how 

variation in the EVF and the (Stock price – exercise price) determine when options are exercised.   

An important point emphasized in previous research (Lambert, Larcker and Verecchia, 1991, Hall 

and Murphy, 2003) is that employee exercise decisions are likely to be influenced by risk aversion and 

household budget constraints.  Measures of these theoretically important variables are likely to be absent 

or very crudely measured in most data (including ours) available to researchers.  These data limitations 

imply the exercise probability in one period for options from one grant for an individual will be correlated 

with the exercise probabilities for options from a second grant because of the impact of these unobserved 

individual and household characteristics.  Failure to account for this unobserved heterogeneity will 

produce biased estimates of exercise behavior. Data condition (b), multiple option grants per employees, 

allows us to estimate the exercise hazard and the EVF and control for unobserved employee heterogeneity 

that might influence exercise behavior over successive time periods using a random effects probit model 

that is estimated by simulation methods. 

 We estimate several models using proprietary data on options granted to over 2000 middle-level 

managers employed by a large, established firm outside of manufacturing.  Our preferred estimates, from 

a model that truncates the individual’s EVF at the firm’s stock price, shows the expected value to 

employees from continuing to hold their options after the vesting date is significantly related to a variety 

of individual and market characteristics.  Options are held longer when the overall stock market is doing 
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well relative to the firm’s stock price or when an employee has a higher salary.  The EVF also closely 

tracks the firm’s stock price and the option’s intrinsic value over most of the option’s term.  We also find 

exercise decisions are heavily influenced by unobserved employee characteristics which causes a 

significant (.4) correlation between the value an employee places on options across different option 

grants. Our estimates are inconsistent with the widely held view that employees value options at less than 

the option’s Black-Scholes value.  We find most employees value their options at more than the option’s 

BSV and decisively reject models that constrain the option’s value to employees to be less than the 

option’s BSV.  The over-optimism of employees suggested by our econometric analysis of exercise 

decisions is consistent with a simpler analysis of the “end of term” exercise decisions of a significant 

minority of the sample.      

 We now turn briefly to a discussion of some of the implications of our results for public policy 

regulating the information firms are required to disclose about the cost of employee stock options and the 

information firms should be providing employees about the options they receive.  Accounting for stock 

options has been a topic of considerable discussion for the past decade.  In December of 2004 the 

Financial Accounting Standards Board (FASB, 2004) adopted new standards for how firms report 

employee stock options as an expense at the time the options are granted.  The new rules require that 

firms use Black-Scholes or a “Black-Scholes-like” formula to expense options and encourages firms to 

include in their cost estimates the expected exercise pattern of employees because this pattern affects the 

cost of options to the firm.  Firms are encouraged to look at the past exercise decisions of employees 

when determining the expected exercise pattern for newly granted options.  This study shows how a firm 

might analyze employee exercise behavior which might then be used as an input in forecasting the cost of 

new employee option grants.   

 Our finding that options in this firm were valued by employees at a level above the Black-Scholes 

value suggests the value of these options to employees is greater than the cost of the options to the firm 

since “early” exercise decisions by employees implies option costs that are less than the firm’s Black-

Scholes value.  Thus, if this firm were to decide to curtail the use of options for middle managers because 
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of the new FASB rule, it would likely lead to employee dissatisfaction that could, perhaps, be offset only 

by paying employees more than what the firm is spending on options.  In this firm these options appear to 

be a source of firm “competitive advantage.” This firm and other firms that offer ESO may do so 

precisely because their employees are overly optimistic about the firm’s future.      

Although the theory and empirical methods in this paper are completely general, the estimates 

describe the behavior of a specific set of employees, during a particular time period in one firm.  Whether 

the estimates reported here generalize to other firms, employees and time periods can only be determined 

by extending the analysis to other samples.  For example, do executives value options differently from 

non-executives?  We also intend to explore a number of other issues using the data from the current firm.  

These issues include estimating models that permit a more general error structure in the EVF equation, 

estimating state dependence in exercise activity and a comparison of the discrete-time probit hazard 

estimates with estimates from more traditional continuous time hazard models.  This study focuses solely 

on the first exercise date for options from a grant.  In about half of the first exercise decisions less than 

100 percent of the options in the grant are exercised.  This implies options from a grant are not equally 

valued and something could be learned about the value of options to employees by studying the 

partial/complete exercise decision of employees and the timing of the second exercise decision when less 

than 100 percent of the options are exercised on the first exercise date.  The options employees received 

that are used in this study were part of an employee stock purchase plan.  This allows us to estimate 

another value for EVF using the decisions made by employees to participate in the plan.  These estimates 

can then be compared with the values reported here or a model of both the probability of participating and 

the Pr(exercising| participation) can be estimated simultaneously.  Finally, we hope to obtain additional 

data from the firm that will allow us to investigate whether employees value options differently based on 

different demographic characteristics (gender, age, marital status, geographic location).  A great deal 

more work can be done to better understand the value of stock options to employees.  We think this study 

is a useful step along this path. 
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                                                                       Table 1

                                             Summary Statistics on Exercise Decisions

Number of Employees Receiving Options 2180

Number of Option Grants 3712

Number of option grants where time to 1127
       first exercise date is censored

Mean options/grant 1302

Mean hazard rate/month 0.0128

25th Percentile of Time to 1st exercise date (months) 34
Median time to first exercise date (months) 69
75th Percentile of Time to 1st exercise date (months) 90

Options exercised on first exercise date 0.765
      as fraction of options in the grant

Fraction of first exercise decisions where 0.576
      100% of options in grant were exercised



         Table 2

              Unconstrained Estimates of The Exercise Hazard Rate and Employee Value Function
(SE in parentheses)

(1) (2) (3) | (4)
         Standardized Coefficients For |
     The EVF From RE Probit Estimates | Estimates
                 Of  Exercise Decisions |   Of the EVF

|
|

Constant 2.4387 1.9037 0.5760 | 8.8609
(0.0297) (0.0187) (0.7987) | (14.1673)

|
Real (Stock price - Exercise price) 0.2558 0.0650 |
     (0.0117) (0.0435) |

|
Real Black-Scholes Value 0.2314 -0.0873 | -1.3031

(0.0115) (0.0330) | (1.6792)
|

Real (SP-EP)- Real BS Value 0.2218 |
(0.0742) |

|
(Real Black-Scholes Value)2/100 0.5949 | 9.4440

(0.0668) | (7.1530)
|

(Real Black-Scholes Value)3/1000 -0.0811 | -1.2852
(0.0090) | (0.9945)

|
Monthly Mean Firm Returns -0.0050 | -0.0760

(0.1243) | (2.3225)
|

Monthly Return DJIA -0.4699 | -7.2293
(0.1992) | (5.5499)

|
No Shares in Grant (1000s) -0.1728 | -2.6595

(0.0267) | (2.1704)



Table 2 (Continue)
` |
Ln(Real Monthly Wage) 0.3821 | 5.8953

(0.0944) | (4.9767)
|

Firm Tenure (Years)/100 0.4070 | 6.2601
(0.2894) | (7.0268)

|
=1 if first month options are vested -0.2015 | -3.1013

(0.0815) | (1.3152)
|

Months Since Vested -0.0083 | (0.1278)
(0.0026) | (0.1232)

|
Max(0, Months Since Vested-36) 0.0101 | 0.1591

(0.0048) | (0.6460)
|

Max(0, Months Since Vested-48) -0.0185 | -0.2850
(0.0079) | (0.1063)

|
Max(0,Months Since Vested-60) 0.0351 | 0.5401

(0.0090) | (0.2132)
|

Max(0, Months Since Vested-60)2/100 -0.1933 | -2.9643
(0.0169) | (2.0326)

|
�(�) (error iid time, person grants) 3.9093 4.5086 15.3846 | 15.2473

(0.1788) (0.2195) (8.7101) | (8.9867)
|

�(u) (fixed individual random error) 1.7869 1.0668 10.2561 | 10.1869
(0.0744) (0.0690) (5.8338) | (6.0388)

|
-Log L -12512.66 -12885.12 -12019.81 | -12019.65
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         Table 3

                            Constrained Estimates of The Exercise Hazard Rate and Employee Value Function
(SE in parentheses)

Coef On BSV
Constrained |          EVF Truncated At 

To Be < 1 |           The Stock Price
|

(1) | (2) (3)
|

Unstandardized | Standardized Unstandardized
EVF | EVF EVF

| Coef.
|

Constant 8.4670 | 1.1061 2.7119
(1.4909) | (1.0189) (2.7021)

|
Real (Stock price - Exercise price) | 0.3760
     | (0.0209)

|
Real Black-Scholes Value 0.9113 | 0.3012 0.8032

(0.0070) | (0.0217) (0.0671)
|

(Real Black-Scholes Value)2/100 | 0.0067 0.0178
| (0.0952) (0.4116)
|

(Real Black-Scholes Value)3/1000 | 0.0130 0.0342
| (0.0133) (0.0602)
|

Monthly Mean Firm Returns -0.0532 | -0.0006 -0.0016
(0.4153) | (0.1542) (0.4148)

|
Monthly Return DJIA -4.4927 | -0.0732 -0.1945

(1.1805) | (0.2493) (0.6773)
|

No Shares in Grant (1000s) 0.0567 | -0.0441 -0.1154
(0.0971) | (0.0349) (0.0924)

|
Ln(Real Monthly Wage) 0.4854 | 0.2591 0.7088

(0.3157) | (0.1177) (0.3208)



Table 3 (Continue) |
|

Firm Tenure (Years)/100 4.1807 | -0.0307 -0.0814
(1.7028) | (0.3629) (0.9628)

|
=1 if first month options are vested 1.4517 | -0.2341 -0.6229

(0.8342) | (0.0916) (0.2583)
|

Months Since Vested -0.0011 | 0.0041 0.0109
(0.0073) | (0.0022) (0.0066)

|
Max(0, Months Since Vested-36) 0.0559 | 0.0402 0.1107

(0.0148) | (0.0058) (0.0208)
|

Max(0, Months Since Vested-48) -0.0826 | -0.0546 -0.1463
(0.0262) | (0.0095) (0.0262)

|
Max(0,Months Since Vested-60) 0.0678 | 0.0459 0.1156

(0.0348) | (0.0118) (0.0317)
|

Max(0, Months Since Vested-60)2 -0.5068 | -0.2247 -0.5961
(0.0580) | (0.0228) (0.0807)

|
�(�) (error iid time, person grants) 3.4240 | 2.6596 2.6666

(0.4759) | (0.1478) (0.2128)
|

�(u) (fixed individual random error) 2.2218 | 2.1980 2.2019
(0.0074) | (0.0424) (0.2957)

|
|

-Log L -12176.10 | -12106.39 -12107.12
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 Table 4

Values Of A 3 Month Option With An Exercise Price
       Of $5 And A Current Stock Price Of $30

E(U(SP-EP))
E(U(SP-EP)) Discounted

Assuming No At Risk-Free 
Discounting Interest Rate

Black-Scholes Value $25.30 $25.05

Risk Aversion Certainty-Equivalent Values
Parameter1

Risk-Neutral $25.91 $25.66

1.0 $25.50 $25.25

1.5 $25.29 $25.05

2.0 $25.09 $24.84

2.5 $24.88 $24.64

3.0 $24.68 $24.44

3.5 $24.47 $24.24

______________

1. U(x) = W(1-ra)/(1-ra) for ra � 1 and U(x)=ln(x) for ra = 1.  
The risk neutral interest rate is 4 percent, the firm's risk premium is
8 percent and the standard deviation of firm returns is .30.




