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ABSTRACT

Prompted by widespread concerns about public school quality, a growing empirical literature has

measured the effects of greater choice on school performance. This paper contributes to that

literature in three ways. First, it makes the observation that the overall effect of greater choice, which

has been the focus of prior research, can be decomposed into demand and supply components:

knowing the relative sizes of the two is very relevant for policy. Second, using rich data from a large

metropolitan area, it provides a direct and intuitive measure of the competition each school faces.

This takes the form of a school-specific elasticity that measures the extent to which reductions in

school quality would lead to reductions in demand. Third, the paper provides evidence that these

elasticity measures are strongly related to school performance: a one-standard deviation increase in

the competitiveness of a school's local environment within the Bay Area leads to a 0.15 standard

deviation increase in average test scores. This positive correlation is robust and is consistent with

strong supply responsiveness on the part of public schools, of relevance to the broader school choice

debate.
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1 INTRODUCTION 

  Dissatisfaction with the quality of public education in the United States has prompted 

considerable interest in reforms that increase choice and stimulate competition in the school 

system. The standard notion, drawing on the theory of the firm, is that increasing the range of 

options households can choose from forces incumbent public schools to compete more vigorously 

– for market share, better students, and financial resources.  In turn (continuing the firm analogy), 

this should lead schools to better respond to the needs of students and their families, use available 

resources more efficiently, and exert greater effort, thereby improving public school performance. 

Because schools lack a strict profit motive, however, the extent to which public schools do 

actually respond to increased competition has become a central empirical question in the 

education literature. 

In prior work, numerous papers have examined the effects of greater choice on public 

school performance, typically using across-metropolitan area variation in indices of public school 

concentration or measures of private school availability.1 In so doing, this literature has grappled 

with endogeneity problems related to the simultaneous determination of public school 

performance and these measures of choice, in addition to omitted variable biases.2 The evidence 

to emerge from this literature looking at the effect of increased choice on school performance is 

mixed, ranging from little effect to a modest positive impact of increased choice on school 

performance.3 

While the concepts of choice and competition are invariably linked in the broad policy 

and academic debates about education reform, they are not synonymous from an economic 

                                                      
1 See Belfield and Levin (2002) for an extensive review of forty one empirical studies in this literature.  
2 See Hoxby (1994, 2000), Figlio and Stone (1999), Jepsen (1999), Hanushek and Rivkin (2003), and 
Rothstein (2003). 
3 Researchers have also examined the efficiency of public school spending using alternative research 
designs. Barrow and Rouse (2004), for example, examine the efficiency of per pupil spending using 
variation in state aid while Millimet and Rangaprasad (2005) explore the spatial autocorrelation in school 
input decisions. 
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perspective.4 Choice in this context relates to the availability of schooling alternatives faced by 

households, while the economic notion of competition is best captured by the residual5 elasticity 

of demand that a school faces.  Such an elasticity measures the extent to which a school’s 

enrollment and resources are affected by a change in its performance: the greater is this elasticity, 

the more competitive is the environment in which it operates. In considering the effect of 

competition on school performance, one would ideally like to isolate the impact of a change in 

this primitive – a school’s residual elasticity of demand – on school performance.  

  In practice, the measures of choice used in the literature tend to be related to competition 

because an increase in the availability of schooling options or in the ease of selecting these 

options is likely to increase the residual elasticity of demand faced by incumbent schools, thereby 

making the market more competitive. But the overall impact of increased choice on school 

performance depends on both demand and supply factors, combining (i) the effect of increased 

choice on the competitiveness of local market (i.e., extent to which increased choice raises the 

residual elasticity of demand faced by schools) and (ii) the effect of increased competition on 

school performance. The first of these reflects factors on the demand side of the education 

market, and is likely to vary depending on the way that choice increases.6 The latter effect isolates 

the supply-side response to greater competition - the response of individual schools to variation in 

the competitiveness of the environment in which they operate. 

  By focusing on the overall effect of choice on school performance, the existing literature 

provides only indirect guidance as to the magnitude of the responsiveness of schools to 

                                                      
4 The distinctness of these concepts can be made clear by noting that, in principle, choice could increase 
without any increase in competition.  For example, private school vouchers could be given to parents 
wholeheartedly opposed to private schools. Likewise, the competitiveness of the education market place 
could change without any change in the set of available schooling options. For instance, broad changes in 
the demand for school quality or technological improvements in the quality of information available to 
households about school performance might increase residual demand elasticities even in the absence of an 
explicit change in choice. 
5 We use the term ‘residual’ in the sense that the elasticity results from a change in just that school’s 
quality. 
6 For example, choice variation from geographic accessibility to private schools may have a quite different 
impact on competition than policies such as within-district school choice programs 
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competition (supply responsiveness). Yet the distinction between demand vs. supply 

responsiveness is important both for understanding the economics of education markets and for 

policy. To the extent that an overall modest positive effect of choice on performance is driven by 

a sizeable impact of choice on competition and a limited responsiveness of schools to increased 

competition, this suggests that policies targeted at improving incentives for schools to respond to 

competition are likely to have strong performance effects. On the other hand, if schools are highly 

responsive to changes in competition (as we will find) but the current system does not engender a 

very competitive environment, policies aimed at increasing demand elasticities would seem more 

promising. Such policies might, for example, increase the ability of parents to choose from a 

wider set of schools or provide better information about quality differences among the available 

options. 

In terms of magnitudes, a reading of the existing education demand literature suggests 

that the demand side component of the overall effect of choice on school performance may in fact 

be quite small. This conclusion is robust across a wide variety of different research designs: (i) 

examining differences in housing prices along school assignment boundaries or as school 

assignments are changed over time;7 (ii) estimating the heterogeneity in willingness to pay for 

school quality using a model of residential sorting;8 (iii) examining the academic performance of 

winners versus losers following randomized school choice lotteries;9 and (iv) examining how 

student performance varies with measures of school district enrollment concentration across 

metropolitan areas.10 This leaves open the possibility that the responsiveness of schools to 

                                                      
7 Black (1999) pioneered the use of school assignment boundary fixed effects, estimating that a school-
level standard deviation in average test score is associated with approximately a 2 percent increase in house 
value. Kane, Staiger, and Riegg (2004) report almost an identical result using boundary fixed effects. This 
latter paper also reports results based on changes in school assignment, although these are less conclusive. 
8 Bayer, Ferreira, and McMillan (2003) incorporate school district boundary fixed effects in estimating a 
model of residential sorting, returning an estimated mean marginal willingness to pay for a standard 
deviation increase in average test score of approximately 2 percent of house value; they also find evidence 
of heterogeneity around this mean, as well as strong preferences relating to the characteristics of neighbors. 
9 Cullen, Jacob, and Levitt (2003) find little evidence that winners of randomized lotteries perform better in 
the schools that they subsequently select than losers who do not have the same degree of choice.  
10 Rothstein (2003) finds little evidence that sorting is related to school rather than peer characteristics. 
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increases in competition may be sizeable despite the mixed results of the previous literature 

exploring the impact of choice on performance.  

In this paper, we set out evidence based on a new approach for studying the effects of 

competition on school performance. At the heart of the analysis, we develop a school-specific 

measure that captures the extent to which reductions in school quality would lead to reductions in 

demand. This measure has intuitive appeal: a school is taken to operate in a competitive 

environment if slight reductions in school quality would lead to a substantial reduction in demand 

for the neighborhoods from which the school draws its students, as measured by the 

corresponding decline in local house values.  

  To estimate these elasticity measures, we begin by estimating a rich model of residential 

sorting using data on the precise location decisions of nearly a quarter of a million households in 

California. In estimating the model, we are careful to address an important endogeneity problem 

that arises due to the correlation of school quality and neighborhood sociodemographic 

characteristics with unobserved aspects of housing and neighborhood quality (a correlation that is 

induced by residential sorting), implementing a boundary fixed effects strategy closely related to 

that of Black (1999). The resulting preference estimates are reasonable in magnitude across a 

wide set of housing, schooling, and neighborhood attributes.  

  With these preference estimates in hand, we estimate a measure of the elasticity of 

demand faced by each of over 700 elementary schools in the San Francisco Bay Area, carrying 

out a series of school-specific simulations that calculate the change in demand from raising that 

school’s quality by a fixed amount, holding the quality of all other schools fixed. We then explore 

the relationship between these elasticity measures and public school performance, as measured by 

standardized tests. If schools simply maximize quality, measured by test scores given their 

available resources, then the elasticity would be irrelevant to a school’s quality-setting decision. 

In contrast, if (at the other extreme) schools were rent-seeking or prone to make mistakes in 
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allocating resources, then the elasticity would play a key role, as in the textbook theory of the 

firm.   

  Our results from this empirical exercise are striking and robust.  We find strong evidence 

that higher demand elasticities are associated with increases in public school achievement scores, 

with little effect on resource use, indicating that productivity improves.  Each reported 

specification includes controls for a wide set of student, school, household and neighborhood 

attributes (including all the variables that are included in the demand model). The same findings 

persist regardless of which student, school, and neighborhood characteristics we condition on, 

and the magnitude of the estimated effect is quite large: a one standard deviation increase in the 

competitiveness of a school’s local market within the Bay Area is associated with a 0.15 standard 

deviation increase in school performance.  

  These achievement increases are also accompanied by, if anything, slight reductions in 

teacher quality measures.  This helps to allay concerns about the role of omitted variables in these 

regressions. Such concerns are also eased by specifications that demonstrate that the predicted 

effect of our elasticity measures on neighborhood capital income is negative and insignificant. In 

terms of heterogeneous effects, while we find that all types of schools respond to increased 

competition, school responsiveness is greater in more educated communities. 

   In general, our estimated elasticity measures will depend on two factors: (i) the set of 

households served by the school (how mobile the types of households are that a school serves in 

general) and (ii) the availability of close substitutes in the education market place. By including 

controls for a wide set of student, school, household and neighborhood attributes, including all 

the variables that are included in the demand model in the analysis, we seek to isolate only the 

latter form of variation (i.e., the availability of close substitutes) in our elasticity measure. To 

provide additional confidence in our baseline results, we relate our elasticity measure to indices 

created directly from the data that characterize the availability of close substitutes in terms of 

neighborhood and school characteristics in the local geographic market. In particular, we 
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construct dissimilarity indices that describe the extent to which the schools/neighborhoods are 

isolated in quality space relative to their closest neighbors. We demonstrate that our elasticity 

measure is strongly correlated with these dissimilarity measures and that these dissimilarity 

measures are correlated with school performance in a manner consistent with our baseline results.  

These results have implications for the broader choice debate. That we find such sizeable 

effects in the San Francisco Bay Area is somewhat surprising given California’s public finance 

system, which limits the effect of local property values on school resources. This suggests that 

supply responsiveness may be even larger in other states. Moreover, it suggests that mechanisms 

at work more generally, such as monitoring which might respond to changes in local property 

values, may provide enough of an incentive for schools even in the absence of the direct tying of 

resources to property values.  The findings are of relevance to the broader choice debate. 

The rest of the paper is organized as follows: The next section motivates our empirical 

approach. Section 3 sets out the demand model and Section 4 describes its estimation and 

addresses important identification issues. Section 5 describes the rich data used in the analysis, 

and Section 6 discusses our demand estimates and the way these are used to construct a residual 

elasticity of demand for each school, based on meaningful variation in the data. Section 7 

discusses the supply-side regressions that yield our main results, and Section 8 concludes. 

 

2 SCHOOL CHOICE AND COMPETITION 

 In this section, we motivate more fully the use of the residual elasticity of demand as our 

preferred competition measure. We then describe how we use this to shed light on the direct 

effect of competition on public school performance.  

 The residual elasticity of demand measures the change in demand in response to a change 

in school quality. To see why this provides natural measure of competition, consider a stylized 

model of a local education market. The agents on the demand side comprise households with 

children; the supply side consists of teachers and school administrators. Household preferences 
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are defined over consumption, housing services and school quality, and households choose where 

to live and where to send their children to school (there may be private school alternatives) based 

on quality and cost. Suppose school quality is unidimensional, measured by standardized tests. 

Quality is the output of a public school education production technology that converts student 

characteristics, school resources, teacher quality, and discretionary teacher and administrator 

effort into a performance measure.11     

 Public school objectives are potentially complex, not least because public schools tend to 

be heavily regulated. For simplicity, we will treat the school as a single effort-making body, and 

consider two polar cases. On the one hand, public schools could aim to maximize school quality, 

given resources; on the other, public schools could aim to maximize rents, which are increasing in 

school revenues (and thus enrollment) and decreasing in effort cost.  

 If schools were quality maximizers, then quality would be set independent of 

considerations about the effect that it would have on enrollment. School personnel would simply 

set effort at the maximal level consistent with their continued participation in the schooling 

sector. Significantly, under quality maximization, the school production function would be seen 

directly in the data, and the elasticity of demand would have no effect on school performance. 

 In contrast, under rent seeking, a school would face the following trade-off: by raising 

quality (through higher effort), it would increase enrollment, and if funding were on a per-pupil 

basis, this would lead to an increase in revenues. At the same time, higher quality would require 

higher effort, which is costly. How the school would resolve this trade-off in making its optimal 

effort choice would depend in part on the size of the marginal benefit of higher effort. This, in 

turn, would depend on the response of demand (measured by school enrollment) to higher quality 

– the residual elasticity of demand. Clearly, in a rent-seeking world, the elasticity of demand 

                                                      
11 In practice, school personnel have other choice variables than effort, such as school resources. 
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would affect school production via discretionary effort choice: as the elasticity rose, so the school 

would have greater incentive to raise quality so as to avoid a significant loss of enrollment.12 

 This discussion motivates our main estimating equation, which relates measured school 

performance to a set of relevant determinants: the characteristics of students, school inputs, 

teacher characteristics, and neighborhood controls, including our measure of local competition, 

the residual elasticity of demand. Teacher and administrator effort is not observed by the 

researcher, but (depending on school objectives) might be influenced by market conditions. We 

adopt the following linear production function specification: 

 

(1) mm
En

m
nc

m
c

m EXXT εγγγ +++= ''  

  

where T  is school m’s average test score, Xc
m is a vector of the characteristics of the children that 

attend the school m, Xn
m represents a set of neighborhood controls, Em is the elasticity of demand, 

γc, γn and γE are coefficients to be estimated, and εm is a random error term. This is the equation 

we will take to the data, with interest focusing on the γE coefficient. 

 Beyond the stylized model, there are a variety of reasons why public schools might be 

responsive to the residual elasticity of demand, consistent with a positive estimate for γE. A high 

elasticity might make homeowners more sensitive to school behavior, leading to better 

monitoring and more active political involvement in elections for school board and other local 

officials. In some school finance regimes, property values determine local property taxes and thus 

influence school revenue; thus schools would have an incentive in such settings to care about the 

effect of school quality on local property prices. Conversely, there are clear reasons why schools 

might not be responsive: teaching and administrative positions afford a good deal of job security; 

                                                      
12 In practice, it is unlikely that schools are pure rent-seekers. However, to the extent that they have some 
discretion over quality setting, and depart from pure quality maximization, so the elasticity of demand will, 
to some degree, influence school quality setting. 
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and political pressure might be ineffective if elections were for positions (such as mayor) where 

schooling is only one among many competing issues. 

 

Construction of the Elasticity 

 It is an empirical question just how strong these incentives to respond to competition are. 

To shed light on this issue, we estimate the key equation (1) above using a rich data set from the 

San Francisco Bay Area. For this purpose, we construct a set of school-specific elasticities in 

which demand is measured in terms of local housing values,13 and quality is measured using 

school average test scores, conditioning on school and student characteristics. The corresponding 

residual elasticity for a given school captures the change in local house prices as school quality 

changes. 

 The residual elasticities are not directly observed in the data. Rather, we estimate them in 

the following way: first, rich Census data are used to estimate a flexible demand system, taking 

careful account of endogeneity issues on the demand side of the market and making explicit the 

way that individual demands aggregate up to form a housing market equilibrium using an 

equilibrium model of the housing market. We then use these demand estimates in combination 

with the equilibrium model to perform a series of simple counterfactual experiments. In 

particular, for each of 708 elementary schools in the Bay Area, we use the equilibrium model to 

conduct a simple counterfactual simulation, raising its average test score by 0.1 standard 

deviation (7.76 test score points) and calculating the new housing market equilibrium. This has 

the effect of increasing house values in the corresponding neighborhood catchment area; the 

resulting predicted change in house values, given the change in school quality, is then used in the 

estimating various specifications of the regression shown in equation (1). 

                                                      
13 Alternatively, demand could be measured based on student enrollment (or even enrollment of specific 
types of student). We intend to explore alternative measures in subsequent analyses. 
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 Unlike prior work, it is important to note that our approach provides estimates of school-

specific elasticities, rather than MSA-level average choice indices. Constructing our elasticities 

from a single financing regime, rather than looking across MSAs, has the advantage that one 

would expect the incentives to respond to competition to vary with financing: our approach will 

better allow us to identify the direct effect of competition. We note that under California’s local 

public finance system, the marginal dollar comes from the state rather than from local property 

taxes. This might be expected to provide weaker incentives to respond to competition, as schools 

are less able to take advantage of quality improvements directly. In turn, it is likely to provide 

lower bound on incentives to respond to competition, worth remembering when it comes to 

interpreting the economic significance of our results.  

 

3 DEMAND 

To measure the impact of racial sorting on the consumption of neighborhood amenities, 

we now turn to a model of the residential location decision of households in the Bay Area. In 

developing such a model, our goal is to provide the simplest analytical tool that can account for 

(i) heterogeneity in both household attributes and the attributes of houses/neighborhoods and (ii) 

the endogenous determination of housing prices and neighborhood sociodemographic 

compositions.  

To this end, we adopt the equilibrium model of an urban housing market developed in 

Bayer, McMillan, and Rueben (2005). This equilibrium model consists of two key elements: the 

household residential location decision problem and a market-clearing condition. While 

maintaining a simple structure, the model allows households to have heterogeneous preferences 

defined over housing and neighborhood attributes in a very flexible way; it also allows for 

housing prices and neighborhood sociodemographic compositions to be determined in 

equilibrium. In estimating the model, we are careful to account for the correlation that naturally 

arises between unobserved housing and neighborhood attributes and both housing prices and 
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neighborhood composition.14 Having estimated the model, we then use it to construct our 

measures of the elasticity of demand faced by each school. 

 

The Residential Location Decision. We model the residential location decision of each 

household as a discrete choice of a single residence from a set of house types available in the 

market. The utility function specification is based on the random utility model developed in 

McFadden (1973, 1978) and the specification of Berry, Levinsohn, and Pakes (1995), which 

includes choice-specific unobservable characteristics. Let Xh represent the observable 

characteristics of housing choice h, including characteristics of the house itself (e.g., size, age, 

and type), its tenure status (rented vs. owned), and the characteristics of its neighborhood (e.g., 

crime, land use, and topography). As above, let Th represent the quality of the local elementary 

school as measured by its average test score. We use the notation capital letter Zh to represent the 

average sociodemographic characteristics of the corresponding neighborhood, writing it 

separately from the other housing and neighborhood attributes to make explicit the fact that these 

characteristics are determined in equilibrium. Let ph denote the price of housing choice h and, 

finally, let dh
i denote the distance from residence h to the primary work location of household i. 

Each household chooses its residence h to maximize its indirect utility function Vh
i:  

 

(2) i
hh

i
h

i
dh

i
ph

i
Zh

i
Th

i
X

i
hh

dpZTXVMax εξααααα ++−−++=
)(

. 

 

                                                      
14 A long line of theoretical studies, including important papers by Epple, Filimon and Romer (EFR) (1984, 
1993), Benabou (1993, 1996), Anas and Kim (1995), Anas (2002), Fernandez and Rogerson (1996, 1998), 
and Nechyba (1999, 2000) have developed and used models of sorting to analyze the way that 
interdependent individual decisions in the housing market aggregate up to determine the equilibrium 
structure of a metropolitan area. In recent years, a new line of empirical research has sought to take these 
models to the data. Epple and Sieg (1999) develop an estimator for the equilibrium sorting model of EFR, 
providing the first unified treatment of theory and empirics in the literature. In the same vein, Sieg et al. 
(2004) use this approach to explore the general equilibrium impacts of air quality improvements in the Los 
Angeles Basin.  
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The error structure of the indirect utility is divided into a correlated component associated with 

each housing choice that is valued the same by all households, ξh, and an individual-specific term, 

εi
h. A useful interpretation of ξh is that it captures the unobserved quality of each housing choice, 

including any unobserved quality associated with its neighborhood.  

Each household’s valuation of choice characteristics is allowed to vary with its own 

characteristics, zi, including education, income, race, employment status, and household 

composition. Specifically, each parameter associated with housing and neighborhood 

characteristics and price, αi
j, for j ∈ {X, T, Z, d, p}, varies with a household’s own characteristics 

according to: 

 

(3) ∑
=

+=
K

k

i
krjj

i
j z

1
0 ααα , 

 

with equation (3) describing household i’s preference for choice characteristic j.  

This specification of the utility function gives rise to a horizontal model of sorting in 

which households have preferences defined distinctly over each choice characteristic including 

both school quality and neighborhood sociodemographic characteristics.15 This contrasts with 

vertical models, which restrict households to have preferences over a single locational index, 

thereby constraining households to have the same preference ordering across locations.16 The 

                                                      
15 The horizontal specification also captures the geography of the urban housing market very naturally, 
allowing households to have preferences over neighborhoods depending on the distance from their 
employment locations. This gives rise to variation in the aggregate demand for housing in various 
neighborhoods throughout the metro area, thereby increasing equilibrium housing prices in neighborhoods 
near employment centers. 
16 It is important to point out that this flexible feature of our model is made possible because we abstract 
from issues related to local politics. As Epple, Filimon, and Romer (1993) note, incorporating local politics 
into models of residential sorting requires restrictions to be placed on preferences in order to guarantee the 
existence of an equilibrium. Important recent papers by Epple and Sieg (1999) and Epple, Romer and Sieg 
(2001) estimate equilibrium models that include voting over the level of public goods, restricting 
households to have shared rankings over a single public goods  index. We view our model as having a 
comparative rather than absolute advantage over the papers in that line of the literature, better suited for an 
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additional flexibility of the horizontal model is especially relevant for this paper as it is the 

magnitude of the heterogeneity in preferences for neighborhood sociodemographic characteristics 

that will determine the extent to which the initial stratification induced by the variation in school 

quality across the metropolitan area is reinforced by additional sorting due to preferences for 

one’s neighbors.  

 

Characterizing the Housing Market. As with all models in the broad sorting literature, the 

existence of a sorting equilibrium is much easier to establish if the individual residential location 

decision problem is smoothed in some way. To this end, we assume that the housing market can 

be fully characterized by a set of housing types that is a subset of the full set of available houses, 

letting the supply of housing of type h be given by Sh. We also assume that each household 

observed in the sample represents a continuum of households with the same observable 

characteristics, with the distribution of idiosyncratic tastes εi
h mapping into a set of choice 

probabilities that characterize the distribution of housing choices that would result for the 

continuum of households with a given set of observed characteristics.17     

Given the household’s problem described in equations (2)-(3), household i chooses 

housing type h if the utility that it receives from this choice exceeds the utility that it receives 

from all other possible house choices - that is, when  

 

(4) hkWWWWVV i
h

i
k

i
k

i
h

i
k

i
k

i
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i
h

i
k

i
h ≠∀−>−⇒+>+⇒> εεεε   

 

where Wi
h includes all of the non-idiosyncratic components of the utility function Vi

h. As the 

inequalities in (4) imply, the probability that a household chooses any particular choice depends 

                                                                                                                                                              
institutional setting such as that which holds in Californian, where Proposition 13 leaves almost no 
discretion over property tax rates or the level of public goods spending at the local level. 
17 For expositional ease and without loss of generality, let the measure of this continuum be one.  
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in general on the characteristics of the full set of possible house types. Thus the probability Pi
h 

that household i chooses housing type h can be written as a function of the full vectors of housing 

and neighborhood characteristics (both observed and unobserved) and prices {X, Z, p, ξ}:18 

 

(5) ),pX,Z,,( ξi
h

i
h zfP =  

 

as well as the household’s own characteristics zi. 

Aggregating the probabilities in equation (5) over all observed households yields the 

predicted demand for each housing type h, Dh: 

 

(6) 
∑=

i

i
hh PD .

 

 

In order for the housing market to clear, the demand for houses of type h must equal the supply of 

such houses and so: 

 

(7) hSPhSD h
i

i
hhh ∀=⇒∀= ∑, .  

 

Given the decentralized nature of the housing market, prices are assumed to adjust in order to 

clear the market.  The implications of the market clearing condition defined in equation (6) for 

prices are very standard, with excess demand for a housing type causing price to be bid up and 

excess supply leading to a fall in price. Given the indirect utility function defined in (1) and a 

fixed set of housing and neighborhood attributes, Bayer, McMillan, and Rueben (2004) show that 

a unique set of prices (up to a scale) clears the market.  

                                                      
18 For the purposes of characterizing the equilibrium properties of the model, we include an individual’s 
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Given that some neighborhood attributes are endogenously determined by the sorting 

process itself, we define a sorting equilibrium as a set of residential location decisions and a 

vector of housing prices such that the housing market clears and each household makes its 

optimal location decision given the location decisions of all other households. In equilibrium, the 

vector of neighborhood sociodemographic characteristics along with the corresponding vector of 

market clearing prices must give rise to choice probabilities in equation (4) that aggregate back 

up to the same vector of neighborhood sociodemographics.19 Whether this model gives rise to 

multiple equilibria depends on the distributions of preferences and available housing choices as 

well as the utility parameters. In general, it is impossible to establish that the equilibrium is 

unique a priori. However, estimation of the model does not require the computation of an 

equilibrium nor uniqueness more generally, as we describe in the next section. We discuss the 

issue of uniqueness further in the context of calculating our demand elasticity measures below. 

 

4 DEMAND ESTIMATION 

Estimation of the model follows a two-stage procedure closely related to that developed 

in Berry, Levinsohn, and Pakes (1995). This section outlines the estimation procedure; a rigorous 

presentation is contained in Bayer, Ferreira, and McMillan (2003) and is included in a technical 

appendix. It is helpful in describing the estimation procedure to first introduce some notation. In 

particular, rewrite the indirect utility function as:  

 

(8) i
h

i
hh

i
hV ελδ ++=    

where 

                                                                                                                                                              
employment location in zi and the residential location in Xh. 
19 Bayer, McMillan, and Rueben (2004) establish the existence of a sorting equilibrium as long as (i) the 
indirect utility function shown in equation (2) is decreasing in housing prices for all households; (ii) 
indirect utility is a continuous function of neighborhood sociodemographic characteristics; and (iii) ε is 
drawn from a continuous density function. 
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In equation (9), δh captures the portion of utility provided by housing type h that is common to all 

households, and in (10), k indexes household characteristics. When the household characteristics 

included in the model are constructed to have mean zero, δh is the mean indirect utility provided 

by housing choice h. The unobservable component of δh, ξh, captures the portion of unobserved 

preferences for housing choice h that is correlated across households, while εh
i represents 

unobserved preferences over and above this shared component.  

 The first step of the estimation procedure is equivalent to a Maximum Likelihood 

estimator applied to the individual location decisions taking prices and neighborhood 

sociodemographic compositions as given,20 returning estimates of the heterogeneous parameters 

in λ and mean indirect utilities, δh. This estimator is based simply on maximizing the probability 

that the model correctly matches each household observed in the sample with its chosen house 

type. In particular, for any combination of the heterogeneous parameters in λ and mean indirect 

utilities, δh, the model predicts the probability that each household i chooses house type h. We 

assume that εh
i is drawn from the extreme value distribution, in which case this probability can be 

written: 

 

                                                      
20 Formally, the validity of this first stage procedure requires the assumption that the observed location 
decisions are individually optimal, given the collective choices made by other households and the vector of 
market-clearing prices and that households are sufficiently small such that they do not interact strategically 
with respect to particular draws on ε. This ensures that no household’s particular idiosyncratic preferences 
affect the equilibrium and the vector of idiosyncratic preferences ε is uncorrelated with the prices and 
neighborhood sociodemographic characteristics that arise in any equilibrium. For more discussion, see the 
Technical Appendix. 
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Maximizing the probability that each household makes its correct housing choice gives rise to the 

following quasi-log-likelihood function:  

 

(12) ∑∑=
i h
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where Ii
h is an indicator variable that equals 1 if household i chooses house type h in the data and 

0 otherwise. The first stage of the estimation procedure consists of searching over the parameters 

in λ and the vector of mean indirect utilities to maximize l~ . Notice that the quasi-likelihood 

function developed here is based solely on the notion that each household’s residential location is 

optimal given the set of observed prices and the location decisions of other households.  

 

The Endogeneity of School Quality and Neighborhood Sociodemographic Composition. 

Having estimated the vector of mean indirect utilities in the first stage of the estimation, the 

second stage of the estimation involves decomposing δ into observable and unobservable 

components according to the regression equation (9).21 In estimating equation (9), important 

endogeneity problems need to be confronted. To the extent that house prices partly capture house 

and neighborhood quality unobserved to the econometrician, so the price variable will be 

endogenous. Estimation via least squares will thus lead to price coefficients biased towards zero, 

producing misleading willingness-to-pay estimates for a whole range of choice characteristics. 

This issue arises in the context of any differentiated products demand estimation and we describe 

the construction of an instrument for price in the Technical Appendix.  

                                                      
21 Notice that the set of observed residential choices provides no information that distinguishes the 
components of δ. That is, however δ is broken into components, the effect on the probabilities shown in 
equation (10) is identical. 
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 A second identification issue involves the correlation of neighborhood sociodemographic 

characteristics Z and school quality with unobserved housing and neighborhood quality, ξh. To 

properly estimate preferences in the face of this endogeneity problem, we adapt a technique 

previously developed by Black (1999). Black’s strategy makes use of a sample of houses near 

school attendance zone boundaries, estimating a hedonic price regression that includes boundary 

fixed effects. Intuitively, the idea is to compare houses in the same local neighborhood but on 

opposite sides of the boundary, exploiting the discontinuity in the right to attend a given school.  

Differences in valuation will then reflect differences in school quality, controlling for other 

neighborhood characteristics (both observed and unobserved).    

 There are plausible reasons to think that households will sort with respect to such 

boundaries – an important theme in the work of Nechyba (1999, 2000).  Thus, while boundary 

fixed effects are likely to control well for differences in unobserved fixed factors, neighborhood 

sociodemographics are likely to vary discontinuously at the boundary. This is important.  It 

implies that boundary fixed effects isolate variation in both school quality and neighborhood 

sociodemographics in a small region in which unobserved fixed features (e.g., access to the 

transportation network) are likely to vary only slightly, thereby providing an appealing way to 

account for the correlation of both school quality and neighborhood sociodemographics with 

unobservable neighborhood quality. 

 We incorporate school district boundary fixed effects when estimating equation (11).22 In 

particular, we create a series of indicator variables for each Census block that equal one if the 

block is within a given distance of each unique school district boundary in the metropolitan area 

(e.g., Palo Alto-Menlo Park).23 After first describing the basic features of the dataset, we show the 

                                                      
22 While we report preference estimates based on school district boundaries below, it is important to add 
that these are qualitatively similar to those obtained in a preliminary analysis using a large sample of school 
attendance zone boundaries that we have been assembling for our sample and time period.  
23 A number of empirical issues arise in incorporating school district boundary fixed effects into our 
analysis. A central feature of local governance in California helps to eliminate some of the problems that 
naturally arise with the use of school district boundaries, as Proposition 13 ensures that the vast majority of 
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variation in school quality and neighborhood sociodemographics at school district boundaries in 

the next section, drawing attention to clear discontinuities in neighborhood sociodemographics at 

the boundary. 

 

5 DATA  

The analysis conducted in this paper is facilitated by access to restricted Census 

microdata for 1990. These restricted Census data provide the detailed individual, household, and 

housing variables found in the public-use version of the Census, but also include information on 

the location of individual residences and workplaces at a very disaggregate level. In particular, 

while the public-use data specify the PUMA (a Census region with approximately 100,000 

individuals) in which a household lives, the restricted data specify the Census block (a Census 

region with approximately 100 individuals), thereby identifying the local neighborhood that each 

individual inhabits and the characteristics of each neighborhood far more accurately than has 

been previously possible with such a large-scale data set.  

We use data from six contiguous counties in the San Francisco Bay Area: Alameda, 

Contra Costa, Marin, San Mateo, San Francisco, and Santa Clara. We focus on this area for a 

number of reasons. First, this geographic area is reasonably self-contained, and is sizeable along a 

number of dimensions, including over 1,100 Census tracts, and almost 39,500 Census blocks – 

the smallest unit of aggregation in the data. The sample consists of 242,100 households.  

Very relevant for this analysis, the use of data from California makes it reasonable to use 

school district rather than school attendance zone boundaries in the analysis. In particular, 

Proposition 13 ensures that local jurisdictions have almost no discretion over property tax rates or 

the level of public good spending including school spending. In this way, unlike almost anywhere 

else in the country, one would not expect much variation in property values across school district 

                                                                                                                                                              
school districts within California are subject to a uniform effective property tax rate of one percent. 
Concerning the width of the boundaries, we experimented with a variety of distances and report the results 
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boundaries to arise due to differential property tax rates in California. This same feature the 

public finance system may also diminish the overall strength of Tiebout-type sorting in 

California, as households are not free to select different tax rates and local public goods packages 

in each jurisdiction. For this reason we expect our analysis to generally understate the importance 

of school-related sorting relative to other states. 

The Census provides a wealth of data on the individuals in the sample – race, age, 

educational attainment, income from various sources, household size and structure, occupation, 

and employment location. In addition, it provides a variety of housing characteristics: whether the 

unit is owned or rented, the corresponding rent or owner-reported value,24 number of rooms, 

number of bedrooms, type of structure, and the age of the building. We use these housing 

characteristics directly, and also construct neighborhood variables, such as neighborhood racial, 

education and income distributions, based on the households within the same Census block group 

(a Census region containing approximately 500 housing units). We merge additional data 

describing local conditions with each house record, constructing variables related to crime rates, 

land use, local schools, topography, and urban density. For each of these measures, a detailed 

description of the process by which the original data were assigned to each house is provided in a 

Data Appendix. The list of the principal housing and neighborhood variables used in the analysis, 

along with means and standard deviations, is given in the first two columns of Table 1. 

 

School Assignment and School Quality. While we have an exact assignment of Census blocks 

to school districts, in the absence of comprehensive information about within-district school 

                                                                                                                                                              
for 0.25 miles, as these were more precise due to the larger sample size. 
24 As described in the Data Appendix, we construct a single price vector for all houses, whether rented or 
owned. Because the implied relationship between house values and current rents depends on expectations 
about the growth rate of future rents in the market, we estimate a series of hedonic price regressions for 
each of over 40 sub-regions of the Bay Area housing market. These regressions return an estimate of the 
ratio of house values to rents for each of these sub-regions and we use the average of these ratios for the 
Bay Area, 264.1, to convert monthly rent to house value for the purposes of reporting results at the mean. 
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attendance areas,25 we employ the following approach for linking each Census block to a school: 

For a given Census block, we calculate the distance to each school in its district. We then first 

assign the Census block to the closest school within its district. Using this closest school 

assignment, we can then calculate a predicted enrollment for each school (calculated by summing 

over the school-aged children in each Census block assigned to a school) and compare this 

measure to the actual enrollment of the school. To correct discrepancies in predicted versus actual 

enrollment, we then use an intuitive procedure to adjust the assignment of Census blocks to 

schools so as to ensure that predicted enrollments equal their actual counterparts in each school in 

each district. We describe this procedure in detail in the Data Appendix; the results are not 

sensitive to this adjustment. 

 As our measure of school quality, we use the average test score for each school, averaged 

over two years. Averaging helps to reduce any year-to-year noise in the measure. When variables 

that characterize the sociodemographic composition of the school or surrounding neighborhood 

are included in the analysis, the estimated coefficient on average test score picks up what 

households are willing to pay for an improvement in average student performance at a school, 

holding the sociodemographic composition constant. While the average test score is an imperfect 

measure of school quality, it has the advantage of being easily observed by both parents and 

researchers and consequently has been used in most analyses that attempt to measure demand for 

school quality.  

 

Boundaries. Table 1 displays descriptive statistics for various samples related to the boundaries. 

The first two columns report means and standard deviations for the full sample while the third 

                                                      
25 The preference estimates based on school district boundaries reported below are qualitatively similar to 
those obtained in a preliminary analysis using a large sample of school attendance zone boundaries that we 
have been assembling for our sample and time period.  
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column reports means for the sample of houses within 0.25 miles of a school district boundary.26 

Comparing the first column to the third column of the table, it is immediately obvious that the 

houses near school district boundaries are not fully representative of those in the Bay Area as a 

whole. To address this problem, we create sample weights for the houses near the boundary.27 

Column 7 of Table 1 shows the resulting weighted means, indicating that using these weights 

makes the sample near the boundary much more representative of the full sample. 

 The fourth and fifth columns report means for houses within 0.25 miles of a boundary, 

comparing houses on the high versus low average test score side of the each boundary; the sixth 

column reports t-tests for the difference in means. Comparing these differences reveals that 

houses on the high side cost $53 more per month and are assigned to schools with test scores that 

are 43-point higher on average.28 Moreover, houses on the high quality side of the boundary are 

much more likely to be inhabited by white households and households with more education and 

income. These types of across-boundary differences in sociodemographic composition are what 

one would expect if households sort on the basis of preferences for school quality. While far less 

significant, other housing characteristics do vary across the boundaries as well. Consequently, we 

expect the use of boundary fixed effects to control for much of the variation in unobserved 

housing and neighborhood quality, thereby giving rise to more accurate estimates of preferences 

for neighborhood sociodemographics and school quality.  

 

 

                                                      
26 We experimented with a variety of distances and report the results for 0.25 miles, as these were more 
precise due to the larger sample size.  
27 The following procedure is used: we first regress a dummy variable indicating whether a house is in a 
boundary region on the vector of housing and neighborhood attributes using a logistic regression. Fitted 
values from this regression provide an estimate of the likelihood that a house is in the boundary region 
given its attributes. We use the inverse of this fitted value as a sample weight in subsequent regression 
analysis conducted on the sample of houses near the boundary. 
28 As described in the Data Appendix, we construct a single monthly price vector for all houses, whether 
rented or owned.  
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6 DEMAND ESTIMATES 

 We noted in Section 3 that estimation of the full model proceeds in two stages. The first 

stage recovers interaction parameters and a vector of mean indirect utilities; the second stage 

returns the components of mean indirect utility. To give the reader a sense of the interplay 

between the estimates of the demand for school quality and sociodemographic characteristics of 

neighbors, we report results for two main specifications, which respectively exclude and include 

variables that characterize the racial composition, average educational attainment, and average 

income of the neighborhood (Census block group). To make the discussion of these estimates 

more transparent, we transform the estimates so that they can be described in terms of marginal 

willingness-to-pay measures (MWTP), reporting these estimates in Tables 2-4.  

 Table 2 reports the implied measures of the mean MWTP for school average test scores 

and other selected housing and neighborhood attributes for six specifications of the mean indirect 

utility regression.29 Results are reported for the two main specifications, which exclude and 

include neighborhood sociodemographic variables, respectively. For each of these main 

specifications, results are reported for the full sample and for a sample of houses within 0.25 

miles of school district boundaries, with and without including boundary fixed effects. In all 

cases, when the sample of houses is restricted to those within 0.25 miles of a boundary, sample 

weights (as described in Section 5) are used in order to make this sample as close to 

representative of the full sample as possible. Comparing columns 1 and 2 or columns 4 and 5, it is 

clear that results are very similar whether the full sample or the weighted sub-sample of houses 

near a school district boundary is used. 

The first three columns of Table 2 report results for specifications that exclude 

neighborhood sociodemographics. In this case, the estimated mean MWTP for a one standard 

deviation increase in school average test score declines from $123 to $82 in monthly rent 
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($21,500 in house value) when boundary fixed effects are included in the analysis. The final three 

columns report results for analogous specifications that include neighborhood sociodemographic 

characteristics. The coefficient on the average test score in these specifications returns the 

average of what households are willing to pay for a standard deviation increase in the average test 

score conditional on the sociodemographic characteristics of the neighborhood, which are also 

indicative of the sociodemographic characteristics of the local school. The estimated MWTP for a 

one standard deviation increase in the average test score in this case declines to $26 in monthly 

rent ($6,900 in house value), which is approximately 2.4 percent of the average house price index 

for our Bay Area sample.30  

These results make clear that much of what initially appears in the specification without 

neighborhood sociodemographics to be a significant willingness on the part of households to pay 

for school quality is instead more properly attributed to the characteristics of neighbors or peers. 

That the resulting MWTP for school average test scores is relatively small is exactly what one 

would expect if households have difficulty inferring the quality of a school from published 

average test score data.31 That is, one would expect households to place a relatively small weight 

on this measure when choosing neighborhoods if the signal that the published average test score 

provided about actual school quality was small relative to the noise that it contains related to 

differences in the underlying composition of individuals taking the test. In fact, some of the 

weight that parents place directly on neighborhood sociodemographics may result from a belief 

that these provide a better indication than the test score of the quality of the education that their 

children will receive in the local schools, especially if parents perceive peer effects to be 

important.  

                                                                                                                                                              
29 The specifications of the mean indirect utility regressions are reported in Appendix Table 1. The mean 
MWTP measures reported in Table 2 are calculated by dividing the coefficient associated with each choice 
characteristic by the coefficient on price. 
30 This is very similar to the estimates of Black (1999) and Kane, Staiger, and Riegg (2004). 
31 This is especially true in 1990, which pre-dates most concerted efforts on the part of states to provide 
information to households about the quality of the local school. 
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Before turning to the results related to heterogeneity in preferences, it is important to 

point out that the final two columns of Table 2 also show the impact of including boundary fixed 

effects on the estimates of mean preferences for neighborhood sociodemographic characteristics. 

Comparing these columns reveals the pattern of results that one would expect if boundary fixed 

effects control in part for unobserved neighborhood quality and unobserved quality is positively 

correlated with neighborhood income and education and negatively correlated with the fraction of 

non-white households.32 Thus boundary fixed effects seem to be effective in controlling for fixed 

aspects of unobserved neighborhood quality that are correlated with neighborhood 

sociodemographics, and thus provide an attractive way of estimating preferences for both school 

quality and neighborhood sociodemographic characteristics in the presence of this important 

endogeneity problem. 

  

Heterogeneity in Willingness-to-Pay 

 The interaction parameters estimated in the first stage for the specifications that exclude 

and include neighborhood sociodemographics, respectively, are reported in Appendix Tables 2 

and 3. These specifications correspond to the mean MWTP estimates reported in columns 3 and 6 

of Table 2, respectively. In each case, the model controls simultaneously for the effect of each of 

a series of household characteristics (income, education, race, work status, age, and household 

structure) on the marginal willingness-to-pay for a variety of housing and neighborhood 

attributes, including the average test score of the local school. The model also captures the spatial 

                                                      
32 The fact that the estimated coefficient on the average test score rises from $20 to $26 when boundary 
fixed effects are included reflects that fact it is positively correlated with neighborhood income and 
education and negatively correlated with the fraction of non-white households. Thus, the estimated 
coefficient on the average test score tends to rise as the coefficients on these other variables change, as they 
do in moving from column 5 to column 6 in Table 2. 
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aspect of the housing market by allowing households to have preferences over commuting 

distance.33   

 Table 3 converts the estimates of the heterogeneity in MWTP for the average test score 

into dollar terms. The two columns of the table report results for specifications that exclude and 

include neighborhood sociodemographic characteristics, respectively. Thus the first row of this 

table reports the estimated mean MWTP for the change listed in each column heading: for 

example, the first entry reports the $82 mean MWTP for a one standard deviation increase in the 

average test score, conditional on neighborhood sociodemographics initially reported in column 3 

of Table 2. The remaining rows report the difference in MWTP associated with the comparison of 

household characteristics shown in the row heading, the second row showing how a household’s 

MWTP changes with an increase of $100,000 in income.    

 Analogous to the effect of including neighborhood sociodemographic variables on the 

estimates of the mean MWTP reported in Table 2, including these variables decreases the 

magnitude of the estimated heterogeneity in demand for school quality, decreasing the coefficient 

associated with household income by 60 percent, with education by 75 percent, and with race 

(which may proxy in part for wealth) by upwards of 80 percent. The estimates of the specification 

that includes neighborhood sociodemographics also return the expected positive additional 

MWTP associated with the presence of school-aged children. Table 4 reports analogous measures 

of the heterogeneity in MWTP for selected housing and neighborhood attributes when including 

neighborhood sociodemographic characteristics.  This reveals, for example, that increases in 

household income are typically associated with large increases in the demand for housing 

attributes, and that college-educated households are willing to pay a substantial premium relative 

to less-educated households to live with more educated neighbors. Specifically, they are willing 

                                                      
33 We treat a household’s primary work location as exogenous, calculating the distance from this location to 
the location of the neighborhood in question. MWTP estimates for other housing and neighborhood 
attributes based on a specification without commuting distance are qualitatively similar except for variables 
that are strongly correlated with employment access, such as population density. 
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to pay around $59 per month more than less-educated households for a 10 percent increase in 

college-educated neighbors. Not surprisingly, strong racial interactions are also at work in the 

housing market, leading to significant sorting along this dimension as well.34 

 

Constructing Measures of the Residual Elasticity of Demand Faced by Each School 

 Given the estimates of the demand system, we now calculate a measure of the residual 

elasticity faced by each school. For each of 708 elementary schools in the Bay Area, we use the 

equilibrium model to conduct a simple counterfactual simulation, raising each school’s average 

test score by a 0.1 standard deviation (7.76 points on a mean of 522) and then calculating the new 

housing market equilibrium. In every case, this has the effect of increasing house values in the 

corresponding neighborhood catchment area. The elasticity measure that we use in the subsequent 

analysis consists of the estimated change in average local property values per standard deviation 

increase in test score. Across the 708 elementary schools, the corresponding increase in house 

values following this increase ranges from $1,400 to $19,600 ($5-$80 in monthly house price), 

with a mean of $11,800 ($45.5) and a standard deviation of $3,200 ($12.4).35  

 Figure 1 shows the geographic distribution of the estimated elasticities across the Bay 

Area. In the figure, the area of the circle indicates the magnitude of the estimated elasticity. In 

general, a school’s elasticity of demand (as measured by the gradient of house values with respect 

to school quality) will be a function of two features of its environment: (i) the willingness of the 

                                                      
34 Note that the strength of the estimated racial interactions reported in Table 4 may reflect the presence of 
centralized discriminatory practices in the market in addition to the direct preferences of households to live 
with others of the same race. See Bayer, McMillan, and Rueben (2005) for more discussion of this issue. 
35 The basic structure of the computation of the new equilibrium consists of a loop within a loop. Having 
lowered the test score of a given school by a standard deviation, we first calculate a new set of prices that 
clears the market; Berry (1994) ensures that there is a unique set of market clearing prices up to scale. 
Using these new prices and the initial sociodemographic composition of each neighborhood, we calculate 
the probability that each household chooses each housing type, and aggregating these choices to the 
neighborhood level, the corresponding predicted sociodemographic composition of each neighborhood. We 
replace the initial neighborhood sociodemographic measures with these new measures and start the loop 
again – i.e., calculate a new set of market clearing prices with these updated neighborhood 
sociodemographic measures. We continue this process until the neighborhood sociodemographic measures 
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households that it serves to pay for improvements in school quality, and (ii) the availability of 

close substitutes in geographically proximate neighborhoods. The former type of variation in the 

elasticity measure is problematic from the point of view of estimating the productive effect of 

competition in that a household’s willingness-to-pay (WTP) for school quality is likely to be 

correlated with the performance of its children on standardized tests for reasons that have nothing 

to do with the school itself. The latter form of variation is much less problematic in that a school 

and its corresponding neighborhood in any quality range can be located such that it has either 

many similar or dissimilar neighboring school catchment areas. It is this latter form of variation 

that we would like to exploit in our analysis. 

 Looking directly at the model of residential sorting estimated above, it is clear that the 

household sociodemographic characteristics included in the model, such as parental education, 

increase a household’s estimated WTP for school quality and therefore increase the estimated 

elasticity of demand for schools that serve these households. Thus in every specification of the 

analysis that follows, we include a complete set of controls for neighborhood averages of all the 

household sociodemographic and other housing and neighborhood measures included in our 

demand estimation. Without including this full set of controls, the elasticity measure would be 

mechanically correlated with the average school test score: because highly educated households 

are willing to pay more for school quality and select in to schools with higher test scores, the 

elasticity of demand for these schools is mechanically greater. When this full set of controls is 

included in estimating our main regression equations, however, this mechanical correlation is 

eliminated; doing so has the effect of reducing the effective variation in our main elasticity 

measure to the variation related to the availability of close substitutes in the local market. 

 Figure 2 shows the geographic distribution of the remaining variation in the estimated 

elasticities across the Bay Area once the full set of sociodemographic and other housing and 

                                                                                                                                                              
converge. The household location decisions corresponding to the final sociodemographic measures along 
with the vector of housing prices that clears the market then represents the new equilibrium. 
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neighborhood attributes included in the demand model have been conditioned out (i.e., the 

residual from a regression of our elasticity measure on this complete set of controls). For those 

familiar with the Bay Area, even a quick glance comparing Figure 1 and Figure 2 reveals that the 

remaining variation in the elasticity measure is not a simply a function of neighborhood 

socioeconomic conditions. For expositional ease, we work with a standardized version of this 

conditional elasticity measure throughout the remainder of our analysis. (Means and standard 

deviations for the school-related variables summarized for the 708 elementary schools used in the 

subsequent analysis are shown in Table 5.)   

 To demonstrate that the variation in these conditional elasticity measures is indeed related 

to the notion of the proximity of close substitutes, we construct a series of dissimilarity indices 

based on average house prices, neighborhood income, and neighborhood education. Using the 

neighborhood catchment areas for the nearest 10 schools, we construct a measure of the average 

absolute difference between the measure of the school in question and each of these neighbors. 

Thus a high measure for a given dissimilarity index indicates that a school is quite distinct from 

its geographic neighbors in the corresponding dimension (e.g., price, income, education).36  

 These dissimilarity indices provide a simple (albeit crude) measure of the availability of 

close substitute neighborhoods in the local market. Table 6 shows the correlation between these 

dissimilarity indices and our conditional elasticity measure (once the full set of 

sociodemographic, housing, and other neighborhood measures used in estimating the demand 

model have been conditioned out). In each case, the correlation is negative, indicating that 

schools that are differentiated from their neighbors in terms of sociodemographic and housing 

characteristics tend to have lower elasticities ceteris paribus. This suggests that the remaining 

                                                      
36 The point of this exercise is not to suggest that the set of the 10 closest neighboring schools necessarily 
contains a school’s closest substitutes. High quality schools separated by large distances may be closer 
substitutes for one another than a high quality and low quality pair of neighboring schools. We use this 
measure primarily to show that our estimated elasticity measure is correlated with a clear measure of the 
availability of close substitutes, acknowledging that this constructed measure is not itself a perfect proxy.  
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variation in our elasticity measure is indeed picking up the type of variation that we would like to 

exploit in estimating equation (1).  

 Finally, to demonstrate that our conditional elasticity measures are based on variation in 

the data driven by the geography of the Bay Area rather than the types of households in the local 

neighborhood, we conducted the following diagnostic test. First, we re-calculated an estimate of 

the residual elasticity of demand using a model of residential sorting that did not include distance 

to work (i.e., a model that ignored geography). We then included these alternate elasticities in 

average test score regressions analogous regressions to those reported below in Table 7.  In each 

case, the coefficients on the demand elasticity were essentially zero and statistically insignificant. 

This diagnostic test gives us confidence that any mechanical correlation associated with the 

increased willingness of some households to pay for school quality (e.g., highly-educated) is 

eliminated by the inclusion of a full set of controls for the variables used in the demand 

estimation. It also makes clear the importance of including geography in the demand estimation; 

it is the notion of the availability of close substitutes in geographic space that forms the basis for 

the remaining variation in our elasticity measures.37  

 

7 SUPPLY-SIDE REGRESSIONS 

We now turn to our main regression analysis. In particular, we report results for the 

specification shown in equation (1) using a variety of school characteristics (output and input) as 

the dependent variable and a series of six distinct sets of control variables. (The variables 

included in each set of control variables are listed in Appendix Table 4.)  

Table 7 reports results when the average 4th grade test score is used as the dependent 

variable. As mentioned above, because we are using the conditional elasticity measure (the 

                                                      
37 Finally, it is worth noting that by construction our elasticity measures are complex functions of 
observable household and neighborhood variables including location. In this way, they are generally 
insulated against bias that might normally come about due to the correlation of unobserved ability and 
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residual from a regression of the elasticity on a complete set of controls for the neighborhood 

average of all household sociodemographic, housing, and other neighborhood variables used in 

estimating the demand side of our mode). This amounts to including this complete set of controls 

in all specifications reported in Table 7.  

The first column of Table 7 includes only these variables as controls. The second column 

adds seventeen additional controls for 4th grade school sociodemographics. These are included to 

account for the fact that the sociodemographic characteristics of the students in the school 

(important in the production of the test score) might differ from the neighborhood average 

sociodemographics. The third column adds controls for five measures of the employment access 

by education level as well as four direct geographic measures. These controls are included to 

account for the possibility that the households who live within the core of the Bay Area may be 

systematically different than those who live in outlying regions.38 A full set of parameter 

estimates for the specification shown in the third column are shown in Appendix Table 5. The 

fourth column adds controls for interactions between neighborhood race, education and income 

measures. This ensures that the remaining variation in the elasticity measure is not an artifact of 

non-linearities in these important household sociodemographics. Column five adds higher-order 

house price and income terms, and finally, column six adds four local land-use measures.  

The estimates reported in the six columns of Table 7 reveal a consistent pattern of results 

with the conditional elasticity coefficient estimate falling in the range of 8.6-12.8 and the t-

statistic ranging between 3.0 and 4.0. These coefficients are reported for a standardized 

conditional elasticity measure and thus the interpretation is that a one standard deviation increase 

in the competitiveness of a school’s local environment within the Bay Area is associated with a 

10-12 point increase in the average test score of the school – about 0.15 standard deviations. This 

                                                                                                                                                              
unobserved demand on the part of parents; our elasticity measures are constructed so as to avoid including 
this portion of the variation in the measures.  
38 It is also worth noting that the inclusion of county fixed effects also does not affect the results. 
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is a sizeable effect, indicating that a school’s performance is indeed strongly linked to the 

competitiveness of its local environment.   

We use a specification corresponding to the third column of Table 7 for the remaining 

analysis conducted in the paper. The first six columns of Table 8 report a series of such 

regressions using various school input measures as the dependent variable. The first three 

columns relate to teacher experience and reveal that schools facing a greater elasticity of demand 

actually have significantly fewer of the most productive teachers (those with experience between 

5-9 years) and tend to have a higher number of teachers who are just beginning and nearing the 

end of their careers. The point estimates for the effect of the elasticity on the dependent variables 

considered in the next three columns, the pupil-teacher ratio and teacher education variables, are 

highly insignificant and very small in magnitude. Thus, in general, schools facing a higher 

elasticity of demand appear to produce higher test scores without any significant advantages in 

terms of observable school inputs.  

As discussed above, that school input decisions are not strongly related to the conditional 

elasticity of demand in the Bay Area is not especially surprising given the restrictive financing 

regime in place in California. The fact that schools facing greater amounts of local competitive 

pressures do not attract observably better teachers provides some assurance that the remaining 

variation in our elasticity measure is not simply picking up unobserved student or neighborhood 

characteristics. Because teachers can sort across schools, we might be worried, for example, if a 

higher residual demand elasticity was correlated with the presence of more experienced or better-

educated teachers. If anything, it appears that increased competition may push better teachers 

away from a school, perhaps because competition is associated with more intense monitoring.  

The final column of Table 8 provides another way to evaluate the possibility that the 

conditional elasticity measure is correlated with unobserved student/household characteristics. In 

particular, column 7 reports the results for a specification that uses the average amount of income 

from capital sources in the corresponding neighborhood (the best proxy for wealth available in 
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the Census) as the dependent variable. Importantly, this measure was not used in estimating the 

demand side of the model and therefore serves as an appropriate test of whether the remaining 

variation in our elasticity measure proxies for the type of unobserved household characteristic 

that might be expected to positively affect test scores. As the results reveal, the point estimate is 

actually negative in this case (with a t-statistic of -1.3), indicating that higher elasticity schools 

actually serve households with lower levels of capital income ceteris paribus. This evidence 

provides a further indication that the remaining variation in our elasticity measure is not simply 

proxying for unobserved household characteristics.  

 In the final two tables of the paper, we explore the relationship between the dissimilarity 

indices described above and the average 4th grade test score. Again, it is this type of variation in 

our elasticity measure that we would ideally like to exploit in estimating the main specification 

shown in Tables 7 and 8, although it is again important to remember that these dissimilarity 

indices provide only a crude measure of the availability of close substitutes that our elasticity 

measures are capturing.  

 Table 9 reports the results of a series of specifications that relate the standardized school 

elasticity measure to various dissimilarity indices and additional control variables. Not 

surprisingly, given the negative correlations in Table 6, these measures are negatively related to 

the elasticity measure and are significant in most cases. When various combinations of these 

dissimilarity measures are included directly in the average 4th grade test score regression in Table 

10, they collectively enter negatively and significantly. This lends further support to the view that 

the positive coefficient estimates reported in Table 7 are in fact reasonable.  Schools increasingly 

isolated in product space (relative to their ten closest geographic neighbors) perform significantly 

worse.   
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8 CONCLUSION 

Numerous studies have addressed the policy-relevant question of whether greater choice 

will lead to improvements in school quality. The typical focus in the prior literature has been on 

the overall effect of increased choice on school performance.  

In the current paper, we began with the observation that this overall effect can be 

decomposed into a component measuring demand responsiveness (how increased choice affects 

school competition) and a second component measuring supply responsiveness (the way that 

increased competition affects school performance). By focusing on the overall effect of choice, 

the previous literature has provided little guidance as to the effect of competition itself on school 

performance. Moreover, existing research suggests that the responsiveness of demand to 

increased choice may be weak, leaving open the possibility that supply responsiveness may be 

altogether more powerful.  

This paper then presented a new approach for measuring the direct effect of competition 

on school performance – the strength of supply responsiveness. Central to this approach is the 

construction of a residual elasticity of demand for each school – our preferred measure of local 

competition – which captures the change in demand each school faces in response to a change in 

that school’s quality. We do so using a flexible demand model, estimated using very rich Census 

data. This competition measure is then used in a regression framework that relates measured 

school performance to student, school and neighborhood controls, including the competition 

measure. 

Our results provide the first estimates in the literature of the direct effect of increased 

competition on public school performance. We find evidence of a marked increase in test scores 

in response to an increase in the residual elasticity of demand: a one standard deviation increase 

in the competitiveness of a school’s local market within the Bay Area is associated with a 0.15 

standard deviation increase in school performance. At the same time, these achievement increases 
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are accompanied by, if anything, slight reductions in important inputs, helping allay concerns 

about the role of omitted variables in these regressions.  

These findings are robust to inclusion of many types of control.  We show that our 

residual elasticity has no effect in predicting neighborhood wealth, lending support to the notion 

that our preferred competition measure is not simply picking up unobserved household 

characteristics.  In contrast, it is correlated with similarity indices that describe the extent to 

which a school is isolated geographically (and in terms of product space): the residual elasticities 

increase the less isolated a school becomes. As one might expect, these similarity measures also 

have positive effect on school performance.  In terms of heterogeneous effects, we find that 

school responsiveness to increased competition is greater in more educated communities, 

suggesting that educated parents may be better able to monitor school personnel as competition 

increases.  

Overall, our evidence is consistent with strong supply responsiveness on the part of 

public schools. This is relevant to the broader school choice debate.  
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Figure 1: Actual Elasticities of Demand: San Francisco Bay Area Elementary Schools
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Figure 2: Conditional Elasticities of Demand: San Francisco Bay Area Elementary Schools
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Table 1. Full Sample, and School District Boundary Sub-Sample

Sample full sample
Boundary/Weights actual sample high test score side* low test score side* t-test for weighted sample
Observations 27,958 13,348 14,610 difference in 27,958

(1) (2) (3) (4) (5) means (6)
Mean S.D. Mean Mean Mean ((4) versus (5)) Mean

Housing/Neighborhood Characteristics
monthly house price 1,087 755 1,130 1,158 1,105 5.71 1,098
average test score 527 74 536 558 515 50.96 529
1 if unit owned 0.597 0.491 0.629 0.632 0.626 1.04 0.616
number of rooms 5.114 1.992 5.170 5.207 5.134 3.13 5.180
1 if built in 1980s 0.143 0.350 0.108 0.118 0.099 5.09 0.148
1 if built in 1960s or 1970s 0.391 0.488 0.424 0.412 0.437 4.22 0.406
elevation 210 179 193 194 192 1.14 212
population density 0.434 0.497 0.352 0.349 0.355 2.08 0.374
crime index 8.184 10.777 6.100 6.000 6.192 2.36 7.000
% Census block group white 0.681 0.232 0.704 0.712 0.686 4.69 0.676
% Census block group black 0.081 0.159 0.071 0.065 0.076 3.01 0.080
% Census block group Hispanic 0.110 0.114 0.113 0.107 0.119 4.56 0.117
% Census block group Asian 0.122 0.120 0.112 0.110 0.113 1.12 0.121
% block group college degree or more 0.438 0.196 0.457 0.463 0.451 2.89 0.433
average block group income 54,744 26,075 57,039 58,771 55,457 4.65 55,262

Household Characteristics
household income 54,103 50,719 56,663 58,041 55,405 4.20 55,498
1 if children under 18 in household 0.333 0.471 0.324 0.322 0.325 0.54 0.336
1 if black 0.076 0.264 0.066 0.062 0.070 2.69 0.076
1 if Hispanic 0.109 0.312 0.111 0.102 0.119 4.54 0.115
1 if Asian 0.124 0.329 0.112 0.114 0.110 1.06 0.121
1 if white 0.686 0.464 0.706 0.717 0.696 3.86 0.682
1 if less than high school 0.154 0.361 0.141 0.134 0.147 3.12 0.152
1 if high school 0.184 0.388 0.176 0.177 0.175 0.44 0.183
1 if some college 0.223 0.417 0.222 0.222 0.223 0.20 0.225
1 if college degree 0.291 0.454 0.294 0.295 0.294 0.18 0.286
1 if more than college 0.147 0.354 0.166 0.172 0.161 2.46 0.155
age (years) 47.607 16.619 47.890 48.104 47.699 1.99 47.660
1 if working 0.698 0.459 0.705 0.702 0.709 1.28 0.701
distance to work (miles) 8.843 8.597 8.450 8.412 8.492 0.82 8.490

Notes: Columns 1 and 2 report the mean and standard deviation for key variables for the full sample. Column 3 reports means for the sample of houses within 0.25 miles of a school district
boundary. Columns 4 and 5 report means on the high versus low test score side of boundaries. Column 6 provides a t-statistic for a test of whether the means reported in columns 4 and 5
are equal. Column 7 reports weighted means for the sample of houses within 0.25 miles of a school district boundary. Weights are constructed so as to make the boundary sample more
representative of the full sample and are described in the main text. In constructing columns 4 and 5, we assign each house in the full sample to the nearest school district boundary, noting
whether its local school has a higher test score than the school associated with the closest Census block on the other side of the boundary.

within 0.25 miles of boundaries

242,100



Table 2: Implied Mean MWTP Measures

Sample
Boundary Fized Effects
Observations

average test score (in standard deviations)

1 if unit owned

number of rooms

1 if built in 1980s

1 if built in 1960s or 1970s

elevation (/100)

population density

crime index

% Census block group black

% Census block group Hispanic

% Census block group Asian

% block group college degree or more

average block group income

F-statistic for boundary fixed effects
Note: Specifications shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4,
and 5 mile rings around location and six variables that characterize the housing stock in each of these rings. MWTP measures are reported in terms of a
monthly house price.  Standard errors are in parentheses.

Without Neighborhood Sociodemographics With Neighborhood Sociodemographics
full sample full samplewithin .25 mile of boundaries within .25 mile of boundaries

27,958 27,958

209.76
(3.29)

184.54
(11.39)

242,100 27,958 27,958 242,100

28.48
(2.78)

126.08
(1.96)

148.98
(1.51)

129.93
(3.94)

21.09
(0.81)

-100.43
(4.23)

-2.95
(0.18)

178.37
(8.99)

149.36
(4.24)

74.74
(10.87)

9.46
(8.03)

122.89
(5.36)

-4.82
(2.48)

-153.53
(15.64)

-2.30
(0.70)

15.39
(10.48)

81.53
(7.72)

138.71
(5.49)

106.17
(14.41)

46.46
(6.35)

-133.08
(23.85)

1.78
(2.20)

165.38
(3.19)

122.03
(1.48)

99.69
(3.79)

13.79
(2.67)

20.17
(1.72)

-1.06
(0.75)

19.41
(4.30)

0.00
(0.20)

-324.67
(10.14)

-4.42
(14.35)

-97.39
(11.15)

286.02
(10.50)

87.08
(1.25)

150.77
(8.76)

121.12
(4.23)

85.50
(10.69)

7.40
(7.71)

20.19
(4.77)

-18.04
(2.46)

41.68
(15.76)

-1.39
(0.81)

-318.83
(32.15)

18.06
(46.87)

-96.22
(37.39)

206.02
(30.58)

96.11
(3.86)

161.05
(9.24)

118.93
(4.40)

95.55
(11.84)

4.50
(8.51)

26.22
(6.13)

12.83
(5.04)

30.33
(20.09)

1.96
(1.91)

-267.08
(39.84)

138.95
(63.13)

No No Yes No

5.349 4.162

No Yes

87.61
(4.00)

155.27
(55.73)

137.71
(44.53)

(5) (6)(1) (2) (3) (4)



Without Neighborhood With Neighborhood
Sociodemographics in Model Sociodemographics in Model

Mean MWTP 81.53 26.22
(7.72) (6.13)

Heterogeneity in MWTP

Household Income (+$100,000) 40.45 15.66
(0.28) (0.35)

Children Under 18 vs. -11.90 7.10
No Children (3.07) (3.78)

Black vs. White -93.84 -18.05
(5.15) (7.50)

Hispanic vs. White -40.75 -4.64
(4.64) (5.80)

Asian vs. White -9.08 5.79
(3.99) (5.08)

College Degree or More vs. 57.65 14.12
Some College or Less (3.46) (4.24)

Householder Working vs. 1.91 6.63
Not Working (3.16) (4.02)

Age (+10 years) 1.02 0.86
(0.09) (0.11)

Note: The first row of the table reports the mean marginal willingness-to-pay for the change reported in the column
heading. The remaining rows report the difference in willingness to pay associated with the change listed in the row
heading, holding all other factors equal.  Standard errors are in parentheses. 

Table 3. Heterogeneity in Marginal Willingness to Pay for School Average Test Score

One Standard Deviation Increase in Average Test Score



Specification Includes Neighborhood Sociodemographic Charactersitics

Own vs. Rent +1 Room Built in 1980s +10% Black vs. +10% Hisp vs. +10% Asian vs. +10% College Blk Group
vs. pre-1960 White White White Educated Avg Income

+ $10,000

Mean MWTP 161.05 118.93 95.55 -26.71 13.90 15.53 13.77 87.61
(9.24) (4.40) (11.84) (3.98) (6.31) (5.57) (4.45) (4.00)

Household Income (+$100,000) 218.37 61.19 105.07 -15.32 7.73 -0.50 26.17 15.44
(7.13) (1.70) (7.62) (3.89) (4.13) (2.54) (2.18) (1.13)

Children Under 18 vs. -12.87 40.06 -24.52 10.38 15.03 12.17 -14.18 5.05
No Children (6.67) (1.80) (7.94) (2.70) (3.41) (2.51) (2.15) (1.06)

Black vs. White -63.55 1.56 2.95 96.82 46.13 48.02 16.99 -0.45
(13.25) (3.40) (16.38) (3.62) (5.75) (4.84) (4.40) (2.27)

Hispanic vs. White -6.44 -14.14 -8.07 28.89 81.36 18.01 5.43 2.07
(9.53) (2.63) (12.00) (3.68) (4.01) (3.81) (3.19) (1.41)

Asian vs. White 113.65 -32.92 43.94 27.74 21.95 92.49 -0.05 1.99
(8.96) (2.27) (10.77) (3.64) (4.67) (2.78) (2.91) (1.41)

College Degree or More vs. 33.83 4.50 42.06 8.34 -4.16 -12.70 59.29 3.66
Some College or Less (7.67) (2.05) (9.57) (3.27) (3.94) (2.91) (2.37) (1.29)

Householder Working vs. 42.72 3.69 60.60 -4.71 -2.17 -2.81 -12.62 3.88
Not Working (7.31) (1.94) (8.92) (2.88) (3.65) (2.82) (2.27) (1.04)

Age (+10 years) 6.49 0.30 -2.07 -0.15 -0.56 -0.03 -0.12 0.11
(0.21) (0.06) (0.25) (0.08) (0.10) (0.08) (0.06) (0.03)

Note: The first row of the table reports the mean marginal willingness-to-pay for the change reported in the column heading. The remaining rows report the difference in willingness to pay associated with the
change listed in the row heading, holding all other factors equal.  Standard errors are in parentheses. 

House Characteristics Neighborhood Sociodemographics

Table 4. Heterogeneity in Marginal Willingness to Pay for Select Housing and Neighborhood Attributes



Table 5 - Summary Statistics for School-Related Variables (N=708)

Variable Description Mean Std Dev

School Characteristics
Residual Elasticity Measure 45.53 12.37
Average 4th grade test score 522.27 77.62
Proportion of teachers with 0-4 years experience 19.63 13.29
Proportion of teachers with 5-9 years experience 14.90 10.09
Proportion of teachers with more than 10 years experience 65.46 17.02
Pupil teacher ratio 23.98 3.09
Proportion of teachers with Max B.A. or less 9.53 12.81
Proportion of teachers with Min M.A. or more 26.28 13.92

4th Grade School Sociodemographics
% AFDC 14.87 15.95
% Moved in Past Year 16.09 10.34
% Asian 14.70 17.49
% Black 13.50 22.34
% Hispanic 22.13 24.62
% White or Other Race 49.66 36.79
% Parent Educ Category  1 23.59 21.62
% Parent Educ Category  2 20.01 11.32
% Parent Educ Category  3 29.08 15.76
% Parent Educ Category  4 13.59 14.52
% Parent Educ Category  5 6.84 12.72
% Parent Educ Category  6 2.46 5.10
% Parent Educ Category  7 4.42 11.08
% Parent Language Category 1 72.44 21.36
% Parent Language Category 2 17.35 14.59
% Parent Language Category 3 10.23 13.48
% Parent Language Category 4 3.56 7.83

School Dissimilarity Indices
avg diff btwn average income in school catchment area vs the 10 closest schools 9677.34 11018.11
avg diff btwn proportion of householders with higher ed in school catchment area vs the 10 closes 0.077 0.064
avg diff btwn average number of rooms in school catchment area vs the 10 closest schools. 0.54 0.43
avg diff btwn proportion of home owners in school catchment area vs the 10 closest schools. 0.12 0.09
avg diff btwn average monthly housing price in school catchment area vs the 10 closest schools 204.78 238.07

Note:  This table reports means and standard deviations for school-related variables summairzed for the 708 schools used in the subsequent analysis.



Table 6 - Correlation Matrix Conditional Elasticity Measure and Dissimilarity Indices

Obs=708
Cond. Elasticity D10 - Income D10 - Education D10 - Rooms D10 - Ownership D10 - Price

Conditional Elasticity 1.000
D10 - Income -0.069 1.000
D10 - Education -0.086 0.510 1.000
D10 - Rooms -0.111 0.681 0.374 1.000
D10 - Ownership -0.098 0.427 0.249 0.716 1.000
D10 - Price -0.138 0.859 0.485 0.649 0.393 1.000

D10 - Income dissimilarity index: avg. absolute diff. between average income in school catchment area vs. the 10 closest schools.
D10 - Education dissimilarity index: avg. absolute diff. between % householders with higher education in school catchment area vs. the 10 closest scho
D10 - Rooms dissimilarity index: avg. absolute diff. between average number of rooms in school catchment area vs. the 10 closest schools.
D10 - Ownership dissimilarity index: avg. absolute diff. between proportion of home owners in school catchment area vs. the 10 closest schools.
D10 - Price dissimilarity index: avg. absolute diff. between average monthly housing price in school catchment area vs. the 10 closest schools.

Note:  The conditional elasticity measure used in this table is the residual from a regression of the actual elasticity measure on the full set of sociodemographic, school, housing, and neighborhood 
controls used in column 3 in Table 7.  This table summarizes the correlation between this conditional elasticity measure and five dissimilarity indices that measure the average absolute difference 
between the measure associated with a given school and those of the ten nearest schools.



Table 7 - Regressions of Test Score on School Elasticity Measure with Control Variables 

Dependent Variable
St. Dev. of Dep. Var.

Variable (1) (2) (3) (4) (5) (6)

Standardized Conditional Elasticity Measure 12.839 8.637 9.651 10.826 11.649 11.696
(St. Dev. = 1.0) (3.312) (2.952) (3.256) (3.468) (3.929) (3.926)

Control Variables Included in Specification
Neighborhood Sociodemographics Yes Yes Yes Yes Yes Yes
Housing and Neighborhood Characteristics Yes Yes Yes Yes Yes Yes
School Sociodemographics Yes Yes Yes Yes Yes
Employment Access and Geographic Variables Yes Yes Yes Yes
Neighborhood Race-Education-Income Interactions Yes Yes Yes
Higher-Order House Value and Income Terms Yes Yes
Land-Use Variables Yes

Obs
R2 0.703 0.788 0.793 0.805 0.807 0.807

Note:  This table reports the results of six specifications of a regression of the average 4th grade test score on the standardized elasticity measure and seven sets of control 
variables.  The variables included in each set of controls variables are listed in Appendix Table 4.  The complete results for the specification reported in the third column are 
shown in Appendix Table 5.  Standard errors are reported in parentheses.

Average 4th Grade Test Score

708 708

77.62

708 708 708 708



Table 8 - Regressions of School and Neighborhood Characteristics on Elasticity Measure with Control Variables 

Dependent Variable % Teachers % Teachers % Teachers
<5 years exp. 5-9 years exp. >= 10 years exp. Ratio Max BA Min MA Income (/10.000)

St. Dev. Dependent Variable 13.29 10.09 17.02 3.09 12.81 13.92

(1) (2) (3) (4) (5) (6) (7)

Standardized Conditional Elasticity Measure 1.033 -2.477 1.444 0.055 -0.071 -0.055 -0.398
(St. Dev. = 1.0) (0.857) (0.853) (1.217) (0.180) (0.602) (0.721) (0.316)

Control Variables Included in Specification
Neighborhood Sociodemographics Yes Yes Yes Yes Yes Yes Yes
Housing and Neighborhood Chars. Yes Yes Yes Yes Yes Yes Yes
School Sociodemographics Yes Yes Yes Yes Yes Yes Yes
Employment Access and Geographic Vars. Yes Yes Yes Yes Yes Yes Yes

Obs
R2 0.160 0.186 0.199 0.188 0.217 0.293 0.834

% Teachers w/% Teachers w/

Note:  This table reports the results of seven specifications of a regression of various school inputs and neighborhood capital income on the standardized elasticity measure and four sets of control variables.  The variables included in each
set of controls variables are listed in Appendix Table 4.  Standard errors are reported in parentheses.

708 708 708

Avg. N'hood Capital

708 708 708 708

Pupil-Teacher



Table 9 - Regressions of Elasticity Measure on Control Variables and Dissimilarity Measures

Dependent Variable
St. Dev. of Dep. Var.

(1) (2) (3) (4)
Neighborhood Income Dissimilarity Index (/10,000) -0.108 0.208
(St. Dev. = 1.102 ) (0.079) (0.225)

House Price Dissimilarity Index (/100) -0.100 -0.172
(St. Dev. = 2.381 ) (0.023) (0.099)

Neighborhood Education Dissimilarity Index -1.295 -0.416
(St. Dev. = 0.064 ) (0.689) (0.727)

Control Variables Included in Specification
Neighborhood Sociodemographics Yes Yes Yes Yes
Housing and Neighborhood Characteristics Yes Yes Yes Yes
School Sociodemographics Yes Yes Yes Yes
Employment Access and Geographic Variables Yes Yes Yes Yes

Obs
R2 0.953 0.954 0.953 0.955

Note:  This table reports the results of four specifications of a regression of the standardized elasticity measure on various dissimilarity indices and 
four sets of control variables.  The variables included in each set of controls variables are listed in Appendix Table 4.  Standard errors are reported in 
parentheses.

Standardized Conditional Elasticity Measure
1.00

708 708 708 708



Table 10 - Regression of Test Scores on Control Variables and Dissimilarity Measures

Dependent Variable
St. Dev. of Dep. Var.

Variable (1) (2) (3) (4) (5) (6)

Neighborhood Income Dissimilarity Index (/10,000) 6.203 6.591 -3.473 -3.466
(St. Dev. = 1.102 ) (3.539) (3.924) (2.092) (2.108)

House Price Dissimilarity Index (/100) -3.379 -3.919 -9.620 -8.499
(St. Dev. = 2.381 ) (1.603) (1.545) (2.828) (2.600)

Neighborhood Education Dissimilarity Index -93.269 -77.123 -43.583 -31.262 -37.878 -26.809
(St. Dev. = 0.064 ) (35.970) (33.277) (26.278) (27.135) (24.450) (25.405)

Control Variables Included in Specification
Neighborhood Sociodemographics Yes Yes Yes Yes Yes Yes
Housing and Neighborhood Characteristics Yes Yes Yes Yes Yes Yes
School Sociodemographics Yes Yes Yes Yes Yes Yes
Employment Access and Geographic Variables Yes Yes Yes

Obs 708 708 708 708 708 708
R2 0.791 0.785 0.785 0.780 0.789 0.783

Note:  This table reports the results of six specifications of a regression of the average 4th grade test score on various combinations of dissimilarity measures  control variables.  The 
variables included in each set of controls variables are listed in Appendix Table 4.  Standard errors are reported in parentheses.

Average 4th Grade Test Score
77.62



Appendix Table 1: Choice-Specific Constant Regressions

Sample
Boundary Fized Effects
Observations

monthly housing price (/1000)

average test score (in standard deviations)

1 if unit owned

number of rooms

1 if built in 1980s

1 if built in 1960s or 1970s

elevation (/100)

population density

crime index

% Census block group black

% Census block group Hispanic

% Census block group Asian

% block group college degree or more

average block group income

F-statistic for boundary fixed effects

-15.97
(1.56) (1.69)

-16.19-11.34
(1.36) (1.71)

-15.94-10.23
(1.39) (1.13)

-9.73

4.545 3.963

No Yes

1.42
(0.01)

2.51
(0.09)

2.23
(0.07)

No No Yes No

-4.32
(0.06)

2.25
(0.10)

0.49
(0.03)

0.03
(0.00)

0.42
(0.01)

0.21
(0.01)

1.53
(0.06)

2.61
(0.01)

1.93
(0.01)

1.55
(0.02)

0.07
(0.01)

-1.54
(0.60)

3.29
(0.49)

-5.09
(0.51)

0.29
(0.75)

0.67
(0.25)

-0.02
(0.01)

0.32
(0.08)

-0.29
(0.04)

1.39
(0.02)

2.41
(0.14)

1.93
(0.07)

1.37
(0.17)

0.12
(0.12)

-1.55
(0.18)

4.56
(0.17)

-5.18
(0.16)

-0.07
(0.23)

0.31
(0.07)

0.00
(0.00)

0.32
(0.03)

-0.02
(0.01)

0.02
(0.00)

2.64
(0.05)

1.95
(0.02)

1.59
(0.06)

0.22
(0.04)

0.53
(0.01)

-1.51
(0.03)

0.17
(0.01)

0.92
(0.01)

1.57
(0.01)

1.20
(0.02)

-1.49
(0.15)

-0.02
(0.01)

1.20
(0.05)

-0.05
(0.02)

-0.03
(0.00)

1.74
(0.09)

1.45
(0.04)

0.73
(0.11)

0.09
(0.08)

0.22
(0.01)

-1.03
(0.04)

0.29
(0.03)

1.29
(0.02)

1.52
(0.02)

1.33
(0.04)

27,958 27,958

2.15
(0.03)

2.09
(0.01)

242,100 27,958 27,958 242,100

Without Neighborhood Sociodemographics With Neighborhood Sociodemographics
full sample full samplewithin .25 mile of boundaries within .25 mile of boundaries

Note: Specifications shown in the table also include controls for land use (% industrial, % residential, % commercial, % open space, % other) in 1, 2, 3, 4, 
and 5 mile rings around location and six variables that characterize the housing stock in each of these 



Average Monthly Owner Number of Built in Built in Elevation Population Crime Index Distance to
Test Score House Price Occupied Rooms 1980s 1960-1979 Density Work

Household Characteristics (+1 s.d.) (/1000) (/100)
household income 0.050 0.121 0.305 0.074 0.142 0.038 0.016 0.028 -0.001 -0.004
(/10,000) (0.004) (0.003) (0.010) (0.002) (0.011) (0.009) (0.001) (0.013) (0.001) (0.001)

1 if children under 18 in household -0.190 0.063 -0.102 0.544 -0.316 0.146 0.010 -0.740 0.015 0.036
(0.047) (0.065) (0.094) (0.025) (0.112) (0.083) (0.022) (0.101) (0.005) (0.005)

1 if black -1.395 -0.941 -0.510 0.152 0.004 0.401 -0.062 -1.285 0.110 -0.023
(0.080) (0.127) (0.167) (0.044) (0.211) (0.144) (0.041) (0.159) (0.007) (0.011)

1 if Hispanic -0.642 0.168 -0.036 -0.268 -0.180 -0.157 -0.104 -0.155 0.050 0.014
(0.072) (0.122) (0.130) (0.036) (0.164) (0.115) (0.040) (0.136) (0.007) (0.007)

1 if Asian -0.167 0.315 1.765 -0.503 1.037 0.686 -0.015 0.941 0.030 0.003
(0.062) (0.080) (0.122) (0.031) (0.145) (0.108) (0.028) (0.095) (0.006) (0.007)

1 if college degree or more 0.787 0.917 -0.032 -0.012 0.489 -0.045 0.225 -0.007 0.031 -0.006
(0.053) (0.071) (0.108) (0.029) (0.135) (0.093) (0.024) (0.111) (0.006) (0.006)

1 if working 0.007 0.244 0.563 0.032 0.641 0.406 -0.048 -0.437 -0.027 -0.858
(0.049) (0.067) (0.103) (0.027) (0.125) (0.086) (0.025) (0.097) (0.005) (0.008)

age (years) 0.015 0.010 0.090 0.004 -0.034 -0.009 0.003 -0.006 0.001 -0.001
(0.001) (0.002) (0.003) (0.001) (0.004) (0.003) (0.001) (0.003) (0.000) (0.000)

Note:  The parameters shown describe the elements of the utility function that interact household characteristics, shown in row headings, with choice characteristics, shown in column headings.  Standard errors are in 
parentheses.  

Neighborhood Attributes

Appendix Table 2. Interaction Parameter Estimates - Model Without Neighborhood Sociodemographics

House Characteristics



Average Monthly Owner Number of Built in Built in Elevation Population Crime Index % Block % Block % Block % Blk Group Blk Group Distance to
Test Score House Price Occupied Rooms 1980s 1960-1979 Density Group Black Group Hisp Group Asian College Avg Income Work

Household Characteristics (+1 s.d.) (/1000) (/100) (miles)
household income 0.020 0.121 0.303 0.076 0.144 0.028 0.010 0.011 -0.001 -0.223 0.113 -0.009 0.385 0.012 -0.004
(+10,000) (0.005) (0.004) (0.011) (0.003) (0.012) (0.009) (0.002) (0.017) (0.001) (0.060) (0.064) (0.039) (0.034) (0.002) (0.001)

1 if children under 18 in household 0.102 0.231 -0.238 0.582 -0.399 0.095 0.051 -0.947 0.002 1.594 2.294 1.857 -2.171 0.055 0.027
(0.058) (0.075) (0.103) (0.028) (0.122) (0.092) (0.025) (0.127) (0.006) (0.416) (0.527) (0.387) (0.331) (0.016) (0.005)

1 if black -0.282 0.143 -1.006 0.002 0.027 0.577 -0.068 -1.106 0.045 14.874 7.082 7.371 2.607 -0.023 -0.010
(0.116) (0.170) (0.205) (0.053) (0.253) (0.184) (0.052) (0.228) (0.009) (0.560) (0.888) (0.747) (0.680) (0.035) (0.013)

1 if Hispanic -0.077 0.204 -0.138 -0.246 -0.147 -0.248 -0.067 -0.128 0.005 4.435 12.471 2.757 0.830 0.011 0.012
(0.089) (0.139) (0.147) (0.041) (0.185) (0.131) (0.045) (0.169) (0.008) (0.568) (0.620) (0.587) (0.492) (0.022) (0.008)

1 if Asian 0.072 0.558 1.633 -0.571 0.612 0.457 -0.006 -0.053 0.006 4.236 3.330 14.060 -0.016 -0.022 0.012
(0.078) (0.095) (0.138) (0.035) (0.166) (0.123) (0.033) (0.132) (0.007) (0.562) (0.721) (0.429) (0.449) (0.022) (0.007)

1 if college degree or more 0.200 0.501 0.428 0.006 0.588 0.106 0.031 0.486 0.022 1.279 -0.638 -1.935 8.986 0.009 0.009
(0.065) (0.079) (0.118) (0.032) (0.148) (0.101) (0.027) (0.134) (0.007) (0.504) (0.607) (0.450) (0.366) (0.020) (0.007)

1 if working 0.093 0.272 0.604 0.021 0.897 0.425 0.023 -0.515 -0.019 -0.712 -0.335 -0.434 -1.931 0.033 -0.896
(0.062) (0.074) (0.113) (0.030) (0.138) (0.096) (0.028) (0.125) (0.007) (0.444) (0.563) (0.436) (0.350) (0.016) (0.009)

age (years) 0.013 0.011 0.097 0.003 -0.033 -0.010 0.003 -0.011 0.001 -0.022 -0.085 -0.005 -0.018 0.001 -0.001
(0.002) (0.002) (0.003) (0.001) (0.004) (0.003) (0.001) (0.003) (0.000) (0.013) (0.016) (0.013) (0.010) (0.001) (0.000)

Note:  The parameters shown describe the elements of the utility function that interact household characteristics, shown in row headings, with choice characteristics, shown in column headings.  Standard errors are in parentheses. 

Appendix Table 3. Interaction Parameter Estimates - Model With Neighborhood Sociodemographics

House Characteristics Neighborhood Attributes Neighborhood Sociodemographics



Appendix Table 4 - List of Variables Included in Each Set of Controls

Neighborhood Sociodemographics Neighborhood Race-dEucation-Income Interactions
percent black in catchment area percent asian*average income in catchment area
percent asian in catchment area percent black*average income in catchment area
percent hispanic in catchment area percent hispanic*average income in catchment area
percent of householders with higher education percent asian*proportion high school graduates in catchment area
average household income in catchment area percent asian*proportion with some college in catchment area
average age in catchment area percent asian*proportion with college degree
proportion of households with children under 18 in catchment area percent asian*proportion with advanced degree
proportion of householders who do not work in catchment area percent black*proportion high school graduates in catchment area

percent black*proportion with some college in catchment area
Housing and Neighborhood Characteristics percent black*proportion with college degree
average monthly house price in catchment area percent black*proportion with advanced degree
proportion of homeowners in catchment area percent hispanic*proportion high school graduates in catchment area
average number of rooms in psuedo-catchment area percent hispanic*proportion with some college in catchment area
crime index in catchment area percent hispanic*proportion with college degree
proportion of houses built in the 1980's in catchment area percent hispanic*proportion with advanced degree
proportion of houses built in the 1960's & 70's in catchment area
population density in catchment area Higher-Order House Price and Income Terms

average house price squared
School Sociodemographics average household income squared
percent 4th grade AFDC average household income cubed
percent 4th grade moved in past year average household income to the fourth power
percent of asian students in grade 4
percent of black students in grade 4 Land Use Variables
percent of hispanic students in grade 4 proportion of industrial land use in 1 mile radius
percent of white students in grade 4 proportion of commercial land use in 1 mile radius
Seven grade 4 parental education categories proportion of other urban land in 1 mile radius
Four grade 4 parental language categories proportion of open space in 1 mile radius

Employment Access and Geographic Variables
employment accessibility index for high school dropouts
employment accessibility index for high school graduates
employment accessibility index for those with some college
employment accessibility index for college graduates
employment accessibility index for those with an advanced degree
school latitude
school longitude
school latitude squared
school longitude squared

Note:  This table lists the control variables included in each set of controls used in the analysis reported in Tables 7-10.



Appendix Table 5 - Regressions of Test Score on School Elasticity Measure with Control Variables

Dependent Variable
St. Dev. of Dep. Var.

Variable f Coefficient Std Error

standardized conditional elasticity measure 9.651 3.256
percent black in catchment area 49.696 43.234
percent asian in catchment area -50.009 32.223
percent hispanic in catchment area 34.204 42.690
percent of householders with higher education in catchment area 19.461 40.046
average income in catchment area 0.000 0.000
average age of catchment area 0.936 1.313
proportion of households with children under 18 in catchment area 77.380 32.513
proportion of householders who do not work in catchment area 8.275 63.310
average monthly house price in catchment area 0.003 0.019
proportion of homeowners in catchment area -30.637 25.717
average number of rooms in catchment area -14.155 7.093
crime index in catchment area 0.062 0.636
proportion of houses built in the 1980's in catchment area -17.401 14.452
proportion of houses built in the 1960's & 70's in catchment area -3.915 11.689
population density in catchment area -3.928 10.449
c4pafdc -0.544 0.248
c4pmobil -0.423 0.176
percent of asian students in grade 4 0.372 0.124
percent of black students in grade 4 -0.331 0.214
percent of hispanic students in grade 4 -0.361 0.101
percent of white students in grade 4 0.320 0.106
percent grade 4 parental education category 1 1.237 1.826
percent grade 4 parental education category 2 1.103 1.794
percent grade 4 parental education category 3 0.452 1.824
percent grade 4 parental education category 4 0.380 1.866
percent grade 4 parental education category 5 0.025 1.804
percent grade 4 parental education category 6 -0.149 1.961
percent grade 4 parental education category 7 0.796 1.875
percent grade 4 parental language category 1 -4.281 3.397
percent grade 4 parental language category 2 -4.057 3.432
percent grade 4 parental language category 3 -4.496 3.437
percent grade 4 parental language category 4 0.198 0.195
employment accessibility index for high school dropouts -0.049 0.014
employment accessibility index for high school graduates 0.015 0.017
employment accessibility index for those with some college 0.007 0.022
employment accessibility index for college graduates 0.000 0.013
employment accessibility index for those with an advanced degree 0.009 0.016
school latitude -1025.008 3331.935
school longitude 5781.304 24468.960
school latitude squared 13.305 44.360
school longitude squared 11.841 50.081

Obs
R2

Note:  This table reports the full specification corresponding to that report in column 3 of Table 7.

0.793

77.62

708

Average School Test Score




