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ABSTRACT

We determine empirically how the Big Three automakers accommodate shocks to demand. They

have the capability to change prices, alter labor inputs through temporary layoffs and overtime, or

adjust inventories. These adjustments are interrelated, non-convex, and dynamic in nature.

Combining weekly plant-level data on production schedules and output with monthly data on sales

and transaction prices, we estimate a dynamic profit-maximization model of the firm. Using impulse

response functions, we demonstrate that when an automaker is hit with a demand shock sales

respond immediately, prices respond gradually, and production responds only after a delay. The size

of the immediate sales response is linear in the size of the shock, but the delayed production response

is non-convex in the size of the shock. For sufficiently large shocks the cumulative production

response over the product cycle is an order of magnitude larger than the cumulative price response.

We examine two recent demand shocks: the Ford Explorer/Firestone tire recall of 2000, and the

September 11, 2001 terrorist attacks.
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In the short-run, the period over which the capital stock and the number of employees is fixed, au-

tomobile manufacturers have three primary margins to respond to temporary changes in demand. First,

having some market power, they can increase or decrease expected sales by appropriately changing prices.

In practice, these price changes often take the form of dealer and customer incentives. Second, they can

raise or lower the level of production through adjusting labor inputs by altering the length of the work-

week or engaging in temporary layoffs. Third, they may allow inventories on dealer lots to accumulate or

de-accumulate. The relative costs of each of these margins determine the shape and slope of the supply

curve for new automobiles.

In this paper we determine empirically how the Big Three automakers have accommodated shocks

to demand. Consistent with previous work (e.g. Bresnahan and Ramey, 1994), we find that automakers

frequently adjust their labor input to increase or decrease production; the average assembly plant uses

temporary layoffs 6 percent of the time to reduce production and overtime 30 percent of the time to increase

production. Transaction prices, net of rebates and financing incentives, fluctuate considerably, typically

falling about 9 percent over the model year (see Copeland, Dunn and Hall, 2005). Dealers inventories

are large and volatile; on average dealers hold about 13 weeks worth of sales in inventory and this ratio

varies from 7 to 20 (25th and 75th percentiles, respectively). Because these margins of adjustment are

interrelated, nonconvex, and dynamic in nature, we estimate a dynamic profit maximization model of an

automaker’s choice of adjustment to short-term demand fluctuations. Combining weekly plant-level data

on production schedules and output with monthly data on transaction prices and sales we find that the

propensity to use these alternative margins depends on: 1) the magnitude of the shock; 2) where the firm

is in the product cycle; 3) the level of demand relative to the plant’s minimum efficient scale; and 4) the

current level of inventories.

Specifically, when an automaker is faced with a demand shock to a particular make and model, sales

respond immediately. The size of this immediate response is linear in the magnitude of the shock. Prices

respond gradually. The higher the initial level of demand and the lower the level of inventories, the more

pronounced is the price response. The firm’s production responses, on the other hand, are often delayed

and discrete. Because of nonconvexities in its cost function, the firm has an incentive to operate the plant at

its minimum efficient scale (MES), the rate of production that minimizes average cost. If the shock causes

the firm to desire a rate of production below its MES, the firm engages in an “all on/all off” production

pattern, using weeklong shutdowns to convexify its costs. In the periods immediately after a demand

shock, the rate of production may remain unchanged. However, in later weeks the firm modifies its level
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of production by discrete changes in the workweek thus smoothing its production response over time. For

sufficiently large shocks the cumulative production response over the product cycle is between 10 and 20

times larger than the cumulative price response.

While the effects of the nonconvexity in weekly production are dampened by time aggregation, they

are not eliminated. Thresholds in the production response remain and these threshold generate small non-

linearities in the future price response. Early in the production cycle, small differences in the magnitude

of a shock can generate up to 1.4 percentage point differences in level of production over the remainder

of the product cycle, but only 5/100 of a percent differences in the cumulative price response. Later in the

product cycle, these effects can be as large as 6 percent for cumulative production, but again only about

5/100 of a percent for cumulative prices.

How firms set prices and output in response to a demand shock is a classic issue in economics going

back to at least Hall and Hitch (1939). From our reading of the literature, there was a burst of papers written

on this topic in the late 1960s and early 1970s.1 As with our analysis, these papers typically found that the

demand shocks were absorbed by output changes rather than price changes. This result was sometimes

interpreted as evidence of ‘sticky prices.’ While we find a small and gradual price response, prices in our

model are full flexible. Interest in firm responses to demand shocks seems to have diminished since the

mid 1970s with the increased focus on supply-side shocks as the primary disturbance driving the business

cycle. Nevertheless we revisit this issue because plant-level dynamics have macroeconomics implications.

The motor vehicle sector is a sizable fraction of the economy, accounting for almost 4 percent of

real GDP in 2003 and 2004. Further, it has a disproportionately large effect on the volatility of GDP. In

2003 and 2004, motor vehicle output accounted for 6.3 and 4.5 percent of real GDP growth respectively.2

In addition, new motor vehicle prices have CPI weights of 4.7 percent.3 Hence, production and price

changes of new automobiles have observable effects on the aggregate rate of output growth and the rate

of inflation. Furthermore, given the prominent role automobiles have in the manufacturing sector in the

U.S. and worldwide, we believe that understanding how automakers respond to temporary demand shocks

helps in understanding firm pricing and production decisions more generally.

Decisions about inventories, prices, and production are all central to firm profit maximization, but

most analysis focuses on only two of these margins at a time. Much of the traditional inventory literature

1Nordhaus and Godley (1972) summarize much of this literature.
2Computed from numbers in Selected NIPA Tables, Survey of Current Business, July 2005
3Bureau of Labor Statistics website, Table of the Relative Importance of Components in the Consumer Price Index. These are

2001-2002 weights.
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address the role of inventories on the timing and volatility of output. The bulk of this literature assumes

firms schedule production in the face of exogenous stochastic demand holding prices fixed to minimize the

discounted value of expected costs.4 In these models, firms typically face both upward-sloping marginal

cost curves and costs of adjustment to the level of output. To justify these assumptions, authors usually

appeal to, without directly deriving, short-run diminishing marginal returns to labor and costs associated

with changing the size the labor force, such as hiring and firing cost. We build on this literature by,

first, embedding the firm’s cost minimization problem within a profit maximization framework (and thus

endogenizing prices and sales). Second, we explicitly link the cost of production to the costs of various

margins of adjustment of the labor input.

In operations research the study of the inventory/price tradeoff falls under the headingsrevenue man-

agementor yield management.5 In the economics literature, work by Reagan (1982), Aguirregabiria

(1999), Zettelmeyer, Scott Morton and Silva-Risso (2003), and Chan, Hall and Rust (2005) study the

interaction between inventory management and pricing. These papers, along with much of the operations

research literature, assume simple cost functions. In Reagan, the production function is linear, and in

Zettelmeyer et. al., production (procurement) is exogenous; in Aguirregabiria and Chan, et. al. the pro-

duction function is linear with a fixed set-up cost (i.e. an (S,s) framework). In the current paper, as in

our previous work (Copeland, Dunn and Hall, 2005), we study the interplay of inventories and pricing in

a model that explicitly incorporates realistic labor costs. In our former paper we explained the coexis-

tence of downward-sloped prices profiles with hump-shaped sales and inventories within a deterministic

model. In the current paper, we add a demand shock to study how optimal policies are affected by demand

disturbances.

A third literature studies the tradeoff between inventories and employment.6 In this literature the link

between employment and production is explicit; hence a firm that faces a change in demand can respond

either by changing its labor input or allowing inventories to fluctuate. However in these models, there is

no pricing decision.

Of the papers we are familiar with, the closest to ours are Haltiwanger and Maccini (1988) and Ramey

and Vine (2004). Haltiwanger and Maccini use an intertemporal optimization model to characterize the

4Blinder and Maccini (1991a,b) and Ramey and West (1999) provide comprehensive surveys of this vast literature.
5This literature which started with Whiten (1955) and Karlin and Carr (1962) is reviewed by Federgruen and Heching (1999)

and Elmaghraby and Keskinocak (2003).
6Relevant contributions include Topel (1982), Maccini and Rossana (1984), Rossana (1990), and Galeotti, Maccini, and

Schiantarelli (2005).
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behavior of a firm subject to random demand fluctuations. Prior to observing demand, the firm chooses

the product price and the size of its work force; after the shock, the firm can vary output (and thus end-

of-period inventories) by choosing the number of workers to layoff and hours work for those who work.

Given the relative value to the firm of holding inventories versus laying off workers, firms are classified as

being either inventory-biased or layoff-biased. Inventory-biased firms respond to relatively small declines

in demand solely by accumulating inventories. Both types of firms use both margins in response to large

declines in demand. In the empirical analysis of their model, Haltiwanger and Maccini (1989) take prices

and new orders as exogenous to the firm, and are therefore silent on the price/inventory tradeoff.

Ramey and Vine (2004) use Hall’s (2000) nonconvex cost-minimization model of an automobile as-

sembly plant to argue that a decrease in the autocorrelation of sales over the last two decades has led to

a reduction in the volatility of output in the U.S. automobile industry. While we are limited by our price

data to study a much shorter time period than Ramey and Vine, we are able to add a pricing decision to the

problem.

The remainder of this paper has three parts. In the first we present our data and describe some its key

features. In the second part, we solve and estimate the automaker’s dynamic decision problem. We then

report impulse response functions of price, sales, and production to shocks to demand. Finally, in the third

part, we examine two recent shocks to the automobile industry: the tread-separation tire recall of the Ford

Explorer in 2000 and the terrorist attacks of September 11, 2001. The first event represents a true demand

shock, while the aggregate time series of prices, sales and production corresponding to the second shock

do not accord with the expected responses from a negative demand shock.

1 The Data

The dataset studied in this paper is a merger of two datasets that provide detailed information on sales,

prices, inventories, and production of 46 models assembled at 28 single-source automobile factories run

by Ford, GM, and Daimler-Chrysler (the Big Three). A single-source plant is a facility that is the exclusive

producer of a vehicle line. Focusing on single-source plants, we are able to line up inventory, sales and

price data by vehicle line to production and hours worked by plant.

The first dataset was obtained from Wards Communications and contains weekly production data from

each assembly plant in the U.S. and Canada for the first week of 1999 through the first five weeks of 2004.

For each week the plant operated, it shows: 1. the number of days the plant operated; 2. the number of
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days the plant was down for holidays, supply disruptions, model changeovers, or inventory adjustments;

3. the number of shifts run; 4. the hours per shift run; 5. the scheduled jobs per day (line speed); and 6.

the actual production for each vehicle line produced at the plant.7

We match these weekly data to a second dataset on monthly prices, sales, production and inventories

by model and model year constructed in Copeland, Dunn, and Hall (2005). Foreign manufacturers are

excluded because of problems measuring overseas production. The sales and production numbers in this

second dataset also come from Wards Communications. The price data, however, are derived from retail

transactions captured at dealerships by J.D. Power and Associates (JDPA).8 JDPA attempts to measure

precisely the price customers pay for their vehicle, adjusting the price when a dealership under or overval-

ues a customer’s trade-in vehicle as part of a new vehicle sale. JDPA also reports the average cash rebate

and average financial package customers received from the manufacturer.

Combining the weekly production dataset with the second dataset on prices, inventories and sales

provides us with a detailed picture of the Big Three’s pricing and production choices. Because this paper

focuses on the operation of an automobile assembly plant, we aggregate the single-source data to the

plant/model-year level. This dataset includes 28 factories and has a total of 149 plant/model-year pairs.

As illustrated in table 1, this output represents about 34 percent of all Big Three vehicles sold in the U.S.

over our sample period.

Vehicles produced at single-source plants are like those produced at multiple plants. The mean price

of single-source vehicles is only slightly above the mean price over the entire dataset. Further, with the

exception of pickup trucks, single-source plants produce sizeable numbers of vehicles in all market seg-

ments.9 The single-source subset also is composed of roughly equal amounts from each of the Big Three,

although Chrysler is over-represented.

Assembly plants usually operate at full speed (i.e. each shift works 40 hours a week), or not at all.10

This non-convexity shows up most clearly at the weekly production level, as illustrated in figure 1. This

figure plots the weekly output of Chrysler’s Jefferson North factory, the sole assembly plant of the Jeep

7We thank Dan Vine and Valerie Ramey for providing these data from 1999 to 2001. For the remaining years, the data was
taken from weekly issues ofWard’s Automotive Reportsand the annual issues ofWard’s Automotive Yearbook.

8The price data were constructed by Corrado, Dunn, and Otoo (2004), who obtained it from J.D. Power and Associates.
9Few single-source plants produce pickups mainly due to data collection and naming conventions. Unlike other market seg-

ments, a large variety of essentially different pickups tend to be grouped under one name. Ford F-series pickup trucks incorporates
a variety of different vehicles (e.g. F-150, F-250, F-350, etc.), a much wider variety than those vehicles sold under model names
in other categories (e.g. Ford Escort or Ford Excursion). Because the production data are collected by model name, we find that
several popular pickups are produced at four or five plants.

10See for example Bresnahan and Ramey (1994) and Hall (2000). Hamermesh (1989) also reports similar results for seven
large U.S. manufacturing plants of a large U.S. durable-goods producer.
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Sum of Sales (thousands) Average Price
Entire Sample Single Source % diffEntire Sample Single Source % diff

Market Segment
Compact 4,706 842 18 13,648 14,776 108
Sporty 1,258 1,251 99 25,797 24,499 95
Midsize 11,272 3,927 35 19,247 19,962 104

Traditional 2,134 1,321 62 23,743 23,229 98
Luxury 2,399 1,757 73 36,554 35,757 98
Pickup 13,650 777 6 23,593 20,194 86
SUV 12,868 4,718 37 28,711 28,982 101
Vans 6,321 4,060 64 22,645 22,611 100

Company
Chrysler 11,692 5,016 43 22,726 24,480 108

Ford 19,121 5,912 31 24,090 26,606 110
GM 23,794 7,726 32 23,546 23,190 98

Total 54,607 18,654 34 23,561 24,620 104

Table 1: Comparing Single-Source Data Relative to the Entire Sample

Grand Cherokee. The tendency for an assembly plant to shutdown completely for a week, if it shuts

down at all, is clearly seen for the 2001, 2002, and 2003 model years. Over this period, the assembly

plant usually produced around 5000 vehicles a week, or none at all. Of course, there are weeks when the

temporary use of overtime ratcheted up production.

Shutdowns in weekly production occur for multiple reasons. Plant closures are grouped into four mu-

tually exclusive categories: model changeovers, holidays, inventory adjustments, and supply disruptions.

Model changeovers typically occur in the middle of July, and involve the re-tooling of factories so that

new model-year production can start. Holidays are scattered throughout the year, with the longest single

vacation occurring from December 25th to January 1st. Assembly plants are shut down for an inventory

adjustments when an automaker wants to lower its level of inventories. Finally, supply disruptions are

stoppages in production due to parts shortages, power outages, hurricanes, and similar events.

Over our five year sample, assembly plants shutdowns are roughly equally attributable to model

changeovers, holidays, and inventory adjustments (see table 2). Supply disruptions play a minor role

in explaining shutdowns, accounting for less than 5 percent of all factory shutdowns.11 Table 3 displays

11These numbers from single-source plants are close to the figures reported in Bresnahan and Ramey (1994), which examined
a much larger set of assembly plants from 1972 to 1983.
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Figure 1: Weekly Grand Cherokee Production

Model Changeovers Holidays Inventory Adjustments Supply Disruptions
Percent of days shutdown 27.3 37.4 30.7 4.6
Percent of all days 5.6 7.7 6.3 0.9

Table 2: Decomposition of shutdowns

the duration of shutdowns by type. Because of the non-convex cost structure, most plant shutdowns are

either for a day or an entire week. Of all the weeks in our sample, plants were shut down for one day in

the week 14.2 percent of time, while plants were shut down for an entire week 15.9 percent of the time.

Shutdowns that lasted between 2 to 4 days of the week account for less than 4 percent of all weeks in our

sample. Looking across the various causes for which plants stop production, we find that single day shut-

downs are almost entirely attributable to holidays. Further, model changeovers and inventory adjustments,

for the most part, involve a week-long shutdown.

To analyze how production varies with prices and sales, we turn to our monthly data. We first analyze

the relationship between assembly plant shutdowns and prices, sales, and inventories. We estimate a probit

where the dependent variable,Y, is equal to one if the assembly plant was shutdown at some point in

the month. The independent variables are last month’s sales and prices, beginning-of-period inventories,

a model-year monthly trend term, and assembly plant fixed effects. Lettings, p, i,m be sales, prices,
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Shutdown Duration
One Day Two Days Three Days Four Days Entire Week

Holiday 13.5 2.3 1.1 0.0 3.4
Model Changeover 0.0 0 0 0 5.6

Inventory Adjustment 0 0 0 0.1 6.3
Supply Disruption 0.7 0.1 0.1 0.1 0.6

Total 14.2 2.4 1.2 0.2 15.9

Table 3: Frequency of shutdowns by category and duration (percent of total weeks)

Estimate Standard Errors Marginal Effect
ln(pt−1) -1.938 0.793 -0.192
ln(st−1) -0.438 0.133 -0.043
ln(it) 0.797 0.177 0.079
mt -0.035 0.024 -0.003

Table 4: Estimated Probit Parameters

inventories, and the model-year trend variable respectively, we write the probit as

Yt = b1ln(st−1)+b2ln(pt−1)+b3ln(it)+b4mt +
F

∑
s=1

λs1ft=s+ ςt , (1)

where ft = {1,2, . . .F} designates to which factory the observation belongs,1x=y is an indicator variable

equal to one ifx = y, andς is an i.i.d error term. The estimated coefficients on lagged price, sales, and

inventories, shown in table 4, are significantly different from zero and have the expected signs. If prices or

sales are high in the previous month (for example, if demand is strong), then the probability of the assembly

plant shutting down next month decreases. Further, the higher inventory levels climb, the more likely a

factory will close. Lastly, the estimate of the trend coefficient is insignificant. While these estimates

accord well with theory, we are cautious in interpreting the strength of these results because the probit’s

explanatory power is low; theR2 is 0.12.

To capture the co-movements in prices, sales and production, we estimate three least square regressions

of sales, price, and production. For all three regressions, the independent variables are a lag of prices, a lag

of sales, beginning-of-period inventories, and a trend. Because we are interested in the dynamics of the

data and not the cross section, we take out the plant-level mean of all variables. This approach allows us to

control for plant-level fixed effects, without worrying about estimating fixed effects. As will be apparent

later, this is a significant advantage under our indirect-inference estimation methodology. Letx̂t denote a
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Sales Equation Price Equation Production Equation
parameter estimate std err estimate std err estimate std err
lagged price 0.172 0.035 0.787 0.006 0.787 0.072
lagged sales 0.641 0.009 0.0443 0.0051 0.376 0.028
inventories 0.0858 0.0024 -0.0076 0.0012 0.0250 0.0064
trend -0.104 0.013 -0.0432 0.0036 -0.194 0.051
σ2 5.33 0.10 0.691 0.009 15.39 0.44
R-squared 0.88 0.99 0.72

Table 5: Estimated parameters

Note: std err are Newey-West standard errors with two lags.

variable minus its plant-level mean. Formally, we estimate

ŝt = θ1ŝt−1 + θ2p̂t−1 + θ3ît + θ4m̂t + νs
t

p̂t = θ5ŝt−1 + θ6p̂t−1 + θ7ît + θ8m̂t + νp
t

q̂t = θ9ŝt−1 + θ10p̂t−1 + θ11ît + θ12m̂t + νq
t

(2)

whereq is production andν is an i.i.d. normal error. Automakers typical produce a particular vehicle

for 12 months, but through the use of inventories sell the vehicle over longer period. The sales and price

regressions are estimated using an average of 17 months of data for each vehicle, while the production

regression is estimated using an average of 12 month of data. This set of regressions provides a description

of the persistence of sales, prices and production as well as their covariances. The estimates ofθ are

reported in table 5, along with the variance of the residuals,σ2.

Our results show that both sales and prices are highly persistent. The estimated coefficient on lagged

prices in the price equation is a high 0.79, while for the sales equation our estimate on lagged sales in

0.64. Further, we find that beginning-of-period inventories are significantly correlated with both sales and

prices. Consistent with inventory-control theory, higher levels of inventories coincide with higher sales

and lower prices. Finally, both sales and prices have a negative trend, suggesting a fall in demand over the

model year. Turning to production, we find it is negatively correlated with last month’s price and positively

correlated with last month’s sales. This is not surprising, given the highly persistent behavior of both sales

and prices. Production is also positively correlated with inventories. This result likely reflects automakers’

practice of producing enough cars in 12 months to build up inventories for 17 or more months of sales.

Finally, the discreteness of the production data is clearly reflected in the large variance of the production

residual, relative to the variance of the sales residual. Note that all three equations fit the data well, despite

the simple specification used.
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2 The Model

The model examines an automaker selling a single product. The decision period is a week. A particular

model year is produced at a single plant for one year (52 weeks) and sold for two years (104 weeks). In

each of the first 52 weeks, the firm must decide: (1) the number of vehicles to produce,qt ; (2) the number

of days to operate the plant,Dt , the number of shifts to run,St , and the number of hours per shift,ht ; and

(3) the retail price of the vehicle,pt

Weekly sales,st , depend on the vehicle’s own price,pt , a persistent shockzt , and a deterministic

time-varying constant termµt . The weekly demand curves

st = µt(1+zt)−ηt log(pt) (3)

take a linear-log specification withηt denoting the weekt own-price semi-elasticity. We assume the

persistent shock follows an autoregressive process:

zt+1 = ρzt +ωt+1 (4)

with ω distributed i.i.dN(0,σω). This demand specification implies that above some price demand for the

vehicle is zero, consistent with consumers fully substituting to other vehicles at some price. This model

ignores the interaction of demand between different model years of the same model (e.g. a 1999 and 2000

Ford Escort), because previously (Copeland, Dunn, and Hall, 2005) we found these cross-price elasticities

to be very small.

Unsold vehicles can be inventoried without depreciation. Letit+1 be the stock of vehicles that are

inventoried at the end of periodt and carried over into periodt +1. Current production is not available for

immediate sale, so sales can be made only from the beginning-of-period inventories:

st ≤ it . (5)

Sales cannot be backlogged. During the production year, inventories follow the standard law of motion:

it+1 = it +qt −st 0 < t ≤ 52. (6)

After 52 weeks no vehicles are produced so inventories evolve according to

it+1 = it −st 52< t ≤ 104. (7)

At the conclusion of week 104, any unsold vehicles are sold at a fixed pricep̄105.
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The vehicle is assembled at a single plant. Each period, the firm decides how many vehicles to produce

and how to organize production to minimize costs. Plant managers increase or decrease production by

altering the workweek rather than the rate of production. The plant can operateD days a week. It can run

one or two shifts,S, each day, and both shifts areh hours long. We assume the number of employees per

shift, n, and the line speed,LS, are fixed. So the firm’s production function is linear in hours:

qt = Dt ×St ×ht ×LS. (8)

Although the production function is linear, the firm faces several important non-convexities because of its

labor contract. We letw1 andw2 denote the straight-time, day-shift and evening-shift wage rates. Any

work in excess of eight hours a day, and all Saturday work, is paid at a rate of time and a half. Employees

who work fewer than 40 hours per week must be paid 85 percent of their hourly wage times the difference

between 40 and the number of hours worked. This “short week compensation” is in addition to the wages

a worker receives for the hours actually worked. If the firm chooses not to operate a plant for a week, the

workers are laid off. Laid-off workers receiveυ fraction of their straight-time 40-hour wage.

Such a labor contract means that if the firm decides to produceq vehicles, it must then choose how

many days to operate the plant, how many shifts to run, and how many hours to run each shift in order to

minimize its cost of production. Given these choices, the firm’s weekt cost function is expressed as

c(Dt ,St ,ht |qt) = γqt + (w1 + I(St = 2)w2)× (Dthtn+max[0,0.85(40−Dtht)n] (9)

+max[0,0.5Dt(ht −8)n]+max[0,0.5(Dt −5)8n])+υw140(2−St)n,

whereγ is the per vehicle material cost,n is the employees per shift, andw1 andw2 are the hourly wage

rates paid to the first-shift and second-shift workers, respectively. The first term is the per-vehicle cost.

It incorporates all costs (such as materials, energy, transaction) that do not depend on the allocation of

production over the week. The first term within the brackets represents the straight-time wages paid to the

production workers. The subsequent terms within the brackets capture the 85 percent rule for short weeks

and the statutory overtime premium. The last term is the unemployment compensation bill charged to the

firm. Let Dt = 0 if and only if St = 0. This cost function is piecewise linear with kinks at one shift running

40 hours per week and two shifts running 40 hours per week.

To see this graphically we plot in figure 2 the labor-cost portion of (9) (i.e.c(Dt ,St ,ht)− γqt) condi-

tional on the plant running one or two shifts. The statutory 85% shortweek rule and overtime premia create

kinks in each cost curve at 0 and 40 hours per shift. The total labor cost portion of the bill it the envelop
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Figure 2: Labor costs as a function of weekly output conditional on running one or two shifts

of the two curves (denoted by the solid blue and green portions of the curves). Because of the kinks, the

MES is determined by the unique line (the dashed red line) from the origin that intersects the cost curve

only once. In the example plotted in figure 2 the firm minimizes average costs by operating the plant with

two shifts for a total of 80 hours per week. If the plant’s desired output is below the MES, the firm will

minimize cost by taking a convex combination of producing at 0 and producing at its MES.

The firm’s objective is to maximize the present value of the discounted stream of profits. For each

model year the automaker’s problem is to

max
pt ,qt

E

{
104

∑
t=1

(
1

1+ r

)t−1{
ptst(1− τ(st/it)ψ)−min

D,S,h
c(Dt ,St ,ht |qt)

}}
(10)

subject to (3)-(8) and wherec(D,S,h|q) is given by (9). The termτ(st/it)ψ is a “revenue tax” incurred

by the automaker as a function of its sales-to-inventory ratio. This term is in the spirit of Bils and

Kahn’s (2000) inventory model in which inventories play a revenue-generating role. When inventories

are low, it is harder for potential customers to observe and gauge a vehicle (that is, to test-drive it and view

the choice set), and thus it is more costly to consummate a sale. The tax effectively disappears when the

sales-to-inventory ratio is small.

We assume that the firm must choosept andqt before observingzt . Let V(I ,z−1, t) be the optimal
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value at weekt for the firm that holds inventoryI and observed a demand state ofz−1 last period. The

firm’s value function for weekst = 1,2, . . . ,52can be written:

V(i,z−1, t) = max
p,q

{
pE[s(1− τ(s/i)ψ)] − min

D,S,h
c(D,S,h|q) +

1
1+ r

EV(i +q−s,z, t +1)
}

(11)

subject to (3), (4), (5), and (8) and wherec(D,S,h|q) is given by (9). For weekst = 53,54, . . . ,104 the

value function becomes:

V(i,z−1, t) = max
p

{
pE[s(1− τ(s/i)ψ)] +

1
1+ r

EV(i−s,z, t +1)
}

(12)

subject to (3), (4), and (5). Hence the firm’s pricing and production decisions are governed by the policy

functions:

pt = p(it ,zt−1, t) (13)

qt = q(it ,zt−1, t)

which solve (10).

3 Estimation of the Structural Model

We estimate the structural model in two steps. First, we employ a discrete-choice methodology to estimate

consumers’ preferences over automobiles. We use these estimates to compute the intercepts and own-

price semi-elasticities that are parameters in the market demand curves, equation (3). Second, taking these

market demand curves as given we estimate the remaining parameters via indirect inference; that is, we

select the structural parameters of the model such that when we estimate the set of regressions described in

equation (2) using model simulations, we match as closely as possible the estimated parameters reported

in table 5.

3.1 Estimating the Demand Elasticities via BLP (1995)

The demand elasticities are estimated using the approach described in our earlier work, Copeland, Dunn,

and Hall (2005).12 The demand for automobiles is modeled within a discrete-choice framework. Following

Berry, Levinsohn, and Pakes (1995), henceforth BLP, we construct the demand system by aggregating over

the discrete choices of heterogeneous individuals.

12A full description of the methodology and results are available in this earlier paper. Here, we only provide an overview of
the methodology and the final results.
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The utility derived from choosing an automobile depends on the interaction between consumer and

product characteristics. Consumers are heterogeneous in income as well as in their tastes for certain prod-

uct characteristics. We distinguish between two types of product characteristics. Those that are observed

by the econometrician (such as horsepower and miles per gallon) are denoted byX. Those that are unob-

served by the econometrician (such as styling or prestige) are denoted byξ. Drawing from the nested logit

literature, we also incorporate a correlation in the consumer’s tastes for vehicles of the same model year.

We divide vehicles intoG+ 1 mutually exclusive groups (that is, model years)–g = 0,1,2, . . . ,G–where

the outside good is the sole member of group 0. We also allow households’ distaste for price, denoted by

α, to vary from quarter to quarter. This captures the possibility that different types of households show up

to purchase a new automobile at different times of the year.

We specify the indirect utility derived from consumeri purchasing productj, dropping the time sub-

script, as

ui jq = Xjδ+ξ j −αiq p j +∑
k

ϕkιikx jk +ζig +(1−κ)ϑi j , (14)

where p j denotes the price of productj andx jk ∈ Xj is thekth observable characteristic of productj.

The termXjδ + ξ j , whereδ are parameters to be estimated, represents the utility from productj that is

common to all consumers, or a mean level of utility. Consumers then have a distribution of tastes for each

observable characteristic. For each characteristick, consumeri has a tasteιik, which is drawn from an

independently and identically distributed (i.i.d.) standard normal distribution. The parameterϕk captures

the variance in consumer tastes.

The termαiq measures a consumer’s distaste for price increases in quarterq = {1,2,3,4}. Following

Berry, Levinsohn, and Pakes (1999), we assume thatαiq = αq

yi
, whereαq is a parameter to be estimated and

yi is a draw from the income distribution. We assume the distribution of household income is lognormal,

and, for each year in our sample, we estimate its mean and variance from the Current Population Survey.

The second-to-last term in equation (14) captures correlations in a consumer’s tastes for products within

the same group. For consumeri, the variableζig is common to all products in groupg and has a distribution

that depends uponκ. Finally, ϑi j is an i.i.d. extreme value.

Consumers choose among thej = 1,2, . . . ,J automobiles in our sample and the outside good (denoted

j = 0), which represents the choice not to buy a new automobile from the Big Three. Consumers choose

the productj that maximizes utility, and market shares are obtained by aggregating over consumers.

The dataset of prices and sales for the Big Three is used to estimate the model, generally following
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Market Segment Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Compact 8.2 9.2 7.9 8.6 7.8 8.3 8.8 8.8
Full 10.3 11.3 9.1 9.6 10.0 11.4 10.5 10.6
Luxury 9.8 11.4 8.4 9.0 9.9 11.0 9.2 9.2
Midsize 9.4 10.5 8.9 9.7 9.4 10.0 8.9 8.1
Pickup 9.7 10.8 9.1 9.0 9.8 10.8 8.9 11.6
SUV 9.7 10.7 8.6 8.6 9.9 10.8 9.6 8.6
Sporty 10.8 10.9 9.1 10.0 9.8 11.7 9.3 8.6
Van 10.2 11.6 9.7 10.1 10.2 10.9 9.6 5.8
Single Source 10.1 11.0 9.0 9.5 9.8 11.0 9.3 8.6

Table 6: The Absolute Value of Own-Price Elasticities by Market Segment and Quarter

BLP’s algorithm. We aggregate sales and prices to the quarterly frequency because of volatility in monthly

sales due, in part, to intertemporal substitution. We do not estimate the model at an annual frequency

because the variation in price and in the consumer’s choice set from quarter-to-quarter is a significant

source of identification in the BLP framework. Lastly, we augment the data with vehicle characteristic

information from Automotive News’Market Data Book(various years).

The estimated elasticities that result from the discrete-choice estimation are reported in table 6. These

elasticities provide the clearest picture of the values of the semi-elasticities that we use in our specified

demand function. The own-price elasticities generated by our parameter estimates range between 6 and

12, an indication that manufacturers face quite elastic demand. In the first quarter a car is sold, our results

imply that a 1 percent price increase for a typical compact car (roughly $140) causes an 8.2 percent fall

in sales, holding everything else equal. The average own-price elasticity for all single-source vehicles is

reported in the “Single Source” row. In general, our estimated elasticities are higher than those found in

the previous literature; BLP, for example, report a range of elasticities between 3 and 6. This difference is

not surprising, however, because previous research estimated own-price elasticities for models, a level of

aggregation higher than that of our data. Indeed, when we re-estimate the parameters from data aggregated

to the model level, the implied own-price elasticities fall within the range reported in BLP.

While we compute elasticities by quarter, our model of the firm is at the weekly frequency. To construct

the weekly demand curves, equation (3), we use our discrete choice model to construct quarterly own-price

semi-elasticities for the typical single-source vehicle. We then interpolate these semi-elasticities to the

weekly frequency using a spline. To compute the intercept termsµt , t = 1,2, ...104, we first interpolate the

monthly price/quantity-sold pairs for an average single-course plant to the weekly level; we then require
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each demand curve to go through the interpolated price-quantity pair for its corresponding week. This

yields a set of 104 demand curves that are falling (i.e. shifting to the southwest corner) over the product

cycle.

3.2 Estimating the Firm’s Decision Problem via Indirect Inference

Because of the non-convexities in the cost function, we solve for both the optimal level of output and the

cost minimizing production schedule through grid search. The grids forDt andSt are set from 1 to 6 and

from 0 to 2, respectively, in increments of 1. The plant is closed for the week wheneverSt = 0. The shift

length,ht , can take on values of 7, 8, 9 or 10. We allow weekly production (Dt ×St ×ht ×LS) to take

values between 0 and120×LS in increments ofLS. So there are up to 72 feasible production schedules to

evaluate for each 121 possible levels of production.

We discretize the inventory grid into 26 points from 0 to 85,000. The distance between grid points

increases with the level of inventories. Thus, the grid points are more densely spaced in the region where

the value function has more curvature. We discretize thez grid into 11 points from -0.025 to 0.025; the

grid points are more densely spaced near zero, and the distance between grid points increases the further

points are away from zero. For each of the 286(i,z) pairs, we maximize recursively the right hand side

of equations (11) and (12) over each sales price and level of output. Points off the inventory andz grids

are approximated using bi-linear interpolation, and all integration is done by quadrature. The sales price,

pt may take on any positive value such that quantity demanded remains positive. Finally, we impose a

standard holiday schedule on production; we assume the plant is closed for days corresponding to Labor

Day (1 day, week 8), Thanksgiving (2 days, week 19), Christmas/New Year’s (5 days, week 24), Martin

Luther King Day (1 day, week 27), Good Friday (1 day, week 37), Memorial Day (1 day, week 46), and

the July model changeover/vacation (10 days, weeks 51 and 52).

We estimate the supply-side parameters along with the demand-shock processes via indirect inference

using the extended method of simulated moments (EMSM) proposed by Smith (1993). This approach

selects the set of structural parameters,β, that minimizes the distance between a set of observed moments

θ̂T and those generated by numerical simulations of the structural model. In this case, the moments to be

matched are the 15 regression coefficients from the set of full regressions of sales, price and production,

reported in table 5, the error covariance matrix of the sales and price regressions, the variance of the pro-

duction regression, and three coefficients obtained from separately regressing sales, price and production
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on a constant.13 These last three equations provide the mean levels of sales, prices and production at a

single-source plant for the model to match. The full regression coefficients and error covariance matrix

capture the dynamics of prices, sales, and production. Note that the price and production equations can

be interpreted as empirical counterparts of the model’s decision rules for prices and production, equation

(13). In the model weekly prices and production are functions of the three state variables:zt , it and t.

Of course, in the data we observe monthly rather than weekly prices, and we do not observe the state of

demandzt . One can interpretst−1 andpt−1 as providing a measure ofzt−1.

In addition to the demand curves, we fix several supply-side parameters prior to the estimation. We

set the “scrap value” of vehicles unsold after 104 weeksp̄105 to $19,000. We set the number of work-

ers per shift,n to 1300. We set the overtime premium to 1.5 (i.e. “time and a half”), the second-shift

premium to 1.05, (i.e.w2/w1 = 1.05), and the short week premium to 0.85 as specified in the union

contracts. Letβ denote the vector of the remaining structural parameters that we wish to estimate:

β = {r,ρ,σω,γ,τ,ψ,υ,w1,LS}.
The basic strategy to estimate the model is:14

1. Use the data to compute estimates of the coefficients and the variance-covariance matrix of the

residuals for the set of regressions stated in equation (2) as well as the least square estimates of the

mean level of sales, price, and production,θ̂T . Our estimates of̂θT are reported in table 8.

2. For a given set of parametersβ, solve the structural model.

3. Simulate the model for 104 weeksS times and aggregate each simulation to the monthly frequency

to create a24×Spanel datasety(β). For each simulation, initializez using a draw from its ergodic

distribution.

4. Estimate the set of full regressions and the three least squares means listed in the first step, using

y(β) to computêθβ
S. Measure the distance between the vector of observed parameters and the vector

of simulated parameters via the criterion:

(1+π−1)−1(θ̂T − θ̂β
S)
′WT(θ̂T − θ̂β

S) (15)

13We do not attempt to match the covariances between the production residuals and the price and sales residuals because of the
different sample sizes. Recall that the production regression used the 12 months of data that a plant produced a vehicle, while the
sales and price regressions used the 17 months of data for which a typical vehicle was sold.

14Since we follow Smith’s (1993) methodology rather closely we describe it only generally and refer readers to Smith’s paper
for a complete description of the derivations and asymptotics.
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r† γ τ ψ ρ σω υ w1 LS
0.0140 22,270 0.423 0.907 0.954 0.000772 0.697 58.92 40.18
0.0107 114 0.080 0.140 0.005 0.000061 0.185 7.21 0.80

Table 7: EMSM estimates of the structural parameters

Note: The first row of the table reports point estimates. The second row of the table reports estimated standard errors.

† The interest rater is reported at an annual rate.

where the weighting matrix,WT ≡ AT(θT)BT(θT)−1AT(θT). AT(θT) andBT(θT) are the Hessian

of the likelihood function and the information matrix, respectively, for the set of full regressions

described earlier and the three OLS regressions of sales, price and production on a constant. We

compute these matrices numerically. We computeBT(θT) using the Newey-West (1987) estimator

with two lags. Since−AT(θT)≈ BT(θT) the weighting matrix is the inverse of variance-covariance

matrix of the observed parameters taking into account the model mis-specification. The termπ

denotes the ratio of the simulation sample size to the data sample size.

5. Using a hill-climbing algorithm, repeat steps 2 - 4 to find theβ̃T that minimizes (15).

We set the number of simulationsS to 298, twice the number of plant/model years in our dataset. Thus

π = 2.

In table 7 we report point estimates for the structural parameters together with estimated standard

errors. The estimated parameter values are sensible. The interest rate, which is the sole cost of holding

inventories, is estimated to be 1.4 percent at an annual rate with a standard error of 1.1. Even though

this represents a real rate of interest, it still seems low. The estimate may be picking up some implicit

value to holding inventories. The per-vehicle material cost,γ is estimated to be $22,270. Because of the

non-convexities in the cost function, the marginal cost of production is a discontinuous, non-monotonic

function. However, when the plant operates two 40-hour-shifts per week, the average cost of production

is $24,176. In this case the per-vehicle labor cost is $1906. The average profit per vehicle is about $1804.

The revenue-tax parameters,τ (the tax rate) andψ (the curvature parameter) are estimated to be0.42 and

0.91 respectively. Hence, the revenue tax is a concave function of the sales-to-inventory ratio.

The z process is estimated to be quite persistent with an auto-regressive coefficient of 0.954 and a

standard deviation of the innovations (σω) of 0.000772. This implies the ergodic distribution ofz has a

mean of zero (by assumption) and a standard deviation of 0.0026. While a standard deviation of 3/10 of

one-percent may seem small, a one standard deviation drop inz results in a downward parallel shift in the
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demand curve of 350 to 780 vehicles per week (depending on the value ofµt).

The point estimate of the first-shift wage ratew1 is reasonable,$58.92 per hour, if one accounts for

both benefits and wages but it is not particularly interesting since it can be scaled up and down by our

choice ofn. Our estimate of the unemployment replacement rate,υ, is of more economic interest. It

is estimated to be 0.697. In the U.S., if an assembly plant closes for a week, the workers are laid off.

After a single waiting week each year, laid-off workers receive 95 cents on the dollar of their 40 hour

pay in unemployment compensation. Of this 95 cents, state unemployment insurance (UI) pays about 60

cents. The remaining 35 cents is covered by supplemental unemployment benefits (SUB). Firms do not

pay laid-off workers directly, but laying off workers does increase the firm’s experience rating and future

UI premiums. Aizcorbe (1990) and Anderson and Meyer (1993) report that due to the cross-industry

subsidies inherent in the UI system, firms end up paying about half of the 60 cents coming from UI. Since

the SUB is a negotiated benefit between the firm and the union, the firm ultimately pays all 35 cents. So,

after the initial waiting week, it costs the firm about 65 percent of the 40 hour wage to lay a worker off for

one week. This is quite close to (i.e. well within one standard error) our estimate of 0.697.

Finally our point estimate of the line speed of 40.18 vehicles per hour is consistent with observed line

speeds at assembly plants. In our dataset plant line speed vary between 30 to 70 vehicles per hour.

The estimation criterion (15) provides a test-statistic for the over-identifying restrictions of the model.15

This statistic is distributedχ2(n−k). In our case there are ten over-identifying restrictions (n-k=19-9), and

the statistic is 746.7. Thus our structural model can be overwhelmingly rejected as the true data-generating

process of the observed time series. Nevertheless, the model captures much of the interesting dynamics in

the data.

Table 8 tabulates two sets of estimated parameters, one set for the observed data and one set for the

simulated data given the estimated structural parameters in table 7.16 Eight of the 19 simulated moments

are within a single standard error of their corresponding observed moments, and almost all of the simulated

moments are of the same sign and magnitude as the observed moments. The model implies a high level

of auto-correlation in both sales and prices. The model also implies the higher inventories are associated

15Readers may notice that the criterion in (15) is not scaled by the number of observations. As discussed in section 1, the
number of observations differ across the sales, price and production regressions. The individual elements of theAT(θT) and
BT(θT) matrices are scaled appropriately to take this in account, so we do not ‘pull aT out to the front’ of the expression.

16Our use of a set of regressions of sales, price and production to evaluate the fit of the firm’s decision problem is quite similar in
spirit to the analysis by Hay (1970). Hay calibrated a linear-quadratic model of the firm, took first order-conditions and compared
informally the SUR of prices, production, and inventories implied by his model to two SURs estimated using data on the lumber
and paper industries. Our findings are consistent with those of Hay.
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Sales Equation Price Equation Production Equation
parameter observed simulated observed simulated observed simulated
lagged price 0.172 -0.0146 0.787 0.865 0.787 1.762

0.035 0.0209 0.006 0.045 0.072 0.254
lagged sales 0.641 0.644 0.0443 0.0311 0.376 0.127

0.009 0.009 0.0051 0.0109 0.028 0.020
inventories 0.0858 0.0794 -0.0076 -0.0053 0.0250 0.0473

0.0024 0.0028 0.0012 0.0015 0.0064 0.0084
trend -0.104 -0.236 -0.0432 -0.0349 -0.194 -0.181

0.013 0.007 0.0036 0.0141 0.051 0.062
resid variance 5.33 1.60 0.691 0.619 15.39 4.95

0.10 0.04 0.009 0.252 0.44 0.20
R-squared 0.88 0.85 0.99 0.68 0.72 0.29

parameter observed simulated
cov(resid sales, resid price) -0.0741 0.0568

0.0503 0.0135
Sales Equation Price Equation Production Equation

parameter observed simulated observed simulated observed simulated
constant 8.952 8.959 26.036 25.970 12.600 12.298

0.202 0.049 0.223 0.015 0.332 0.045

Table 8: Estimated parameters using observed and simulated data

Note: The top and bottom numbers in each cell are, respectively, the point estimate and standard errors.

with higher sales, lower prices and higher production. In both the model and the data higher lagged prices

are associated higher production.

The three moments the model fails to match by wide margins are the variance of residuals in the

sales and production regressions, and the covariance between the sales and price residuals. To check how

important these moments are to the estimates of the parameter values, we re-estimated the model dropping

the four second moments. The value of the estimation criterion falls from 746.7 to 165.5, but the point

estimates and the standard errors of the structural parameters are not interestingly different. The estimated

wage rate rises to 64.2, and the line speed falls to 37.1; the other parameter are essentially unchanged. So

these second moments are not playing an essential role in determining the point estimates. To better match

these second moments, we tried adding an idiosyncratic multiplicative shock to the production function

(8) and an idiosyncratic additive shock the demand curve (3). In each case, these additional shocks were

estimated to have tiny variances and thus negligible impacts on the dynamics of the model. Further these

additional shocks had very little impact on the value of the criterion (15).

The model’s relevance is further bolstered by the fact that it matches some key patterns in the data
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that are not explicitly estimated. Figures 3 to 6 plot the the weekly paths of prices, sales, production and

inventories shutting down all the shocks (i.e.ωt = 0∀ t). Figures 3 and 4 also plot the price and sales trends

observed in the data. The model’s baseline price and sales paths track the trends in the data reasonably

well. The model successfully replicates the downward track in prices coinciding with the hump-shaped

pattern in sales. The model also nails the averages. In the data the mean price is $26,036 and the mean

weekly sales rate is 8,952 vehicles; in the model, these averages are $25,970 and 8,959. Early in the

product cycle, the model slightly overestimates prices and underestimates sales. Later in the product cycle

(after about week 40) the model underestimates prices and overestimates sales. Nonetheless, overall it

does a good job mimicking the levels and basic shapes of these two series.

Figures 5 and 6 plot the weekly baseline time paths for production and inventories. The plant operates

at near full capacity (two 60-hour shifts per week) for the first four weeks in the production cycle and then

(with exception of holidays) runs two 40-hours shifts per week for the remainder of the product cycle.

This pattern generate the negative monthly time trend in the full production regression reported in table 8.

Adding shocks breaks up this pattern somewhat, but production is still predicted to be smoother in our

model than we observe in the data. The variance of the residual for the full production regression for the

model is one-third the variance we see in the data. Overall the plant in the model runs overtime 8 percent

of time (versus 30 percent in the data) and is shut down for inventory adjustments 2.5 percent of the time

(compared to 6 percent in the data). The hump-shaped pattern of inventories is similar to that observed in

the data, and the model generates about the right level of inventories. Specifically, the model predicts an

average inventory-to-sales ratio of 75 days of supply with a standard deviation of 25. For the single-source

models in our data, this average ratio is 79 with a standard deviation of 51.

The revenue tax in equation (10) plays a central role in generating the time paths for these four series.

During the first weeks of the production cycle inventories are naturally low, and thus it is costly to sell a

lot of vehicles. In order to reduce this tax in the future, the automaker needs to accumulate inventories.

Hence, early on, the automaker sets prices high to dampen sales and produces at a high capacity allowing

the inventory stock to rise. Once inventories have reached a sufficient level, the tax effectively disappears

and the automaker lowers prices in order to stimulate sales. Further exacerbating this fall in prices, demand

for the vehicle decreases as the product cycle progresses.

To measure the model’s propensity to use weeklong shutdowns to adjust production, we estimated the

probit model described in equation (1) on the set of 298 model simulations (allowing for shocks toω).

The estimated coefficients and standard errors are reported in table 9 along with the estimates from the
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Figure 5: Production
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Figure 6: Inventories

Baseline Time Paths of Prices, Sales, Production, and Inventories
Notes: The red dashed lines in figures 3 and 4 are the price and sales trends from the data.
In all four figures the solid black line is a simulation of the model with all innovations set to zero (i.e.ωt = 0 ∀ t).
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parameter
Estimated Coefficients
observed simulated

ln(pt−1) -1.938 -38.32
(0.793) (4.10)

ln(st−1) -0.438 -0.528
(0.133) (0.65)

ln(it) 0.797 23.786
(0.177) (2.55)

mt -0.035 2.63
(0.024) (0.32)

R2 0.12 0.91

Table 9: Estimated probit parameters using observed and simulated data

Note: Standard errors are in parenthesis.

data first reported in table 4. The first thing to note is that signs on the coefficients of price, sales, and

inventories are the same as in the data: the likelihood of a shutdown increases as the level of inventory

increases; it decreases as prices and sales rise. However, the three of the four model’s coefficients are an

order or two magnitude higher than we see in the data. Perhaps this reflects considerable more noise in the

data than in the simulations. This possibility is supported by theR2 on the simulation probit of .87 while

theR2 of the data probit is .12.

4 Dynamics and Conditional Responses

This section examines how the firm responds to persistent demand shocks. The firm’s optimal response to

these shocks is non-linear and history dependent. Therefore we report the responses of sales, prices and

production to negative innovations toz conditioning on three distinct histories. These distinct realizations

of prior shocks push the level of inventories,i, and the state of demand,z, into different regions of the state

space. Thus, we can measure how the firm responds to shocks of various magnitudes at different points in

the state space.

To implement this, we look at negative innovations of varying magnitudes both early and late in the

production cycle: weeks 12 and 35.17 To vary the initial conditions ofzandi, we study cases in which the

firm faces: 1) no shocks in weeks prior to the innovation, 2) a series of positive shocks in the weeks prior

to the innovation; and 3) a series on negative shocks in the weeks prior to the innovation. More precisely,

17While the firm does not respond symmetrically to positive and negative innovations, the results are qualitatively similar. To
conserve on space, we only report results for negative innovations.
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in the first case, we shut down all the shocks except for a single innovation tozat weekt∗; that is we set

ωt =
{ −Φσω if t = t∗, whereΦ =0, 1

2, 1 or 2
0 otherwise.

(16)

We refer to this first case as theneutral historycase. In the second, orpositive history, case we set

ωt =




−Φσω if t = t∗, whereΦ =0, 1

2, 1, or 2
1
3σω if t∗−10< t < t∗

0 otherwise.
(17)

In the third case, ornegative history, case we set

ωt =




−Φσω if t = t∗, whereΦ =0, 1

2, 1, or 2
−1

3σω if t∗−10< t < t∗

0 otherwise.
(18)

In figures 7 to 10 we plot impulse response functions for prices, sales, production, and inventories to a

two-standard deviation shock toz during week 12 (month 3). The lines plotted in the four figures are the

differences in levels between the response forΦ = 2 and the response forΦ = 0. In each case, the time

paths have been aggregated to the monthly frequency.

The main point to take away from these graphs is that prices and sales respond in months immediately

following the innovation (which occurs in month 3) but production responds months later. Since automo-

biles are built-to-stock rather than built-to-order, production does not need to respond simultaneously with

prices and sales.

At impact both prices and sales fall. The marginal response of sales is largest in the month right after

the shock. The response diminishes over time, and after 5 months or so (month 8), the effects of the

shock on sales are largely gone. For the positive and neutral history cases, sales are higher in than without

the shock after month eight, even though our demand specification does not have any role for ‘pent-up

demand’. Prices, on the other hand, fall only very little in the month after the shock but continue to decline

for several months. For all neutral and positive histories, prices never return to their no-shock baseline

levels. This persistence in the price response is not due to ‘sticky prices.’ There are no price rigidities in

the model. Instead these persistent lower prices are due to the desire to boost sales to make up for lost sales

earlier in the model year (i.e ‘pent-up supply’). Further the price response is quite modest; a two-standard

deviation shock to demand causes only a $200 decline in prices on a $26,000 vehicle.

The production response is completely different. Examination of figure 9 shows that for all three

histories output does not respond to the shock for seven months. The output response occurs in months

11 and 12 after the sales response has largely died out. This propagation occurs even though there are
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Figure 9: Production Response
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Figure 10: Inventory Response.

Response of Prices, Sales, Production, and Inventories to a Two Standard-Deviation Negative Innovation
to zat Week 12 (Month 3).

Notes: The responses have been time-aggregated to the monthly frequency.
Each line plots the difference between the time path of the variable withΦ = 2 and the time path withΦ = 0.
The black solid line is the response of the variables under the negative history case (i.e.ω12 = −2σω; ωt = −σω/3 for t =
2,3, ...,11; andωt = 0 for t > 12).
The blue dashed line is the response of the four variables under the neutral history case (i.e.ω12 =−2σω; ωt = 0 otherwise).
The red dot-dashed line is the response of the four variables under the positive history case (i.e.ω12 = −2σω; ωt = σω/3 for
t = 2,3, ...,11; andωt = 0 for t > 12).
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no adjustment costs in the model. Because of the nonconvexities in the firm’s cost function, the firm

wishes to operate the plant at its minimum efficient scale. In this case, the firm minimizes average cost by

running two 40-hour shifts per week producing 3175 vehicles per week. Below the MES the firm can only

convexify its cost function over time via temporary shutdowns; therefore the nonconvexities can induce

a lag between the price and production responses. Further because higher inventories reduce the revenue

tax, the firm prefers to postpone shutdowns until the end of the product cycle. Finally, because of this lag

between the two responses, inventories rise in the months immediately after the innovation.

Despite the importance of the nonconvexities in the timing of the production response, the firm can

convexify its costs over time. Thus it is not obvious that the optimal longer-term responses are nonlinear.

To address this issue, we summarize the impulse response for 18 different innovations in tables 10. For

each innovation (i.e. history, week, andΦ), we report the percentage difference between the realization of

the model withΦ = 1/2, 1 or 2 and the realization of the model withΦ = 0.

Some basic patterns emerge from table 10. First the marginal price and sales response at impact

(columns (2) and (3)) are proportional to the size of the shock. In each case the magnitude of the marginal

response withΦ = 2 is twice the magnitude withΦ = 1 and four times that ofΦ = 1/2. Also in each

case, the sales responses at impact are considerably larger than the price responses. This is partially due

to the size of the elasticities estimated in section 3.1. These elasticities measure the sales response for a

particular make and model to a change in price holding the demand for all other vehicles constant. If we

want to interpret these demand shocks as aggregate demand shocks, the sizes of our elasticities represent

upper bounds.

Holding Φ fixed, the price responses are largest (and thus the sales responses are smallest) for the

positive history paths. The prices responses are smallest (and thus the sales responses are largest) for the

negative history paths. While this effect is small (the price responses for the first four months following the

shock in figure 7 look almost identical), the intuition is straightforward. The lower the level of inventories,

the higher is the marginal value of an additional unit of inventory to the firm. Since a series of positive

shocks toz reduces the level of inventories, it raises the shadow value of inventories to the firm leading the

firm to charge higher prices and dampen sales.

In all 18 cases production (column (4)) does not respond in the weeks immediately after the shock.

This however does not imply there is no production response. In columns (5)-(7) of table 10 we report

the marginal cumulative response of prices, sales and production over the remainder of the product cycle.

Unlike the price and sales response at impact, the cumulative price and sales responses are not proportional
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Φ
Response at Impact Cumulative Response over Cycle

Price Sales Product Price Sales Product Wages Profits
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Negative History: Week 12 Shock
1/2 -0.004 -4.75 0.00 0.00 -1.10 -1.39 -0.47 -0.27
1 -0.008 -9.48 0.00 -0.04 -1.10 -1.39 -0.47 -0.56
2 -0.016 -18.98 0.00 -0.09 -2.18 -2.74 -0.88 -1.18

Neutral History: Week 12 Shock
1/2 -0.004 -3.92 0.00 -0.04 -0.00 0.00 0.00 -0.22
1 -0.009 -7.85 0.00 -0.08 -0.00 0.00 0.00 -0.45
2 -0.019 -15.64 0.00 -0.12 -1.11 -1.37 -0.47 -0.96

Positive History: Week 12 Shock
1/2 -0.005 -3.40 0.00 -0.04 -0.00 0.00 0.00 -0.13
1 -0.009 -6.80 0.00 -0.08 -0.00 0.00 0.00 -0.29
2 -0.020 -13.55 0.00 -0.15 -0.01 0.00 0.00 -0.65

Negative History: Week 35 Shock
1/2 -0.004 -4.54 0.00 -0.01 -1.71 -3.38 -0.96 -0.19
1 -0.007 -9.09 0.00 -0.08 -1.71 -3.38 -0.96 -0.37
2 -0.015 -18.17 0.00 -0.15 -3.47 -6.85 -2.07 -0.77

Neutral History: Week 35 Shock
1/2 -0.004 -3.88 0.00 -0.07 -0.01 0.00 0.00 -0.14
1 -0.008 -7.77 0.00 -0.13 -0.01 0.00 0.00 -0.30
2 -0.016 -13.22 0.00 -0.20 -1.77 -3.24 -1.08 -0.62

Positive History: Week 35 Shock
1/2 -0.004 -3.32 0.00 -0.06 -0.01 0.00 0.00 -0.08
1 -0.009 -6.65 0.00 -0.13 -0.01 0.00 0.00 -0.17
2 -0.018 -13.30 0.00 -0.26 -0.02 0.00 0.00 -0.39

Table 10: Conditional Responses toω Innovations in Weeks 12 or 35

Note: For each panel, columns (2), (3), and (4) report the percent differences in prices, sales, and production one week after the

shock between theΦ = 1/2, 1, 2 cases and theΦ = 0 baseline.

Columns (5), (6), (7), (8), and (9) report the percent differences in the sum of prices, sales, production, wages and profits for the

remainder of the product cycle between theΦ = 1/2, 1, 2 cases and theΦ = 0 baseline.
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to size of the shock. This non-proportionate result follows from the nonconvexities in the cost function.

When the firm operates below its minimum efficient scale, it will tend to use more non-convex margins

to adjust output (e.g. weeklong shutdowns); but when it operates above its MES it will tend to use more

convex margins of adjustment (e.g. overtime). Hence we would expect the nonconvexities to matter more

(and the responses to be more nonlinear) under the negative and neutral history cases and less under the

positive history cases.

It is often argued that firms respond to small shocks by changing prices and large shocks by changing

production. For example, Haltiwanger and Maccini (1988) find that a fraction of the firms in their model

only adjust production in the face of large shocks. This view is generally consistent our results. In four of

the six cases (shock week and histories) there is no production response to shocks ofΦ = 1/2 andΦ = 1;

the shock is absorbed by prices alone. But in four of the six cases withΦ = 2 size shocks the firm uses

both margins, prices and production, to absorb the shock.

Finally, we can also examine the response of the discounted streams of wages for the workers and

profits for the firm. For both the week 12 shock and week 35 shock, the profit stream falls roughly one-

for-one (perhaps a little more than one-for-one) with the size of the shock. It appears that the owners have

enough margins at their disposal to dampen the effects of the demand shocks on profits. Also wages fall

by only a third of the fall in output.18

The relationship between the size of the price and production production responses and the size of the

shock toz merits additional analysis. Figures 11 and 12 report the cumulative relative responses of prices

and production under the negative history case as functions of the size of the shock.19 In both figures,

the production decline is a step function in the size of the shock. Between each threshold, prices decline

linearly in the size of the shock. Because the production response is fixed between the thresholds and

demand is falling linearly in the size in the size of the shock, the firm lowers prices so that supply equals

demand. The discrete drops in production thus generate discrete increases in prices.

Globally, the relationships between the size of the shock and the size of the production and price

responses are linear. In week 12, the size of the marginal cumulative production and price responses for

Φ = 2 are twice the size of the responses forΦ = 1. However important local nonconvexities still survive

time-aggregation. In both weeks 12 and 35, a small negative shock toω (less than one-half of a standard

18When computing wages, we assume workers on temporary layoffs receive 95 percent of their straight-time 40-hour wage,
the statutory replacement rate. We interpret the difference between .95 and our point estimate ofυ as representing cross-subsidies
from other firms inherent in the UI system.

19These curves correspond to columns (5) and (7) in table 10.
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Figure 11: Week 12 Shock: The Marginal Cumulative Responses of Prices and Production
Note: This figure plots the magnitudes of the marginal cumulative responses of prices and production as functions of the

magnitude of a negative shock tozduring week 12.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
in

 c
um

ul
at

iv
e 

pr
ic

es

Size of ω shock in standard deviations

← production

prices →

0 0.5 1 1.5 2 2.5 3 3.5 4
−14

−12

−10

−8

−6

−4

−2

0

2

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
in

 c
um

ul
at

iv
e 

pr
od

uc
tio

n

Figure 12: Week 35 Shock: The Marginal Cumulative Responses of Prices and Production
Note: This figure plots the magnitudes of the marginal cumulative responses of prices and production as functions of the magni-
tude of a negative shock tozduring week 35. 30



deviation) causes output to fall but prices to rise over the remainder of the product cycle. A small increase

in the size of the shock during week 12 that pushes the firm over a threshold results in a cumulative

production decline of about 1.4 percent; for week 35, this production decline can be as large as 6 percent.

In sum, although the nonconvexities make the production decision almost discrete at the weekly frequency

(either all-on or all-off), the firm has enough margins to vary the workweek of capital over the reminder of

the production cycle so that its costs are quasi-linear. Hence its production and price responses aggregated

over time become globally linear to the size of the shock.

5 A demand shock that was and a demand shock that was not

Our model and data set can be used to explain automakers’ reactions to two recent events. One is when

the Ford Explorer tire-tread separation problems became public during 2000. The second, is the terrorist

attacks of September 11, 2001.

5.1 The Firestone/Ford Explorer Tire Recall of 2000

On August 9, 2000, Ford and Firestone issued the second largest tire recall in history, recalling more than

6.5 million tires because of tire tread-separation problems. Tires on several models were recalled, but the

majority were mounted as original equipment on the Ford Explorer, a highly popular SUV. Even before the

recall, bad publicity surrounding the Explorer had begun to snowball as law firm web sites and television

news shows attributed 46 deaths to the tires. Sales of new Explorers fell, while sales for other SUVs

rose, as concerns about the Explorer’s safety prompted consumers to switch to other models. This episode

provides an example of a demand shock to a single make and model.

Figures 13 through 16 show the difference between Ford Explorer’s monthly sales, prices, production,

and inventories in 2000 and the average monthly sales, prices, production, and inventories for Ford Ex-

plorers in all other years in our sample (1999, 2001, 2002, 2003). At the beginning of 2000, prices, sales

and production of the Ford Explorer were above their benchmark averages, likely driven by the robust eco-

nomic growth at that time. By the end of the first quarter, however, sales and prices started to fall relative

to their averages, a trend that continued throughout the year. Looking at the scales of the price and sales

paths (figures 13 and 14) we see that the relative magnitudes of the responses (roughly 10 to 1 in sales to

prices) are consistent with the responses reported from our model in figures 7 and 8.

Ford Explorer production did not immediately react to the fall in consumer demand. Rather, it contin-

ued above the benchmark average throughout the first half of 2000, before finally declining in the second
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Figure 16: Inventories

The Monthly Path of Prices, Sales, Production, and Inventories for the Ford Explorer During the Year 2000
In each graph the solid blue line displays the difference between the monthly series during 2000 and the average monthly series
Ford Explorers in all other years in our sample (1999, 2001, 2002, 2003).
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half. In addition to reacting to declining demand, Ford Explorer production was halted for three weeks in

August to increase the supply of new tires available for the tire recall. Explorer inventories remained at or

below its average through the first half of 2000, before exploding upward in June, July, and August. The

slowdown in September production helped bring inventories down, but they still remained high at the end

of 2000. Note that inventories and prices are negatively correlated with a correlation coefficient of -0.46.

The Ford Explorer time series of sales, prices, production and inventories in 2000 are generally in line

with our model’s predictions. As the public began to learn of the Ford Explorer’s tread-separation problems

in the spring of 2000, consumer demand fell. Similar to the impulse-response graphs generated by our

model, Ford initially responded to this fall in demand by lowering price and maintaining production. Then

in the latter half of 2000, Ford reacted to the slump in demand for Ford Explorers by cutting production,

and bringing inventories back to its historical average.

5.2 Post-September 11, 2001

The tradeoff between automobile price and production was discussed prominently in the popular press dur-

ing September and October of 2001. In the days immediately following the terrorist attacks of September

11, auto sales fell by one-third and Standard & Poor’s reported, “Industry demand is now expected to be

exceptionally weak for the next two quarters, at least, and the likelihood of any improvement beyond that

time is highly uncertain.”20 Ford Motor Company then announced it was cutting third quarter output by

12 percent. This decision was subtly criticized as being detrimental to the macroeconomy during a time of

war. Dieter Zetesche, head of Daimler Chrysler AG’s Chrysler group stated, “I think it is our responsibility

to try to do whatever we can to contribute to stability. Not to overreact ... not to try to pre-empt shortfalls

on the demand side with production cuts.” GM North American President Ron Zarrella added “... GM has

a responsibility to help stimulate the economy by encouraging Americans to purchase vehicles, to support

our dealers and suppliers, and to keep our plants operating and our employees working.”21 After a Septem-

ber 19 meeting in Detroit of Commerce Secretary Donald Evans and Labor Secretary Elaine Chao with

top auto executives and union officials, General Motors reaffirmed it existing production schedules and

introduced zero percent financing incentives under its “Keep America Rolling” campaign. Ford, Chrysler,

and several foreign automakers soon matched these discounts.

20Krebs M.L. “Driving Through and Altered Landscape,” New YorkTimes, September 23, 2001, section 12, page1.
21Both quotations are from White, G.L. and J.B. White “GM Unveils Interest-Free Offer on All U.S. Model”Wall Street

Journal, September 20, 2001, page A3. For more quotations on the patriotism of price cuts, see Burton T.M. and J.T. Hallinan
“Is It Unpatriotic to Lay Off Workers When the Nation Faces a Crisis?”Wall Street Journal, October 2, 2001, page B1.
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Figure 17: Industry Price Response
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Figure 18: Industry Sales Response
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Figure 19: Industry Production Response
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Figure 20: Industry Inventory Response.

The Aggregate Time Paths of Prices, Sales, Production, and Inventories
During Late 2001 and Early 2002.

In each graph the solid blue line displays the difference between the monthly series during 2001 and the average monthly series
for all other years in our sample .
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Figure 21: Value of Cash Rebates and Financing Incentives

Patriotism as well as long-term public relations considerations no doubt played key roles in these

decisions during the emotional weeks after 9/11; nevertheless we would not expect the automakers to

throw profit maximization out the window. To analyze the industry response to the terrorist attacks, we

graph the difference between prices, sales, production and inventories levels for every month from June

of 2001 through February of 2002 against the average price, sales, production and inventory level for all

remaining months in our sample. The first, and a surprising, fact illustrated in figures 17 through 20 is the

increase in relative prices from September to October. This is not an artifact of the normalization. Average

prices rose 3.7 percent un-normalized. Perhaps even more surprising, this price increase corresponds with

a massive sales increase of 42 percent (un-normalized). These price and sales responses are inconsistent

with a persistent drop in demand.

Despite the desires voiced by executives to maintain high levels of production, September production

was quite a bit lower than the average. This drop in production was largely due to parts disruptions related

to increased border security arising after September 11th. October production remained low, however,

largely because of a number of inventory shutdowns. Using weekly production data for single source

plants, during September and October of 2001, shutdowns for inventory adjustment accounted for 8.7

percent of all production days. This is almost three times as large as the average 3.0 percent of production

days factories closed for inventory adjustment during the months of September and October in 1999, 2000,
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2002, and 2003.

The conventional wisdom that automakers heavily slashed prices on their vehicles after 9/11 is not

confirmed by our data. Despite the zero-percent financing incentives introduced in late September, the

average price of new vehicles net of incentives and rebates rose slightly. Part of the explanation lies in the

mix of incentives that customers received. In figure 21, we plot the time paths of the average value per

vehicle of financing incentives and cash rebates. Automakers increased financial incentives modestly in

late 2001. Nonetheless, this increase was more than offset by the drop in cash rebates.

Why did demand not fall, but actually rise during the Autumn of 2001? Some consumers may have

been motivated to buy a new car out of patriotism.22 But it appears to us that the zero-interest financing,

while not reducing prices, reduced the need for consumers to haggle and search across dealership to find

the best deal. Zero-percent financing is an easily understood pricing arrangement and eliminates at least

one dimension that car dealers can price discriminate across consumers. It simplifies the buying process

much like the “employee discount pricing” programs in the Summer of 2005. It appears that consumers

prefer simplified pricing; they were eager to buy and even paid more to avoid more complicated haggling.

While the solution to the firm’s decision problem formulated in this paper provides insights into the timing

and relative magnitudes of price and production responses, it is silent on the value of price discrimination

and opaque pricing to the firm.

6 Conclusion

One often reads statements such as:

With its labor costs fixed because of employment guarantees and large pension and retiree

health costs, Detroit can’t adjust supply to meet demand – so it must rely on price adjustments

alone.23

Not only popular discussions of the automobile industry but formal analysis as well has tended to focus

either on production adjustments or price adjustments, assuming the other variable is fixed. This paper has

shown the Big Three automakers utilize both price and production adjustments concurrently even in the

short run. In contrast to the statement above, we find that for sufficiently large demand shocks, most of the

adjustments over time are made to supply rather than prices.

22For example, Freeman S., “September Auto Sales Showed Resilience”Wall Street Journal, October 3, 2001, page A2 quotes
a consumer who is bought a new PT Cruiser to “do his part” for the economy.

23Jenkins H., “Why Detroit Can’t Stop Haggling”Wall Street Journal, August 3, 2005, page A11.
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Our model suggests that the use of inventories along with the nonconvexities present in the automaker’s

cost function causes production adjustments to be propagated throughout the model year even though

prices and sales move immediately. Thus an observer with a static supply-and-demand model in mind

could be misled to believe the supply curve is vertical. This propagation occurs even though there are no

adjustment costs to varying the workweek of capital over time. These nonconvexities make the weekly

production decision nearly discrete (either all on or all off); but over the course of several months automak-

ers have sufficient margins to dampen the effect of these nonconvexities considerably. As a consequence,

production and price responses aggregated over time are near linear in the size of the shock.
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