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“Technological revolutions and financial bubbles seem to go hand in hand.” The Economist, Sep 21, 2000.

1. Introduction

Technological revolutions tend to be accompanied by bubble-like patterns in the stock prices

of firms that employ the new technology. After an initial surge, stock prices of innovative

firms usually fall in the presence of high volatility. Recent examples of such price patterns

include the “Internet craze” of the late 1990s, the “biotech revolution” of the early 1980s, and

the “tronics boom” of the early 1960s, as characterized by Malkiel (1999).1 Other examples

include the 1920s and the turn of the 20th century; in both periods, technological innovation

spread rapidly while the stock market boomed and then faltered (e.g., Shiller, 2000).2

The bubble-like stock price behavior during technological revolutions is frequently at-

tributed to market irrationality (e.g., Shiller, 2000, Perez, 2002). We propose another pos-

sible explanation that does not involve irrationality. We argue that new technologies are

characterized by high uncertainty about their future productivity, and that the time-varying

nature of this uncertainty can also produce the observed stock price patterns.

We build a general equilibrium model of a finite-horizon representative-agent economy

with two sectors: the “new economy” and the “old economy.” The old economy implements

the existing technologies in large-scale production whose output determines the representa-

tive agent’s wealth. The new economy, which is created when a new technology is invented,

implements the new technology in small-scale production that does not affect the agent’s

wealth. It is optimal for the new technology to be initially employed on a small scale because

its future productivity is uncertain. By observing the new economy, the representative agent

learns about the average productivity of the new technology before deciding whether to

adopt the technology on a large scale. We show that this irreversible adoption takes place if

the agent learns that the new technology is sufficiently productive. We define a technological

revolution as a period concluded by a large-scale adoption of a new technology.

We show that the nature of the risk associated with new technologies changes over time.

Initially, this risk is mostly idiosyncratic due to the small scale of production and a low

probability of a large-scale adoption. The risk remains idiosyncratic for those technologies

1According to Malkiel (1999), “What electronics was to the 1960s, biotechnology became to the 1980s...
Valuation levels of biotechnology stocks reached levels previously unknown to investors... From the mid-1980s
to the late 1980s, most biotechnology stocks lost three-quarters of their market value.”

2“Every previous technological revolution has created a speculative bubble... With each wave of technol-
ogy, share prices soared and later fell... The inventions of the late 19th century drove p-e ratios to a peak
in 1901, the year of the first transatlantic radio transmission. By 1920 shares prices had dropped by 70%
in real terms. The roaring twenties were also seen as a “new era”: share prices soared as electricity boosted
efficiency and car ownership spread. After peaking in 1929, real share prices tumbled by 80% over the next
three years.” (The Economist, September 21, 2000, Bubble.com)
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that are never adopted on a large scale. For the technologies that are ultimately adopted,

however, the risk must gradually change from idiosyncratic to systematic. As the probability

of adoption increases, the new technology becomes more likely to affect the old economy and

with it the representative agent’s wealth, so systematic risk in the economy increases.

This time-varying nature of risk has interesting implications for stock prices. Initially,

while uncertainty about the new technology is mostly idiosyncratic, the new economy stocks

command high market values. As the adoption probability increases, the resulting increase

in systematic risk pushes up the discount rates and thus depresses stock prices in both the

new and old economies. The new economy stock prices fall deeper because their discount

rates rise higher due to an increase in the new economy’s market beta.

Stock prices are affected not only by discount rates but also by expected cash flows. The

technologies that are ultimately adopted must turn out to be sufficiently productive before

the adoption. This positive cash flow news pushes stock prices up, countervailing the effect

of the higher discount rate. The cash flow effect prevails initially, pushing the new economy

stock prices up, but the discount rate effect prevails eventually, pushing the stock prices

down. The resulting pattern in the new economy stock prices looks like a bubble but it

obtains under rational expectations through a general equilibrium effect.

The bubble-like pattern in stock prices arises in part due to an ex post selection bias.

Researchers study technological revolutions with the ex post knowledge that the revolutions

took place, but investors living through those periods did not know whether the new tech-

nologies would eventually be adopted on a large scale. The representative agent in our model

never expects stock prices to fall; she always expects to earn positive stock returns commen-

surate to the stocks’ riskiness, and she subsequently earns those fair returns, on average.

However, in those rare periods that are recognized as technological revolutions ex post, the

agent’s realized returns tend to be initially positive due to good news about productivity

and eventually negative due to bad news about systematic risk.

Uncertainty about new technologies affects not only the level but also the volatility of

stock prices. Due to this uncertainty, the new economy stocks are more volatile than the

old economy stocks. After an initial decline, the new economy’s volatility rises sharply when

the stochastic discount factor becomes more volatile as a result of a higher probability of a

large-scale adoption. The same effect also pushes up the new economy’s market beta and

the old economy’s volatility, two different aspects of systematic risk in the economy.

Our model makes many empirical predictions for technological revolutions: The “bubble”
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in stock prices should be much stronger in the new economy than in the old economy; stock

prices in both economies should reach the bottom at the end of the revolution; the new

economy’s market beta should increase sharply before the end of the revolution; the new

economy’s volatility should also rise sharply and it should exceed the old economy’s volatility;

the old economy’s volatility should rise but less than the new economy’s volatility; the new

economy’s beta and both volatilities should all peak at the end of the revolution; and the

old economy’s productivity should begin rising at the end of the revolution.

All of these predictions are supported by empirical evidence from the recent Internet

revolution. According to the model, this revolution ended (i.e., the probability of a large-scale

adoption of the Internet technology reached one) in 2002. The “bubble” pattern was much

stronger in the NASDAQ index (our proxy for the new economy) than in the NYSE/AMEX

index (the old economy); both stock price indexes reached the bottom in 2002; NASDAQ’s

beta doubled between 1997 and 2002; NYSE/AMEX’s return volatility also doubled and

NASDAQ’s volatility tripled over the same period; NASDAQ’s volatility always exceeded

NYSE/AMEX’s volatility; NASDAQ’s beta and both volatilities peaked in 2002; and the

productivity growth of the U.S. economy accelerated sharply after 2002.

We also examine stock prices during the first major technological revolution in the U.S.

since the opening of the U.S. stock market – the introduction of steam-powered railroads. In

the 1830s and 40s, there was substantial uncertainty about whether the railroad technology

would be adopted on a large scale. We analyze stock prices before the Civil War, and

find that they fell before and during year 1857, with railroad stocks falling more than non-

railroad stocks. The railroad stock volatility and price-dividend ratios consistently exceeded

their non-railroad counterparts. The volatility of all stocks rose in 1857. The railroad stock

beta increased sharply in the 1850s, before falling right after 1857. In the context of our

model, all of this evidence is consistent with a large-scale adoption of the railroad technology

around 1857, soon after railroads began expanding west of the Mississippi River.

Much of the literature on technological innovation analyzes issues different from those

addressed here. Unlike Romer (1990), Aghion and Howitt (1992), and others, we take tech-

nological inventions to be exogenous. We do not examine the links between technological

revolutions and human capital (e.g., Chari and Hopenhayn, 1991, Caselli, 1999, Manuelli,

2003). Different but related models of learning are presented in Jovanovic (1982), Jovanovic

and Nyarko (1996), and Atkeson and Kehoe (2007). We empirically examine the Internet

and railroad revolutions, while other technological revolutions are examined by Jovanovic

and Rousseau (2003, 2005), Mazzucato (2002), and others. Mokyr (1990) argues that tech-
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nological progress is discontinuous, as assumed in our model, and that occasional seminal

inventions (“macroinventions”) are the key sources of economic growth.

A small but growing literature explores the links between technological innovation and

stock prices (e.g., Jovanovic and MacDonald, 1994, and Laitner and Stolyarov, 2003, 2004a,b).

According to Greenwood and Jovanovic (1999) and Hobijn and Jovanovic (2001), innovation

causes the stock market to drop because the incumbent firms are unable or unwilling to im-

plement the new technology. Similar initial stock market drops are obtained in the models

of Laitner and Stolyarov (2003) and Manuelli (2003). In our model, the stock market value

of the old economy also drops after the new technology is invented, mostly because of the

costs and risks associated with a large-scale adoption of the new technology, but our focus

is on the subsequent bubble-like stock price pattern in the new economy.

The paper is organized as follows. Section 2 presents the model. Section 3 solves for stock

prices and analyzes their dynamics. Section 4 investigates the model’s empirical predictions

for stock prices during technological revolutions. Section 5 empirically examines the behavior

of stock prices in 1830–1861 and 1992–2005 when the railroad technology and the Internet

technologies, respectively, spread in the United States. Section 6 concludes.

2. The Economy

We consider an economy with a finite horizon [0, T ]. A representative agent has preferences

defined by power utility over terminal wealth WT , with risk aversion γ > 1:

u (WT ) =
W 1−γ
T

1 − γ
. (1)

At time t = 0, the agent is endowed with capital B0. Subsequently, capital is invested in

a linear technology producing output (net of depreciation) at the rate of Yt = ρtBt. Since

there is no intermediate consumption, all output is reinvested, and capital Bt follows

dBt = Ytdt = ρtBtdt. (2)

Productivity ρt follows a mean-reverting process whose mean is determined by the available

technology. There are two technologies: “old” and “new.” Initially, only the old technology

is available, and the long-run mean of ρt is equal to ρ. At time t∗, the new technology

becomes available. If the representative agent adopts the new technology at time t∗∗ ≥ t∗,

the long-run mean of ρt changes from ρ to ρ+ ψ. Thus, the dynamics of ρt are given by

dρt = φ (ρ− ρt) dt+ σdZ0,t, 0 < t < t∗∗ (3)

dρt = φ (ρ+ ψ − ρt) dt+ σdZ0,t, t∗∗ ≤ t < T, (4)
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where φ is the speed of mean reversion, ρ is the mean productivity of the old technology,

ψ is the “productivity gain” brought by the new technology, and σ2 is the variance of

productivity shocks, represented by the Brownian increments dZ0,t. That is, the adoption of

the new technology is equivalent to a shift in the economy’s average productivity.

The representative agent chooses whether and when to adopt the new technology to max-

imize utility in equation (1) under the market-clearing condition WT = BT . In equilibrium,

the agent’s final wealth must equal the amount of capital accumulated by time T .

Our key assumption is that the productivity gain ψ is unobservable. When the new

technology appears at time t∗, ψ is drawn from a normal distribution with known variance:

ψ ∼ N
(
0, σ̂2

t∗

)
. (5)

All other parameters are known. The adoption of the new technology is irreversible and

costly. Converting capital to the new technology incurs a proportional conversion cost κ ≥ 0.

The agent has three choices at time t∗ when the new technology becomes available:

(i) Adopt the new technology

(ii) Begin learning about the new technology (i.e., about ψ)

(iii) Discard the new technology

We show below that the agent optimally chooses option (ii), so he begins learning at time t∗.

The agent learns about ψ by “experimenting” with the new technology – i.e., by implement-

ing it on a small scale. After time t∗, the economy consists of two sectors: the small-scale

“new economy,” which employs the new technology, and the large-scale “old economy,” whose

productivity ρt follows equation (3). The capital BN
t used in the new economy is infinitely

smaller than Bt, so the agent’s wealth WT is affected by the new technology only if this tech-

nology is adopted on a large scale (i.e., by the old economy). Denoting the new economy’s

productivity by ρNt , the processes of BN
t and ρNt for t > t∗ are given by

dBN
t = ρNt B

N
t dt (6)

dρNt = φ
(
ρ+ ψ − ρNt

)
dt+ σN,0dZ0,t + σN,1dZ1,t, (7)

where Z1,t is a Brownian motion uncorrelated with Z0,t. The agent learns about ψ by

observing ρNt and ρt. The learning process is characterized by Lemma A1 in the Appendix.

The posterior distribution of ψ conditional on Ft =
{(
ρNτ , ρτ

)
: t∗ ≤ τ ≤ t

}
is normal,

ψ | Ft ∼ N
(
ψ̂t, σ̂

2
t

)
,
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where the posterior mean ψ̂t is a martingale (see equation (17)) and the posterior variance σ̂2
t

declines deterministically over time due to learning (see equation (18)). If the new technology

is adopted at time t∗∗, the agent continues to learn about ψ by observing ρNt and ρt, but the

old economy’s productivity follows equation (4) rather than equation (3).

We define a technological revolution as the period [t∗, t∗∗] concluded by a large-scale

adoption of the new technology. We treat the invention of the new technology as given, and

study the conditions under which the invention leads to a technological revolution.

2.1. Optimal Adoption of the New Technology

The agent can adopt the new technology anytime between times t∗ and T (or never). We

solve for the optimal adoption time t∗∗ numerically in Section 4.2. Until then, we focus on a

simpler problem in which t∗∗ denotes an exogenously given time at which the agent decides

whether or not to adopt the new technology. This simpler problem admits a closed-form

solution for stock prices, which improves our understanding of the stock price dynamics. Our

numerical results in Section 4.2. show that the dynamics obtained when t∗∗ is endogenously

chosen are very similar to those obtained here with an exogenous t∗∗.

The sequence of events in the model is summarized in Figure 1. We assume that if a new

technology is not adopted at time t∗∗, it continues to operate on a small scale until time T .

Our history is full of examples of technologies that have not been adopted on a large scale

but still survive on a small scale (e.g., direct-current electric motors, airships, etc.)

Proposition 1: It is never optimal to adopt the new technology immediately at time t∗.

Adopting the new technology is risky – it may increase or decrease average productivity,

depending on the sign of ψ. The prior for ψ in equation (5) is centered at zero, making the

increases and decreases in productivity equally likely as of time t∗.3 Since the agent is risk

averse, immediate adoption of the new technology is suboptimal. This intuition is formalized

in the Appendix, which shows that the adoption of the new technology at time t∗ yields lower

expected utility than no adoption. Proposition 1 holds for any κ, including κ = 0, as it is

driven by the increase in risk resulting from the adoption of the new technology.

Proposition 2: The new technology is adopted at time t∗∗ if and only if

ψ̂t∗∗ ≥ ψ = −
log (1 − κ)

A2 (τ ∗∗)
+

1

2
(γ − 1)A2 (τ ∗∗) σ̂2

t∗∗ , (8)

3If the prior is centered at ψ̂t∗ 6= 0, Proposition 1 is modified so that it is not optimal to adopt the new
technology at time t∗ unless ψ̂t∗ is sufficiently high. See Proposition 2 for an analogous relation.
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where τ ∗∗ = T − t∗∗ and A2 (τ ) = τ − (1 − exp (−φτ )) /φ > 0.

The new technology is adopted at time t∗∗ if the expected productivity gain, ψ̂t∗∗, is

positive and sufficiently large. The threshold ψ is always positive, and it increases in the

conversion cost κ, uncertainty σ̂t∗∗ , and risk aversion γ, which is intuitive. Note that the

agent makes the adoption decision without knowing the true value of ψ. Regardless of the

outcome of the adoption decision, learning about ψ continues after time t∗∗.

Proposition 3: It is optimal to begin experimenting with the new technology at time t∗.

This proposition, proved in the Appendix, shows that the agent chooses to set up the

new economy to begin learning about the new technology immediately after this technology

becomes available at time t∗. The intuition is simple. Experimenting allows the agent to

learn about the productivity gain ψ. If this learning leads the agent to believe at time t∗∗

that ψ is sufficiently high, then it becomes optimal to adopt the new technology (Proposition

2). Otherwise, the status quo will prevail. Since experimenting is costless and there is no

downside to it, it gives the agent a valuable option for free.4

Since option value generally increases with uncertainty, high uncertainty σ̂t∗ makes a

new technology desirable for experimentation. If it were costly to experiment with new

technologies, or if the agent had to choose from a subset of technologies at time t∗, then

the technologies with the highest σ̂t∗ would be selected for experimentation, ceteris paribus.

Uncertainty about productivity gains is thus a natural feature of innovative technologies.

3. Stock Prices

The stocks of the old and new economies pay liquidating dividends BT and BN
T , respectively,

at time T . There is also a riskless bond in zero net supply, whose yield we normalize to zero,

for simplicity. Since the two shocks in the model are spanned by the two stocks, markets are

complete. Standard arguments then imply that the state price density is uniquely given by

πt =
1

λ
Et

[
W−γ
T

]
, (9)

where λ is the Lagrange multiplier from the utility maximization problem of the representa-

tive agent. The market values (shadow prices) of the old and new economy stocks, denoted

4The problem we solve resembles the problem of making an irreversible marriage decision. It is generally
suboptimal to marry a new acquaintance immediately because of substantial uncertainty regarding the qual-
ity of the personality match (cf. Proposition 1). Instead, it seems advisable to first develop the relationship
on a small scale, by dating without any commitment (cf. Proposition 3), and then to marry if we learn that
the relationship is likely to work in the long run (cf. Proposition 2).
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by Mt and MN
t , respectively, are given by the standard pricing formulas

Mt = Et

[
πTBT

πt

]
and MN

t = Et

[
πTB

N
T

πt

]
. (10)

To normalize the market values, we form “market-to-book” (M/B) ratiosMt/Bt andMN
t /B

N
t .

It seems reasonable to interpret capital as the book value of equity, and this interpretation

is exact for Bt and BN
t in equations (2) and (6) if we also interpret output and productivity

as earnings and profitability, respectively (Pástor and Veronesi, 2003).

Let pt denote the probability at time t, t∗ ≤ t < t∗∗, that the new technology will be

adopted at time t∗∗. Lemma A3 in the Appendix shows that pt = 1 −N
(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
,

where N (·; a, s2) denotes the c.d.f. of the normal distribution with mean a and variance s2.

Proposition 4: For any t ∈ [t∗, t∗∗), the state price density is given by

πt = λ−1B−γ
t

{
(1 − pt) G̃

no
t + ptG̃

yes
t

}
, (11)

where G̃no
t and G̃yes

t are expectations of the marginal utility of wealth conditional on whether

or not the new technology is adopted at time t∗∗. Both values are given in the Appendix.

Corollary 1. For any t ∈ [t∗, t∗∗), the dynamics of πt are given by

dπt
πt

= −γA1(τ )σdZ̃0,t − Sπ,tσ̂
2
t

φ

σN,1
dZ̃1,t, (12)

where τ = T − t, A1(τ ) = (1 − e−φτ )/φ, Sπ,t is given in the Appendix, and so are the

orthogonalized Brownian motions (Z̃0,t, Z̃1,t), which capture the agent’s expectation errors.

This corollary illustrates the time-varying nature of risk during technological revolutions.

When a new technology arrives at time t∗, the adoption probability pt∗ is generally small,

which makes Sπ,t∗ small as well (pt = 0 implies Sπ,t = 0). The volatility of the stochastic

discount factor in equation (12) then depends only slightly on σ̂2
t , making uncertainty about

ψ mostly idiosyncratic. During a technological revolution, the adoption probability increases,

which makes Sπ,t larger.5 As a result, the volatility of the stochastic discount factor becomes

more closely tied to σ̂2
t , making uncertainty about ψ increasingly systematic.

Proposition 5: For any t ∈ [t∗, t∗∗), the market-to-book ratios are given by

Mt

Bt
=

(1 − pt)G
no
t + ptG

yes
t

(1 − pt) G̃no
t + ptG̃

yes
t

and
MN

t

BN
t

=
(1 − pt)K

no
t + ptK

yes
t

(1 − pt) G̃no
t + ptG̃

yes
t

, (13)

5In a technological revolution, pt rises from pt∗ ≈ 0 to pt∗∗ = 1, and Sπ,t rises from Sπ,t∗ ≈ 0 to
Sπ,t∗∗ = γA2(τ

∗∗) > 0. That is, as pt increases, Sπ,t increases from approximately zero to a positive number.
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where G̃no
t , G̃yes

t , Gno
t , Gyes

t , Kno
t , and Kyes

t are given in the Appendix.

In the special case pt = 0, the market-to-book ratio of the new economy simplifies into

MN
t

BN
t

= eC0(τ )+A1(τ )ρN
t +A2(τ ) bψt+

1
2
A2(τ )2bσ2

t , (14)

where A1(τ ) is defined in Corollary 1, A2(τ ) in Proposition 2, and C0(τ ) is in the Appendix.

Note that MN/BN increases when uncertainty about ψ, σ̂2
t , increases. This relation, first

pointed out by Pástor and Veronesi (2003) in a simpler framework, is due to the idiosyncratic

nature of uncertainty. When pt = 0, the state price density does not depend on uncertainty

about ψ, but when pt > 0, it does. When pt is sufficiently large, uncertainty is mostly

systematic, and the associated risk reverses the positive relation between MN/BN and σ̂2
t .

The return processes for both stocks are given in Corollary A1 in the Appendix. Not

surprisingly, the expected stock returns are given by the return covariances with dπt/πt, and

the return volatilities of both stocks increase with uncertainty σ̂2
t .

3.1. The Dynamics of Prices during a Technological Revolution

In a technological revolution, the adoption probability pt rises from a small value at time t∗

to the value of one at time t∗∗. The effect of pt on stock prices is analyzed next.

Proposition 6: The new (old) economy’s M/B ratio is increasing in pt if and only if hnew > 0

(hold > 0), where hnew and hold are functions of ψ̂t given in the Appendix.

For plausible parameter values, hnew > 0 when ψ̂t is close to zero, but hnew < 0 when

ψ̂t approaches the threshold ψ. That is, the condition hnew > 0 holds shortly after time t∗,

but it becomes violated as the adoption at time t∗∗ becomes more likely. Proposition 6 then

implies that the new economy’s M/B is initially increasing but ultimately decreasing in pt

during a technological revolution. The condition hold > 0 is never satisfied for the baseline

parameter values, so the old economy’s M/B is always decreasing in pt.

While analyzing M/B as a function of pt seems informative, pt is driven primarily by

ψ̂t. Stock prices depend on ψ̂t through two opposing effects. On one hand, an increase in

ψ̂t is good news for prices because it increases expected cash flows (Et [BT ] and Et
[
BN
T

]
)

in both economies. This cash flow effect is stronger for the new economy whose perceived

productivity is immediately affected; the old economy’s productivity is not affected until

time t∗∗, if at all. On the other hand, an increase in ψ̂t is bad news for prices because the

higher adoption probability makes the risk embedded in the new technology increasingly

9



systematic, thereby raising the discount rate. This discount rate effect is also stronger for

the new economy because πt covaries more with ρNt than with ρt (since both πt and ρNt
correlate with revisions in ψ̂t but ρt does not). Moreover, the discount rate effect has a

growing impact on the new economy’s M/B because the dependence of πt on revisions in ψ̂t

increases as pt increases. For the old economy, the discount rate effect generally outweighs

the cash flow effect from the very beginning, leading to a gradual decline in M/B during a

revolution. For the new economy, the cash flow effect tends to dominate at first, but the

discount rate effect dominates in the end, producing a “bubble”.

Although the dependence of MN/BN on ψ̂t is complicated, its key features can be estab-

lished locally at times t∗ and t∗∗. We show below that MN/BN is increasing (decreasing) in

ψ̂ around time t∗ (t∗∗), under certain assumptions.

Proposition 7: For any t ≥ t∗ there exists p̄ > 0 such that if pt < p̄ then
∂(MN

t /BN
t )

∂ bψt
> 0.

In words, if the probability of adoption pt is sufficiently small, then MN/BN is increasing

in ψ̂t. When pt is close to zero, so is its sensitivity to changes in ψ̂t; thus an increase in ψ̂t

does not produce a large discount rate effect.6 The cash flow effect is large, though, because

MN/BN in equation (14) is strongly increasing in ψ̂t. Proposition 7 follows.

When a new technology arrives at time t∗, its probability of eventual adoption is typically

small because only a small fraction of new technologies are adopted by the whole economy.

Proposition 7 then implies that, for most new technologies, the cash flow effect initially

prevails over the discount rate effect and MN/BN is increasing in ψ̂t shortly after time t∗.

We also have some local results at time t∗∗. Below, we compare the M/B ratio of the

new economy under two scenarios: ψ̂t∗∗ = ψ ± ε, where ε > 0 is small.

Corollary 2:

(a) If ψ̂t∗∗ = ψ + ε, then the new technology is adopted at time t∗∗, and

MN
t∗∗

BN
t∗∗

= eC0(τ∗∗)+A1(τ∗∗)ρN
t∗∗

+A2(τ∗∗) bψt∗∗+ 1
2
A2(τ∗∗)2(1−2γ)bσ2

t∗∗ . (15)

(b) If ψ̂t∗∗ = ψ − ε, then the new technology is not adopted at time t∗∗, and

MN
t∗∗

BN
t∗∗

= eC0(τ∗∗)+A1(τ∗∗)ρN
t∗∗

+A2(τ∗∗) bψt∗∗+ 1
2
A2(τ∗∗)2bσ2

t∗∗ . (16)

6Analogously, if a stock option is deep out of the money, a small increase in the stock price does not
change the option value by much since its delta is small and the option remains deep out of the money.
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The new economy’s M/B is clearly lower when the technological revolution takes place.

The reason is the uncertainty term σ̂2
t , whose coefficient is negative in part (a) and positive in

part (b). In part (a), σ̂2
t is systematic (it affects πt), whereas in part (b), it is idiosyncratic (it

does not affect πt). Since ψ̂t (expected cash flow) is essentially the same in both scenarios,

the difference between M/B in parts (a) and (b) is due to the discount rate effect. This

knife-edge case shows that MN/BN is likely decreasing in ψ̂t close to time t∗∗.

In summary, the cash flow effect usually dominates close to time t∗, leading to an initial

positive relation between MN/BN and ψ̂t, but the discount rate effect usually dominates

close to time t∗∗, leading to an eventual negative relation. During a technological revolution,

ψ̂t generally increases, leading to a bubble-like pattern in MN/BN .

3.2. Discussion

Corollary 2 shows that the adoption reduces the new economy’s M/B, holding ψ̂t constant.

Intuitively, the adoption does not bring any benefit to the new economy, which already uses

the new technology. On the contrary, it increases systematic risk and thus reduces the new

economy’s market value. The model features only one shareholder, the representative agent,

who employs infinitely more capital in the old economy than in the new economy. This agent

wants the adoption to take place because the utility gain from making the old economy more

productive outweighs the negligible loss of market value in the new economy.

Analogous to Corollary 2, we can show that the old economy’s market value also decreases

at time t∗∗ if the adoption takes place when ψ̂t∗∗ is close to ψ. Interestingly, the representative

agent chooses to adopt the new technology even if doing so reduces the market value of her

stocks. There is a difference between maximizing utility and maximizing market value. The

adoption occurs only if it increases the agent’s expected utility. This adoption changes the

economic environment by installing (what the agent perceives to be) a more productive

technology and by increasing expected stock returns. In this new environment, stock prices

are lower (due to higher discount rates) but expected utility is higher (due to higher expected

wealth). Expected utility and stock prices need not move in the same direction because stock

prices are related to the agent’s marginal utility rather than to the level of utility.

We solve the social planner’s problem in which a utility-maximizing representative agent

owns all output by holding the stocks of the old and new economies. When a new technology

is invented, it becomes property of the social planner. The social planner finds it optimal to

set up a small-scale new economy to learn about the new technology before deciding whether
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to adopt this technology in the large-scale old economy. Upon adoption, there is no transfer

from the old economy to the new economy because the new economy does not own the new

technology (the social planner does). As an example of a new economy firm, Amazon was

an early user of the Internet but it did not own the Internet technology.

As an alternative to the social planner’s problem, we analyze a competitive economy in

which firms independently decide whether to adopt the new technology while maximizing

their own market values. We present this alternative decentralized model in the Appendix,

and find that it produces the same stock price dynamics as the social planner’s problem.

The alternative model features “network externalities,” in that the average productivity of

a technology increases as the fraction of firms using this technology increases. Each firm

makes its own adoption decision independently, taking the decisions of all other firms as

given. Adopting the same technology as other firms has two opposing effects. On one hand,

it hurts the firm, because the technology adopted by all other firms carries more systematic

risk. On the other hand, it benefits the firm through network externality gains. We show

that it is possible to choose the magnitude of the network externality gains such that the

solution is identical to that in the social planner’s problem. Specifically, the Nash equilibrium

at time t∗∗ is such that all firms adopt the new technology if ψ̂t∗∗ ≥ ψ, but none of them do

if ψ̂t∗∗ < ψ, analogous to our Proposition 2. As a result, all pricing formulas are the same as

in the social planner’s problem, and the same “bubbles” in stock prices obtain.

The alternative model highlights the lack of coordination among firms in a competitive

economy. Although each firm maximizes its own market value, the aggregate effect of the

firms’ adoptions is to reduce market values. The reason is that firms adopting the new

technology do not fully internalize the resulting increases in the volatility of the stochastic

discount factor. Each adopting firm imposes a negative externality on the market values

of other firms by increasing systematic risk in the economy. We see that the stock price

patterns obtained in our simple model with a utility-maximizing social planner hold also in

a more complicated model featuring value-maximizing competitive firms.

Other ways of decentralizing the model could also lead to similar stock price dynamics.

For example, suppose that firms facing different conversion costs observe signals about ψ.

As ψ̂t rises during a technological revolution, the proportion of firms that adopt the new

technology also rises. This proportion might play the same role as the adoption probability

in our model: As the proportion rises from about zero to one, the volatility of the stochastic

discount factor also rises, making the uncertainty about ψ increasingly systematic.

In our simple model, all output represents firm profits, so productivity and profitability
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coincide. In reality, technological advances lead to permanent increases in productivity

but only temporary increases in profitability. In the long run, new technology tends to

benefit workers and consumers, not producers. Therefore, we also analyze a richer model in

which labor income drives a wedge between productivity and profitability.7 In this model,

productivity gains from new technology last until time T , but profitability gains last only

until time t∗∗∗ < T , after which all productivity gains go to labor. Profitability affects the

cash flow to stocks, whereas productivity affects the discount rates. Systematic risk depends

on uncertainty about productivity because the agent’s total wealth depends on productivity.

As a result, our basic mechanism is unaffected by the shorter profitability horizon. Indeed,

we find that this richer model produces stock price dynamics very similar to those reported

here. For the same parameter values, the bubble pattern is somewhat less pronounced, but

more dramatic patterns can be easily obtained after plausible parameter changes.

4. Empirical Implications

The purpose of this section is to analyze the model-implied paths of the key variables during

technological revolutions. We simulate 50,000 samples of shocks in our economy and compute

the paths of quantities such as the M/B ratios and volatilities in each simulated sample. We

split the 50,000 samples into two groups, depending on whether or not the new technology

is adopted at time t∗∗, and plot the average paths of prices and volatilities across all samples

within each group. Our objective is to understand how these paths differ depending on

whether or not the new technology leads to a technological revolution.

Table 1 shows the parameters used in our simulations. For the productivity processes,

we choose parameter values close to those estimated by Pástor and Veronesi (2006) for the

dynamics of profitability. The relation between productivity and profitability in our model

is explained in Section 3.2. The parameter values for the conversion cost, time horizon, risk

aversion, and prior beliefs about ψ are varied later in our sensitivity analysis.

Figure 2 plots the average paths of ψ̂t, pt, and σπ ≡ Std(dπt/πt). Panel A shows that

the average drift in ψ̂t during technological revolutions is positive, due to conditioning on

the ex post event that ψ̂t∗∗ ≥ ψ (without such conditioning, ψ̂t is a martingale; see equation

(17)).8 Analogously, conditional on ψ̂t∗∗ < ψ, ψ̂t in Panel B (no revolution) drifts downward.

The drift is less pronounced in Panel B than in Panel A because ψ̂t∗ = 0 and ψ > 0. The

7This model is presented in the Technical Appendix, which is downloadable from the authors’ websites.
8Brown, Goetzmann and Ross (1995) provide a mathematical proof of a related statement in their analysis

of stock returns conditional on the stock’s survival through the end of the sample.

13



average probability of adoption, pt, drifts up in Panel C (revolution) and down in Panel D

(no revolution), as expected. The volatility of the stochastic discount factor, σπ, is almost

flat while pt is low, but it increases as pt increases (Panel E).

Figure 3 plots the average paths of M/B and volatility for the new economy (solid line)

and the old economy (dashed line). The panels on the left are based on the samples in which

pt∗∗ = 1 (revolution); the panels on the right condition on pt∗∗ = 0 (no revolution).9 The

dotted vertical lines mark the time when the new technology arrives, t∗ = 1, and the time

at which the agent decides whether to adopt the technology, t∗∗ = 9.

Panel A of Figure 3 plots the average paths of M/B across all technological revolutions.

The new economy’s M/B rises and then falls, as predicted in Section 3.1. Since we are

conditioning on the adoption of the new technology at time t∗∗, ψ̂t must go up between t∗

and t∗∗ (Figure 2). This increase in ψ̂t has two countervailing effects on prices. First, it

increases expected future cash flow from the new technology, pushing M/B up. Second, it

increases the adoption probability, which makes the risks embedded in the new technology

ever more systematic (affecting WT ), which then increases the discount rate applied to future

cash flow, pushing M/B down. For the old economy, the discount rate effect outweighs the

cash flow effect from the outset, leading to a slow decline in M/B. For the new economy, the

cash flow effect is stronger at first, but the discount rate effect prevails in the end, producing

a “bubble.” Since the path plotted in Panel A is an average across all revolutions, it shows

that apparent bubbles in high-tech stock prices are not merely possible in a rational world;

they should in fact be expected during technological revolutions.

Different technological revolutions produce different paths of M/B, depending on the

path of realized productivity. These individual paths look mostly like bubbles that peak

at different times, and they are less smooth than the average path plotted in Panel A of

Figure 3. On this average path, the peak-to-bottom drop in the new economy’s M/B lasts

5 years, but for some revolutions, the price drop is much more abrupt. For example, for

10% of all revolutions, the peak-to-bottom drop lasts less than 2.56 years, and for 5% of

all revolutions, it lasts less than 1.68 years. The magnitude of the price drop also exhibits

substantial dispersion across revolutions. On the average path, M/B falls by 2.9 from the

peak to the bottom, but for 5% of all revolutions, it falls by more than 7.8.

Panel B of Figure 3 plots the average paths of M/B across all samples in which pt∗∗ = 0

9The fraction of the simulated samples in which pt∗∗ = 1 is approximately equal to the ex ante probability
of adoption implied by our parameter choices, pt∗ ≈ 2%, as expected. In principle, any product innovation
could potentially lead to a technological revolution, but very few do, both in reality and in our model.
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(no revolution). In these samples, ψ̂t declines slightly between t∗ and t∗∗, nudging the M/Bs

down as well. The decline is larger in the new economy, for two reasons. One, the new

economy’s M/B is more sensitive to ψ̂t, as discussed earlier. Two, uncertainty about ψ

gradually declines due to learning, which reduces M/B for the new economy but not for

the old economy (see equation (14)). Thanks in part to this uncertainty, the level of M/B

is higher in the new economy than in the old economy, in both Panels A and B. Higher

productivity is another reason why the new economy’s M/B is higher in Panel A, even after

time t∗∗. Although the adoption makes the long-run means of productivity equal in both

economies, the productivity at time t∗∗ is higher in the new economy (ρNt∗∗ is likely to be high

to make ψ̂t∗∗ > ψ), lifting the M/B of the new economy above that of the old economy.

Panel C of Figure 3 plots the average paths of stock return volatility across all techno-

logical revolutions. Volatility is higher in the new economy than in the old economy, partly

due to higher volatility of the fundamentals, but mostly due to uncertainty about ψ. To

understand the U-shape in the new economy’s volatility, recall that shocks to ψ̂t affect stock

prices via the discount rate and cash flow effects, which work in opposite directions. Around

time t∗ (t∗∗), the cash flow (discount rate) effect dominates, so the two effects do not offset

each other much and the volatility is high. The volatility is lowest when the two effects cancel

each other, which happens at some point between times t∗ and t∗∗; hence the U-shape. For

the old economy, the discount rate effect dominates from the outset, so the old economy’s

volatility slowly increases as the rising adoption probability makes the stochastic discount

factor more volatile. The spike in volatility at time t∗∗ is caused by those simulated paths for

which ψ̂t∗∗ is close to ψ because then pt swings a lot shortly before time t∗∗, making returns

highly volatile (Corollary 2). We show later that the volatility spike disappears (but all

other effects remain) when t∗∗ is chosen optimally instead of being fixed exogenously. Panel

D plots the average return volatility across all no-revolution samples. In these samples, the

discount rate effect is weak and volatility is roughly constant over time.

Panels A and B of Figure 4 plot the market beta of the new economy, β, defined as

the slope from the regression of the new economy stock returns on the old economy stock

returns. In Panel A, where we condition on pt∗∗ = 1 (revolution), β exhibits an asymmetric

U-shape pattern, for the following reason. Positive shocks to ψ̂t always reduce the market

value of the old economy stocks, but they increase the value of the new economy stocks

initially while the cash flow effect prevails over the discount rate effect, leading to an initial

decrease in β. Only after the discount rate effect overcomes the cash flow effect, shocks to

ψ̂t begin affecting the market values of both economies in the same direction, leading to an

increase in β. Since the effect of ψ̂t on the old economy stocks increases with the adoption
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probability, the rise in β is more dramatic than the initial fall. After a mild decline in the

first half of the revolution, β doubles in the second half, from 0.75 to 1.5. The average beta

in the no-revolution samples, plotted in Panel B, is almost flat over time.

As explained above, two aspects of systematic risk increase during technological revo-

lutions: the old economy’s volatility and the new economy’s beta. The increase in the old

economy’s volatility raises the discount rates for both economies, old and new, holding β con-

stant. The increase in β gives an additional boost to the discount rate of the new economy,

which is why stock prices fall by more in the new economy than in the old economy.

The remaining panels of Figure 4 plot the average realized returns (solid line) and ex-

pected returns (dashed line).10 In technological revolutions, realized stock returns are first

positive and then negative for both economies, due to an ex post selection bias. Ex post,

we know that a technological revolution took place at time t∗∗, but ex ante, we only have a

probability assessment of this event. Before time t∗∗, stock prices are not expected to rise

and fall; expected returns are given simply by the covariances with the stochastic discount

factor. However, conditioning on a technological revolution means that the adoption proba-

bility pt must be revised upward between times t∗ and t∗∗, causing a bubble-like pattern in

prices through the cash flow and discount rate effects discussed earlier. The bias of realized

returns relative to expected returns is due solely to ex post conditioning on pt∗∗ = 1; when

this conditioning is removed, the bias disappears. (Across all 50,000 simulations, average

realized returns are equal to average expected returns.) The rise and fall in stock prices

during technological revolutions are observable ex post but not predictable ex ante.

The unexpected arrival of the new technology causes the old economy’s market value to

drop immediately at time t∗ (Panel E of Figure 4). This drop is driven by two forces. The

possibility of eventual adoption means that conversion costs might be paid at time t∗∗, and

it also increases systematic risk and so drives up the discount rate.

4.1. Sensitivity Analysis

This section examines the sensitivity of the price dynamics to our parameter choices. Figure

5 is the counterpart of Panel A of Figure 3 (revolution), with various parameter changes.

In Panel A of Figure 5, risk aversion γ = 3, as opposed to γ = 4 in Figure 3. Lower risk

aversion increases M/B in both economies, as expected, but the pattern of M/B is otherwise

the same as that in Figure 3. A hump-shaped pattern in MN/BN obtains for any γ > 1.

10All returns are annualized by multiplying each interval-dt return by 1/dt.
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In Panel B of Figure 5, the conversion cost is κ = 0, as opposed to κ = 0.1 in Figure 3.

The main effect of the lower κ is to decrease MN/BN . The lower conversion cost makes it

more likely that the new technology will be adopted, which increases discount rates and thus

depresses prices. For the old economy, there is also a counterbalancing effect, as the lower

conversion cost increases the old economy’s post-conversion capital Bt∗∗
+

= Bt∗∗−
(1 − κ). The

two effects approximately cancel out, so the old economy’s M/B is almost unaffected by the

change in κ. Most important, the price patterns look just like those in Figure 3.

In Panel C, prior uncertainty about ψ is σ̂t∗ = 8%, compared to σ̂t∗ = 4% in Figure 3.

The higher uncertainty increases MN/BN , especially close to time t∗ when pt is small (equa-

tion (14)). However, as pt increases during a revolution, uncertainty becomes increasingly

systematic, pushing MN/BN down, and this discount rate effect is stronger when systematic

uncertainty is higher. Therefore, in technological revolutions characterized by high uncer-

tainty, the new economy firms tend to start out with high valuations that exhibit a large

decline. High uncertainty amplifies the bubble-like pattern in stock prices.

In Panel D of Figure 5, the time until the adoption decision is shortened to t∗∗ − t∗ = 6,

compared to t∗∗ − t∗ = 8 in Figure 3. Faster adoption increases MN/BN . To understand

this effect, we note two facts. First, faster adoption implies higher uncertainty about ψ at

time t∗∗ because there is less time to learn (equation (18)). Second, faster adoption implies

a higher adoption threshold ψ because t∗∗ is lower and σ̂t∗∗ is higher (equation (8)). Since ψ̂t

has less time to reach a higher threshold, the adoption probability pt∗ is lower, which implies

that systematic risk is initially lower and MN/BN starts higher than in Figure 3. MN/BN

then rises higher and falls deeper than in Figure 3, conditional on pt∗∗ = 1, because both the

cash flow effect and the discount rate effect are stronger when adoption is faster. The cash

flow effect is stronger because in order for ψ̂t to reach a higher threshold in shorter time,

the increase in ψ̂t must be sharper. The discount rate effect is stronger because uncertainty

at time t∗∗ is higher, and conditional on pt∗∗ = 1, this uncertainty is systematic. Since both

effects are stronger, the rise and fall in MN/BN are more striking than in Figure 3. Faster

adoption of the new technology magnifies the bubble-like pattern in stock prices.

4.2. Optimal Adoption Time

In this section, we relax the assumption that t∗∗ is exogenously given. Without this assump-

tion, no closed-form solutions are available, but we can solve the problem numerically. The

agent is choosing the optimal time t∗∗, t∗ ≤ t∗∗ ≤ T to adopt the new technology (no adop-

tion is a possibility). This is essentially a problem of solving for the best time to exercise an
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American real option. The details of our solution are in the Appendix.

Figure 6 plots the average paths of M/B and volatility when t∗∗ is chosen optimally.

Depending on the path of productivity, the adoption can occur anytime between t∗ and T ,

but averaging across very different t∗∗’s would not be meaningful. For comparison with Figure

3 in which t∗∗ = 9 years, the left panels of Figure 6 report averages across those simulations

in which the optimal t∗∗ is between years 8 and 10. Our main results are unaffected by

endogenizing t∗∗. During revolutions, the new economy’s M/B exhibits a rise and fall similar

to that in Figure 3, albeit slightly weaker (a stronger “bubble” pattern is obtained for γ = 3,

as we show in an earlier draft). The path of volatility in Panel C is also similar, except that

the volatility spike observed in Figure 3 disappears, as explained earlier.

5. Empirical Evidence

In this section, we empirically examine the behavior of stock prices during two technological

revolutions, one recent and one distant. For both revolutions, we consider the key quantities

in our model, such as the new economy’s market beta and the level and volatility of stock

prices, and compare their empirical dynamics with their model-implied dynamics.

5.1. The Internet Revolution

The Internet’s predecessor, Arpanet, was created in 1969 with funding from the U.S. Depart-

ment of Defense. Arpanet ceased to exist in 1990, roughly when the team of Tim Berners-Lee

at CERN released the World Wide Web. The first Web site, info.cern.ch, appeared in 1991.

The first graphics-based web browser, Mosaic, was launched in 1993 by Marc Andreessen

at the National Center for Supercomputing Applications. In 1994, Andreessen co-founded

Netscape Communications, which went public in August 1995 in the first Internet IPO. The

first big pioneer of e-commerce was the online bookseller Amazon.com, which was launched

by Jeff Bezos in 1995 and went public in May 1997. The Internet gradually became main-

stream. The number of web servers grew from about 23,000 in mid-1995 to about 30 million

in mid-2001 and 65 million in mid-2005 (see www.zakon.org/robert/internet/timeline/). A

prominent example of the Internet’s integration into traditional business models was the

creation of the first “clicks-and-mortar” company through the merger of AOL and Time

Warner.11 Today, the Internet technology is an indelible part of the economic landscape.

11AOL announced its plan to acquire Time Warner (for some $182bn in stock) in January 2000, and the
FTC approved the deal in January 2001. “The merger, the largest deal in history, combines the nation’s top
internet service provider with the world’s top media conglomerate. The deal also validates the Internet’s
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To provide a benchmark for our empirical analysis, we plot the model-implied dynamics of

some key variables in Figure 7. These are the expected dynamics during a revolution, in that

we average the model-implied paths across many simulations in which the new technology is

adopted at time t∗∗. We keep all parameters from the baseline case (Table 1) except that we

shorten the duration of the revolution from eight to six years because the Internet revolution

was relatively fast. Panel A of Figure 7 shows that the new economy’s market beta decreases

slightly (from 0.9 to 0.7) in the first half of the revolution, but then it increases sharply in

the second half, reaching 1.65 at time t∗∗ before falling to one. This increase in beta is even

steeper than in the baseline case (Panel A of Figure 4). Panel B shows that the increase in

stock return volatility is also steeper than in the baseline case (Panel C of Figure 3), with the

old economy’s volatility doubling to 38% and the new economy’s volatility rising to over 65%.

Panel C plots the market values of both economies. There is a clear “bubble” in the new

economy, whose market value quintuples and then falls by half. The old economy’s market

value also rises and falls, but this pattern is much weaker than in the new economy. Panel

D shows that the old economy’s productivity begins rising immediately after the adoption

of the new technology, when it begins mean-reverting toward a higher mean.

Figure 8 is an empirical counterpart of Figure 7 for the period 1992–2005. For simplicity,

we assume that the technology-loaded NASDAQ index represents the new economy and the

NYSE/AMEX index is the old economy. We obtain daily index returns from CRSP.

Panel A of Figure 8 plots the market beta of the NASDAQ index, along with its two-

standard-error confidence bands. The beta is computed daily as the slope coefficient from the

regression of the NASDAQ returns on the NYSE/AMEX returns over the most recent 500

trading days (i.e., about two years). After a slight decrease from about 1.2, NASDAQ’s beta

doubles from 1.0 to 2.0 between 1997 and mid-2002, and this increase is highly statistically

significant. This empirical pattern is strikingly similar to the model-implied pattern in Panel

A of Figure 7, in which the beta also decreases by about 0.2 before rising 2.3-fold by the

end of the revolution. According to the model, the time when the beta peaks is the time

of the large-scale adoption; hence the evidence on NASDAQ’s beta is consistent with the

probability of the Internet’s large-scale adoption reaching one by mid-2002.

Panel B of Figure 8 plots the standard deviations of returns on the NASDAQ and

NYSE/AMEX indices, computed daily over the most recent 500 trading days. NASDAQ’s

volatility falls from 17% in 1992 to 11% in 1995, before rising to 47% at the beginning of

role as a leader in the new world economy, while redefining what the next generation of digital-based leaders
will look like.” (CNN Money, Jan 10, 2000).
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2002. NYSE/AMEX’s volatility falls from 13% in 1992 to 8% in 1995, before rising to 21%

by the end of 2002. These patterns are similar to the model-implied patterns in Panel B of

Figure 7 in several ways: (i) the new economy’s volatility always exceeds the old economy’s

volatility; (ii) both volatilities generally rise over time, with a bit of a U-shape pattern; (iii)

the new economy’s volatility rises much faster; and (iv) both volatilities peak at about the

same time. In the model, both volatilities peak at the time of the adoption; the volatility

evidence is thus consistent with the Internet revolution ending sometime in 2002.

Panel C of Figure 8 plots the index levels for NASDAQ and NYSE/AMEX, namely,

the value of $1 invested in these indices in January 1992, with dividend reinvestment. The

NASDAQ index quadruples between 1996 and March 2000, but then it falls back to the

1996 level by October 2002, after which it rises again. In contrast, NYSE/AMEX exhibits a

much smaller rise and fall over the same period. This pattern is similar to the model-implied

pattern in Panel C of Figure 7, in which the new economy’s market value also exhibits a

“bubble” but the old economy’s rise and fall are much less pronounced.12 According to the

model, the time when both indices stop falling is the time of the large-scale adoption; hence

this evidence is consistent with the Internet’s adoption by October 2002.

Panel D of Figure 8 plots a three-year moving average of multifactor productivity growth

in the private business sector of the U.S. economy. (This is the most commonly used multi-

factor productivity measure, according to the Bureau of Labor Statistics, which is the source

of the data.) In year t, we plot the average annual productivity growth in years t− 2, t− 1,

and t. Multifactor productivity growth averaged about 1% per year in the 1990s, but it

increased sharply after year 2002: from 1% per year in 2002 to 1.5% in 2003 and 2.5% in

2004 and 2005. A similar pattern is observed for labor productivity.13 The observed pro-

ductivity pattern is similar to the model-implied pattern in Panel D of Figure 7, except that

12Pástor and Veronesi (2006) show that NASDAQ’s M/B dropped by 5.3 (from 8.5 to 3.2) from the peak
to the bottom in 2.7 years. Both the duration and the magnitude of this drop in M/B correspond closely
to their counterparts in our model. The corresponding model-implied average pattern in M/B is plotted in
Panel D of Figure 5 (in which the revolution lasts 6 years, as it does in Figure 7). This average M/B falls
by 4.5 from the peak to the bottom, also in 2.7 years, matching the observed values remarkably closely.

13In his Remarks Before Leadership South Carolina on August 31, 2006, Ben Bernanke argued that “One
of the most important economic developments in the United States in the past decade or so has been
a sustained increase in the growth rate of labor productivity... From the early 1970s until about 1995,
productivity growth in the U.S. nonfarm business sector averaged about 1.5% per year... Between 1995 and
2000, however, the rate of productivity growth picked up significantly, to about 2.5% per year... Talk of the
“new economy” faded with the sharp declines in the stock valuations of high-tech firms at the turn of the
millennium. Yet, remarkably, productivity accelerated further in the early part of this decade. From the
end of 2000 to the end of 2003, productivity rose at a 3.5% annual rate and it is estimated to have increased
at an average annual rate of 2.25% since the end of 2003. These advances were achieved despite adverse
developments that included the 2001 recession, the terrorist attacks of September 11, [etc.].”
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that figure plots the level of productivity as opposed to its growth rate.14 In the model,

the economy’s productivity begins rising at the time of the adoption; hence the productivity

evidence is consistent with a large-scale adoption of the Internet by 2002.

Overall, we find Figure 8 remarkably similar to Figure 7. The patterns of NASDAQ’s

beta and NYSE/AMEX’s volatility show that both sectors experienced large increases in

systematic risk in 1997–2002, supporting the key prediction of the model. To summarize,

the empirical evidence seems consistent with the joint hypothesis that our model holds and

that the Internet technology was adopted on a large scale by 2002.

5.2. American Railroads Before the Civil War

Our paper is motivated by the technological revolutions, listed in the introduction, that were

accompanied by apparent bubbles in stock prices. In this section, we conduct an “out-of-

sample” analysis of a revolution whose stock prices do not seem to have been analyzed before.

We analyze the first major technological revolution that took place in the U.S. since the New

York Stock Exchange was organized in 1792 – the introduction of steam-powered railroads

(RRs). In the early days of the RR, there was substantial uncertainty about whether the

RR technology would be ultimately adopted on a large scale. After examining the historical

milestones of American RRs in Section 5.2.1., we argue that the probability of a large-scale

adoption rose gradually, and that it approached one in the late 1850s after the RR expansion

west of the Mississippi River. We then empirically examine the behavior of the RR stock

prices in 1830–1861 in Section 5.2.2. In the context of our model, our evidence is consistent

with a large-scale adoption of the RR technology around year 1857.

5.2.1. Brief History

The steam engine, an 18th-century invention, was first used for rail-based transportation

in the early 19th century in Britain. The United States followed shortly afterwards. The

first RR act in the U.S. was passed in 1815 when the New Jersey legislature awarded a

charter to Colonel John Stevens to build a RR between the Delaware and Raritan rivers.15

In 1825, Stevens operated the first locomotive in America – his 16-foot “Steam Waggon”

ran around a circular rail track in Hoboken at 12 miles per hour. The construction of the

first RR, the Baltimore & Ohio, began in July 1828. The Baltimore & Ohio initially used

14Our comparison seems reasonable because in the model, average productivity can grow only via techno-
logical revolutions, whereas in reality, there are also many non-revolutionary improvements in productivity.
Therefore, in the data, it is the growth rate of productivity that sets a technological revolution apart.

15The discussion in this section draws especially on Stover (1961), Fogel (1964), and Klein (1994).
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horses to draw its cars, but it replaced them in 1830 by a steam locomotive, Peter Cooper’s

“Tom Thumb.” In 1830, both passenger and freight service commenced on the Baltimore &

Ohio. RRs spread quickly. On Christmas Day in 1830, the “Best Friend of Charleston,” the

first locomotive built for sale in the U.S., made the first scheduled steam-RR train run in

America. Between 1830 and 1840, the RR mileage in the U.S. grew from 23 to 2,808 miles.

In 1840, only four of the 26 states had not completed their first mile of track.

The new RR technology competed with the existing modes of transportation such as

wagons, stagecoaches, steamboats, and canals. Those were not without problems – wagons

were slow and expensive, stagecoaches were uncomfortable, steamboats were dangerous and

limited in scope, and canals froze over in winter. However, it was far from obvious in the

1830s and 1840s that the RRs would later come to dominate the transportation industry. For

example, waterways were much less expensive than RRs, and wagons were not restricted to

rails. While the RR mileage caught up with the canal mileage in the early 1840s, waterways

still carried the great bulk of the nation’s freight in the late 1840s. Writes Fogel (1964): “Far

from being viewed as essential to economic development, the first RRs were widely regarded

as having only limited commercial application. Extreme skeptics argued that RRs were too

crude to insure regular service, that the sparks thrown off by belching engines would set

fire to buildings and fields, and that speeds of 20 to 30 miles per hour could be “fatal to

wagons, road and loading, as well as to human life.” More sober critics questioned the ability

of RRs to provide low cost transportation, especially for heavy freight. [Some] placed “a RR

between a good turnpike and a canal” in transportation efficiency.”

Nearly all RRs organized as corporations funded by private investors. More than half of

the more than $300 million invested in American RRs in 1850 was represented by capital

stock, the remainder being in bonds. The freight business was economically more important

than passenger traffic, which typically produced around 30% of the total revenue.

While most early RRs were built with local capital to provide local transportation, RR

building became more ambitious in the 1850s. This decade “was one of the most dynamic

periods in the history of American RRs” (Stover, 1961). RR mileage expanded from 9,021

in 1850 to 30,626 in 1860, and total investment in the industry increased from about $300m

to about $1,150m over the same period. This growth was spurred by land grants to RRs

by the federal government. The first land-granting act was passed by the Congress in 1850,

aiding the Illinois Central and the Mobile & Ohio RRs. The RR growth in the 1850s was

also stimulated by the discovery of gold in California and the lure of the trans-Pacific trade.

In the 1850s, New York, Philadelphia, and Baltimore all achieved their rail connections with
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the west. In 1853, an all-rail route opened from the East to Chicago, and Chicago quickly

became the rail capital of the nation. The RR technology also advanced in the 1850s –

telegraph was first used to dispatch trains, T-rails became the general rule, and so did the

standard track gauge, at least in the North.16 “Instead of merely serving as connectors

between navigable bodies of water as originally conceived, RRs were replacing them as the

preferred way of transport” (Klein, 1994).

The dramatic RR growth in the 1850s is also evident in Figure 9, which plots the total

rail consumption in the U.S., measured by the number of track-miles of rails laid each year

(Fogel, 1964). Rail consumption grew fast in the 1830s, but especially fast during the decade

leading up to 1856. After 1856, rail consumption slowed down and even declined in 1861

when the Civil War began, but it accelerated again after the war.

The diffusion of the RR technology made a leap in 1856 when two milestone RRs were

completed: the Illinois Central, the longest RR in the world (705 miles), and the Sacramento

Valley, the first RR in California. Also in 1856, the first RR bridge across the Mississippi was

built near Davenport, Iowa, heralding future westward expansion into the region then known

as the “Great American Desert.” This westward expansion was the defining feature of the

RR growth in the decades to come. The RRs shaped the economy of the West, creating new

national markets and fostering unprecedented economic specialization across the nation.

By the late 1850s, it seemed clear that the RR had become a dominant form of trans-

portation. According to Stover (1961), “By 1860 the canal packets and river steamers had

lost much of their passenger traffic” to the RR. In 1860, every state save Minnesota and

Oregon had RR mileage, and 29 of the 33 states had more than 100 miles of line. Klein

(1994) argues that “By 1860... [the RR] had emerged not only as the preferred form of

transportation but also as the chief weapon of commercial rivalry.” This evidence suggests

that a large-scale adoption of the RR technology took place by the end of the 1850s.

5.2.2. Railroad Stock Prices

To examine the behavior of RR stock prices in the early days of the RR (1830–1861), we use

the data compiled by Goetzmann, Ibbotson, and Peng (2001). These data contain monthly

individual stock prices for NYSE stocks from 1815 to 1925, as well as annual dividends for a

16The Northern RRs were using 11 different track gauges in the 1850s, but the standard gauge, 4’8.5”,
became by far the most common by 1860, according to Stover (1961). The South was still mostly on the
5’ gauge. Benmelech (2007) exploits the diversity of track gauges in 19th century American railroads to
examine the effect of asset liquidation value on capital structure.
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subset of stocks from 1825 to 1870. The data are provided at http://icf.som.yale.edu/nyse/.

To focus on common stocks, we exclude stocks classified as “preferred” or “scrip” in

the database. (Scrips are certificates convertible into shares when fully paid-in.) If such

classification is not provided, we examine the stock name and exclude stocks whose name

contains an indication of non-common status such as “pref,” “pr.,” “pf,” or “scrip.” Among

the 671 stocks in the database, we identify and exclude 85 preferred stocks and 29 scrips.

We identify 284 RR stocks (42.32% of the whole sample) by examining the stock names.

The first RRs that appear in our price index (discussed below) in 1831 are Camden & Amboy,

Canajoharie & Catskill, Harlem, and Ithaca & Oswego. All RRs that have at least one valid

monthly common stock return between 1830 and 1861 are listed in Table 2.

We clean the monthly price file to remove apparent data errors. To proceed in a system-

atic fashion, we exclude all prices that imply implausibly large return reversals. Specifically,

we exclude prices that more than tripled compared to the most recent available price and

then fell to less than a third at the nearest future observation, as well as prices that experi-

enced the same reversals in reverse order (first down, then up). We eliminate 34 such prices

in our 1830–1861 sample. We also examine all price sequences in which the price increased or

decreased at least tenfold without reversal, and eliminate six suspicious price entries between

1830 and 1861. We retain the price entries that imply returns below -90% at the very end

of a stock’s price series because these could be stocks heading for bankruptcy. Altogether,

we delete 40 of the 15,276 price entries between 1830 and 1861, or 0.26% of the sample.

Before the price coverage in the database improves in 1848, uninterrupted price sequences

for RR stocks are rare. In no month before 1848 are there more than five RR stocks with

valid monthly returns, and there are months with zero RR returns. An important part of the

problem are gaps in the price series, in which one or several missing values are sandwiched

between two valid prices for a given stock. To alleviate the data shortage, we fill in such

gaps by linear interpolation, but only for gaps that are no more than three months long.

This procedure substantially increases the price coverage early in the sample. For example,

without interpolating, the RR year-end price-dividend ratio discussed below would have only

three valid observations prior to 1847; with interpolation, the number of valid observations

increases to eight. Without interpolating, our results would be noisier, with more missing

values, but they would lead to the same basic conclusions.

We compute monthly RR (non-RR) index returns as price-weighted averages of monthly
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capital gains across all RR (non-RR) stocks.17 We use capital gains rather than total returns

because the dividend data available to us are annual, not monthly, and because these data are

spotty, especially early in the sample (Goetzmann et al. (2001) suggest that their dividend

sample is incomplete). The resulting return series can be viewed as approximations to the

actual returns earned by investors.

Panel A of Figure 10 plots the beta of the RR index, with a two-standard-error confidence

band. The beta in month t is the slope coefficient from the regression of the most recent 36

monthly RR returns (in months t−35 through t) on the non-RR returns. Not surprisingly, the

beta estimates computed from only 36 observations have wide confidence bands. Nonetheless,

it appears that the largest increase in beta took place in the 1850s: The beta estimate rose

from about 0.2 in 1850 to about 1.8 in 1856, before falling to about 1.0 right after 1857.

This empirical pattern is quite similar to the model-implied pattern in Panel A of Figure 4

if we assume that the RR technology was adopted on a large scale in 1857.

Panel B plots the volatility of returns in the RR and non-RR industries, computed

annually as the standard deviation of monthly industry returns within the year. Two facts

seem noteworthy. First, the RR volatility exceeds the non-RR volatility in every year except

1841, consistent with the presence of uncertainty about the RR technology. The volatility

difference is also due in part to the fact that the RR portfolio is less diversified than the non-

RR portfolio, but it persists also after the number of RRs with valid monthly stock returns

increases sharply (from 6 in December 1847 to 15 in January 1848, to 25 in July 1850). The

second interesting fact in Panel B is that return volatility increases sharply in 1857, to 33.5%

per year for RRs and to 23.1% for non-RRs. Comparison with Panel C of Figure 3 shows

that both facts are consistent with a large-scale adoption of the RR technology in 1857.

Panel C plots the stock price index levels for the RR and non-RR industries, obtained

by cumulating monthly returns in each industry. The general downward trend in the price

indexes is partly due to the absence of dividends and partly due to the absence of inflation

in the economy. The biggest price declines occur in the mid-1850s. For example, between

June 1853 and October 1857, the RR price index falls by 58.3%, whereas the non-RR index

falls by 33.9%. Both the sharp price decline for RRs and the milder decline for non-RRs

are consistent with the RR technology being adopted on a large scale around 1857. Recall

that our model predicts that the new economy (RR) stock prices fall by more than the old

economy (non-RR) stock prices shortly before the adoption of the new technology.

17Goetzmann et al. (2001) argue that price-weighting best approximates the return on a buy-and-hold
portfolio, given the absence of information about market capitalization and book value in their database.
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Various events played a role in the stock price decline in 1857. Investor confidence was

shaken by embezzlement at the Ohio Life Insurance and Trust Company in August, as well

as by the government’s loss of a large amount of gold at sea in September. Other commonly

cited negative influences include falling grain prices, British withdrawals of capital from U.S.

banks, and manufacturing surpluses. The stock market bottomed in October 1857 amidst

a number of bank failures. However, the stock price decline cannot be fully attributed to

the banking panic. According to Mishkin (1991), “Rather than starting with the banking

panic in October 1857, the disturbance to the financial markets seems to arise several months

earlier with the rise in interest rates, the stock market decline... and the widening of the

interest rate spread.” Mishkin’s last observation is particularly interesting. He shows that

the spread between the yields of low- and high-quality corporate bonds was unusually high

in 1857–1859, higher than at any future time before the 1930s. These high yield spreads

indicate that the risk premia in the late 1850s were high, consistent with our story. Mishkin

also opines that the decline in stock prices in the late 1850s “might be linked to the general

rise in interest rates which lowers the present discounted value of future income streams.”

This is precisely our story - stock prices fall shortly before the adoption of the new technology

because discount rates increase due to an increase in systematic risk.

In Panel D of Figure 10, we do not plot productivity as we did in Figure 8 because, to

our knowledge, productivity in this period has been computed only at a ten-year frequency

from census data. We note, however, that the evidence points to a large increase in produc-

tivity after the late 1850s. For example, Cochrane (1979) argues that productivity advanced

sharply just before the Civil War, and Craig and Weiss (1993) conclude that “the 1860s saw

the greatest increase in output per farm worker of any decade in the 19th century.” This

evidence on productivity further strengthens the case for a large-scale adoption of the RR

technology in the late 1850s in the context of our model (cf. Panel D of Figure 7).

Panel D plots the aggregate price-to-dividend ratio (P/D) for the RR and non-RR in-

dustries. Each year, we compute P/D as the sum of year-end prices divided by the sum of

dividends paid in that year, summing across all RR (or non-RR) stocks with valid price and

dividend data. Note three main results. First, the P/D of RRs almost invariably exceeds

the P/D of non-RRs before the mid-1850s. Second, the RR P/D falls from 24.9 in 1846 to

15.8 in 1852, to 6.5 in 1857. Third, the non-RR P/D falls as well, but less dramatically:

from 14.0 to 12.8 to 9.1 over the same period. While interpreting the noisy data requires

caution, all three results in Panel D are consistent with the joint hypothesis that our model

is true and that the new RR technology was widely adopted around 1857.
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5.3. Other Evidence

Three recent papers explicitly test some predictions of our model. Bharath and Viswanathan

(2006) empirically analyze the model’s risk implications at the firm level. They examine

252 brick-and-mortar firms that launched commercial websites (i.e., adopted the Internet

technology as a way of doing business) in 1995–2004. The authors find that adopting the

new technology is associated with an increase in firm risk, with differences between the

early and late adopters: Firms that adopted the Internet before March 2000 (while stock

prices were rising) experienced significant increases in idiosyncratic risk, whereas firms that

adopted after March 2000 had significant increases in systematic risk. The authors conclude

that their evidence provides strong support for our model.

Mazzucato and Tancioni (2006) analyze stock prices and patent-related measures of inno-

vation in a sample of firms in the pharmaceutical and biotechnology industries between 1975

and 1999. They find that the firms’ price-earnings ratios are positively related to innovation

as well as to idiosyncratic risk, and argue that this evidence supports our model.

Hoberg and Phillips (2006) empirically examine the real and financial outcomes following

industry booms in 1972–2004. They test the risk predictions of our model at the industry

level. They find that market betas increase and idiosyncratic risk declines after booms,

consistent with our model. The authors find strong support for our model in competitive

industries but not in concentrated industries. It would be useful to extend our simple model

to analyze the effect of product market competition theoretically.

In earlier work, Mazzucato (2002) studies the early phases of the life-cycles of the auto-

mobile and PC industries in the U.S. She finds that in both industries, stock prices were the

most volatile when technological change was the most radical. She also finds idiosyncratic

risk to be higher in the early stage of industry evolution, consistent with our model.

6. Conclusions

We develop a general equilibrium model that produces stock price “bubbles” during techno-

logical revolutions. The model features Bayesian learning about the average productivity of

the new technology. Stock prices of innovative firms initially rise due to good news about

this productivity, but they ultimately fall as the risk of the technology changes from idiosyn-

cratic to systematic. The rise and fall in stock prices are observable only in hindsight – this

pattern is unexpected by investors in real time but we observe it ex post when we focus on
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technologies that eventually led to technological revolutions. The “bubbles” should be most

pronounced in revolutions characterized by high uncertainty and fast adoption.

The model makes many empirical predictions. We find support for these predictions

in the evidence from 1830–1861 and 1992–2005 when the railroad and Internet technologies

spread in the United States. In the context of our model, the empirical evidence is consistent

with large-scale adoptions of railroads by the late 1850s and the Internet by 2002.

We focus on stock prices but our model also has implications for productivity. The

new technology does not bring productivity gains immediately upon arrival because the

agent finds it optimal to learn about a new technology before adopting it. Since the agent

chooses the adoption time optimally depending on what she learns, the time it takes for

the productivity gains to begin emerging is endogenous in the model. The implication that

productivity gains arrive with a lag seems reasonable; for example, although electric power

first appeared around 1880, it was not until the 1920s that the productivity of the U.S.

economy increased as a result of a large-scale adoption of electricity (David, 1991).

Our model has no implications for investment because the agent invests only a negligible

amount in the new technology for learning purposes. As a result, the model fails to predict the

large amount of investment that often accompanies technological revolutions. For example,

it seems clear ex post that the 1990s witnessed significant overinvestment in the Internet

infrastructure.18 Billions of dollars worth of optical fibers laid in the 1990s remain unused

to this day as the market appears to have overestimated the extent to which the Internet

would revolutionize the delivery of bandwidth-intensive content. It is possible that market

irrationality, which is absent from our model, contributes to the overinvestment and stock

price “bubbles” observed during technological revolutions. Future research can test our

model against alternatives that involve behavioral biases. Some predictions of our model,

such as those involving market beta, are unlikely to follow from behavioral models, in which

there is typically no role for systematic risk. Since we find empirically that systematic risk

increased sharply during two prominent revolutions, it seems unlikely that behavioral biases

can fully explain the observed stock price patterns. Such biases could certainly be a part of

the story, though, and quantifying their relative importance would be interesting.

18Johnson (2007) and DeMarzo, Kaniel, and Kremer (2007) develop models that can generate overinvest-
ment in new technologies. These models have a different focus and they rely on different mechanisms –
learning about the curvature of the production function and relative wealth concerns, respectively.
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Table 1

Parameters used in Simulations.

ρ ψ̂t∗ σ̂t∗
0.1217 0 0.04

φ σ σN,0 σN,1
0.3551 0.07 0.07 0.07

κ t∗∗ − t∗ T γ
0.1 8 30 4

Table 2

Railroads Appearing in our Price Index.

This table lists all railroads in our sample that have at least one valid monthly common stock return between
1830 and 1861. The railroads are sorted by the year of appearance of their first valid monthly return.

Year Railroad

1831 Camden & Amboy; Canajoharie & Catskill; Harlem; Ithaca & Oswego

1832 Boston & Providence

1833 Boston & Worcester; Brooklyn & Jamaica

1835 Hudson & Berkshire; Long Island

1839 Auburn & Syracuse

1841 Auburn & Rochester

1844 Housatonic

1847 Hudson River; Macon & West

1848 Hartford & New Haven; New York & Erie

1849 Erie

1850 Albany & Schenectady; Baltimore & Ohio; Michigan Central; New York & Harlem

1851 Chemung

1852 Michigan & Southern

1853 Cincinnati, Hamilton & Dayton; Cleveland, Columbus & Cincinnati; Cleveland & Pittsburg;
Cleveland & Toledo; Galena & Chicago; Illinois Central; Little Miami

1854 Chicago & Rock Island

1855 Michigan Southern & Northern Indiana

1856 Eighth Avenue; Lacrosse & Milwaukee; Macon & Western

1857 Chicago, Burlington & Quincy; Delaware, Lackawanna & Western; Indianapolis & Cincinnati

1858 Brooklyn City; Buffalo & State Line; Cleveland, Painesville & Ashtabula
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Figure 1. The Sequence of Events. In this chart, t∗∗, the time when the agent decides whether to adopt
the new technology, is taken as given. We initially take t∗∗ as given for the purpose of obtaining closed-form
solutions for prices, but later we solve for the optimal time t∗∗ to adopt the new technology.
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Figure 2. Average ψ̂t, pt, σπ,t in Simulations. The left panels plot the perceived productivity gain ψ̂t

(Panel A), the adoption probability pt (Panel C), and the volatility of the stochastic discount factor σπ,t

(Panel E), averaged across all simulations in which the new technology was adopted at time t∗∗ (pt∗∗ = 1).
The right panels (B, D, and F) plot the same quantities but the average is taken across all simulations in
which the new technology was not adopted at time t∗∗ (pt∗∗ = 0). In each panel, the first vertical line denotes
t∗ = 1, the time when the new technology becomes available, and the second vertical line denotes t∗∗ = 9,
the time at which the agent decides whether to adopt the technology on a large scale. All parameters are
given in Table 1.
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Figure 3. Average M/B and Volatility in Simulations. Panel A plots the path of the market-to-book
ratio of the new economy (solid line) and old economy (dashed line) averaged across all simulations in which
the new technology was adopted at time t∗∗ (pt∗∗ = 1). Panel B is an equivalent of Panel A, except that
the averages are computed across all simulations in which the new technology was not adopted at time t∗∗

(pt∗∗ = 0). Panels C and D are equivalents of Panels A and B, respectively, with M/B replaced by the
volatility of stock returns. In each panel, the first vertical line denotes t∗ = 1, the time when the new
technology becomes available, and the second vertical line denotes t∗∗ = 9, the time at which the agent
decides whether to adopt the technology on a large scale. All parameters are given in Table 1.
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Figure 4. Beta and Average Stock Return in Simulations. The left panels plot the beta of the new
economy (Panel A), the realized stock return (solid line) and the expected stock return (dashed line) for
the new economy (Panel C) and the old economy (Panel E), averaged across all simulations in which the
new technology was adopted at time t∗∗ (pt∗∗ = 1). The right panels (B, D and F) plot the same quantities
but the average is taken across all simulations in which the new technology was not adopted at time t∗∗

(pt∗∗ = 0). In each panel, the first vertical line denotes t∗ = 1, the time when the new technology becomes
available, and the second vertical line denotes t∗∗ = 9, the time at which the agent decides whether to adopt
the technology on a large scale. All parameters are given in Table 1.

33



0 2 4 6 8 10
0

2

4

6

8

10
(A) Lower Risk Aversion 

M
/B

Years
0 2 4 6 8 10

0

1

2

3

4
(B) Zero Conversion Cost

M
/B

Years

0 2 4 6 8 10
0

2

4

6

8
(C) Higher Uncertainty  

M
/B

Years
0 2 4 6 8

0

2

4

6

8
(D) Faster Adoption     

M
/B

Years

Figure 5. Average M/B in Simulated Revolutions: Sensitivity Analysis. All four panels plot the
paths of the market-to-book ratio of the new economy (solid line) and old economy (dashed line) averaged
across all simulations in which the new technology was adopted at time t∗∗ (pt∗∗ = 1). All parameters are
given in Table 1, except for one change that varies across the panels. In Panel A, the risk aversion γ = 3
instead of the benchmark case γ = 4. In Panel B, the conversion cost κ = 0 instead of the benchmark case
κ = 0.1. In Panel C, the uncertainty σt∗ = 0.08 instead of the benchmark case σt∗ = 0.04. In Panel D, the
time until the adoption t∗∗ − t∗ = 6 instead of the benchmark case t∗∗ − t∗ = 8 years. In each panel, the
first vertical line denotes t∗, the time when the new technology becomes available, and the second vertical
line denotes t∗∗, the time at which the agent decides whether to adopt the technology on a large scale.
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Figure 6. Average M/B and Volatility in Simulations with Optimal Adoption Time. Panel A
plots the path of the market-to-book ratio of the new economy (solid line) and old economy (dashed line)
averaged across all simulations in which the new technology was adopted at an optimally chosen time t∗∗

between years 8 and 10. Panel B is an equivalent of Panel A, except that the averages are computed across
all simulations in which the new technology was never adopted. Panels C and D are equivalents of Panels A
and B, respectively, with M/B replaced by the volatility of stock returns. All parameters are in Table 1.
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Figure 7. The Internet Revolution: Theory. This figure plots the model-implied dynamics of selected
quantities in a revolution characterized by fast adoption of the new technology (such as the internet revolu-
tion). All quantities are averages computed across all simulations that led to a revolution (i.e., adoption at
time t∗∗ = 6. Panel A reports the market beta of the new economy. Panel B plots the market volatility of
the new economy (solid) and old economy (dashed). Panel C plots the market values of the new economy
(solid) and old economy (dashed). Panel D plots the productivity of the old economy.
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Figure 8. The Internet Revolution: Data. Panel A plots the market beta of the NASDAQ
index, with a two-standard-error confidence band. The beta in day t is the slope coefficient from

the regression of daily NASDAQ returns on NYSE/AMEX returns over the 500 trading days (i.e.,
about two years) immediately preceding day t (i.e., days t − 499 through t). Panel B plots the

standard deviations of returns on the NASDAQ and NYSE/AMEX indices, also computed from
daily data over the 500 trading days immediately preceding day t. Panel C plots the value of $1

invested in January 1992 in the NASDAQ and NYSE/AMEX indices, with dividend reinvestment.
Panel D plots a three-year moving average of multifactor productivity growth in the private business

sector (in year t, we plot the average annual productivity growth in years t− 2, t− 1, and t). The
vertical dotted line marks October 2002.
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Figure 9. Total Rail Consumption in the United States. The figure plots the number of track-miles
of rails laid each year in the U.S., as estimated by Fogel (1964, p.174). A track-mile of rails is defined as one
half of the length of the rails in a mile of single track. The total includes rails used in the construction of
new track as well as in the replacement of worn-out rails.
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Figure 10. The Railroad Revolution: Data. Panel A plots the beta of the railroad index, with a
two-standard-error confidence band. The beta in month t is the slope coefficient from the regression of
the most recent 36 monthly railroad returns (in months t − 35 through t) on non-railroad returns. The
monthly railroad (non-railroad) index returns are computed as price-weighted averages of monthly capital
gains across all railroad (non-railroad) stocks. Panel B plots the standard deviation of returns in the railroad
and non-railroad industries. Each year, this standard deviation is computed across all monthly price-weighted
average industry returns in the given year. Panel C plots the stock price index level, obtained by cumulating
monthly capital gains to $1 invested in January 1831 in the railroad and non-railroad indices. Panel D plots
the aggregate price-to-dividend ratio for the railroad and non-railroad industries. Each year, this ratio is
computed as the sum of year-end prices divided by the sum of dividends paid in that year, summing across
all railroad (non-railroad) stocks with valid price and dividend data. The vertical dotted line marks 1857.
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Appendix.

The Appendix contains technical material omitted from the text. The proofs of all results
are available in the Technical Appendix, which is downloadable from the authors’ websites.

Lemma A1: Suppose the prior distribution of ψ at time t∗ is normal, ψ ∼ N(0, σ̂2
t∗). Then

the posterior distribution of ψ at time t, t∗ < t < t∗∗, conditional on Ft =
{(
ρNτ , ρτ

)
: t∗ ≤ τ ≤ t

}

is also normal, ψ|Ft ∼ N(ψ̂t, σ̂
2
t ), where the posterior mean ψ̂t follows the process

dψ̂t = σ̂2
t

φ

σN,1
dZ̃1,t, (17)

and the posterior variance σ̂2
t is given by

σ̂2
t =

1

(σ̂t∗)
−2

+
(

φ
σN,1

)2

(t− t∗)
. (18)

Moreover, the productivity processes can be rewritten as

dρt = φ (ρ − ρt) dt+ σdZ̃0,t (19)

dρNt = φ
(
ρ+ ψ̂t − ρNt

)
dt+ σN,0dZ̃0,t + σN,1dZ̃1,t, (20)

where the Brownian motions (Z̃0,t, Z̃1,t), which capture the agent’s expectation errors, follow

(
dZ̃0,t

dZ̃1,t

)
=

(
σ 0
σN,0 σN,1

)
−1 (

dρt
dρNt

− Et

[
dρt
dρNt

])
. (21)

Lemma A1 follows from Theorem 10.3 in Liptser and Shiryayev (1977).

Re Proposition 1: Define the value function at time t as

V
(
Bt, ρt, ψ̂t, σ̂t, t;T

)
= Et

[
W 1−γ
T

1 − γ

]
, (22)

where ρt follows the process in equation (4). Lemma A2 in the Technical Appendix shows:

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

[
B1−γ
T

1 − γ

]
=
B1−γ
t

1 − γ
eA0(τ )+(1−γ)A1(τ )ρt+(1−γ)A2(τ ) bψt+

1
2
(1−γ)2A2(τ )2bσ2

t ,

(23)
where τ = T − t, A1(τ ) and A2(τ ) are given in the text, and

A0 (τ ) = (1 − γ) ρ (τ − A1 (τ )) +
σ2

2

(1 − γ)2

φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}
.

Since γ > 1, V (.) is negative, decreasing in σ̂2
t , and increasing in Bt. As a result,

V
(
Bt∗ (1 − κ) , ρt∗ , 0, σ̂

2
t∗ , t

∗;T
)
< V (Bt∗ , ρt∗ , 0, 0, t

∗;T ) . (24)
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Proposition 1 follows immediately from equation (24). The left-hand side is the expected
utility conditional on adopting the technology at time t∗, and the right-hand side is the ex-
pected utility conditional on not adopting the technology at time t∗ or any time afterwards.19

The expected utility from no adoption at time t∗ exceeds the right-hand side (and hence also
the left-hand side) because it includes the value of the option to adopt after time t∗.

Re Proposition 2: Using (23), equation (8) follows from the optimality condition

V
(
Bt∗∗ (1 − κ) , ρt∗∗, ψ̂t∗∗ , σ̂

2
t∗∗, t

∗∗;T
)
≥ V (Bt∗∗, ρt∗∗ , 0, 0, t

∗∗;T ) . (25)

Lemma A3: The distribution of ψ̂t∗∗ conditional on ψ̂t is normal:

ψ̂t∗∗| bψt
∼ N

(
ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
.

In addition, pt ≡ Prob
(
ψ̂t∗∗ > ψ|ψ̂t

)
= 1 − N

(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗

)
, where N (x; a, s2) ≡

∫ x

−∞
(2πs2)−1/2 exp(y − a)2/(2s2)dy is the c.d.f. of a normal distribution, N(a, s2).

Re Proposition 3: Define the value function at time t, t∗ ≤ t < t∗∗, as

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

{
max

{yes, no}
Et∗∗

[
W 1−γ
T

1 − γ

]}
, (26)

where the maximization involves choosing whether or not to adopt the new technology at
time t∗∗, following Proposition 2.20 Lemma A4 in the Technical Appendix shows:

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
=
B1−γ
t

1 − γ
{(1 − pt)G

no
t + ptG

yes
t } , (27)

where
Gno
t = eA0(τ )+(1−γ)A1(τ )ρt (28)

Gyes
t = Gno

t (1 − κ)1−γ Rte
(1−γ)A2(τ∗∗) bψt+

1
2
(1−γ)2A2(τ∗∗)2bσ2

t (29)

Rt =
1 −N

(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)

1 −N
(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) < 1. (30)

Using (23) and (27), we prove Proposition 3 in the Technical Appendix by showing that
expected utility is higher when experimentation takes place:

V
(
Bt∗ , ρt∗ , 0, σ̂

2
t∗ , t

∗;T
)
> V (Bt∗ , ρt∗ , 0, 0, t

∗;T ) . (31)

19On the right hand side, V is evaluated at ψ̂t∗ = σ̂2
t∗ = 0. If the agent decides not to adopt the new

technology, ρt follows the process in equation (3), which is equivalent to equation (4) when ψ = 0.
20Note the difference between the value functions V in equation (26) and V in equation (23). Whereas V

includes the value of the option to adopt the new technology at the future time t∗∗, V does not include such
option value because it applies to settings in which the adoption decision has already been made.
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Re Proposition 4: The functions G̃no
t and G̃yes

t are given by

G̃no
t = Et

[(
BT

Bt

)
−γ

|ψ̂t∗∗ < ψ

]
= eA0(τ )−γA1(τ )ρt (32)

G̃yes
t = E

[(
BT

Bt

)
−γ

|ψ̂t∗∗ ≥ ψ

]
= G̃no

t (1 − κ)−γ R̃te
−γA2(τ∗∗) bψt+

1
2
γ2A2(τ∗∗)2bσ2

t , (33)

where

R̃t =
1 −N

(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)

1 −N
(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) < 1 (34)

A0 (τ ) = −γρ (τ −A1 (τ )) +
σ2

2

γ2

φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

}
. (35)

Re Corollary 1: Let p̃t = 1 −N
(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)
. Then

Sπ,t =

(
γA2 (τ ∗∗) − 1

ept

∂ept

∂ bψt

)
G̃yes
t + ∂pt

∂ bψt
G̃no
t

(1 − pt) G̃no
t + ptG̃

yes
t

. (36)

Re Proposition 5: The functions G̃no
t , G̃yes

t , Gno
t and Gyes

t are presented above. The
functions Kno

t , and Kyes
t are given by

Kno
t ≡ Et

[(
BT

Bt

)
−γ
BN
T

BN
t

|ψ̂t∗∗ < ψ

]
= KtR

N
L,t

Kyes
t ≡ Et

[(
BT

Bt

)
−γ
BN
T

BN
t

|ψ̂t∗∗ ≥ ψ

]
= (1 − κ)

−γ
KN
t R

N
H,t,

where

Kt = eC0(τ )−γA1(τ )ρt+A1(τ )ρN
t +A2(τ ) bψt+

1
2
A2

2(τ )bσ2
t

KN
t = Kte

−γA2(τ∗∗) bψt+
1
2
γA2(τ∗∗)(γA2(τ∗∗)−2A2(τ ))bσ2

t

RN
L,t =

N
(
ψ; ψ̂t + σL

y bψ
, σ̂2

t − σ̂2
t∗∗

)

N
(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

) with σL
y bψ

= A2 (τ ) σ̂2
t −A2 (τ ∗∗) σ̂2

t∗∗

RN
H,t =

1 −N
(
ψ; ψ̂t + σH

y bψ
, σ̂2

t − σ̂2
t∗∗

)

1 −N
(
ψ; ψ̂t, σ̂

2
t − σ̂2

t∗∗

) with σHyψ = σLyψ − γA2 (τ ∗∗)
(
σ̂2
t − σ̂2

t∗∗

)

C0 (τ ) = (1 − γ) ρ (τ − A1 (τ ))

+
1

2φ2

{
τ +

1 − e−2φτ

2φ
− 2

1 − e−φτ

φ

} (
γ2σ2 − 2γσN,0σ +

(
σ2
N,0 + σ2

N,1

))
.
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Corollary A1: For any t ∈ [t∗, t∗∗), the stock return processes are given by

dMt

Mt
= µM,tdt+ σ0

M,tdZ̃
0
t + σ1

M,tdZ̃
1
t and

dMN
t

MN
t

= µNM,tdt+ σN,0M,tdZ̃
0
t + σN,1M,tdZ̃

1
t ,

where expected returns are equal to the return covariances with dπt/πt,

µM,t = −σ0
M,tσ

0
π,t − σ1

M,tσ
1
π,t; µNM,t = −σN,0M,tσ

0
π,t − σN,1M,tσ

1
π,t, (37)

and the components of the return volatilities are

σ0
M,t = A1 (τ )σ; σ1

M,t = (SM,t + Sπ,t) σ̂
2
t

φ

σN,1
(38)

σN,0M,t = A1 (τ )σN,0; σN,1M,t = A1 (τ )σN,1 +
(
SNM,t + Sπ,t

)
σ̂2
t

φ

σN,1
, (39)

with SM,t and SNM,t given by

SM,t =
− ∂pt

∂ bψt
Gno
t +

(
(1 − γ)A2 (τ ∗∗) + 1

pt

∂pt

∂ bψt

)
Gyes
t

(1 − pt)Gno
t + ptG

yes
t

(40)

SNM,t =

(
A2 (τ ) + 1

pN
L,t

∂pN
L,t

∂ bψ

)
Kno
t +

(
(A2 (τ )− γA2 (τ ∗∗)) + 1

pN
H,t

∂pN
H,t

∂ bψ

)
Kyes
t

(1 − pt)K
no
t + ptK

yes
t

(41)

pt = 1 −N
(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗)

(
σ̂2
t − σ̂2

t∗∗

)
, σ̂2

t − σ̂2
t∗∗

)
(42)

pNL,t = N
(
ψ; ψ̂t + σL

y bψ
, σ̂2

t − σ̂2
t∗∗

)
(43)

pNH,t = 1 −N
(
ψ; ψ̂t + σH

y bψ
, σ̂2

t − σ̂2
t∗∗

)
. (44)

Re Proposition 6:. The functions hold and hnew are given by

hold = −κ̃+ A2 (τ ∗∗) ψ̂t +
1

2
(1 − 2γ)A2 (τ ∗∗)

2
σ̂2
t (45)

− log




1 −N

(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)

1 −N
(
ψ; ψ̂t + (1 − γ)A2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)



 (46)

hnew = −γA2 (τ ∗∗)A2 (τ ) σ̂2
t − log




N

(
ψ; ψ̂t + σL

y bψ
, σ̂2

t − σ̂2
t∗∗

)

N
(
ψ; ψ̂t, σ̂2

t − σ̂2
t∗∗

)



 (47)

− log




1 −N

(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) , σ̂

2
t − σ̂2

t∗∗

)

1 −N
(
ψ; ψ̂t − γA2 (τ ∗∗) (σ̂2

t − σ̂2
t∗∗) + σLyψ, σ̂

2
t − σ̂2

t∗∗

)



 . (48)

Re Corollary 2: In the corollary, C0(τ
∗∗) = C0(τ

∗∗) − A0(τ
∗∗).
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Re Optimal Adoption Time: The value function is

V
(
Bt, ρt, ψ̂t, σ̂

2
t , t;T

)
= Et

{
max
t∗∗

Et∗∗

[
W 1−γ
T

1 − γ

]}
= B1−γ

t e(1−γ)A1(T−t)ρtV2

(
ψ̂t, t;T

)
, (49)

where V2

(
ψ̂t, t;T

)
satisfies the partial differential equation

0 =
∂V2

∂t
+

(
(1 − γ)A1(T − t)φρ+

1

2
(1 − γ)2A1(T − t)2σ2

)
V2 +

1

2

∂2V2

∂ψ̂2

(
σ̂2
t

φ

σN,1

)2

,

with the boundary conditions V2

(
ψ̂T , T

)
= 1

1−γ
if t∗∗ > T and

V2

(
ψ̂t, t;T

)
≥

(1 − κ)1−γ

1 − γ
eA0(τ )+(1−γ)A2(τ ) bψt+

1
2
(1−γ)2A2(τ )2bσ2

t ,

with an equality at t = t∗∗. We solve the PDE by using the finite difference method.

Alternative Decentralized Model.

Below, we develop a model of a competitive economy in which firms independently decide
whether to adopt the new technology while maximizing their own market values. We show
that, in equilibrium, this decentralized economy produces the same adoption rules and same
stock price dynamics (including “bubbles”) as the social planner’s problem in Section 2.

Consider a finite-horizon economy with a continuum of identical firms and investors. All
investors maximize utility as in Section 2. Before time t∗, all firms employ the same “old
technology.” The productivity ρi,t of any firm i that uses the old technology follows

dρi,t = φ
(
g

(
sOt

)
− ρi,t

)
dt+ σdZ0,t, (50)

where sOt ∈ [0, 1] is the fraction of firms using the old technology at time t, and g′ (s) > 0.
The function g(s) captures “network externalities”: the average productivity of a technology
increases as the fraction of firms using this technology increases. Denote g (1) = ρ and
g(0) = ρ0. We refer to ρ− ρ0 > 0 as the network externality gain. Since sOt = 1 for t ≤ t∗,
the productivity of all firms before time t∗ is identical to equation (3) in Section 2.

At time t∗ a new unique firm N appears, equipped with a new technology. The produc-
tivity process of firm N is given by

dρN,t = φ (ρ+ ψ − ρN,t) dt+ σN,0dZ0,t + σN,1dZ1,t, (51)

where ψ is an unobservable productivity gain from using the new technology, as in Section
2. The prior distribution for ψ at time t∗ is given in equation (5). After time t∗, all firms
learn about ψ by observing ρN,t and ρi,t for all i.

Firms using the old technology can adopt the new technology either immediately at
time t∗, or at a given later time t∗∗, or never. When they adopt, they incur a proportional
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conversion cost κ. If the fraction sNt = 1 − sOt of all firms use the new technology at time t,
the productivity of each firm i that uses the new technology is given by

dρi,t = φ
(
g
(
sNt

)
+ ψ − ρi,t

)
dt+ σdZ0,t. (52)

If all firms adopt the new technology (sNt = 1), then the process (52) is identical to equation
(4). Aggregate productivity (obtained by aggregating across identical firms i) therefore
follows the same process (4) as it does in the social planner’s problem. If no firm adopts the
new technology (sNt = 0), then the aggregate economy uses the old technology. Aggregate
productivity is then given by the process (50) with sOt = 1, which is identical to equation (3).
Once again, aggregate productivity follows the same process as in the planner’s problem. We
show below in Proposition D2 that, in equilibrium at time t∗∗, either sNt∗∗ = 1 or sNt∗∗ = 0.
Therefore, the pricing kernel for t ≥ t∗∗ is the same as in the planner’s problem, and it
depends on whether sNt∗∗ = 1 or sNt∗∗ = 0.

The market value of each firm at time t∗∗ depends not only on whether the firm adopts the
new technology, but also on the adoption decisions of all other firms, because those decisions

affect the pricing kernel. We denote the market value of firm i at time t∗∗ as M
sN=1,yes
i,t∗∗ ,

MsN =1,no
i,t∗∗ , M

sN =0,yes
i,t∗∗ , or MsN=0,no

i,t∗∗ , where “yes” or “no” indicates whether firm i adopts or
not, and “sN = 0” or “sN = 1” indicates whether other firms adopt or not. Closed-form
expressions for these four values are given in the Technical Appendix. Taking the choice of
other firms as given (sN = 1 or sN = 0), each firm adopts the new technology if doing so
maximizes its market value. That is, firm i adopts if and only if

M
sN =1,yes
i,t∗∗ > MsN =1,no

i,t∗∗ if everybody else adopts (53)

M
sN =0,yes
i,t∗∗ > MsN =0,no

i,t∗∗ if nobody else adopts (54)

The following proposition characterizes the value-maximizing adoption decision of any indi-
vidual firm, conditional on the decisions of all other firms at time t∗∗.

Proposition D1: (a) If sNt∗∗ = 1 (i.e., all firms adopt the new technology at time t∗∗),
then firm i adopts the new technology at time t∗∗ if and only if

ψ̂t∗∗ ≥ ψs
N=1 = −

log (1 − κ)

A2 (τ ∗∗)
+

1

2
(2γ − 1)A2 (τ ∗∗) σ̂2

t∗∗ − (ρ− ρ0) (55)

(b) If sNt∗∗ = 0 (i.e., no firm adopts the new technology at time t∗∗), then firm i adopts the
new technology at time t∗∗ if and only if

ψ̂t∗∗ ≥ ψs
N=0 = −

log (1 − κ)

A2 (τ ∗∗)
−

1

2
A2 (τ ∗∗) σ̂2

t∗∗ + (ρ− ρ0) (56)

In general, ψs
N=1 6= ψs

N=0. Both thresholds consist of three terms. The first term, which
reflects the conversion cost κ, is the same in both cases. The second term, which reflects
uncertainty σ̂t∗∗ , is positive in (55) but negative in (56). This difference is due to systematic
risk. In case (a), all firms adopt the new technology, so the equilibrium stochastic discount
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factor is heavily affected by the risk of the new technology. Hence, the new technology carries
higher systematic risk than the old technology. If a firm adopts the new technology, its beta
increases, pushing its discount rate up and market value down. This undesirable feature of
the new technology increases the adoption threshold. In case (b), the new technology carries
less systematic risk, so the σ̂t∗∗ term reduces the adoption threshold.

The third term reflects the network externality gain, ρ − ρ0 > 0. In case (a), all other
firms have already adopted the new technology, so its average productivity is higher and, as
a result, the adoption threshold is lower. In case (b), the new technology is less productive
because no other firm has adopted it, so the adoption threshold is higher.

Intuitively, adopting the same technology as other firms has two effects. On one hand,
it hurts the firm, because the technology adopted by all other firms carries more systematic
risk. On the other hand, it benefits the firm through network externality gains.

We are interested in setting up a competitive environment that supports the social plan-
ner’s solution. This can be done by a judicious choice of the magnitude of the network
externality gains, ρ− ρ0. When we choose ρ0 as

ρ0 = ρ−
1

2
γA2 (τ ∗∗) σ̂2

t∗∗, (57)

the thresholds in Proposition D1 become equal to each other:

ψs
N=1 = ψs

N=0 = ψ = −
log (1 − κ)

A2 (τ ∗∗)
+

1

2
(γ − 1)A2 (τ ∗∗) σ̂2

t∗∗ .

Moreover, both thresholds are now equal to the threshold ψ in equation (8). In other words,
the adoption thresholds in the competitive problem and the social planner’s problem are
identical. Still operating under condition (57), we obtain the following proposition.

Proposition D2: If ψ̂t∗∗ ≥ ψ, then sNt∗∗ = 1 is a Nash equilibrium. If ψ̂t∗∗ < ψ, then

sNt∗∗ = 0 is a Nash equilibrium.

Proposition D2 shows that, in equilibrium, either all firms adopt the new technology
at time t∗∗ or none of them do.21 Moreover, the adoption decision is analogous to that in
Proposition 2, with an identical threshold. As a result, the equilibrium stochastic discount
factor is the same, and all pricing formulas are identical to those in the planner’s problem.

Note that when all firms choose to adopt the new technology at time t∗∗, they increase
the equilibrium discount rates and thus decrease their market values. Although each firm
maximizes its own market value, the aggregate effect of the firms’ adoptions is to depress
market values at time t∗∗. The reason is that firms that adopt the new technology do not
fully internalize the resulting increases in systematic risk. To summarize, this decentralized
model with value-maximizing competitive firms produces the same stock price dynamics as
our simpler model with a utility-maximizing social planner.

21We can also prove a related result for time t∗: sN
t∗ = 1 is not a Nash equilibrium but sN

t∗ = 0 is, under
plausible parametric conditions (see Technical Appendix). That is, in equilibrium, no firm adopts the new
technology at time t∗, analogous to our Proposition 1 in the social planner’s problem.
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