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1 Introduction

“If you are to suffer, you should suffer in the interest of the country.”

Indian Prime Minister Nehru, speaking to those displaced by Hirakud Dam, 1948.

Dams epitomize a central fact about many public investments and policies, ranging from
road construction to trade liberalization — economic gains often come at the cost of making
some groups worse off. According to the World Commission on Dams (2000a) large dam
construction has displaced between 40-80 million people worldwide and submerged, salinated
or waterlogged vast tracts of land. In principle the aggregate gains from building dams could
be used to compensate those who lose land or livelihood. However, it is unclear whether this
occurs if, as is often the case, the winners, but not the losers, are politically and economically
advantaged.

Economic evaluations of dams and similar public investments largely ignore their distri-
butional effects. This is inappropriate if political support for a public investment can be
realized with little commitment to a subsequent redistribution of the gains. Ignoring dis-
tributional implications is also problematic from an econometric viewpoint. For instance,
if a public investment makes some regions worse off while others benefit, then a regional
evaluation which does not account for the distribution of losers is likely to be biased.

Dams are a particularly good case for studying the potential disjunction between the
distributional and productivity implications of a public policy. The likely winners and losers
from dam construction are clearly identifiable: those who live downstream from a dam (in
its “command” area) stand to benefit, while those in the vicinity of and upstream from a
dam (in its “catchment area”) stand to lose. From an econometric viewpoint, this implies
that we can estimate the effect of dams separately for these two populations. From a policy
perspective, this makes it relatively easy to identify, and compensate, losers. The absence
or inadequacy of compensation in such a comparatively simple case would suggest that the
distributional consequences of public policies are perhaps less easy to remedy than is typically
assumed.

Worldwide, over 45,000 large dams have been built and nearly half the world’s rivers
are obstructed by a large dam. Proponents of large dam construction emphasize the role of
large dams in enabling irrigation (both directly and by recharging the groundwater table),
providing water and hydropower for domestic or industrial use, and as insurance against
rainfall shocks. By the year 2000, dam reservoirs stored roughly 3,600 cubic kilometers

of water, generated 19 percent of the world’s electricity supply and provided irrigation for



between 30-40 percent of the 271 million hectares irrigated worldwide (World Commission on
Dams 2000a).

Opponents argue that most of the gains associated with dam construction occur down-
stream. The only gains enjoyed by the upstream population are from the construction
activity itself and from economic activity around the reservoir. The losses they suffer, in
contrast, are large; dam construction causes significant loss of agricultural and forest land,
and increased salinity and waterlogging of the land around the reservoir(McCully (2001) and
Singh (2002)). The upstream populations are also more exposed to diseases caused by the
large-scale impounding of water, such as malaria.

The oscillating policy stance of the World Bank, the single biggest source of funds for
large dam construction, illustrates the tension between aggregate productivity benefits and
the social costs of large dams. Starting in the mid-1980s, the Bank responded to growing
criticism by NGOs and civil society of the costs imposed on those living in the vicinity
of dams by sharply reducing its funding for dam construction. However, it has recently
changed its policy and restarted lending for dams (with a loan for a large dam in Laos),
arguing that the rationale for the dam rests on proper use of revenues for poverty reduction
and environmental management.

What is striking in the policy debates, both at the Bank and in civil society, is the absence
of evidence on the impact of the average large dam, and on the success of governments in
compensating any losers. The aim of this paper is to provide such evidence. Our empirical
investigation focusses on India, which, with over 4,000 large dams, is the world’s third most
prolific dam builder (after China and the USA). Large dam construction remains the main
form of public investment in irrigation in India, and dam irrigated areas account for 35% of
the area irrigated throughout the country.t

Several factors, including geographic suitability, the political clout of local governments,
and the economic implications of dam construction affect dam placement. Hence a simple
comparison of outcomes in regions with and without dams is unlikely to provide a causal
estimate of the impact of dams. Regions where relatively more dams are built are also likely
to differ along other dimensions, such as potential agricultural productivity.

To address this problem we exploit the fact that a river flowing at a positive gradient
favors dam construction. A higher water level upstream enables water storage and diversion

into irrigation canals, and electricity generation. Too high a river gradient, however, makes it

!Between 1951-1997 public investment on major and medium irrigation projects in India was approxi-
mately 33 billion US dollars (Thakkar 2000)



difficult to build canals and to monitor the water flow into them. In contrast, a steep positive
river gradient is good for hydro-electricity generation. This implies that the relationship
between river gradient in an area and its suitability for dam construction is non-linear for
irrigation dams and linear for hydro-electric dams.

Detailed GIS data on district geography allows us to exploit variation in dam construction
induced by differences in river gradient across districts within Indian states to construct
instrumental variable estimates.? Our regressions control for district fixed effects, state
year interactions, and the interaction of most district geography variables with overall dam
construction in the state. Only the interaction between the fraction of district rivers in
different gradient categories and overall dam construction in the state is assumed to be
exogenous. This makes our empirical strategy robust to a range of omitted variable and
(potential) endogeneity concerns. First, we fully control for differential state-specific time
trends. Second, if districts with greater river presence or relatively more gradient evolved
differently from other districts in the same state in a way that is correlated with overall dam
incidence in the state, then this is controlled for by the interaction term between the number
of dams in the state and these variables. This estimation strategy is one of the contributions
of this paper, and can be used to provide convincing estimates of the economic effects of
large infrastructure projects, where project location is strongly influenced by geography.

Our outcome variables are district agricultural and poverty outcomes. Dams do not affect
agricultural production in the district where they are located. In contrast, irrigated area and
agricultural production increase in districts located downstream. A cost-benefit analysis
suggests that the increase in agricultural productivity does not justify the average dam:;
even excluding the deadweight loss of taxation, environmental damages, and the increase in
labor usage, the rate of return to the investment is only about 1% on average.

Further, it does not seem that productivity gains in downstream districts are used to
compensate the losers. Poverty declines in the districts located downstream from a dam,
but increases significantly in districts where dams are built. In downstream districts dams
serve as insurance devices against rainfall shocks. However, they increase vulnerability to
rainfall shocks in the districts where they are built.

These findings suggest that large dam construction in India is a cost-ineffective public

policy that has increased poverty in some areas. The results also underscore the need to

2District is the administrative unit below the Indian state, and district size is typically determined on
a population basis. The median Indian state has 23 districts, the maximum and minimum are 63 and 1
districts respectively.



account for distributional effects when evaluating any public policy. Dam construction in
India created identifiable losers who were not adequately compensated. While identifying all
the reasons for inadequate redistribution is beyond the scope of the paper, we do explore the
role of district institutions. We build on Banerjee and Iyer (2005) who examine the present-
day implications of the colonial land tenure system. They show that, relative to districts in
which individuals remained responsible for tax collection, districts in which landlords were
responsible for collecting taxes saw greater class conflict. They show that the economic
effects of this institution have persisted — there is less collective action and public good
provision in the latter districts today. In keeping with this, we find that the increase in
poverty due to dams is twice as large in landlord districts, even though the impact of dams
on production is similar in landlord and non-landlord districts. These findings are consistent
with the view that adversarial relationships between the elite and the displaced populations
limit the ability of the displaced to obtain compensation.

The remainder of the paper proceeds as follows: Section 2 reviews the case study literature
on the productivity and welfare effects of large dam construction in India, and uses a simple
production function framework to discuss the expected effects of dams. Section 3 describes
the data, Section 4 the empirical strategy, Section 5 the empirical results, and Section 6

concludes.

2 Background

In this section we summarize the main insights about the economic impact of dams offered
by the case-study literature on Indian dams, and provide a simple conceptual framework to

understand the likely economic impact of dams.

2.1 Literature Review

The main purposes served by dams are irrigation, hydropower and flood control. Irrigation
is the primary purpose of over 95% of large Indian dams, and dams built for this purpose
form the focus of our discussion.?

Most irrigation dams in India are embankment dams. That is, an artificial wall is built

across a river valley, and water is impounded behind this wall in a ‘reservoir’. A system of

3The pre-requisites for construction and the economic consequences of hydro-electric and irrigation dams
differ significantly.



spillways and gates conveys normal stream and flood flows over, around, or through this wall,
and artificial canals channel water from the reservoir to downstream regions for irrigation.
The area upstream from which water and silt flow into the reservoir, and the area submerged
by the reservoir, form the catchment area. The area downstream from the reservoir that is
covered by the dam’s canal network makes up the command area.

Dam construction may increase economic activity in the catchment area. Reservoirs
may provide a source of fishing, and are often developed as tourism sites. However, the
main economic benefit of dams has been realized in agriculture, and this benefit accrues
in the command area (here we draw upon the review in Thakkar (2000)). By 2000, dam
irrigation accounted for 38% of India’s irrigated area. Between 1951 and 2000 India’s food
grain production nearly quadrupled. Two-thirds of this increase was in irrigated areas. The
most optimistic calculations suggest that roughly a quarter of India’s increased food grain
production over the last half century can be attributed to dam-irrigated areas. The main
channels through which dam irrigation increases productivity are greater multi-cropping and
the cultivation of more profitable water-intensive cash crops such as sugarcane (Singh 2002).

Clearly, the benefits linked to irrigation should not be entirely attributed to dams, since
without them some areas would have been irrigated by other means. The fraction of increased
food production in dam irrigated areas that is attributable to dam irrigation rather than, say,
the concurrent uptake of mechanized agriculture also remains controversial, with estimates
varying from 10% (World Commission on Dams 2000b) to over 50% (Gopalakrishnan 2000).

In defense of large dams, authors such as Biswas and Tortajada (2001) and Dhawan
(1989) argue that other forms of water harvesting, such as ground water and small dykes,
are relatively cost ineffective and incapable of meeting the demands of large and growing
populations in countries with highly seasonal rainfall. Another major benefit of dams, not
shared by other means of irrigation, is their ability to prevent floods and droughts by reg-
ulating the flow of water downstream. For very large dams, the flood control effect may
extend thousands of miles downstream. There is, however, a trade-off between using dams
for flood control (which requires emptying the reservoir) and their use for irrigation or elec-
tricity (which requires filling the reservoir). Another potential benefit of a large dam is
seepage from its canals which recharges the aquifers that provide groundwater (Dhawan
1993). However, the extent of such groundwater recharge remains controversial.

In fact, critics of large dams argue that the more important consequence of such water

seepage is waterlogging, and increased soil salinity; both of which make land less productive.*

4Land becomes toxic for plants when salt concentration is 0.5-1% (Goldsmith and Hildyard 1984)



The Indian Water Resources Ministry estimated that, in 1991, about 2.46 million hectares
of the command area of dams suffered from waterlogging, and 3.30 million hectares from
salinity /alkalinity (World Commission on Dams 2000b). This is roughly a tenth of the area
irrigated by dams. The other main costs of dam irrigation are land submergence for con-
struction of the reservoir and the displacement of people living on this land. The reservoir
of a large dam can submerge up to 10% of an Indian district’s total area. The World Com-
mission on Dams (2000b) estimates that dam construction submerged 4.5 million hectares
of Indian forest land between 1980 and 2000. Using data for 140 large dams, they estimate
that the average dam displaces 31,340 persons and submerges 8,748 hectares. These figures,
however, remain controversial. A World Bank review in the mid-1990s, for instance, esti-
mated that each new large dam dispaced, on average, 13,000 people (Cernea 1996)). Total
displacement figures vary from 16 million to over 40 million people. It is also widely agreed
that the historically disadvantaged tribal populations who are more likely to live in uphill
areas in river valleys have borne the brunt of displacement. Official figures for 34 large dams
show that Scheduled Tribes, who make up 8% of India’s population, constituted 47% of
those displaced (World Commission on Dams 2000b).

The Land Acquisition Act of 1894, which empowers the government to acquire any land
for public purpose and to pay cash compensation, has formed the the basis for rehabilitation
of dam-displaced populations. Resettlement and compensation is, typically, the responsibil-
ity of the relevant project authorities, and is based on project-specific government resolutions.
A number of studies suggest that actual compensation depends on the displaced population’s
political power and organizational abilities (Thukral 1992). Rights of the landless and those
without formal land titles to compensation have typically not been recognized. Further, as
the compensation is typically insufficient for the displaced to replace lost land by its equiv-
alent in quality and extent elsewhere, the payment is often used as a temporary means of
subsistence (J.Dreze, M.Samson, and S.Singh 1997). Finally, while an individual receives
compensation after being displaced, development activities and land prices in the dam vicin-
ity often decline as soon as a dam is planned, and the compensation rarely reflects takes this
into account.

Another often-cited consequence of dam construction is adverse health consequences for
those living near the reservoir. A reservoir provides a natural ground for vector breeding,
and hence for diseases such as malaria, schistosomiasis, filariasis and river blindness (see
Sharma (1991)).

The role of dams in increasing irrigation is largely undisputed. However, whether this



increase in irrigation has, relative to a reasonable counterfactual, translated into substantial
productivity gains remains controversial. As the discussion in this section should make
clear, a distinctive feature of large dams is that the costs and benefits associated with
dam construction vary by area. The benefits from irrigation accrue mainly to those living
downstream to the dam site, but within its command area. In contrast, those living in the
vicinity of the reservoir and immediately upstream (the catchment area) obtain no irrigation
benefits.® Moreover, schemes that divert water upstream of the dam are often banned so
as to ensure sufficient water flow to the dam (TehriReport 1997). This may further reduce
irrigation potential in the catchment area. Finally, the displacement costs are largely borne
by those in the catchment area of the dam. It has been suggested that compensation to
those displaced has been inadequate.

Our objective is to provide a rigorous analysis of these claims. While investigating all
the channels through which dams affect productivity and welfare is beyond the scope of this
paper, we will evaluate the impact of dams on aggregate agricultural production, poverty,

disease and a range of related outcomes.

2.2 Conceptual Framework

We provide a simple framework which summarizes the economic implications of dam con-
struction. Assume that agricultural output is a function of labor inputs L, land surface
K, land quality A, inputs such as fertilizer, seeds and electricity I, climate r (rainfall and
temperature), farmer’s ability v and a productivity shock e. Denote the production function

for land without access to an irrigation system (via pump or canal) as
y=F (L K A1 1ruc¢)
and the production function for land with access to an irrigation system as
y=Fy(L, K, A I 1 uc¢)
Farmers pay a one time fixed cost ¢ for access to irrigation. This is the cost of a well or

tube-well in a region with no dams, and the cost of accessing canal irrigation in a dam’s

command area.b

SLift irrigation is rarely practiced in India.
6The annual recurrent cost for access to irrigation is very low and rarely enforced: it was Rs. 50 per
hectare in most states in 1980 (the recurrent cost of dam maintenance is closer to Rs. 300.



Evenson and McKinsey (1999) estimate these production functions using Indian data,
and find that irrigation mitigates the effect of rainfall shocks and temperature on farm
net revenue for all crops. Further, irrigation and agricultural inputs, such as fertilizer,
electricity and seeds for High Yielding Variety (HYV) crops are complements. HYV seeds
are highly sensitive to water timing and require regular and controlled irrigation. Finally,
multi-cropping and irrigation are also complements, which suggests that labor inputs are
also likely to be complementary to irrigation.

We assume farmers can obtain the optimal set of inputs. Each farmer will compute her
expected profit with and without irrigation. She will invest in irrigation if its cost is less
than the long-run difference between the value function with irrigation and that without
irrigation. The decision process follows a threshold rule: if the productivity shock exceeds
some threshold in a given period, the farmer switches in that period.

As the costs and benefits of dam irrigation vary by region, we separately discuss the
effects of dams on the catchment and the command areas.

In the command area, which is downstream to the dam, a dam lowers the fixed cost of
irrigation. A farmer who has already paid the sunk cost of accessing ground water irrigation
will not switch to canal irrigation. However, the set of farmers who would have chosen ground
water irrigation in this period will now choose dam irrigation. Further, of the farmers who
would have otherwise not irrigated their land, some will opt for dam irrigation. Demand for
labor, fertilizer and seeds will increase and dependence on rainfall will decrease. Wages and
profits will increase, and this will increase consumption and lower poverty.

Until now, we have not allowed for differences in farmer characteristics. However, the net
impact of a dam on agricultural productivity is sensitive to differences in these. For instance,
if farmers only differ in their cost of accessing ground water irrigation then, dams will have a
large positive effect on productivity by making irrigation accessible to productive farmers. If
instead, farmers face the same cost of irrigation but differ in their (idiosyncratic) productivity
then the marginal farmer’s productivity will be below that of the average farmer. In this case
the effect of dams on agricultural productivity will be muted. The distribution of farmer

characteristics will also affect the implications of dam construction for inequality.

The catchment area, which lies upstream from, and in the vicinity of, the dam, has
three types of land. First, there is the land that is submerged by reservoir construction.
Production on this land will stop, as will input and labor use. Second, there is land in the
immediate vicinity of the reservoir. This will see more waterlogging and salination, and a

worsening of land quality. Irrigation on such land is less profitable but fertilizer use may

9



increase, since poorer soil requires more nutrients. Finally, some land in the catchment
area will be physically unaffected. If restrictions on water use upstream from the dam are
enforced then such land may see irrigation costs increase. On balance, in the catchment
area, we expect a decline in cultivated land, and, potentially, a reduction in irrigated area
and yield. This suggests a fall in wages and profits (and, therefore, higher poverty).

Data on the geographic extent of the catchment and command area is unavailable for
most Indian dams. Our analysis uses data on the administrative unit within the Indian state
— the district. We know the district in which a dam is located, and the districts downstream
from it. A dam’s catchment area usually falls in the district in which it is built, while its
command area may include parts of the district in which it is located and parts of neighboring
downstream districts (to identify the extent of the average dam’s command area we will also
examine its impact on non-neighboring downstream districts in the same river basin). The
estimated effect in the district where the dam is built combines the effects in catchment,
command and unaffected areas, and is a priori ambiguous. In contrast, part of the dam’s
command area may fall in the downstream district. Hence, the economic impact of a dam

in the downstream district will reflect the effect of the dam on the command area.

3 Empirical Strategy

3.1 Dam Construction across States

India is a federation of states, and water resources are under the jurisdiction of state govern-
ments. However, the federal government plays an important role in approving and financing
large dam projects. Before describing the growth in dam construction across states, we
outline the project planning, approval and implementation process for large dams (our de-
scription draws upon World Commission on Dams (2000b)).

Every five years the Indian Planning Commission sets each state a water storage and
irrigation target. To meet this target each state’s Irrigation Department proposes dam
projects. After approval by the state government, these projects are submitted to the ‘Na-
tional Advisory Committee on Irrigation and Multipurpose Projects’. This committee uses
a cost-benefit ratio to decide whether a project is economically viable. Cost is defined as
the direct project cost and benefit as the increase in agricultural production due to the ir-
rigation provided by the project, and/or the value of power to be generated. Typically, a

benefit cost ratio of 1.5:1 is desirable, but lower standards (1.1:1 or even less) are acceptable
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for projects in drought-prone areas (since dams are believed to provide valuable insurance
against rainshocks in such areas).

The Planning Commission accepts or rejects economically viable projects on the basis
of investment priorities and sectoral planning policies. Dam construction is funded out of
the state budget. Dam projects also qualify for federal funding. Funding from international
agencies, such as the World Bank, is usually allocated as part of federal funding. Actual
dam construction, and subsequent cost recovery, is the responsibility of the state.

Table 1 provides descriptive statistics. Our sample spans 1970 to 1999 (the precise years
covered vary by outcome variable).” In 1970, the mean number of dams in a district was
2.05, and the median district did not have a dam. Between 1970 and 1999 the number of
large dams quadrupled (from 882 to 3,364). By 1999 the mean number of dams per district
stood at 7.84, and the median district had one dam (46% of the districts had no dams).

Figures 1 and 2 show the distribution of dams across Indian districts in 1965 and 1995.
The increase in dam construction has been concentrated in the Western region (notably,
the states of Maharashtra, Gujarat and Madhya Pradesh).® There has been relatively little
dam construction in North and North-Eastern India. Nine of the thirty two states or Union
Territories in our sample saw no dam construction until 1999, seven of which also saw no dam
construction in the bordering districts of neighboring states. As our identification strategy
compares districts within a state, our analysis de facto excludes these seven states.’

Maharashtra and Gujarat, two of India’s fastest growing states, are also the largest and
third largest dam building states, respectively. An immediate implication is that regressing
an agricultural, or welfare, outcome on the number of dams in a state is unlikely to provide
a consistent estimate of the impact of dams. Clearly, richer states can build relatively
more dams. It is also probably in the interest of states that anticipate a larger increase
in agricultural productivity to make more of these investments. As fast growing states
show both greater reductions in poverty and more dam construction, regressing changes in
outcomes over the 1970-1990 period on changes in the number of dams built in the state
during the same period is unlikely to solve the problem of endogenous dam placement.

Table 2 provides an empirical illustration of this argument. We regress v;5, the outcome

of interest for district ¢ in year s in period ¢, on state and year fixed effects and the number

"The data appendix describes our various data sources.

8The median district in Maharashtra, Gujarat and Madhya Pradesh had 39, 18 and 15 dams, respectively.

9The nine states without dams are Arunachal Pradesh, Mizoram, Nagaland, Punjab, Sikkim, Dadra and
Nagar Haveli, Daman and Diu, Delhi, Pondicherry. Punjab and Delhi have dams in neighboring upstream
states.
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of dams in state s in year ¢.1°

Yist = A1+ XD + Vs + [y + Wist, (1)

As expected, the number of dams in a state is positively correlated with changes in
irrigated area and production, and negatively correlated with poverty.

In columns (4)-(6) we regress the same outcomes on the total number of dams in the
state inclusive of those built up to five years in the future. We continue to include state and

year fixed effects.

Yist = )\3 + /\4Dst+5 + Vs + ot + Wist, (2)

The point estimates are remarkably similar across the two specifications, even though the
latter specification includes dams built up to five years in the future. While dams may affect
poverty before construction is complete, this is unlikely for irrigated area and production. A
more plausible explanation is that states with high agricultural growth in the last five years
build more dams. This is also consistent with our findings in columns (1)-(3) of Table 2,
and suggests that a simple fixed effects strategy which compares changes in outcomes across

states will provide a biased estimate of the economic effect of dams.

3.2 Dam construction within states

For the reasons outlined above, we do not directly exploit inter-state differences in dam
construction to identify the economic impact of dams. Instead, we rely on differences in
dam construction across districts within a state. We account for, and explore the geographic
extent of, spill-overs from dams to neighboring districts. However, we cannot measure state-
wide economic effects of dam construction that are independent of a district’s proximity to
the dam. These may include, for example, the effect on prices determined at the state level.
We will discuss the possible direction of such state-wide effects as we interpret our results.

Consider the following regression

Yist = 1+ BaDist + Vi + st + Wist, (3)

10This regression parallels Merrouche (2004) who regresses state-level outcomes on number of dams in
the state. We cluster standard errors by state*year to take into account the level of aggregation of the
independent variable.
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where v; is a district fixed effect, ug is a state-year interaction effect, and w;g a district-year
specific error term.'’ This specification differs from equation (2) as we use the number of
dams built in the district (rather than state), and include district and state-year fixed effects.
District fixed effects control for time-invariant characteristics that affect the likelihood that
a dam will be built in the district. State-year interactions account for annual shocks which
are common to all districts in a state. Hence, we only exploit annual variation in dam
construction across districts in a state for identification.

The fact that the district in which a dam is constructed includes some of the dam’s
catchment and command area makes predictions about the economic impact of a dam in its
own district difficult. In contrast, the economic impact of a dam in the district downstream
is predictable since the district is affected only by the dam’s command area. Identifying how
a dam affects economic activity in the downstream district, therefore, both tells us how a
dam affects economic activity in its command area and helps us estimate the overall impact

of the dam. We are, therefore, interested in estimating the equation:

Yist = B3 + BaDigt + 65D5§t + Vi + st T Wit (4)

where DY, denotes the number of dams that are located upstream from district i.

If these equations are estimated using OLS, then the identification assumption needs
to be that the annual variation in dam construction across districts in the same state is
uncorrelated with other district-specific shocks. However, even though dam allocation is at
the state level, we may expect this assumption to be violated. For instance, we may expect
relatively greater dam construction in or around agriculturally more productive districts
which have a higher demand for irrigation. Therefore, in addition to OLS estimates, we also

report instrumental variables estimates.

3.3 Dams and Geography

The viability and cost of dam construction at a location depends on its geographical features.
The most obvious requirement for dam construction is the presence of a river. In addition,
dam construction is cheaper and easier when the river flows at a moderate incline. By raising
the water level upstream, a positive river gradient makes the diversion of water into canals
(for irrigation) easier and enables electricity generation. It also makes the construction of

the reservoir (where water is stored) easier. For irrigation dams a moderate river gradient

HWe control for autocorrelation by clustering the equation at the district-level.

13



is optimal. If the river gradient is too steep, then controlling the flow of water into canals,
and indeed building canals becomes difficult (in contrast, for electricity generating dams
more gradient is better). This implies a non-linear relationship between the ease and cost of
constructing irrigation dams and river gradient.

This non-linear relationship between river gradient and dam construction forms the basis
of our identification strategy. Controlling for overall gradient and river length in a district,
we use differences in river gradient to predict how, in a given year, dams constructed in a
state are distributed across districts in that state. Figures 1-4 illustrate our identification
strategy. Figures 1 and 2 depict the growth of dams across Indian districts between 1965
and 1995. North India, while home to one of the world’s largest river basins, the Indo-
Gangetic basin, has seen almost no dam construction. In contrast, most dam construction
has been concentrated in Western India. This suggests that dam construction cannot be
predicted solely by river presence. Figures 3 and 4 point to the importance of river gradient
in determining dam placement. In Figure 3 we use GIS data to depict the average district
gradient, and observe that while central North India is very flat most of Western India is
at a moderate gradient. Figure 4 shows a similar pattern for the average gradient along the
river in districts, even though overall district and river gradient differ for most districts.!?

To predict the number of dams in a district we interact the number of dams in a state
with the geographic variables (after controlling for a full set of state-year interactions). Our
estimation strategy uses within state geographic variation to compare districts within states.
That is, we do not assume that district geography determines overall dam incidence in an
Indian state, but rather that it affects the allocation of dams within a state. We include a
full set of state-year interactions to control for differential trends across states that may be
correlated with dam construction.'?

To illustrate how district geography variables predict the number of dams in a district

12Both were computed using GIS mapping software, which provides the gradient and elevation of multiple
“polygons” per district. We averaged across all polygons in a district to obtain average district gradient and
across polygons through which a river flows to obtain river gradient.

I3If the demand for irrigation in a single district drives dam construction in the state, then the number of
dams in the state is itself endogenous with respect to the outcome in that district. To address this concern
we estimate all regressions using, instead of the number of dams in the state, the number of dams in the
state predicted if all the dams built in India in that year had been allocated to states in keeping with their
share of all dams in 1970. Our findings are unchanged (available from the authors).
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we estimate the following regression (separately) for two years, ¢t = 1974 and t = 1994.

5 1 5
Dist = a1+ ao(RGr#Dg)+> | agp(Elyi* Do)+ | cap(Grigx Dgy)+(Xix Dyt ovs+ ps+wist
k=2 k=2 k=2
(5)

D, is the cumulative number of dams in state s in year t. RGry; is the fraction of river
area in gradient category k, and Gry; is the fraction district area in gradient category k.
We consider five gradient categories — less than 1.5%, 1.5-3%, 3-6%, 6-10% and over 10%.*
Ely; is the fraction of district area in elevation category k. We consider four categories (in
meters) - 0-250; 250-500; 500-1000 and over 1000. Finally, X; is a vector whose elements are
district area and river length.

Columns (1) and (2) of Table 3 report results for 1974 and 1994 respectively. Districts
with more kilometers of river have more dams. In addition, river gradient is a significant
determinant of dam construction. We find that a river gradient of 1.5-3% is more conducive
to dam construction than a gradient of less than 1.5%. For higher gradients we observe a non-
monotonic relationship. River gradient in the 3-6% interval reduces dam construction. River
gradient in the interval 6-10% does not significantly vary dam construction but having more
river flowing at a gradient of over 10% increases dam construction. The positive relationship
between very steep river gradient and dam construction reflects the suitability of such areas
for hydro-electric and multi-purpose dams. Finally, we observe that the coefficients on overall
district gradient and river gradient differ. A possible reason is that district gradient may
directly affect agricultural outcomes in the district (which, in turn, affects the propensity
to build dams). For instance, district gradient may affect the ease of growing certain crops
(which may or may not be water-intensive).

Our estimation strategy exploits three sources of variations in dam construction: differ-
ences across years, differences across states, and differences across districts within a state.
Table 4 shows the average change over our sample period in the number of dams constructed,
the head count ratio (defined as the fraction rural population with consumption levels which
place them below the poverty line), and log agricultural production for four state-district
combinations. A district with less than 90% of river gradient below 1.5 percent is classified
as a ‘high’ gradient district, and all other districts are classified as ‘low’ gradient. States are
classified as high or low dam construction states: a state with more than a hundred dams

by 1999 is a ‘high’ construction state, and ‘low’ otherwise.

14We have experimented with other categories, and get similar results.
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Panel A compares dam construction between 1973 and 1999 in high and low gradient
districts in both types of states. Relative to low dam construction states, the increase in
dams is higher in both high and low gradient districts in high dam construction states. How-
ever, relative to low dam construction states, the difference between high and low gradient
districts is greater in high dam construction states. Under the assumption that, absent state
differences in overall dam construction, districts with the same gradient in different states
would, on average, receive the same number of dams the difference in these differences can
be interpreted as the causal effect of a district’s river gradient on dam construction. Between
1973 and 1999 a high river gradient district, in a high dam construction state, received seven
additional dams.

Panels B and C examine changes in rural head count ratio and log agricultural production.
In a high river gradient district located in a high dam construction state the head count ratio
increased by an additional 4.5 percent and log agricultural production fell by 0.32. The Wald
estimate of the poverty impact of dam construction is the ratio of the difference in difference
in Panels A and B, and stands at 0.64.

These tables illustrate our identification strategy, but our results are imprecise as we
only use part of the available information. In addition, here, we do not control for other
geographical variables which may be correlated with both river gradient and changes in, say,

the head count ratio. We, therefore, turn to a more general framework.

3.4 Instrumental Variables Strategy

e Effect of dams in own district
We are interested in estimating equations (3) and (4), where we use information on
district geography to predict the annual allocation of dams built in a state across districts.
To implement this strategy we first predict (as in Table 4) the district-wise number of

new dams built in a year in a state by:

5 4 5
Dis = a1+ ao(RGr* D)+ asi(Bly* D)+ a(Grigx D)+ (X% Dy ) s+ + s+ wist
k=2 k=2 k=2
(6)

The variables are defined as before. Column (3) of Table 3 provides the coefficient estimates.
The pattern of coefficients is similar to the cross-sectional regressions in columns (1) and

(2). The F-statistic for the joint significance of the river gradient variables is 10.05.
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Columns (4) and (5) report the results from a regression of the same form, but with rural

head count ratio and agricultural production as the dependent variables, respectively.

5 4 5
Yist = a5+ arp(RGriix Do)+ | age(Elgix Do)+ | agp(Grigx D)+ (X% D) cvio+vi+ st Hwist
k=2 k=2 k=2
(7)

The a7, coefficients in equation (7) parallel the agy coefficients in equation (6) and provide a
reduced form estimate of the impact of dam construction on poverty. Annual dam incidence
in a state is potentially endogenous and may be directly related to poverty and production
outcomes in the state. However, we control for state-specific trends by including state-year
interactions in the regression. Hence, we only compare districts within a state and use
the interaction of the number of dams in the state with the district-specific river gradient
variables for identification. For the ay; coefficients to not reflect the effect of dams on poverty
or production, we would require that, conditional on the interaction of overall dam incidence
with district area, elevation, gradient, and kilometers of river, the evolution of poverty or
production across districts in a state is correlated with the interaction between river gradient
and overall dam incidence.!®

Figures 5 and 6 plot the coefficients on river gradient from the head count ratio and
production regression, respectively. In both figures, we also plot the coefficients for river
gradient from the regression where dams built is the dependent variable (column (3), Table
3). The coefficients for the head count ratio regression track those for dam building. In
contrast, there is no clear correspondence between the coefficients from the production and
dam construction regressions. While the river variables are not jointly significant (columns
(4) and (5), Table 3), the positive impact of moderate river gradient on head count ratio
(t-statistic of 1.7) suggests that dam construction may have increased poverty in the dam’s
district. In contrast, the coefficients for the production regression are neither individually
nor jointly significant.

Equations (6) and (7) form the first stage and the reduced form equations of our instru-
mental variables strategy for estimating a modified version of equation 3, which includes the
geography variables (except for the river gradient variable) interacted with the number of

dams built in the state as a control variable. Specifically, denote by Z;s the vector of right

15One possible case is if only one district in a state are suitable for dam construction, so that the number
of dams in the state endogenous to growth in this district. Footnote 13 describes how we check that our
results are robust to this concern.
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hand side variables in equation (6), except for the interactions RGry; * Dy. We estimate:

Yist = 01 + 02Djst + Zist03 + Vi + flgt + Wist (8)

using the four variables RGry; * Dy and Z,, as instruments. For comparability, our OLS

regressions estimate equation (8) and therefore include these control variables.!®

e Effect of dams in own and downstream districts
To estimate the impact of dams located upstream from a district, we augment equation

(4) to include control variables:
Yist = 04+ 05 Dise + 06Dty + Zist7 + Zi3y0s + Vi + frst + Wist (9)

ZY, is a vector which includes the interaction of overall dams in the state with elevation,
district gradient, kilometers of river for upstream districts (set at zero if the district has no
upstream district), and a dummy for whether the district has any upstream districts.!”

U

To generate instruments for D, and D,

we use parameters from equation (6) to predict

U

the number of dams per district Diy. For the number of dams in upstream districts D,

this is the sum of predicted values from equation (6) for all upstream districts (it equals zero
if the district has no upstream district).’¥ We estimate equation (3) with 2SLS, using Dy
and Z;s as instruments, and equation (9) using D;t, DY, and th as instruments.

The first stage equations are:

Nt = 1 + ¢25;t + ¢3DY, + Zips + th% + Vi + st + Wist (10)

where Ay represent Dy or DY,

This procedure would be identical to a 2SLS procedure using the interaction of river
gradient variables with dam incidence in the state as instruments, if each district only had
one upstream district. Since this is not the case, our procedure is an efficient way of using
all information: it uses all districts to predict the relationship between district geographic
features and the number of dams (rather than just those which are upstream), and avoids

averaging these features when there are several upstream districts.

16The OLS results are unaffected by the inclusion of control variables.

ITFor multiple upstream districts, we sum river length and district area across all upstream districts, and
average the other variables (which are proportions). We have run the regression controlling separately for
these variables for each upstream district, and found very similar results.

8Below, we will also explore dams that are upstream from a district, but more than one district removed.
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4 Results

4.1 Agricultural Outcomes

We examine the impact of dam construction on gross and net measures of irrigated and
cultivated area. The net measures account for the relevant area at a single point in the
year, while the gross variables account for each separate use of the same area during a year.
Multi-cropping is measured as the ratio of gross to net cultivated area.

Panel A of Table 5 provides OLS estimates (equations (3) and (4)), and Panel B 2SLS
estimates. Both sets of estimates suggest no significant impact of dams on gross or net
irrigated area in the districts where they are built (columns (1)-(4)). The 2SLS estimate
for own district irrigated area is positive but insignificant. The absence of a clear effect
in the district where the dam is built suggests that the submergence and degradation of
land around the reservoir has limited irrigation gains in the vicinity of the dam. The large
standard errors potentially reflect variation in the extent of submergence associated with
different sizes of dam.

Dams significantly increase gross and net irrigated area in districts located downstream.*?
The 2SLS estimates exceed the OLS estimates, but both are significant and statistically
indistinguishable from each other. The point estimate suggests that an additional dam
increases irrigated area (gross or net) in the downstream district by roughly 1.1%.

In columns (5)-(8) we examine gross and net cultivated area. The 2SLS estimates of the
effect of a dam on both measures is negative and significant at the 10% level for downstream
districts, and in columns (6) and (8) for own district. This suggests the causal effect of a dam
is to reduce cultivable area, perhaps due to the submergence associated with construction of
reservoir and canals. In addition, some land may be lost due to waterlogging and salination.
Consistent with the idea that these effects are greater around the reservoir, we observe that
the own district effect is five times as large as the effect downstream. One explanation for
the insignificant OLS estimates is that more dams were allocated to districts where land
availability was otherwise expanding (say, due to higher returns to agriculture).

Columns (9)-(10) examine the extent of multi-cropping and find a positive, but insignifi-
cant, increase in multi-cropping in the downstream districts. Finally in columns (9)-(10) we
observe that, as expected, area under water-intensive High Yielding Varieties (HYV) crops

increases downstream.

19That is, districts with more dams in neighboring upstream districts have more irrigated area: see columns
(2) and (4), row 2 in both panels.
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Table 6 uses annual data for 1971-1987 to examine agricultural production and yield for
nineteen crops, and fertilizer use. Columns (1) and (2) consider total production. Both
the OLS and 2SLS estimates suggest that dam construction led to an insignificant decline
in overall production in the district where they were built, and a significant increase in
production in the downstream districts. Similarly, agricultural yield showed an insignificant
decline in the district where dams were constructed, but a significant rise downstream (see
columns (3) and (4)). The own district results, again, suggest that the land around dams is
degraded by dam construction. This degradation is, in part, compensated for by increased
productivity elsewhere in the district. The downstream districts that do not bear any of
the environmental costs associated with dam construction enjoy positive productivity gains.
Finally, fertilizer use increases in downstream districts, (see column (6)).

Dam irrigation increases area devoted to water-intensive HYV crops. In Table 8 we
examine crop-wise outcomes for six major crops, three of which are water-intensive.?’

Columns (1)-(4) consider relatively less water-intensive crops, and columns (5)-(8) water-
intensive crops. We observe no impact on area devoted to different crops in the dam’s
own district. In downstream districts we observe a weak positive increase in total area
devoted to water-intensive and non water-intensive crops, and a very significant increase in
the area devoted to wheat, sugar and rice. Wheat and rice saw a sharp increase in water-
intensive HY Vs over our sample period. Sugarcane is a water-intensive cash crop which is
very important in Western India (where most dam construction is concentrated).

The impact of dams on crop yield is modest, even for highly water intensive crops (Panel
B). The increase in area devoted to water intensive crops, combined with modest yield in-
creases, leads to a significant increase in the production of water intensive crops in the
downstream district. An additional dam increases production of water intensive crops down-
stream by 0.6%. This is mainly attributable to a large increase in sugar and rice production.
However, millet and wheat production also increases significantly in the downstream district.

These results are significant given that a major claim of dam critics is that dams cause
farmers to substitute towards water intensive crops which, while more profitable in the short
run, accentuate water shortages in the long run. While we find evidence that the area and
production of crops using more water, HYV crops and sugarcane, increase in downstream

districts, we do not observe any significant substitution away from major non water-intensive

200ur log specification implies missing values for a crop in a district if it is not produced in the district.
It is, therefore, not suited to examine whether dams affect the decision to produce a given crop. We
estimated separate specifications to examine whether a certain crop is grown in a district, and did not find
any significant effect of dams.
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CTops.

Moreover, the area and production of non-water intensive crops shows an insignificant
decline in the district where the dam is placed whereas production of water-intensive crops
increases. This pattern of coefficients is sensible given that irrigated area shows some increase
while overall cultivated area in these districts declines. However, these results must be

interpreted with caution, since none of the individual coefficients are significant.

Our results provide a consistent picture of the impact of dams on agricultural outcomes.
In the districts where they are built dams do not significantly alter overall agricultural
production. In downstream districts, they enhance overall agricultural production, and

production of some water-intensive cash crops (sugar) and staples which have seen the advent

of HYV (wheat and rice).

4.2 Other inputs

The change in crop mix and the increase in HY'V seed and fertilizer use in downstream areas
is consistent with the predictions of a simple agricultural production function.

The two other inputs that the agricultural production function suggests should be af-
fected by increased dam irrigation are the use of alternative forms of water infrastructure
(this should decline), and the use of electricity (this should increase because pumping water
through the canals associated with dams requires electricity).?!

Panel A of Table 8 examines the impact of dams on the incidence of different forms of vil-
lage infrastructure (for brevity we only report 2SLS estimate). The results are as expected;
in downstream districts electrification increases and non dam-related water infrastructure de-
creases (the number of canals shows an insignificant increase). There are no other significant
implications of dam construction for public good provision in own district or downstream,

suggesting no crowding in (or out) of other government inputs.

4.3 Cost Benefit Analysis of Dams

We use our above results to provide a cost-benefit analysis of dams. Our analysis is tentative
since it requires several clearly contestable assumptions and is based on somewhat noisy point
estimates. In order to obtain an upper bound on this cost benefit analysis we choose the

assumptions which are the most favorable to dams.

21Labor use should also be affected but we lack good data on labor use.
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We start with estimating the extent to which farmers substitute dam irrigation for other
forms of irrigation. Our estimates suggest that a dam increased net irrigated area by 0.7%
in its own district, and 1% downstream. Combined with the size of irrigated area in the
average district, these point estimates imply a dam-induced net increase in irrigated area of
6,300 hectares in 1985 (row B5 in table 9). Using the Indian agricultural census the Planning
Commission estimated that, in 1985, 23.6 millions hectares were irrigated by dams, or 8,758
hectares per dam (cited in Thakkar (2000)). These estimates suggest a modest crowding-out
of other investment in irrigation (of the order of 30%: see row B6 in Table 9).

The cost of dam construction is generally expressed in terms of the cost of irrigating
an additional hectare by dam. We therefore base the cost-benefit analysis on a comparison
of the value of additional production per additional hectare irrigated (from our estimates)
with the capital and recurrent cost of an additional hectare irrigated by a dam (Planning
Commission estimates, cited in Thakkar (2000)). Using 1985 means and our estimates, we
calculate the increase in production due to a dam in a district downstream to be Rs. 2.99
million annually, or Rs. 60 million in present discounted value (assuming a 5% discount
rate, and an infinite life span for the dam). This is due to an increase in irrigated area of
3,864 hectares. The present discounted value of the net increase in production per irrigated
hectare is Rs. 13,686. In addition, farmers face a lower irrigation cost (some farmers who
would have used ground water irrigation now use dam irrigation). Since a farmer always had
the option of not using irrigation, an upper bound on reduction in irrigation cost is the value
of increased production on the land. As discussed earlier, our estimates suggest that dams
substituted for other forms of irrigation in 30% of dam irrigated land. Therefore, we divide
our benefit estimate by 70% to obtain the net benefit of the dam on agricultural profits (Rs.
19,011 in row CT7).

The Planning Commission estimated the development cost per hectare of dam irrigation
at Rs. 16,129 in 1985 (inclusive of capital cost, and an annual maintenance cost of Rs. 300
per hectare). Adding the fertilizer cost we obtain a total cost of Rs. 18,807 per hectare.

Without accounting for the deadweight loss of taxation, these estimates suggest a barely
positive net present value of dam construction (1%). This turns negative if we assume
a conventional 15% figure for the deadweight loss associated with raising funds through
taxation. Our calculation overestimates the economic value of a dam in so far as it does
not account for the production decline in the dam’s own district (while imprecise and not
significantly different from zero, the point estimate is large and negative), and additional

labor and environmental costs. It underestimates the economic value of a dam in that it does
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not account for production gains in non-agricultural sectors due to electricity generation by
multipurpose dams.

Our estimates for the production impact of each dam, combined with the annual increase
in the number of dams over the period (about 0.4 per year), indicates that dam construction
was responsible for about 9% of the growth in agricultural production between 1971 and 1987.
The World Commission on Dams (2000b), using very different methods, attributed 10% of
the growth in India’s agricultural production since 1950 to dams, and concluded that the
average dam’s net present value was slightly negative. Although this estimate was made by
a supposedly independent, non-partisan international body, dam proponents criticized these
estimates as overly conservative. The International Commission on Large Dams (ICOLD),
an international body for dam builders, claimed in its response that the contribution of
large dams to the growth in agricultural production was closer to 80% (Gopalakrishnan
2000). Our estimates suggest that World Commission on Dams (2000b) estimates are closer
to the truth.

4.4 Rural welfare

In this section we examine whether dams have created population groups who have not
received adequate compensation for losses suffered, or whether the productivity effects of
dam construction, combined with appropriate redistributive policies, prevented the creation
of such groups.

We use a district panel data-set on rural consumption, poverty and wage outcomes.
Clearly, our results would be biased if dam construction induces either the relatively rich
or the relatively poor populations to migrate across district boundaries. Panel B of Table 8
estimates the impact of dam construction on district census rural population outcomes. Dam
construction has a small insignificant positive effect on overall population and in-migrants
in both the dam’s own district and downstream district. This suggests that dam-induced
population movements across the district boundaries are not a serious concern, and we can
use the district panel to study the impact of dam building on rural welfare.?? However, to
assess the extent of any possible bias due to migration we compute bounds on the influence
of migration on the estimated impact of dams on poverty. The results are in Table 10; Panel
A provides OLS estimates and Panel B 2SLS estimates.

In columns (1) and (2) we consider mean per-capita expenditure. In column (1), we

22 Anecdotal and case study evidence suggests that displaced populations prefer to remain near their
original habitats. (Thukral 1992)
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find that an additional dam causes a statsitically significant decrease of 0.3% in per-capita
expenditure in the OLS specification, and an insignificant decline of 0.35% in the 2SLS spec-
ification. Column (2) includes dams built in upstream districts as an additional explanatory
variable. The coefficient on the expenditure in a dam’s own district remains negative, and
is now significant at the 10% level in the 2SLS regression (and at the 5% level in the OLS
regression). Dams have a modest positive impact on per-capita expenditure in downstream
districts. However, both the OLS and 2SLS estimates are insignificant. The 2SLS estimate
is almost twice as large as, but statistically indistinguishable from, the OLS estimate.

In columns (3) and (4) we observe that the decline in per-capita expenditure translates
into an increase in poverty. Columns (3) and (4) consider the head-count ratio (this is
the fraction of population with expenditure levels that place them below the poverty line).
Dams significantly increase poverty in their own district, and lead to a decline in poverty in
downstream districts. The downstream effect is significant at 5% in the 2SLS estimates. In
column (3), the OLS estimate for the own district effect is positive and significant, but the
2SLS estimate, while positive, is insignificant: this parallels our reduced form estimate.

Columns (5) and (6) provide bounds that account for migration. We take the point
estimate of the effect of dams on in-migrants and make alternative assumptions about their
poverty status. We then recompute the head-count ratio (we follow the idea of “Manski
bounds” (Manski 1990)). In column (5), we compute the head-count ratio assuming that all
in-migrants are poor. This reduces the head-count ratio more in districts with more dams.
The OLS estimate of the own district effect changes sign and is insignificant. However,
the confidence intervals in columns (5) and (4) overlap. The 2SLS estimate is positive
but insignificant. In column (6), we recompute the head-count ratio assuming that all in-
migrants are rich. Not surprisingly, both the OLS and 2SLS estimates in column (6) exceed
the original estimates. As usual, as the Manski bounds are not tight, and the results have to
be interpreted with caution. However, they do not suggest severe bias with our 2SLS results.

The head-count ratio is a relatively crude measure of the extent of poverty. The poverty
gap measures the depth of poverty — specifically, how much income would be needed to bring
the poor to a consumption level equal to the poverty line. Columns (7) and (8) consider
poverty gap as the dependent measure, and find similar effects: dams significantly increase
the poverty gap in their own district, and significantly reduce it downstream. The point
estimate for the poverty reduction associated with dam construction upstream varies from
one-fourth (in the OLS) to one-eighth (in the 2SLS) of the poverty increase in the dams’ own

district. In our sample there are, on average, 1.75 districts downstream of each dam. This
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implies that the poverty reduction in districts downstream from the district where a dam is
constructed is too small to compensate for the poverty increase in the dam’s own district.
In columns (9) and (10) we find no significant effect of dam construction on inequality in
either own or downstream districts. Columns (11) and (12) consider male agricultural wages.
Annual data are available for 1971-1994, but for fewer states than in the poverty sample.?3
One might expect higher land productivity (especially from the production of cash crops)
to translate into higher agricultural wages. Wages increase in districts located downstream
from a dam. The 2SLS and OLS estimates are similar and suggest that 10 dams located
upstream cause an increase in agricultural wages of roughly 0.02% (the 2SLS estimates are

insignificant). The point estimate for own district is positive but imprecise.

Finally, columns (13) and (14) examine the claim that dams increase the incidence of
malaria and other waterborne diseases in neighboring areas. We use data on annual malaria
incidence from 1976 to 1995, but find no evidence of increased malaria incidence. This
suggests that the poverty increase is more likely related to the loss of agricultural land and

displacement than to negative health effects.

Dams and Rainfall Shocks

A different channel through which dams may affect rural welfare is by improving water
security in the event of floods or droughts. If in years of bad rainfall dams provide insurance
within their own district, then they may increase welfare even if, on average, they reduce
consumption and increase poverty.

In Table 11 we use annual rainfall data for Indian districts to examine the role of dams
in mediating the effect of rain shocks. Our rain shock measure is the fractional deviation of
annual rainfall from the district’s historical average.?*

The odd columns in Table 11 document the effect of rain shocks on agricultural and wel-
fare outcomes. Negative rain shocks decrease area irrigated, total production, and increase
poverty. In the even columns of Table 11 we examine whether dams mitigate or accentuate
the effect of rain shocks (for brevity, we only report 2SLS estimates, but the OLS estimates
are very similar). Having a dam upstream reduces the adverse effect of a negative rain shock:
the coefficients on dams-rain shock interaction variable and rainshock variable have the op-
posite sign. In contrast, dams amplify the effect of a bad rain shock in their own district;

the coefficients on dams-rain shock interaction variable and the rainfall variable now have

23We get similar results when we restrict the year to years for which we have NSS data
24 A higher value implies more rainfall, which, in general, is a good thing.
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the same sign. The amplification effect is potentially due to restrictions on water use in the
dam’s catchment area.?

These findings have significant implications for the dynamics of poverty in these districts.
Low level of migration and closed markets imply an amplification of negative shocks (Jay-
achandran 2004). The poor in India have limited access to insurance against risk in rural
India (Morduch (1995)), and faced with limited insurance options the poor make inefficient
investments (Rosenzweig and Binswanger (1993), Rosenzweig and Wolpin (1993), Morduch

(1995)), which may further increase poverty.

Institutions and Poverty

The inability or unwillingness of those who benefit from dams to compensate groups of
losers, or of the government to force them to do so, when both groups are clearly identifiable
ex-ante suggests poor institutions of redistribution. To explore this possibility we build upon
recent work by Banerjee and Iyer (2005).

Banerjee and Iyer (2005) demonstrate significant differences in the ability of the popu-
lation to organize, and obtain public goods, across Indian districts. They argue that these
differences stem, in part, from different historical legacies. During the colonial period, the
British instituted different land revenue collection systems across districts. In some districts,
an intermediary (landlord) was given property rights for land and tax collection responsibil-
ities. In other districts, farmers were individually or collectively responsible for tax collec-
tion. ”Landlord” districts saw the emergence of a class of landed gentry, who had conflictual
relationships with the peasants. In these districts class relations remain tense, rendering
collective action more difficult. Districts under the landlord system continue to have lower
public good provision, lower agricultural productivity, and more infant mortality.2

If the politically and economically disadvantaged are more able to demand redistribution
in non-landlord districts (and the elite feel more compelled to compensate losers), then the
poverty impact of dams should be smaller in those districts. Using Banerjee and Iyer’s data,
we interact dams with either a dummy for being a non-landlord district, or the fraction
of land under non-landlord rule in a district and include this interaction as an additional
explanatory variable (our instrument set is as before, plus their interaction with the landlord

variable). The results are presented in Table 12, and are striking. There is no systematic

25In order to ensure sufficient flow downstream, water use upstream from the dam is typically restricted,
especially in periods of drought.

Z6Banerjee and Iyer (2005) document that whether a district was a landlord district was related to British
politics, not district characteristics. Their results are robust to restricting the sample to neighboring districts
or using the date of conquest as an instrument.
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pattern in the production and irrigation regressions, suggesting that technology drives the
differential impact of dams on production and irrigation. However, the impact of dams on
poverty in own district is halved in non-landlord districts (the interaction coefficient has a
t-statistic of 1.89 in the poverty gap regression), and we cannot reject the hypothesis that
dams do not increase poverty in non-landlord districts. There is no significant pattern in
the downstream districts where no losers are created.

We conjecture that in non-landlord districts the population is either more effective in
organizing to demand compensation, or more equal in sharing among losers and winners
within the district. It is also possible that the absence of the landed gentry gives the displaced
more political power. More generally, these findings point to the relevance of the institutional
framework within which public policies, such as dam construction, are executed and suggest
‘weak institutions’ or social conflict may help explain why dam construction has particularly

strong distributional and poverty implications in developing countries.

4.5 Robustness Checks

We conclude this section with some alternative specifications and robustness checks
Leads and lags

Columns (1), (4), (6) and (8) in Table 13 examine whether dams affect economic outcomes
prior to their construction. This specification check is particularly relevant for the poverty
regression since one could potentially attribute the poverty findings to a return to normal
poverty levels following a decline while the dam was being constructed. To examine this,
we include dams built up to 5 years in the future as an additional variable. Our faith in
our identification assumption is bolstered by the finding that in no case does future dam
construction affect current outcomes.

Columns (2), (5), (7) and (9) examine whether the effect of dams persists 5 years after
dam construction. We find some evidence that the effect of dam is gradual; dams built 5
years ago, for example, affect poverty more than those built today.

Column (3) investigates whether dams recharge the groundwater table. If they do, then,
relative to the short run, irrigation potential in a district should increase by more in the
long run. We estimate a level specification for 1994, where we regress gross irrigated area in
1994 on the number of dams built in 1974 and the number of dams in 1994 (see column (1),
Table (3) for the corresponding first stage). We cannot reject the hypothesis that 1974 dams

do not affect 1994 irrigated area and are, therefore, unable to find evidence of groundwater
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recharging.
Functional form

Table 14 examines whether the effect of dams varies with dam size. Our instruments are
too weak for us to estimate multiple parameters. But since the 2SLS and OLS estimates are
similar for most specifications, we feel confident about focusing on OLS estimates.

Our regressions include as separate regressors the number of small (below 16 meters),
medium (16 to 30 meters) and large (above 30 meters) dams. The effect of dams on poverty
is driven by large dams, while the impact of dams on productivity is driven by medium
dams. This is in line with the case-study literature which suggests the negative impact of
dams is the most pronounced for very large dams. It is also possible that, for small dams,
the positive and negative effects on poverty occur within the same district (since both the
catchment area and command area are smaller) and averaging these effects over the district
implies no aggregate effect.

We also estimated, but do not report, a specification which includes as separate regressors
a dummy for whether there is at least one dam in a district, and the number of dams. The
dummy for ”at least one dam” is insignificant, and the coefficient on the number of dams
remained unchanged (in magnitude or size) suggesting that the effect of the number of dams
on economic outcomes is linear in the number of dams.

Alternative neighborhood measures

Table 15 examines whether the impact of dam construction in a district extends beyond
its neighboring downstream districts. For brevity, we only report 2SLS estimates.

In Panel A we examine all neighboring districts. The effect of dams constructed down-
stream to a district is negative but insignificant, and there is no effect in neighboring districts
which are neither upstream or downstream. In Panel B we examine whether a district ben-
efits from dam construction in districts which are upstream to its upstream neighbors and
find no effect. Clearly, some large dams may help control floods several hundred kilometers
downstream. But for the average dam, it is unlikely that any effect extends beyond the next
two districts, and these results suggest that it does not extend beyond the next district.

This table suggests that our focus on the district in which the dam was built and the
adjacent downstream district is appropriate for capturing the effects of most dams, even if
some dams affect more than the immediate neighboring districts. It also suggests that our
estimate of the economic impact of dams in own and upstream districts on district outcomes
is a reasonable approximation of the overall effect of dams, save any general equilibrium

effect which affects all district equally.
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The most likely general equilibrium effect is a price effect, due to the increase in pro-
duction. If the poor are net sellers of agricultural products (Deaton (1989)), a decrease in
food prices is likely to accentuate poverty. In this sense, the failure to account for general

equilibrium effects is likely to underestimate the impact of dams on poverty.

5 Conclusion

In 2000, public spending on infrastructure in developing countries averaged 9% of government
spending, or 1.4 % of GDP (IMF Statistics). Despite the magnitude of such spending,
and a widespread belief that infrastructure is integral to development, evidence on how
investment in physical infrastructure affects productivity and individual well-being remains
limited (Bank 1994). There is also very little evidence on the distributional consequences of
such investment.

In this paper we have examined these questions in the context of large dam construction
in India. We have argued that any credible evaluation of large dams must address the
endogeneity of dam placement, which depends both on the wealth of different regions and the
expected returns from dam construction. This problem of endogenous placement is central
to the evaluation of any large infrastructure project. Placement will reflect both regional
need and a complicated decision-making process (Gramlich (1994)). While a growing cross-
country literature finds that productive government spending enhances growth, most studies
are unable to convincingly control for unobserved heterogeneity (see, for instance, Canning,
Fay, and Perotti (1994) and Esfahani and Ramirez (2003)). By taking account of geographic
suitability for infrastructure we provide a potentially generalizable way of estimating returns
to investment. Our estimation strategy also allows us to examine the relative importance
of different factors in driving infrastructure decisions. For instance, we find that our 2SLS
results are, with a few exceptions, very similar to OLS results when we restrict the comparison
to districts within a state, with a few exceptions. This suggests that while the overall number
of dams a state builds is endogenous, dam placement within a state has possibly been driven
by cost considerations rather than political economy or rate of returns concerns.

We have also emphasized the importance of identifying who the beneficiaries of invest-
ment projects are, and who bears the costs. To return to the example of the World Bank, in
Spring 2005 the Bank announced 270 million dollars in grants and guarantees for the Nam
Theun 2 dam in Laos. The New York Times (June 5, 2005) quotes a bank official justifying

the return to dam lending as driven by the need to support infrastructure development in a

29



‘practical’ way since “You're never ever going to do one of these in which every single person
is going to say, "This is good for me”’ (Fountain 2005). Implicit in this statement is the belief
that projects with an average positive return should be undertaken, as it will be possible to
compensate the losers. We, however, find a strikingly unequal sharing of costs and benefits of
large dam construction in India. The results on poverty suggest that the government failed
to compensate people living near the dam for the inherent inequities in the gains and losses
associated with dam construction. Given that dams are at best marginally cost-effective the
absence of redistribution may well have been required to generate a political constituency
for large dams. We provide suggestive evidence that one reason for the lack of compensation
relates to the institutional framework within which policy decisions are made. In areas where
the institutional structure favors the politically and economically advantaged dams cause a
greater increase in poverty. We conclude that distributional implications of public policies
should be central to any evaluation, and that more attention should focus on understanding
the institutions, and power structures, that lead to the implementation of marginally cost

effective projects with significant negative distributional implications.
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6 Data Appendix

Dams

Data on dams is from the World Registry of Large Dams, maintained by the International
Commission on Large Dams (ICOLD). The registry lists all large dams in India, completed
or under construction, together with the nearest city to the dam and date of completion.
We use city information to assign dams to districts in the year of completion.

Geography

Data on district area, river kilometers, district elevation and gradient and river gradient are
collated from two GIS files: GTOPO30 (elevation data, available at
http://edcdaac.usgs.gov/gtopo30/gtopo30.html), and ’dnnet’ (river drainage network data,
available at http://ortelius.maproom.psu.edu/dcw/). The files were processed by CIESIN,
Earth Institute Columbia University using ARCGIS software. Polygon-wise GIS data exists
for every district. District gradient and elevation was computed as % district land area
in different elevation/gradient categories (summed across polygons in district). For river
gradient we used the same process but restricted attention to polygons through which the
river flowed. We identified neighboring districts, and within them upstream and downstream
districts, from District Census Maps.

Agriculture data

These data are from the Evenson and McKinsey India Agriculture and Climate data-set
(available at http://chd.ucla.edu/dev-data ), with an update. The data-set covers 271 In-
dian districts within 13 Indian states, defined by 1961 boundaries. Kerala and Assam are
the major excluded agricultural states. Also absent, but less important agriculturally, are
the minor states and Union Territories in Northeastern India, and the Northern states of
Himachal Pradesh and Jammu-Kashmir. Data on volume produced, fertilizer used and area
cropped are from the original data-set (1971-1987). We use the average 1960-65 crop prices
to obtain monetary production and yield values. Data on irrigated and total cultivated
area and male agricultural wages span 1971-1994. All monetary variables are deflated by the
state-specific Consumer Price Index for Agricultural laborers in Ozler and Ravallion. (1996),
base year 1973-74.

Rural Welfare data

We use household expenditure survey data collected by Indian National Sample Survey
(NSS). These are All India surveys with a sample size of about 75,000 rural and 45,000
urban households. Households are sampled randomly within districts.?” Only NSS for 1973
regional averages were obtained from Jain, K.Sundaram, and S.D.Tendulkar (1988). For
the 1983-84, 1987-88, 1993-94 and 1999-2000 (“thick”) rounds, Topalova (2004) computed
district-wise statistics using the poverty lines proposed by Deaton (rather than those of the
Indian Planning Commission, which are based on defective price indices over time, across

2"The NSS Organization does not report district averages, as it considers the district sample size inadequate
for reliable district poverty estimates. This does not affect us, since we report regression results for a larger
number of districts and do not make any inference about a particular district.
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states and between the urban and rural sector) (Deaton (2003a), Deaton (2003b)).2® The
1999-2000 round introduced a new 7-day recall period, along with the usual 30-day recall
period, for household expenditures on most goods. This methodology is believed to have
led to an overestimate of the expenditures based on the 30-day recall period, making the
poverty and inequality estimates non-comparable to estimates for earlier years. To achieve
comparability across surveys she follows Deaton and imputes, for 1999, the correct district
per capita expenditure distribution from households expenditures on a subset of goods for
which the new recall period questions were not introduced. The poverty, inequality, and
mean per capita expenditure measures were derived from this distribution.

District identifiers are available 1987 onwards (in hard copy for 1993). For 1973 and
1983, we have NSS region estimates (a region is a group of neighboring districts for which
the sample is sufficiently large for the NSS to deem the data “representative” of the region).
We use the district matching across censuses, and region to district matching, provided
in Murthi, P.V.Srinivasan, and S.V.Subramanian (2001) and in Indian censuses to match
regions to districts and account for district boundary changes.

Population, Public Goods and Landlord data

Population and Public Goods data are from the Decennial Census of India for the years
1971,1981 and 1991. The public goods data are referred to as village directory data, and
have been aggregated at the district level to generate the fraction of villages in the district
that have a particular public good (obtained from Banerjee and Somanathan (2005)). The
population data are in logs (obtained from the Maryland Indian District Database
(http://www.bsos.umd.edu/socy/vanneman/districts/index.html)). District colonial land
tenure system data is from Banerjee and Iyer (2005)

Rainfall

We use the rainfall data set, Terrestrial Air Temperature and Precipitation: Monthly and
Annual Time Series (1950-99), Version 1.02, was constructed by Cord J. Willows and Kanji
Maturate at the Center for Climatic Research, University of Delaware. The rainfall measure
for a latitude-longitude node combines data from 20 nearby weather stations using an inter-
polation algorithm based on the spherical version of Shepards distance-weighting method.
We define a rainfall shock as the fractional deviation of the district’s rainfall from the district
mean (computed over 1971-1999).

28Poverty lines were unavailable for the smaller states and union territories of Arunachal Pradesh, Goa,
Daman and Diu, Jammu and Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, An-
daman and Nicobar Islands, Chandigarh, Pondicherry, Lakshwadweep, Dadra Nagar and Haveli. Most are
already excluded because they have no dams or we lack other data for them. For those included, we use the
neighboring states’ poverty line.
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Table 1: Descriptive Statistics

A. Geography
Fraction district with river gradient 0-1.5%

Fraction district with river gradient 1.5-3%
Fraction district with river gradient 3-6%
Fraction district with river gradient 6-10%

Fraction district with river gradient above 10%

B. Dams
Number of dams in district

Number of dams upstream to district

C. Welfare
Per capita expenditure (log Rupees)

Headcount ratio
Poverty gap
Gini coefficient

Agricultural wage (Rupees)

D. Agriculture
Gross cultivated area (in '000 hectares)

Gross irrigated area (in '000 hectares)
Total production (Rupees per '000 tons)

Fertilizer use (Rupees per '000 tons)

E. Demographics and Public Goods
Rural Population

Rural In-migrants
Fraction Villages with any water source
Fraction Villages with power

Fraction Non-landlord districts

Beginning Period End Period  Source
0.748 GIS
(0.31)
0.077 GIS
(0.08)
0.059 GIS
(0.08)
0.036 GIS
(0.06)
0.077 GIS
(0.19)
2.39 8.66 ICOLD Dam Register
(4.55) (16.58)
3.63 13.85 ICOLD Dam Register
(7.77) (30.57)
3.80 5.79 National Sample Survey
(0.196) (0.271)
0.46 0.22 National Sample Survey
(0.156) (0.139)
0.27 0.04 National Sample Survey
(0.052) (0.035)
0.28 0.26 National Sample Survey
(0.036) (0.038)
4.45 6.01 Evenson and McKinsey
(1.79) (2.19)
570 642 Evenson and McKinsey
(278) (324)
138 253 Evenson and McKinsey
(151) (222)
215841 297007 Evenson and McKinsey
(143896) (251412)
11606 40275 Evenson and McKinsey
(12177) (36040)
1295120 1887262 Census of India
(867033) (1254164)
365563 485667 Census of India
(239150) (308711)
0.982 0.997 Census of India
(0.026) (0.006)
0.244 0.806 Census of India
(0.255) (0.224)
0.611 Banerjee and lyer
(0.489)

Notes

1. Beginning and end periods are: (i) Dams: 1971 and 1999; (ii)Welfare measures:1973 and 1999, and for wages: 1971 and 1987; (iii) Area
variables:1971 and 1994; (iv)Production and fertilizer use: 1971 and 1987; (v) Demographic and Public goods:1971 and 1991.

2. Standard deviations in parentheses



Table 2: State Dams and Economic Outcomes

Gross Gross
Irrigated  Agricultural  Headcount Irrigated  Agricultural Headcount
Area Production ratio Area Production ratio
Q) @) (©) (4) ®) (6)
Dams in state 0.075 0.004 -0.0055
(0.012) (0.017) (0.0030)
Dams in state, year [t+5] 0.076 0.005 -0.0045
(0.012) (0.017) (0.0029)
N 6091 4571 1809 6091 4571 1805

Notes:

1. Regressions include state and year fixed effects.

2. Gross Irrigated Area and Agricultural Production are in logs.
3.Standard errors clustered by state*year in parentheses.



Table 3: Changes in Number of Dams, Poverty and Production by State Dam Incidence and District River Gradient

District River Gradient

High Low Difference
¢Y) 2 (©)
Panel A: Dams constructed b/w 1973-1999 (per 100 dams)
High dam construction states 0.154 0.076 0.078
(0.019) (0.013) (0.023)
Low dam construction states 0.01 0.003 0.007
(0.200) (0.110) (0.003)
Difference 0.144 0.073 0.071
(0.017) (0.013) (0.023)
Panel B: Change in head count ratio b/w 1973-1999
High dam construction states -0.2315 -0.235 0.0035
(0.011) (0.011) (0.017)
Low dam construction states -0.231 -0.189 -0.042
(1.570) (0.019) (0.025)
Difference -0.0005 -0.046 0.0455
(0.019) (0.022) (0.030)
Panel C: Change in log production b/w 1970-1986
High dam construction states 0.124 0.311 -0.187
(0.046) (0.034) (0.010)
Low dam construction states 0.201 0.059 0.142
(0.012) (0.113) (0.022)
Difference -0.077 0.252 -0.329
(0.014) (0.017) (0.024)

Notes:
1. A state with over 100 dams by 1999 is a high dam construction state, and a low dam construction state otherwise. A district with less than 90% of
area along river with below 1.5% gradient is a high gradient district, and a low gradient district otherwise.

2. Each cell gives the average change in the variable for all districts with the specific district-state combination. Standard errors in parenthesis.



Table 4: Geography and Dam Construction

Agricultural
Dependent variable Number of Dams Head count ratio  Production
Cross-section FE FE FE
years 1979 1994 1973-99 1973-1999 1971-1987
@) ) (©) (4) (©)
Dams in state*(Fraction river gradient 0.082 0.114 0.152 0.077 -0.055
1.5-3%) (0.031) (0.028) (0.044) (0.045) (0.118)
Dams in state*(Fraction river gradient -0.119 -0.188 -0.233 -0.077 -0.053
3-5%) (0.059) (0.055) (0.058) (0.096) (0.182)
Dams in state*(Fraction river gradient 0.094 0.118 0.044 -0.058 0.183
6-10%) (0.079) (0.073) (0.077) (0.125) (0.332)
Dams in state*(Fraction river gradient 0.036 0.085 0.206 0.122 0.030
above 10%) (0.036) (0.038) (0.048) (0.111) (0.268)
F-test for river gradient 2.268 5.457 10.058 0.772 0.532
[p-value] [0.061] [0.000] [0.000] [0.543] [0.712]
Dams in state*River length 0.004 0.005 0.006 0.003 0.007
(0.002) (0.001) (0.001) (0.003) (0.005)
Dams in state*(Fraction district gradient 0.038 0.096 0.158 0.101 -0.158
1.5-3%) (0.037) (0.034) (0.049) (0.076) (0.183)
Dams in state*(Fraction district gradient 0.168 0.068 -0.009 -0.087 0.076
3-5%) (0.064) (0.061) (0.106) (0.134) (0.316)
Dams in state*(Fraction district gradient -0.627 -0.307 -0.096 -0.197 -0.150
6-10%) (0.108) (0.106) (0.239) (0.263) (0.603)
Dams in state*(Fraction district gradient 0.401 0.189 0.088 0.246 -0.014
above 10%) (0.098) (0.095) (0.174) (0.208) (0.511)
Dams in state*(Fraction district 0.019 0.015 0.008 -0.003 0.006
elevation 250-500 metres) (0.005) (0.005) (0.007) (0.010) (0.022)
Dams in state*(Fraction district 0.033 0.030 0.022 0.003 0.023
elevation 500-1000 metres) (0.004) (0.004) (0.006) (0.010) (0.023)
Dams in state*(Fraction district -0.351 -0.186 -0.082 -0.269 0.627
elevation over 1000 metres) (0.087) (0.086) (0.183) (0.304) (1.145)
Dams in state*District area 0.001 0.000 0.0000 -0.0005 0.0005
(square kilometers) (0.000) (0.000) (0.0004) (0.0002) (0.0005)
District Fixed effects No No Yes Yes Yes
R-squared 0.77 0.75 0.97 0.97 0.94
N 371 371 1855 1855 4537
Notes:

1.All regressions include a full set of state*year interactions. Columns (3)-(5) regression include district fixed effects.
2.Standard errors are in parentheses. They are clustered by NSS region*year in column (3) and (4), and district in column (5).
3.Years included in the 1973-1999 sample are: 1973, 1983, 1987, 1993 and 1999. The 1971-87 sample has annual data.

4. River length is per 1000 kms and District area per 10,000sq. kms. Coefficients in columns (1)-(3) are multipled by 100.



Table 5: Dams and Agricultural Area

Irrigated area Cultivated area HYV area
Gross Net Gross Net Multicropping Five crops
@) ) (©) (4) (©) (6) () 8) (©) (10) (11) (12)
PANEL A. OLS
Dams:
Own district -0.092 -0.190 -0.132 -0.233  0.013 -0.023 0.026 -0.028 -0.027 -0.007 0.104 0.249
(0.413) (0.370) (0.387) (0.331) (0.066) (0.061) (0.049) (0.054) (0.060) (0.047) (0.371)  (0.387)
Upstream 0.655 0.616 0.001 -0.058 0.070 0.601
(0.204) (0.208) (0.038) (0.036) (0.032) (0.274)
PANEL B. 2SLS
Dams:
Own district 1.349 2.251 1.343 2.145  -0.385 -0.508  -0.149 -0.441 -0.333 -0.145 0.262 -0.602
(1.104)  (1.371) (1.046) (1.352) (0.225) (0.278) (0.205) (0.249) (0.212) (0.208) (1.216) (1.018)
Upstream 1.135 1.142 -0.010 -0.077 0.071 0.739
(0.288) (0.291) (0.056) (0.054) (0.053) (0.379)
N 6067 6067 6067 6067 6055 6055 6055 6055 6055 6055 4493 4493
Notes

1. All regressions include district fixed effects, a full set of state*year interactions and interaction of the number of dams in the state with district gradient, kilometers of river, and district

elevation (see table 4 for a full list of controls).

2. Regressions in even columns include as additional controls the interactions of the number of dams in the state with: the average of proportion district gradient and proportion district

elevation, and the sum of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts).
3. Standard errors clustered by district are reported in parentheses.

4. Dependent variables are in logs. All coefficients are multiplied by 100. Irrigated and cultivated area regressions are for 1971-1994, HYV regressions for 1971-1987. The crops in hyv area

regression are wheat, rice, jowar, bajra and maize. Multicropping is the ratio of gross cropped area to net cropped area.



Table 6: Dams and Agriculture

Production Fertilizer Use
nineteen crops
@) (2) 3 4 ®) (6)
PANEL A. OLS
Dams:
Own district -0.204 -0.253 -0.203 -0.242 0.385 0.572
(0.208) (0.223) (0.201) (0.208) (0.304) (0.309)
Upstream 0.218 0.169 0.316
(0.121) (0.107) (0.227)
PANEL B. 2SLS
Dams:
Own district 0.061 -0.436 -0.442 -0.744 -1.707 -1.758
(0.749) (0.643) (0.597) (0.594) (1.440) (1.537)
Upstream 0.357 0.350 0.592
(0.165) (0.162) (0.272)
N 4537 4537 4537 4537 4521 4521
Notes

1. All regressions include district fixed effects, a full set of state*year interactions and the interaction of number of dams in the state with district

gradient, kilometers of river, and district elevation (see table 4 for a full list of controls).

2. Regressions in even columns include as additional controls the interactions of number of dams in the state with: the average of proportion district
gradient and proportion district elevation, and the sum of river kilometers in the upstream districts (plus a indicator for whether the district has any

upstream districts).

3. Standard errors clustered by district are reported in parentheses.

4. Dependent variables in logs. All coefficients multiplied by 100. Regressions cover 1971-1987. The 19 crops are wheat, rice, jowar, sugarcane,
groundnut, bajra, maize, gram, tur, other pulses, barley, tobacco, ragi, sesamum, cotton, potato, jute, soy, and sunflower.



Table 7: Dams and Crop Outcomes

Non-water intensive crops Water intensive crops
All Millet Pulse Wheat All Sugar Cotton Rice
@ (2) 3 4 ®) (6) ) 8
PANEL A. AREA CULTIVATED
Al. OLS
Dams
Own district -0.52 0.16 -0.16 -0.27 0.14 0.72 1.99 -0.39
(0.36) (0.38) (0.44) (0.36) (0.23) (0.53) (0.86) (0.35)
Upstream 0.29 0.38 0.11 0.26 0.05 0.64 -0.02 0.33
(0.15) (0.17) (0.22) (0.18) (0.14) (0.37) (0.42) (0.21)
A2.2SLS
Own district -0.03 0.58 -0.42 -1.32 1.25 3.57 0.71 0.76
(0.98) (1.30) (1.16) (1.00) (1.08) (2.57) (3.16) (0.94)
Upstream 0.14 0.37 0.06 0.42 0.33 1.38 0.05 0.77
(0.18) (0.24) (0.29) (0.20) (0.23) (0.40) (0.47) (0.31)
N 4530 4480 4464 4104 4489 4264 2790 4373
PANEL B. YIELD
B1.OLS
Own district -0.044 0.105 -0.136 0.229 -0.135 0.133 -0.399 -0.172
(0.259) (0.479) (0.268) (0.220) (0.322) (0.268) (0.518) (0.358)
Upstream 0.114 0.268 -0.085 0.140 0.246 0.066 -0.382 -0.196
(0.134) (0.182) (0.086) (0.103) (0.207) (0.105) (0.254) (0.138)
B2. 2SLS
Own district -0.816 -0.829 0.104 -0.327 -0.593 0.424 0.447 -1.024
(0.655) (0.955) (0.586) (0.921) (0.950) (0.895) (1.351) (0.868)
Upstream 0.266 0.531 -0.077 0.293 0.315 0.156 -0.373 -0.229
(0.201) (0.280) (0.114) (0.160) (0.267) (0.142) (0.358) (0.173)
N 4528 4476 4456 4073 4482 4252 2582 4359
PANEL C. PRODUCTION
Cl1.0LS
Own district -0.600 0.271 -0.341 -0.024 -0.015 0.722 1.343 -0.624
(0.427) (0.554) (0.416) (0.424) (0.400) (0.634) (1.112) (0.419)
Upstream 0.322 0.645 0.003 0.442 0.274 0.552 -0.242 0.154
(0.198) (0.235) (0.208) (0.220) (0.198) (0.395) (0.517) (0.215)
C2.2SLS
Own district -0.818 -0.240 -0.407 -1.534 0.624 4,268 0.492 -0.225
(1.180) (1.670) (1.199) (1.358) (1.321) (2.963) (3.133) (1.213)
Upstream 0.295 0.896 -0.014 0.753 0.619 1.386 -0.053 0.544
(0.241) (0.349) (0.296) (0.284) (0.229) (0.415) (0.653) (0.330)
N 4531 4483 4456 4085 4497 4362 2587 4361

Notes:

1. All regressions include district fixed effects, a full set of state*year interactions, and interaction of the number of dams in the state with district gradient, kilometers of river,
and district elevation (see table 4 for a full list of controls).

2. They also include as controls the interactions of number of dams in the state with: the average of proportion district gradient and proportion district elevation, and the sum
of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts).

3. Standard errors clustered by district are reported in parentheses.

4. Area, yield and production variables are in logs. All coefficients are multiplied by 100.



Table 8: Dams and Public Good Provision and Demographics: 2SLS estimates
Education Medical

facility facility Water facility Canals Power Tarmac road
1) ) ®) (4) () (6)
PANEL A: PUBLIC GOODS
Dams
Own district 0.109 0.421 0.029 0.035 0.358 0.063
(0.210) (0.337) (0.059) (0.168) (0.413) (0.254)
Upstream 0.015 0.041 -0.024 0.040 0.199 0.063
(0.058) (0.096) (0.013) (0.091) (0.094) (0.084)
N 847 847 847 562 848 848

PANEL B: POPULATION

SC/ST Agricultural

Population  In-migrants  population laborers Cultivators
Own district 0.481 0.481 -2.145 1.364 0.330
(1.070) (1.555) (8.489) (1.961) (1.920)
Upstream 0.065 0.191 0.196 0.037 0.007
(0.104) (0.145) (0.937) (0.182) (0.161)
N 947 947 853 944 945

Notes:

1. Regressions include district fixed effects, a full set of state*year interactions, and interaction of the number of dams in the state with district gradient,
kilometers of river, and district elevation (see table 4 for a full list of controls).

2. Other controls are the interactions of number of dams in the state with: the average of proportion district gradient and elevation, and the sum of river
kilometers in upstream districts (plus a indicator for whether the district has any upstream districts).

3. Standard errors are reported in parentheses. These are clustered by district. All coefficients are multiplied by 100.

4. The regressions include 1971, 1981 and 1991. In panel A the dependent variable is the fraction villages in district with the public good facility. Water
facility exclude dams. In panel B dependent variables are in logs and refer to the rural population.



Table 9: Cost Benefit Analysis for Dams

A. Parameters

Al. Effect of dams on production downstream

A2. Effect of dams on irrigation downstream

A3. Effect of dams on area in own district

A4. Effect of dams on fertilizer downstream

A5. Number of dams built per year (1970-1997) (ICOLD)

AB6. Number of districts downstream from a dam

AT. Deadweight loss of taxation (assumption)

A8. Capital cost of dam construction, per hectare (Planning Commission)
A9. Annual recurrent cost of dam upkeep (per hectare) (Planning Commission)
A10. Annual increase in production

B. Calculating Substitution
B1. Area irrigated by dams, 1985 (hectares) (Planning Commission)
B2. Number of dams in 1985 (ICOLD)

B3. Area irrigated by per dam, 1985 (hectares) (B2/B1))
B4. Area irrigated per district in 1996 (hectares) (Evenson and McKinsey)

B5. Additional area of irrigation due to dams (hectares) (B4*A2*A6+A3*B4)

B6. Fraction newly irrigated/total irrigated
C. Cost Benefit analysis, 1985

C1. Total production in 1985(Rs per 1000 tons) (Evenson & Mc Kinsey)
C2. Total production increase per dam (downstream) C1*Al

C3. Life time benefit (with 5% discount rate: C2*20)

C4. Area irrigated (in '000 hectares)

C5. Increase in irrigation in downstream district per dam (C5*A2)

C6. Life time benefit per hectare irrigated (C3/C5)

C7. Life time benefit, including cheaper irrigation (C6/B5)

C8. Annual fertilizer cost , 1985 (Evenson and Mc Kinsey)
C9. Increase in fertlizer cost due to dams

C10. Life time fertilizer cost per hectare

C11. Life time capital cost+maintenance per hectare

C12. Total life time cost

C13. Total life time cost, with dead weight loss

C14. Rate of returns, without deadweight loss

C15. Rate of returns, with deadweight loss

C16. Rate of returns, without deadweight loss, excluding fertlizer use
C17. Rate of returns, with deadweight loss, excluding fertlizer use

D. Contribution of dams to overall increase in production
D1=Annual increase in production

D2=Annual increase in production due to dams
D3=Contribution of dams to annual growth in production

0.00357
0.0113
0.022
0.0059
0.46
1.75
0.15
12258
194
0.0189

23570000
2691

8759
150940

6306
0.72

83700000
298809
5976180
38641
437
13687
19012

9912700
58484.93
2679
16129
18808
21629

1.011
0.879
1.179
1.025

1581930
137452
0.087

Notes
1. All values are expressed in 1973 prices.
2. Unless otherwise specified the parameters are authors' calculations.



Table 10: Dams and Rural Welfare

Percapita
expenditure Head count ratio Poverty gap Gini coefficient Agricultural wages Malaria incidence
assume  assume
migrants  migrants
Original are poor  arerich
@) 3] ®) (4) (©) (6) (@) (8) ©9) (10) (11) (12) (13) (14)
PANEL A. OLS
Dams

Own district  -0.266  -0.316 0.267 0.277 -0.158 0.616 0.083 0.081 0.006 -0.001 0.067 0.178 -4.79 -1.32
(0.135) (0.127) (0.090) (0.089) (0.105) (0.096) (0.029) (0.029) (0.032) (0.030) (0.217) (0.218) (6.17) (6.63)

Upstream 0.038 -0.051 -0.044 -0.059 -0.021 -0.005 0.207 -6.74

(0.053) (0.036)  (0.038) (0.038) (0.012) (0.013) (0.098) (4.54)

PANEL B. 2SLS

Dams

Own district  -0.353  -0.756 0.493 0.772 0.387 1.188 0.144 0.228 -0.018 -0.014 -0.078 0.749 -15.20 -6.24
(0.590) (0.443) (0.328) (0.285) (0.326) (0.316) (0.093) (0.083) (0.125) (0.105) (0.818) (0.848) (24.81) (19.70)

Upstream 0.066 -0.098 -0.100 -0.107 -0.034 -0.008 0.222 -7.19

(0.071) (0.049) (0.052)  (0.052) (0.016) (0.019) (0.151) (6.01)
N 1799 1799 1799 1799 1799 1799 1799 1799 1794 1794 6072 6072 7126 7126
Notes:

1. All regressions include district fixed effects, a full set of state*year interactions, and interaction of the number of dams in the state with district gradient, kilometers of river, and district elevation (see table 4
for a full list of controls).

2. The regressions in the even columns (and column 5) also control for the interactions of the number of dams in the state with: the average of the proportion of district gradient, the proportion of district
elevation, and the sum of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts)

3. Standard errors are reported in parentheses. These are clustered by 1973 NSS region*year in columns (1)-(10), and by district in columns (11) -(14).

4. The regressions in columns (1)-(10) include 1973, 1983, 1987, 1993 and 1999. Column (11)-(12) regression covers 1971-1994. Column 913)-1(14) cover 1975-1995.

5. Per capita expenditure and agricultural wages are in logarithms. Columns (3) and (4) use head count ratio figures as computed from NSS data. Column (5) and (6) adjust this using Table 7 migration
estimates. Column (5) assumes all migrants are poor, and column (6) all migrants are rich. Malaria incidence is measured as annual Parasite Incidence ( API) = ( No. of blood smears found positive for malaria/
total population under surveillance)*1000. All coefficients are multiplied by 100.



Table 11 : Dams and Rainfall Shocks

Gross irrigated area Total production Headcount ratio Poverty Gap

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Q) 2 ©) (4) ®) (6) ) (8) () (10) (11) (12)

Rainshock 0.084 0.073 0.090 0.122 0.077 0.131 -0.060 -0.045 -0.051 -0.018 -0.009 -0.006
(0.040) (0.042) (0.046)  (0.035)  (0.040) (0.046) (0.019) (0.023) (0.025) (0.007) (0.008) (0.009)

Dams -0.156 2.367 -0.138 -0.190 0.232 0.697 0.059 0.185
(0.368) (1.406) (0.223) (0.593) (0.093) (0.279) (0.030) (0.081)

Dams*Rainshock 0.752 0.591 1.211 0.472 -0.244 -0.238 -0.131 -0.196
(0.260) (0.267) (0.343) (0.288) (0.113) (0.175) (0.045) (0.086)

Upstream Dams 0.650 1.092 0.168 0.315 -0.043 -0.074 -0.020 -0.025
(0.204) (0.296) (0.1112) (0.168) (0.038) (0.052) (0.012) (0.016)

Upstream Dams* -0.180 -0.143 -0.333 -0.298 0.063 0.117 0.015 0.037
Rainshock (0.077) (0.073) (0.103) (0.103) (0.039) (0.062) (0.013) (0.023)
N 6067 6067 6067 4537 4537 4537 1799 1799 1799 1799 1799 1799

Notes:
1. All regressions include district fixed effects, a full set of state*year interactions, and the interaction of the number of dams in the state with district gradient, kilometers of river, and district elevation (see table

4 for a full list of controls).
2. All regressions with dams as a regressor also control for the interactions of number of dams in the state with: the average of the proportion of district gradient, the proportion of district elevation, and the sum

of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream district)
3. Standard errors reported in parentheses. These are clustered by district in columns (1)-(6), and by NSS region*year in columns (7)-(12).
4. Rainshock is the fractional deviation of district rainfall from district historic mean (over 1971-1999). Agricultural variables are in logarithms. All coefficients multipled by 100.



Table 12 : Dams and Historic Land Tenure System: 2SLS estimates

Gross Irrigated Area Total Production Headcount ratio Poverty Gap
Non-landlord  Proportion  Non-landlord  Proportion ~ Non-landlord  Proportion  Non-landlord  Proportion
Non-landlord measure dummy non-landlord dummy non-landlord dummy non-landlord dummy non-landlord
(3] @) (©) 4) ®) (6) (@) (8)
Dams 0.768 1.435 0.302 0.384 1.276 1.317 0.408 0.418
(2.077) (2.371) (1.198) (1.279) (0.588) (0.665) (0.197) (0.220)
Dams*Non-landlord -0.059 -0.688 -0.522 -0.592 -0.527 -0.601 -0.208 -0.225
(1.563) (1.728) (0.605) (0.644) (0.363) (0.399) (0.110) (0.125)
Upstream Dams 0.859 1.052 -0.041 -0.172 -0.292 -0.439 -0.133 -0.167
(0.851) (0.912) (0.667) (0.684) (0.334) (0.348) (0.099) (0.108)
Upstream Dams* -0.362 -0.593 0.445 0.576 0.077 0.214 0.056 0.086
Non-landlord (0.805) (0.809) (0.654) (0.665) (0.308) (0.313) (0.089) (0.096)
N 3427 3427 2550 2550 914 914 914 914

Notes:

1. All regressions include district fixed effects and a full set of state*year interactions, as well as interaction of the number of dams in the state with the district gradient, kilometers of
river, and district elevation (see table 4 for a full list of controls)

2. All regressions also control for the interactions of the number of dams in the state with: the average of the proportion of district gradient, the proportion of district elevation, and the
sum of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts)

3. Standard errors reported in parentheses. These are clustered by district in columns (1)-(4), and by NSS region*year in columns (5)-(8).

4.The sample is restricted to districts under British direct rule. Our landlord measures are from Banerjee and lyer (2005) . All coefficients multipled by 100.



Table 13: Lead and Lag Effects of Dams: 2SLS Estimates

Gross Irrigated Area Total Production Head count ratio Poverty Gap
FE FE Level in 1994 FE FE FE FE FE FE
Q) 2 ©) (4) ®) (6) () (©) ©)

Dams
Own district 17.001 10.277 -13.44 2.598 0.467 1.181 0.236 0.309 0.071

(12.041) (5.019) (42.220) (2.063) (1.564) (0.472) (0.457) (0.132) (0.147)
Own district, t+5 years -17.770 -2.707 -0.87 -0.203

(15.580) (1.740) (0.674) (0.196)
Own district, t-5 years -8.918 -1.340 0.528 0.158

(5.318) (2.570) (0.381) (0.130)
Own district in 1974 49.45
(105.220)

Upstream 0.068 2.279 -1.968 0.312 0.164 -0.084 -0.061 -0.015 -0.036

(2.726) (1.467) (12.38) (0.557) (0.391) (0.131) (0.104) (0.041) (0.033)
Upstream, t+5 years 1.813 0.153 0.000 -0.039

(4.157) (0.738) (0.295) (0.087)
Upstream, t-5 years -0.887 0.242 -0.034 0.002

(1.213) (0.454) (0.088) (0.028)
Upstream district in 1974 0.754
(34.220)

F-test for own district and 2.57 0.230 4.89 4.95
own district t-5 years (0.078) (0.790) (0.008) (0.008)
F-test for upstream and 7.73 2.180 2.04 2.31
upstream t-5 years (0.000) (0.110) (0.131) (0.101)
District fixed effects Yes Yes No Yes Yes Yes Yes Yes Yes
N 6067 6091 253 4554 4554 1799 1799 1799 1799
Notes:

1. For headcount ratio t-5 and t+5 refer to the previous and next year for which poverty data is available (on average 5 years).

2. All regressions include district fixed effects, a full set of state*year interactions and interaction of number of dams in the state with district gradient, kilometers of river, and district elevation (see table 4
for a full list of controls).

3. All regressions also control for the interactions of the number of dams in the state with: the average of the proportion of district gradient, the proportion of district elevation, and the sum of river
kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts).

4.All regressions except in column (3) include district fixed effect.

5. Standard errors are reported in parentheses. These are clustered by NSS region*year in columns (6)-(9) and by district in columns (1)-(2).

6. All agricultural outcomes are in logs. All coefficients multiplied by 100.



Table 14: Effect of Dam Size: OLS estimates

Gross irrigated area Production Headcount ratio Poverty Gap

@) (03] (©) (4) () (6) @) @)
Number of small dams -0.931 -1.293 -0.292 -0.326 0.217 0.115 0.076 0.039
(less than 16 m) (0.583) (0.478) (0.267) (0.277) (0.133) (0.139) (0.047) (0.049)
Number of medium dams 1.305 1.500 -0.122 -0.057 0.192 0.371 0.036 0.074
(16-30 m) (0.754) (0.762) (0.452) (0.558) (0.242) (0.228) (0.075) (0.076)
Number of large dams -0.863 0.067 0.174 0.353 1.575 1.584 0.600 0.589
(over 30m) (2.586) (2.689) (1.130) (1.304) (0.811) (0.824) (0.285) (0.286)
Number of small dams 0.885 -0.270 -0.055 0.014
upstream (0.309) (0.218) (0.109) (0.040)
Number of medium dams 0.663 0.796 -0.049 -0.045
upstream (0.384) (0.279) (0.125) (0.043)
Number of high dams -3.359 0.069 0.136 -0.069
upstream (2.150) (1.342) (0.606) (0.212)
N 6067 6067 4537 4537 1799 1799 1799 1799

Notes:
1. All regressions include district fixed effects, a full set of state*year interactions and interaction of number of dams in the state with the district gradient, kilometers of river, and district

elevation (see table 4 for a full list of controls).

2. All regressions in even columns also control for interactions of number of dams in the state with: the average of the proportion of district gradient, the proportion of district elevation,
and the sum of river kilometers in the upstream districts (plus a indicator for whether the district has any upstream districts)

3. Standard errors are reported in parentheses. These are clustered by district in columns (1)-(4), and by NSS region*year in columns (5)-(8).

4. 16 m is the 50th percentile of dam height in our sample, and 30 m the 90th percentile.

5. Gross irrigated area and production are in logarithms.



Table 15: Dams and Neighborhood Effects: 2SLS estimates

Gross irrigated area Production Head count ratio Poverty Gap
3] @) ©) (4)
PANEL A. NEIGHBORING DISTRICTS
Dams
Own district 3.038 0.151 0.698 0.192
(1.442) (0.701) (0.325) (0.099)
Upstream 0.981 0.331 -0.102 -0.035
(0.280) (0.167) (0.050) (0.017)
Downstream -0.408 -0.020 0.074 0.025
(0.445) (0.242) (0.087) (0.026)
Neighboring but not -0.066 -0.054 -0.047 -0.019
upstream/downstream (0.418) (0.160) (0.081) (0.027)
PANEL B. NEIGHBORS OF NEIGHBORING DISTRICTS
Dams
Own district 3.923 -0.312 0.847 0.245
(1.845) (0.629) (0.270) (0.084)
Upstream 1.716 0.543 -0.060 -0.013
(0.554) (0.276) (0.103) (0.033)
Upstream to upstream -0.219 -0.088 -0.016 -0.011
districts (0.297) (0.120) (0.060) (0.020)
N 6067 4537 1799 1799
Notes:

1. All regressions include district fixed effects, a full set of state*year interactions and interaction of the number of dams in the state with district

gradient, kilometers of river, and district elevation (see table 4 for a full list of controls).

2. Panel A regressions control for interactions of the number of dams in the state with: the average of the proportion of district gradient, the
proportion of district elevation, and the sum of river kilometers in the upstream, dowstream, and other neighboring districts (plus indicator

variables for whether the district has any upstream, downstream or other neighboring districts).

3. Panel B regressions control for interactions of the number of dams in the state with: the average of the proportion of district gradient, the
proportion of district elevation, and the sum of river kilometers in the upstream and upstream to upstream districts (plus indicator variables for

whether the district has any upstream and upstream to upstream district).

3. Standard errors clustered at the district level (columns 1 and 2) or the region*year level (column 3 and 4)

4. All coefficients multiplied by 100.



Figure 1. Dams in 1965




Figure 2: Dams in 1995




Figure 3:Average District Gradient
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Figure 4. Average River Gradient
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Figure 5: Coefficients of River Slope interactions in Poverty and Dam Regressions
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Figure 6: Coefficients of River Slope in Production and Dam regressions
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