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1 Introduction

Previous research shows that the standard, representative agent, consumption-based asset

pricing theory based on constant relative risk aversion utility fails to explain the average

returns of risky assets.1 One aspect of this failure, addressed here, is the large unconditional

Euler equation errors that the model generates when evaluated on cross-sections of stock

returns. We present evidence on the size of these errors and show that they remain eco-

nomically large even when preference parameters are freely chosen to maximize the model�s

chances of �tting the data. Thus, unlike the equity premium puzzle of Mehra and Prescott

(1985), the large Euler equation errors cannot be resolved with high values of risk aversion.

To explain why the standard model fails, we need to develop alternative models that

can rationalize its large Euler equation errors. Yet surprisingly little research has been

devoted to assessing the extent to which newer consumption-based asset pricing theories�

those speci�cally developed to address empirical limitations of the standard consumption-

based model�can explain its large Euler equation errors. Unconditional Euler equation errors

can be interpreted economically as pricing errors; thus we use the terms �Euler equation

error�and �pricing error�interchangeably.

This paper makes three contributions. First, we show that leading consumption-based

asset pricing theories resoundingly fail to explain the mispricing of the standard consumption-

based model. Speci�cally, we investigate four models at the vanguard of consumption-

based asset pricing and show that the benchmark speci�cation of each of these theories

counterfactually implies that the standard model has negligible Euler equation errors when

its parameters are freely chosen to �t the data. This anomaly is striking because early

empirical evidence that the standard model�s Euler equations were violated provided much

of the original impetus for developing the newer models we investigate here.2

Second, we show that the leading asset pricing models we study fail to explain the mis-

pricing of the standard model because they fundamentally mischaracterize the joint behavior

of consumption and asset returns in recessions, when aggregate consumption is falling. In

the model economies, realized excess returns on risky assets are negative when consumption

is falling, whereas in the data they are often positive.

Our third contribution is to suggest one speci�c direction along which the current models

can be improved, based on a time-varying, state-dependent correlation between stockholder

and aggregate consumption growth. Speci�cally, we show that a stylized model in which

aggregate consumption growth and stockholder consumption growth are highly correlated

1For example, Hansen and Singleton (1982); Ferson and Constantinides (1991); Hansen and Jagannathan

(1991); Cochrane (1996); Kocherlakota (1996).
2For example, see the discussion in Chapter 8 of Campbell, Lo, and MacKinlay (1997).
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most of the time, but have low or negative correlation in recessions, produces violations of

the standard model�s Euler equations and departures from joint lognormality of aggregate

consumption growth and asset returns that are remarkably similar to those found in the

data.

To motivate the importance of these �ndings for consumption-based asset pricing theory,

it is helpful to consider, by way of analogy, the literature on the value premium puzzle in

�nancial economics. In this literature, the classic Capital Asset Pricing Model (CAPM)

resoundingly fails to explain the high average excess returns of value stocks, resulting in

a value premium puzzle (Fama and French 1992, 1993). It is well accepted that a fully

successful theoretical resolution to this puzzle must accomplish two things: (i) must provide

an alternative theory to the CAPM that explains the high average returns of value stocks,

and (ii) it must explain the failure of the CAPM to rationalize those high returns.

Analogously, the large empirical Euler equation errors of the standard consumption-based

model place additional restrictions on new consumption-based models: not only must such

models have zero pricing errors when the Euler equation is correctly speci�ed according to

the model, they must also produce large pricing errors when the Euler equation is incorrectly

speci�ed using power utility and aggregate consumption. A related point is made by Kocher-

lakota (1996), who emphasizes the importance of Euler equation errors for theoretical work

seeking to explain the central empirical puzzles of the standard consumption-based model.

To understand why the classic consumption-based model is wrong, alternative theories must

generate the same large Euler equation errors that we observe in the data for this model.

Our analysis employs simulated data from several contemporary consumption-based as-

set pricing theories expressly developed to address empirical limitations of the standard

consumption-based model. Clearly, it is not possible to study an exhaustive list of all mod-

els that �t this description; thus we limit our analysis to four that both represent a range

of approaches to consumption-based asset pricing, and have received signi�cant attention in

the literature. These are: the representative agent external habit-persistence paradigms of

(i) Campbell and Cochrane (1999) and (ii) Menzly, Santos, and Veronesi (2004), (iii) the

representative agent long-run risk model based on recursive preferences of Bansal and Yaron

(2004), and (iv) the limited participation model of Guvenen (2003). Each is an explicitly

parameterized economic model calibrated to accord with the data, and each has proven

remarkably successful in explaining a range of asset pricing phenomena that the standard

model fails to explain.3

3The asset pricing literature has already demonstrated a set of theoretical propositions showing that any

observed joint process of aggregate consumption and returns can be an equilibrium outcome if the second

moments of the cross-sectional distribution of consumption growth and asset returns covary in the right

way (Constantinides and Du¢ e (1996)). Such existence proofs, important in their own right, are not the
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The rest of this paper is organized as follows. The next section lays out the empirical

facts on the Euler equation errors of the standard model and shows that they are especially

large for cross-sections that include a broad stock market index return, a short term Treasury

bill rate, and the size and book-market sorted portfolio returns emphasized by Fama and

French (1992, 1993). We then move on in Section 3 to investigate the extent to which

the leading asset pricing models mentioned above explain the mispricing of the standard

model. We show that some of these models can explain why we obtain implausibly high

estimates of risk aversion and the subjective rate of time-preference when freely �tting

aggregate data to the Euler equations of the standard consumption-based model. But, none

can explain the large unconditional Euler equation errors associated with such estimates

for plausibly calibrated sets of asset returns.4 Indeed, the asset pricing models we consider

counterfactually imply that parameter values can be found for which the unconditional Euler

equations of the standard consumption-based model are exactly satis�ed.

The next part of Section 3 helps to diagnose the result by showing that each of the

four models studied satisfy su¢ cient conditions under which parameter values can always

be found such that the Euler equations of the standard model will be exactly satis�ed. The

economically important condition satis�ed by each model is that realized excess returns on

risky assets are negative whenever consumption growth is su¢ ciently negative. We show

that such a condition is violated in the data.

We then move on in Section 3 to address the question of measurement error in consump-

tion. If aggregation theorems fail and per capita aggregate consumption is a poor measure of

individual assetholder consumption or the consumption of stockholders, the standard model�s

large Euler equation errors could in principle be attributable to using the wrong measure of

consumption in empirical work. To assess this possibility, we begin by considering a sim-

ple lognormal model of mismeasured consumption in which the aggregate consumption data

used in Euler equation estimation is a poor measure of the consumption of stockholders (re-

ferred to hereafter as the limited participation hypothesis). We show that if the true pricing

kernel based on stockholder consumption is jointly lognormally distributed with aggregate

subject of this paper. Instead, we ask whether particular calibrated economies of leading consumption-based

asset pricing models are quantitatively capable of matching the large pricing equation errors generated by

the standard consumption-based model when �tted to historical data. This is important because it remains

unclear whether fully speci�ed models built on primitives of tastes, technology, and underlying shocks, and

calibrated to accord with the data in plausible ways, can in practice generate the joint behavior of aggregate

consumption and asset returns that we observe in the data.
4Campbell and Cochrane (2000) evaluate the pricing errors of the standard consumption-based model

implied by the habit model of Campbell and Cochrane (1999), by looking at the pricing errors for the most

mispriced portfolio. Their results suggest that there is scope for mispricing, but do not necessarily imply

signi�cant mispricing for the sets of stock portfolios we calibrate our models to match.
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consumption and returns, then estimation of Euler equations using per capita aggregate

consumption produces biased estimates of the stockholder�s subjective discount factor and

risk aversion parameters, but does not rationalize the large pricing errors generated by the

standard model.

We close Section 3 by turning our attention back to stylized models in which the con-

sumption used in our empirical tests is mismeasured (e.g., due to limited stock market

participation), but we relax the assumption of joint lognormality. When limited participa-

tion is combined with speci�c departures from joint lognormality, such as those based on a

time-varying, state-dependent correlation between stockholder and aggregate consumption,

consumption-based asset pricing theories come much closer to rationalizing the large Euler

equation errors of the standard paradigm that in large part motivated the search for newer

models in the �rst place. Section 4 concludes.

2 Euler Equation Errors: Empirical Facts

In this section we consider the empirical properties of the standard consumption-based model.

We begin by showing, using U.S. aggregate data, that there are no values of the risk-aversion

parameter and subjective time discount factor for which violations of the standard model�s

unconditional Euler equations are not economically large.

Consider the intertemporal choice problem of a representative agent with constant relative

risk-aversion (CRRA) utility over aggregate consumption, who maximizes the expectation

of a time separable utility function:

Max
Ct

Et

( 1X
k=0

�k
C1�
t+k � 1
1� 


)
; 
 > 0; (1)

subject to an accumulation equation for wealth. Ct+1 is per capita aggregate consumption,


 is the coe¢ cient of relative risk-aversion and � is a subjective time-discount factor. Agents

have unrestricted access to �nancial markets and face no borrowing or short-sales constraints.

The asset pricing model comes from the �rst-order conditions for optimal consumption

and portfolio choice, which, by the law of iterated expectations, can be expressed as as set

of unconditional moment restrictions, or Euler equations, taking the form

E
�
Mt+1R

j
t+1

�
� 1 = 0; Mt+1 = � (Ct+1=Ct)

�
 ; (2)

where Rjt+1 denotes the gross raw return on any tradable asset. Mt+1 is the intertemporal

marginal rate of substitution (MRS) in consumption, which is the stochastic discount factor

(SDF), or pricing kernel. Euler equations may also be expressed as a function of excess
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returns:

E
h
Mt+1

�
Rjt+1 �Rft+1

�i
= 0; (3)

where Rft+1 is the return on any reference asset, here speci�ed as the return on a one-period

riskless bond. We refer to (2) and (3) as the standard consumption-based model.

Deviations from these two equations represent Euler equation errors. De�ne

ejR � E
�
Mt+1R

j
t+1

�
� 1; ejR;t+1 �Mt+1R

j
t+1 � 1 (4)

ejX � E
h
Mt+1

�
Rjt+1 �Rft+1

�i
; ejX;t+1 �Mt+1

�
Rjt+1 �Rft+1

�
: (5)

We refer to either ejR or e
j
X as the unconditional Euler equation error for the jth asset return.

Euler equation errors can be interpreted economically as pricing errors, also commonly

referred to as �alphas�in the language of �nancial economics. The pricing error of asset j is

de�ned as the di¤erence between its historical mean excess return over the risk-free rate and

the risk-premium implied by the model with pricing kernel Mt+1. The risk premium implied

by the model may be written as the product of the asset�s beta for systematic risk times the

price of systematic risk (Cochrane (2005) provides an exposition). Thus the pricing error of

the jth return, �j, is that part of the average excess return that cannot be explained by the

asset�s beta risk. It is straightforward to show that �j = ejX
E(Mt+1)

: Pricing errors are therefore

proportional to Euler equation errors. Moreover, because the term E (Mt+1)
�1 is the mean

of the risk-free rate and is close to unity for most models, pricing errors and Euler equation

errors are almost identical quantities. If the standard model is true, both errors should be

zero for any traded asset, for preference parameters � and 
 of the representative agent.

Given a set of test assets and data on aggregate consumption, (2) and (3) can be estimated

using Generalized Method of Moments (GMM, Hansen (1982)). The parameters � and 
 are

chosen to minimize a weighted sum of squared Euler equation errors:

min
�;


gT (
; �) � w0
T (
; �)WwT (
; �) ; (6)

where W is a positive semi-de�nite weighting matrix and wT (
; �) is the vector of Euler

equation errors for each asset, with jth element wjT (
; �) given either by

wjT (
) =
1

T

TX
t=1

ejX;t;

in the case of excess returns, or

wjT (
; �) =
1

T

TX
t=1

ejR;t;

in the case of raw returns. Let b� and b
 denote the argmin gT (
; �).
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For most of the results below, we use the identity matrix, W = I, to weight the GMM

criterion function. We do so because this approach preserves the structure of the test assets,

which were speci�cally chosen for their economically interesting characteristics and because

they deliver a wide spread in cross-sectional average returns. Other matrices re-weight the

Euler equations, so that the GMM procedure amounts to minimizing the pricing errors of re-

weighted portfolios of the original test assets, destroying this structure. It should be noted,

however, that other weighting matrixes such as the optimal weighting matrix of Hansen

(1982) and the second moment matrix of Hansen and Jagannathan (1997) produce results

very similar to those reported below and do not alter our main conclusions.

We focus our attention on the unconditional Euler equation errors for cross-sections of

asset returns that include a broad stock market index return (measured as the CRSP value-

weighted price index return and denoted Rst ), a short term Treasury bill rate (measured as

the three-month Treasury bill rate and denoted Rft ), and six size and book-market sorted

portfolio returns available from Kenneth French�s Dartmouth web site. (A detailed descrip-

tion of the data is provided in the Appendix.) These returns are value-weighted portfolio

returns of common stock sorted into two size (market equity) quantiles and three book value-

market value quantiles. We use equity returns on size and book-to-market sorted portfolios

because Fama and French (1992) show that these two characteristics provide a �simple and

powerful characterization�of the cross-section of average stock returns, and absorb the roles

of leverage, earnings-to-price ratio and many other factors governing cross-sectional varia-

tion in average stock returns. These returns are denoted as a vector RFF
t � (R1t ; :::R

6
t )
0.

We analyze the pricing errors for the eight assets Rst ; R
f
t ;R

FF
t as a group, as well as for

the set of two assets comprised of only Rst and R
f
t . The latter is of interest because the

standard model�s inability to explain properties of these two returns has been central to the

development of a consensus that the model is �awed. In addition, almost all asset pricing

models seek to match the empirical properties of these two returns, whereas fewer generate

implications for larger cross-sections of securities.

To measure consumption, we use quarterly United States data on per capita expenditures

on nondurables and services, in 2000 dollars. The data span the period from the fourth

quarter of 1951 to the fourth quarter of 2002. Returns are de�ated by the implicit price

de�ator corresponding to this measure of consumption, Ct.

Table 1 and Figure 1 that follow present summary statistics from the GMM estimation

of the Euler equations above. The square root of the average squared Euler equation errors

(RMSE) is reported as a measure of the magnitude of mispricing. To give a sense of how

the large pricing errors are relative to the returns being priced, the RMSE is often reported

relative to RMSR, the square root of the average squared (mean) returns of the assets under

6



consideration.5

Estimating the empirical counterpart of (2) and (3) by GMM demonstrates the dramatic

failure of the standard model along several dimensions. Table 1 shows that when � and 


are chosen to minimize (6) for Rst+1 and R
f
t+1 alone (using raw returns), the RMSE is 2.7%

per annum, a magnitude that is 48% of the square root of the average squared returns on

these two assets. Since there are just two moments in this case, this means that there are

no values of � and 
 that set the two pricing errors to zero.6 When � and 
 are chosen to

minimize (2) for the eight asset returns, the RMSE is 3.05% per annum, a magnitude that is

33% of the square root of the average squared returns on the eight assets. The estimates b�
and b
 (which are left unrestricted) are close to 1.4 and 90, respectively, regardless of which
set of test assets are used. The �nal two columns of Table 1 report the results of statistical

tests of the model, discussed below.

The same patterns are visible when estimation is conducted on the Euler equations using

excess returns. Figure 1 displays the RMSE for the Euler equations in (3) over a range of

values of 
. The solid line plots the case where the single excess return on the aggregate stock

market, Rst+1 � Rft+1, is priced; the dotted line plots the case for the seven excess returns

Rst+1 �R
f
t+1 and R

FF
t �Rft+1. In the case of the single excess return for the aggregate stock

market, the RMSE is just the Euler equation error itself. The �gure shows that the pricing

error for the excess return on the aggregate stock market cannot be driven to zero, for any

value of 
. Moreover, the minimized pricing error is large. The lowest pricing error is 5.2%

per annum, almost 60% of the average annual CRSP excess return. This result occurs at

a value for risk aversion of 
 = 117. At other values of 
; the error rises precipitously and

reaches several times the average annual stock market return when 
 is outside the ranges

displayed in Figure 1.

Similar results hold when Euler equation errors are computed for the seven excess returns

Rst+1 �Rft+1;R
FF
t �Rft+1. The minimum RMSE is about 60% of the square root of average

squared returns being priced, which occurs at 
 = 118: These results show that the degree

of mispricing in the standard model is about the same regardless of whether we consider the

5For the Euler equations of raw returns, RMSE and RMSR are equal to

RMSE �

vuut 1

N

NX
j=1

�
ejR

�2
; RMSR =

vuut 1

N

NX
j=1

E
�
Rjt

�2
;

where N is the number of asset returns, and E
�
Rjt

�
is the (time-series) mean of the jth raw return. RMSE

and RMSR are de�ned in an analogous fashion for excess returns.
6Note that the Euler equations are nonlinear functions of 
 and �: Thus, there is not necessarily a solution

to the pair of equations. See Section 3.2 for su¢ cient conditions for the existence of a solution.
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single excess return on the market or a larger cross-section of excess stock market returns.7

What drives the large Euler equation errors in the data? The lower panel of Table 1

provides an important clue: a signi�cant part of the unconditional Euler equation errors

generated by the standard model is associated with recessions, periods in which per capita

aggregate consumption growth is negative. For example, when data points coinciding with

the smallest six observations on consumption growth are removed from the sample, the root

mean squared pricing errors are substantially reduced. The RMSE is just 0.73% per annum

or 13% of the root mean squared returns for Rst+1 and R
f
t+1; and 1.94% per annum or 21

percent of the root mean squared returns on the eight asset returns Rst+1; R
f
t+1;R

FF
t . This

result echoes the �ndings in Ferson and Merrick (1987) who report less evidence against the

standard consumption-based model in non-recession periods.

Table 2 identi�es these six observations as they are located throughout the sample. Each

occur in the depths of recessions, as identi�ed by the National Bureau of Economic Re-

search. In these periods, aggregate per capita consumption growth is steeply negative but

the aggregate stock return and Treasury-bill rate is, more often than not, steeply positive.

Since the product of the marginal rate of substitution and the gross asset return must be

unity on average, such negative comovement (positive comovement between Mt+1 and re-

turns) contributes to large pricing errors.8 One can also reduce the pricing errors by using

annual returns and year-over-year consumption growth.9 This procedure averages out the

worst quarters for consumption growth instead of removing them. Either way, a substantial

proportion of the cyclical variation in consumption is eliminated. For example, on a quar-

terly basis the largest declines in consumption are about six times as large at an annual rate

as those on a year-over-year basis. This explains why Kocherlakota (1996), who focuses on

annual data, is able to locate parameter values for � and 
 that exactly satisfy the Euler

equations of a stock return and Treasury-bill rate.

7In computing the pricing errors above, we use the standard timing convention that end-of-period returns

dated in quarter t should be paired with consumption growth measured from t� 1 to t. If, instead, returns
at t are paired with consumption growth from t to t + 1; a value for 
 can be found that sets the pricing

error to zero for the single excess return Rs � Rf . By contrast, the choice of timing convention has very
little a¤ect on the RMSE for the set of seven excess returns Rs�Rf ;RFF

t �Rf . We use the former timing
convention as it is standard empirical practice in estimation of Euler equations. We stress, however, that

the timing convention itself is not important for the comparisons with theoretical models that follow, since

those models always produce pricing errors that are close to zero regardless of which timing convention is

used.
8Eliminating the recession periods, however, results in preference parameter estimates that are even more

extreme than they are in the full sample; for example b
 = 225: Therefore, if the criterion for success is

reasonable preference parameter estimates, then the standard model does worse when recession periods are

removed than when they are included.
9For a recent example along these lines, see Jagannathan and Wang (2005).
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Of course, these quarterly recession episodes are not outliers to be ignored, but signi�cant

economic events to be explained. Indeed, we argue that such Euler equation errors, driven

by periods of important economic change, are among the most damning pieces of evidence

against the standard model. An important question is why the standard model performs so

poorly in recessions relative to other times.

Although not reported above, we note that the pricing error of the Euler equation associ-

ated with the CRSP stock market return is always positive, implying a positive alpha in the

expected return-beta representation of the model. This says that unconditional risk premia

are too high to be explained by the stock market�s covariance with the marginal rate of

substitution of aggregate consumption, a result familiar from the equity premium literature

(Mehra and Prescott (1985), Kocherlakota (1996)). Still, it is important to remember that

unlike the equity premium puzzle, the large Euler equation errors cannot be resolved by high

values of 
.

2.1 Sampling Error and Tests for Joint Normality

We use GMM distribution theory to ask whether the estimated pricing errors wT (
; �)

are jointly more di¤erent from zero than what would be implied by sampling error alone.

When there are more moments than parameters to be estimated, this amounts to a test

of overidentifying restrictions. The last two columns of Table 1 report p�values from chi-

squared tests of the model�s overidentifying restrictions for estimation of the eight Euler

equations for the raw returns Rst ; R
f
t ; and R

FF
t . Although the results presented so far have

used the identity weighting matrix, the last column in Table 1 presents the p�values from
the same statistical test using an estimate of the optimal GMM weighting matrix (Hansen

(1982)). The results from either weighting matrix are the same: we may strongly reject the

hypothesis that the Euler equation errors are jointly statistically indistinguishable from zero;

the p�values for this test are less than 0.0001.10

For the two-asset case, the model is just-identi�ed, so the overidentifying tests above are

not applicable. But note that the expectation in (3) is estimated using the sample means

ejX;t+1. Fixing � and 
, it is possible to compute the sampling variation in the sample mean

of ejX;t+1, given as �
2 = �2X=T; where �X is the sample standard deviation of e

j
X;t+1 and T is

the sample size.11

The sampling error of the mean of ejX;t+1 is large when evaluated at the estimated values

10Cochrane (2005), Chapter 11, explains how to apply Hansen�s (1982) GMM results to compute p-values

using an arbitrary �xed weighting matrix.
11We also calculated standard errors for the mean of ejX;t+1 using a nonparameteric correction for serial

correlation. Since ejX;t+1 is close to serially uncorrelated, this correction has little a¤ect on the error bands.
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b� = 1:4 and b
 = 117. When Rjt+1 = Rst+1, a con�dence interval formed by plus and minus two

standard errors is (�0:55%; 11%), in percent per annum. This large range is not surprising
and arises partly for the same reason that it is di¢ cult to estimate the equity premium

accurately: excess returns are highly volatile. But the large error bands also arise because

the data require a very high value for 
 in an attempt to �t the equity premium. Such a

high value of 
 generates extreme volatility in the pricing kernel, making discounted returns

even harder to estimate precisely than nondiscounted returns. Unless one views 
 = 117

as plausible, however, such wide standard error bands for mean discounted returns serve

only to provide further evidence of the model�s empirical limitations, which even at 
 = 117

leaves a pricing error that is more than half of the average annual stock return. If instead we

restrict the value of risk aversion to lie in the range 0 � 
 � 89, the pricing errors are always
statistically di¤erent from zero at the �ve percent level of signi�cance. Accordingly, the

sample mean of ejX;t+1 is statistically insigni�cant, not because the pricing errors are small�

indeed they are economically large�but rather because discounted returns are so extremely

noisy when 
 = 117. Clearly the overidentifying restrictions deliver a much more powerful

test of the model.

The results above are important for what they imply about the joint distribution of aggre-

gate consumption and asset returns. If consumption and asset returns are jointly lognormally

distributed, then GMM estimation of (2) on any two asset returns should produce estimates

of � and 
 for which the population Euler equations are exactly satis�ed. The results above

therefore suggest that consumption and asset returns are not jointly lognormal. For this

reason, it is natural to assess whether joint lognormality is a plausible description of our con-

sumption and return data, once we account for sampling error. Although previous statistical

studies suggest that stock returns are not lognormally distributed (see, for example, the stud-

ies discussed in Campbell, Lo, and MacKinlay (1997)), it is commonly held that consumption

and stock returns may be approximately jointly lognormally distributed, especially in lower

frequency data. We perform formal statistical tests of normality based on multivariate skew-

ness and kurtosis12 for the vector Yt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft

�i0
, as well as for

12Multivariate skewness and kurtosis statistics are computed following Mardia (1970). Let xt be a p-

dimensional random variable with mean � and variance-covariance matrix V of sample size T . Multivariate

skewness S and (excess) kurtosis K and asymptotic distributions are given by

S =

 
1

T 2

TX
t=1

TX
s=1

g3ts

!1=2
TS2

6
� �2p(p+1)(p+2)=6

K =
1

T

TX
t=1

g2tt � p (p+ 2)
p
TKp

8p (p+ 2)
� N (0; 1) ;

where gts = (xt � �̂)0V̂�1(xs � �̂) and �̂ and V̂ are sample estimates of � and V. S and K are zero if x is
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the larger set of variables Xt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft+1

�
; log

�
RFF
t

�i
:

Statistical tests based on multivariate skewness and kurtosis provide strong evidence

against joint normality. ForYt multivariate skewness is estimated to be 1.54 and multivariate

excess kurtosis is 4.64, with p�values for the null hypothesis that these statistics are equal to
those of a multivariate normal distribution less than 0.0001. Similarly for Xt, multivariate

skewness is 4.65 and multivariate kurtosis is 35.93, and the statistical rejections of normality

are even stronger. The same conclusion arises from examining quantile-quantile plots (QQ

plots) for the vector time-series Yt and Xt, given in Figure 2. This �gure plots the sample

quantiles for the data against those that would arise under the null of joint lognormality,

along with pointwise standard errors bands.13 The QQ plots show substantial departures

from normality: a large number of quantiles lie far outside the standard error bands for joint

normality. We come back to these results below.

3 Euler Equation Errors in Asset Pricing Models

This section of the paper investigates the extent to which newer consumption-based asset

pricing theories�those speci�cally developed to address empirical limitations of the standard

consumption-based model�can explain its large Euler equation errors. If leading asset pric-

ing models are true, then in these models using (2) to price assets should generate large

unconditional asset pricing errors, as in the data.

3.1 Leading Asset Pricing Models

We use simulated data from each of the leading asset pricing models mentioned above to

study the extent to which these models explain the mispricing of the standard model. We

show that some of these models can explain why an econometrician obtains implausibly

high estimates of � and 
 when freely �tting aggregate data to (2). But, none can explain

the large unconditional Euler equation errors associated with such estimates for plausibly

calibrated sets of asset returns. Indeed, the asset pricing models we consider counterfactually

imply that values of � and 
 can be found for which (2) satis�es the unconditional Euler

equation restrictions just as well as the true pricing kernel, implying that the standard model

generates negligible pricing errors for cross-sections of asset returns.

jointly normally distributed. If x is univariate S and K are equivalent to the standard univariate de�nitions

of skewness and kurtosis.
13Pointwise standard error bands are computed by simulating from the multivariate normal distribution

with length equal to the size of our data set.
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3.1.1 Simulating the Models

To assess the extent to which the models above are capable of explaining the pricing errors

of the standard model, we assume each model generates the asset pricing data, and then

compute the pricing errors that would arise if an econometrician �t (2) to data generated by

the models. This requires simulating the models and then computing pricing errors of the

standard model using simulated data in precisely the same way that we did using historical

data. Except where noted, our simulations use the baseline parameter values of each paper.

It is important to emphasize that even though the primitive shocks in these theories are

often speci�ed as normally distributed, the pricing kernels are nonlinear, and thus both

the marginal distribution of asset returns, and the joint distribution of consumption and

returns� what matters for Euler equation errors� are endogenous features of the asset pricing

model. It follows that the pricing kernels and returns in these models are not unconditionally

jointly lognormally distributed with aggregate consumption growth as was presumed in the

previous sections, a fact that can be veri�ed by statistical tests on simulated data. The

question posed here is whether these models can endogenously generate a return distribution

su¢ ciently non-normal that it is capable of rationalizing the large Euler equation errors of

the standard consumption-based model (2).14 We brie�y describe only the main features of

each model, and refer the reader to the Appendix and the original articles for details.

3.1.2 Misspeci�ed Preferences

We �rst consider theories that deviate from the standard consumption-based model (2) in

their speci�cation of investor preferences. These include the habit models of Campbell and

Cochrane (1999) and Menzly, Santos, and Veronesi (2004), and the long-run risk model of

Bansal and Yaron (2004). Since these are representative agent models, an econometrician

who attempted to �t (2) to data generated by these models would err by using the wrong

functional form for the marginal rate of substitution in consumption (misspeci�ed prefer-

ences).

14For the three representative agents models, it is assumed that innovations in consumption growth are

lognormally distributed. It is reasonable to ask whether the lognormality assumption for consumption is

merely a convenient but inaccurate representation of the data that could be relaxed to generate the observed

Euler equation errors. The di¢ culty with this scenario is that the distribution of aggregate consumption

growth in the data appears to be well described by a lognormal process, while the distribution of stock

returns displays higher kurtosis than lognormal. (Results available upon request.) Thus, the distributional

assumptions made for consumption growth in these models are not only convenient, they are empirically

reasonable.
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The stochastic discount factor in the CC and MSV models takes the form

Mt+1 = �

�
Ct+1 �Xt+1

Ct �Xt

��

;

where Ct is aggregate consumption and Xt is habit level (a function of current and past

aggregate consumption), and � is the subjective discount factor. The key innovation in

each of these models concerns the speci�cation of the habit process Xt, which in both cases

evolves according to heteroskedastic autoregressive processes. However CC and MSV di¤er

in their speci�cation of Xt (see the Appendix). LetMCC
t+1 denote the speci�cation of the SDF

corresponding to the Campbell-Cochrane model of Xt, and MMSV
t+1 denote the speci�cation

of the SDF corresponding to the MSV model of Xt. Both CC and MSV assume that �ct =

�+ �vt;where vt is a normally distributed, i.i.d. shock, and both models derive equilibrium

returns for a risk-free asset and a risky equity claim that pays aggregate consumption as its

dividend. As above, the returns to these assets are denoted Rft+1, and R
s
t+1, respectively.

Campbell and Cochrane set 
 = 2 and � = 0:89 under their baseline calibration, both at

an annual rate. Menzly, Santos and Veronesi choose 
 = 1 and � = 0:96: Notice that the

curvature parameter 
, is no longer equal to relative risk-aversion in these models.

The MSV model is a multi-asset extension of the CC model that generates implications

for multiple risky securities, thus we study the implications of the habit models for larger

cross-sections of asset returns by applying the MSV framework. Each �rm is distinguished

by a distinct dividend process with dynamics characterized by �uctuations in the share sjt
it represents in aggregate consumption, sjt =

Djt
Ct
. Cross-sectional variation in unconditional

mean returns across risky securities is governed by cross-sectional variation in the covariance

between shares sjt and aggregate consumption growth �ct.

Bansal and Yaron (2004) consider a representative agent who maximizes utility given

by recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The stochastic

discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (7)

where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct, � � (1� 
) = (1� 1= ) ;  is the intertemporal
elasticity of substitution in consumption (IES), 
 is the coe¢ cient of relative risk aversion,

and � is the subjective discount factor. The dynamics of consumption growth and stock

market dividend growth, �dt, take the form

�ct+1 = �+ xt + �t�t+1 (8)

�dt+1 = �d + �xt + �d�tut+1; (9)
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xt+1 = �xt + �c�tet+1

�2t+1 = �2 + �1
�
�2t � �2

�
+ �wwt+1;

where �2t+1 represents the time-varying stochastic volatility, �
2 is its unconditional mean,

and �; �d, �, �d; �, �c, �1 and �w are parameters, calibrated as in BY. Here, the stock mar-

ket asset is the dividend claim, given by (9), rather than a claim to aggregate consumption,

given by (8). We denote the return to this dividend claim Rst+1, since it corresponds the

model�s stock market return. BY calibrate the model so that xt is very persistent, with a

small unconditional variance. Thus, xt captures long-run risk, since a small but persistent

component in the aggregate endowment can lead to large �uctuations in the present dis-

counted value of future dividends. Their favored speci�cation sets � = 0:998, 
 = 10 and

 = 1:5.

We analyze the multi-asset implications of the BY model by considering risky securities,

indexed by j; that are distinguished by their cash-�ow processes:

�djt+1 = �jd + �jxt + �jd�tut+1: (10)

By considering a grid of values for �j, we create risky securities with di¤erent risk-premia,

since this parameter governs the correlation of equilibrium returns with the stochastic dis-

count factor. By altering �jd, we control the variance in the risky security returns, while �
j
d

controls the mean price-dividend ratio across risky assets.

For both the MSV and BY models, we choose parameters of the cash-�ow processes

to create a cross-section of asset returns that include a risk-free rate, an aggregate equity

return, and six additional risky securities, or eight securities in total. For each model, we

exactly replicate the authors�original calibration to obtain the same risk-free return and

aggregate equity return studied there. For the six additional risky securities, we choose

parameters of the individual cash-�ow processes that allow us to come as close as possible

to matching the spread in risk-premia found in the six size/book-market sorted portfolio

returns in the data. For the BY model, we can generate a cross-section of returns that

come very close to matching the historical spread in these returns. For example, the largest

spread in average annualized returns is given by the di¤erence between the portfolio in the

smallest size and highest book-market category and the portfolio in the largest size and lowest

book-market category, equal to about seven percent; thus we create six arti�cial returns for

which the largest spread is 6.7 percent per annum. Constructing such returns for the MSV

framework is more complicated, since the solutions for the multi-asset model hold only as an

approximation (see the Appendix for the approximate relation). Unfortunately, we �nd that

the approximation error in this model can be substantial under parameter values required to
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make the maximal spread as large as seven percent.15 As a result, we restrict the parameter

values to ranges that limit approximation error to reasonably small degrees. This still leaves

us with a signi�cant spread of 4.5 percent per annum in the returns of the six arti�cial

securities created.

To study the implications of these representative-agent models, we simulate a large time-

series (e.g., 20,000 periods) from each model and compute the pricing errors that would arise

in equilibrium ifM c
t+1 = �c

�
Ct+1
Ct

��
c
were �tted to data generated by these models. Thus, we

conduct precisely the same empirical estimation on model-generated data as was conducted

on historical data, above. The parameters 
c and �c are chosen by GMM to minimize

the Euler equation errors ejR = E[M c
t+1R

j
t+1] � 1. We denote the estimated parameters

that minimize the GMM criterion as b�c and b
c. As in the historical data, we focus on
the case of N = 2 asset returns (Rst+1 and R

f
t+1), and the case of N = 8 asset returns,

(Rst+1; R
f
t+1; R

1
t+1; :::; R

6
t+1).

The main results, presented in Table 3, are as follows. For both habit models, we �nd

the pricing errors that arise from �tting M c
t+1 to model-generated data are numerically

zero, just as they are when the true habit pricing kernel is used. This result does not

depend on the number of assets being priced; it is the same for the two-asset case and

eight-asset case. Values of �c and 
c can in each case be found that allow the standard

consumption-based model to unconditionally price assets just as well as the true pricing

kernel, as measured by the root mean-squared pricing error. The habit models can explain

what many would consider the implausible estimates (Table 1) of time preference and risk

aversion obtained when freely �tting aggregate data to (2). In the CC model, the values of �c
and 
c that minimize the GMM criterion for Rst+1 and R

f
t+1 are 1.28 and 57.48, respectively.

The corresponding values in the MSV model are 1.71 and 30.64, respectively. This represents

a signi�cant distortion from the true values of these parameters. (Recall that the true

preference parameters are 
 = 2 and � = 0:89 in CC and 
 = 1 and � = 0:96 in MSV.)

But, it is in those parameters that all of the distortion from erroneously using M c
t+1 to price

assets arises. No distortion appears in the Euler equation errors themselves.

The conclusions for the Bansal-Yaron long-run risk model, also displayed in Table 3,

are the same. Here we follow BY and simulate the model at monthly frequency, aggregate

to annual frequency, and report the model�s implications for pricing errors and parameter

values. The monthly consumption data are time-aggregated to arrive at annual consumption,

and monthly returns are continuously compounded to annual returns.16 We �nd that �c is

15Menzly, Santos, and Veronesi (2004) state that the approximation error is small for the parameters they

employ, but it is not small for our parameters, which were chosen to mimic returns of the Fama-French

portfolios.
16The resulting Euler equation errors are unchanged if they are computed for quarterly time-aggregate
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estimated to be close to the true value, but 
c is estimated to be about �ve times as high as

true risk aversion. As for the habit models, an econometrician will estimate high values of

risk aversion when �tting the standard consumption-based model to the BY data, but the

resulting Euler equation errors would be e¤ectively zero.17

3.1.3 Misspeci�ed Consumption

Next we consider the limited participation model of Guvenen (2003). The Guvenen economy

has two types of consumers, stockholders and nonstockholders, and two assets, a stock return

and a riskless bond. Nonstockholders are exogenously prevented from participating in the

stock market. The stochastic discount factor in this model is denoted

MG
t+1 � �i

�
Cit+1
Cit

��
i
;

where Cit is stockholder consumption, which by assumption is not the same as aggregate

per capita consumption, �i is the subjective discount factor of the stockholder, and 
i is the

stockholder�s relative risk aversion. Thus, an econometrician who attempted to �t (2) to

aggregate data would err by using the wrong measure of consumption, aggregate consump-

tion rather than stockholder consumption (misspeci�ed consumption). In other respects, the

model is a standard one-sector real business cycle model with adjustment costs in capital.

Both stockholders and nonstockholders receive labor income with wages determined compet-

itively by the marginal product of labor, and �rms choose output by maximizing the present

discounted value of expected future pro�ts. Both agents have access to the riskless bond.

We follow the same procedure discussed above to quantify pricing errors in this model.

We simulate a large time series of arti�cial data and use these data to quantify the magnitude

of unconditional pricing errors that an econometrician would �nd if the misspeci�ed MRS,

M c
t+1 = �c

�
Ct+1
Ct

��
c
, based on aggregate consumption, were �tted to asset pricing data

generated by MG
t+1. Since cash-�ows are endogenously determined by the properties of a

general equilibrium setting in that model, the extension to multiple-assets is not straight-

forward. For this reason, we focus only on the implications of the Guvenen model for Rs

and Rf .

The main results are presented in the bottom panel of Table 4. They show that the

Guvenen model, like the habit models, generates e¤ectively zero Euler equation errors when

consumption and quarterly returns rather than annual time-aggregated consumption and annual returns.
17For models based on recursive preferences, Kocherlakota (1990) shows that there is an observational

equivalence to the standard model with power utility preferences, if the aggregate endowment growth is i.i.d.

However, the endowment growth process in the BY model is not i.i.d., but instead serially correlated with

stochastic volatility. Moreover, the annual consumption data are time-aggregated, which further distorts the

time-series properties from those of the monthly endowment process.
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M c
t+1 is used to price assets, but in this case estimates of the parameters show much less

distortion from their true values. The table also reports the pricing errors using the true

kernel MG
t+1 based on stockholder consumption, which are quite small (0.02% on an annual

basis) but not exactly zero due to the rarely-binding borrowing constraints that apply to

both stockholders and nonstockholders. Euler equation errors based on the misspeci�edM c
t+1

are tiny even when preference parameter values are not chosen to minimize those errors. For

example, when �c and 
c are set to their true values for stockholders, (in Guvenen�s baseline

speci�cation, stockholders have risk aversion 
i = 2 and subjective discount factor �i = 0:99),

the pricing errors using aggregate consumption are equal to about 0.4% at an annual rate for

the stock return and -0.34% for the risk-free rate, small in magnitude compared to the data.

When �c and 
c are chosen to minimize the sum of squared pricing errors for these two asset

returns, as in empirical practice, the Euler equation errors are, to numerical accuracy, zero

for the stock return and risk-free return. Moreover, the estimated values for the subjective

time-discount factor and risk aversion from such an estimation show minimal distortion from

their true value, equal to b�c = 0:99 and b
c = 4:49, respectively. These results imply that

by increasing 
 by a factor of 2.5�from 2 to 4.5�the Guvenen model delivers a power utility

pricing kernel using aggregate consumption that explains the historical mean return on the

stock market and risk-free (Treasury bill) return just as well as the true pricing kernel based

on stockholder consumption. This model therefore does not explain the equity premium

puzzle of Mehra and Prescott (1985), which is the puzzle that a high value of 
 is required

to explain the magnitude of the equity premium when the power utility model is �tted to

aggregate consumption data.

To aid in understanding these results, the top panels of Table 4 provides summary sta-

tistics from the model. Panel A of Table 4 shows that stockholder consumption growth

is about two and a half times as volatile as aggregate consumption growth, and perfectly

correlated with it. Stockholder consumption is over four times as volatile as nonstockholder

consumption growth, but the two are almost perfectly correlated, with correlation 0.99. This

is not surprising since both types of consumers participate in the same labor market and

bond markets; the agents di¤er only in their ability to hold equities and in their risk-aversion

(nonstockholders have higher risk-aversion). As a consequence, the true pricing kernel based

on the stockholder�s marginal rate of substitution, MGUV
t+1 , is highly correlated with the mis-

speci�ed aggregate consumption �pricing kernel�M c
t+1 � �c(Ct+1=Ct)

�
c , for a variety of

values of �c and 
c. Panel B of Table 4 shows this correlation for two combinations of

these parameters, �rst with these parameters set at their true values �c = �i = 0:99 and


c = 
i = 2, and second with �c and 
c set to the values that minimize the equally-weighted

sum of squared Euler equation errors when M c
t+1 is used to price assets. In both cases, the

correlation between MGUV
t+1 and M c

t+1 is extremely high, 0.99. In addition, when 
c = 4:5,
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MGUV
t+1 and M c

t+1 have virtually identical volatilities, so their asset pricing implications are

the same.

3.1.4 Additional Diagnostics

Misspeci�ed Preferences and Misspeci�ed Consumption One possible reaction to

the results above, is that we should take the representative agent nature of the CC, MSV and

BY models less literally and assume that they apply only to a representative stockholder,

rather than to a representative household of all consumers. Would the results for these

models be better reconciled with the data if we accounted for limited participation? Not

necessarily. As an illustration, we consider a limited-participation version of the MSV model

and show that the conclusions are unchanged from the representative agent setup.

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

Asset prices are determined by the stochastic discount factor of individual assetholders,

denoted

MMSV i
t+1 � �i

�
Cit+1 �X i

t+1

Cit �X i
t

��
i
;

where X i
t+1 is the external habit modeled as in MSV, now a function of C

i
t (the Appendix

provides an exact expression). We assume the data are generated by MMSV i
t+1 and compute

the Euler equation errors that arise from �tting

M c
t+1 � �c (Ct+1=Ct)

�
c

to asset pricing data. We refer to this case as �misspeci�ed preferences and misspeci�ed

consumption,�since an econometrician who �tM c
t+1 to asset return data would be employing

both the wrong model of preferences and the wrong consumption measure. The parameters,
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�c and 
c are chosen to minimize an equally-weighted sum of squared pricing errors of the

assets under consideration, as with the historical data.

The results are presented in Table 5, where the Euler equation errors for a range of

parameter values. The standard deviation of asset-holder consumption growth is allowed to

range from one times to �ve times as volatile as that of aggregate consumption growth, the

correlation from -1.0 to 1.0. The pricing errors (as measured by RMSE/RMSR) are reported

in the bottom subpanels. The top panel reports these errors for the two-asset case where

only Rst+1 and, R
f
t+1 are priced; the bottom panel reports for the eight-asset case with six

additional risky securities. For each parameter con�guration, we also report the values b�c
and b
c that minimize the quadratic form gT (
c; �c), as above.

Table 5 shows that the pricing errors that arise from using M c
t+1 to price assets are

always zero, even if assetholder consumption growth has very di¤erent properties from ag-

gregate consumption growth. For example, aggregate consumption growth can be perfectly

negatively correlated with stockholder consumption growth and �ve times as volatile, yet

the pricing errors that arise from using Ct in place of Cit are still zero. Notice, however,

that the parameters �c and 
c can deviate substantially from the true preference parame-

ters of stockholders. This is similar to the lognormal example in Section 3.1, in which the

use of mismeasured consumption distorts preference parameters, but does not explain the

large pricing errors generated by the standard consumption-based model.18 Results for the

multi-asset case are qualitatively the same as those for two-asset case. These �ndings rein-

force the conclusion that changing the pricing kernel does not necessarily change the pricing

implications.

The results reveal a striking implication of leading asset pricing models: the unconditional

pricing errors of the standard consumption-based model can be virtually identical to those

using the true pricing kernel, even when (i) the true kernel has preferences di¤erent from the

CRRA form of the standard model, (ii) the consumption of marginal assetholders behaves

di¤erently from per capita aggregate consumption, and (iii) the number of assets exceeds

the number of free parameters to be estimated. This implies that the explanation for the

high average pricing errors produced by the standard model has to be something more than

limited participation and/or nonstandard preferences per se, since in many models parameter

values can be found that allow the standard model to price cross-sections of assets almost

as well as the true pricing kernel that generated the data.

18Variation in �i=�c has little a¤ect on the estimated value of the risk-aversion parameter 
c. This happens

because we adjust the parameter � in the MSV habit speci�cation (see the Appendix) at the same time as we

adjust �i=�c so that the mean excess return Rs�Rf remains roughly what it is in MSV. Since the volatility
of aggregate consumption is kept the same and � is adjusted to keep the returns of the same magnitude, 
c
doesn�t change much.
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Time Aggregated Consumption What if the decision interval of households is shorter

than the data sampling interval, leading to time-aggregated consumption observations? We

have repeated the same exercise for all the models above using time-aggregated consumption

data, assuming that agents�decision intervals are shorter than the data sampling interval,

for a variety of decision intervals. An example is provided in the Appendix. For all models

the essential results for the Euler equation errors remain the same: values of �c and 
c can

always be found such that the unconditional pricing errors associated with using M c
t+1 to

price assets are very small relative to the data.

Finite Sample Pricing Errors The results above are based on long samples of model-

generated data, whereas the estimates using historical data are based on a �nite sample of 204

observations. An analysis provided in the Appendix shows that that our main conclusions

are robust to using samples equal in size to that of our historical dataset.

3.2 Diagnosing the Result

Why do leading asset pricing models counterfactually imply that the standard consumption-

based model has negligible Euler equation errors? To explain these results, in this section we

present su¢ cient conditions under which values for 
 and � can be found such that the Euler

equations of the standard model in the just-identi�ed two asset case are exactly satis�ed,

and show that each of the leading asset pricing models satis�es these conditions, while in

the historical data such conditions are violated.19 Speci�cally, the question we address is, in

the model of interest, what su¢ cient conditions imply that there exists a 
 such that

E

"�
Ct+1
Ct

��
 �
Rst+1 �Rft+1

�#
= 0: (11)

If a 
 can be found that satis�es the Euler equation above, we can always �nd a � that

satis�es the risk-free rate Euler equation.

Denote:

Xt � Ct=Ct�1:

Zt � Rt �Rft :

f(Xt) � E[ZtjXt]:

We make four assumptions.

Assumption 1
19We are grateful to Narayana Kocherlakota for suggesting this line of argument.
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There is an �X < 1 and � < 0 such that f(Xt) < � for all Xt < �X.

Assumption 2
E[(Xt= �X)

�
jXt < �X]!1 as 
 !1.
Assumption 3
E[f(Xt)jXt > �X] is �nite.

Assumption 4
E
�
(Xt)

�
 Zt
�
is a continuous function of 
:

Proposition 1 When the standard pricing kernelMt+1 = �
�
Ct+1
Ct

��

is �t to data generated

by any model for which Assumptions 1 through 4 hold, values of � and 
 can be found that

exactly satisfy the two Euler equations corresponding to a risky asset return and risk-free

rate, or any two asset returns. Proof: See the Appendix.

Assumptions 2, 3 and 4 are technical conditions that will be satis�ed for most consumption-

based asset pricing models with well behaved distributions, including those investigated

above. Assumption 1 is the economically meaningful one. It that says that, for all realiza-

tions of consumption growth less than �X, the excess returns on the risky asset are negative

on average. Intuitively, Assumption 1 says that realizations of the risky asset return that

are low relative to the risk-free rate coincide with bad economic times.

The leading consumption-based asset pricing models we study all satisfy the four con-

ditions listed above. In particular, negative realizations of the excess return on the risky

asset coincide with bad economic times in the form of falling consumption growth, and the

key economic Assumption 1 is satis�ed. To illustrate, Figure 3 shows �tted values from

nonparametric regressions of excess returns on consumption growth, for each of the four

models:

Rjt �Rft = m(Ct=Ct�1) + �t; (12)

where m (�) is a nonparametrically estimated function.20 The estimates are formed from

simulated data of each model�s benchmark speci�cation. Notice that in each model, for

consumption realizations su¢ ciently negative, excess returns are also negative, satisfying

Assumption 1. By contrast, this condition is violated in the historical data, because the

lowest consumption realizations coincide with positive excess returns on average (Table 2).

This property of the historical data is also visible in Figure 4, which presents the �tted values

from the nonparametric regression (12) using quarterly historical consumption and return

data. Conditional on consumption growth being su¢ ciently low, realized excess returns

are on average positive in the historical data. However, as Figure 5 demonstrates, if we

estimate the nonparametric regression (12) on historical data excluding all recession periods

20The regression uses a Gaussian kernel with optimally chosen bandwidth.
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in our sample, Assumption 1 is now satis�ed: excess return realizations are negative when

consumption realizations low (top panel). Moreover, in the sample excluding recessions,

a value for 
 that satis�es the Euler equation (11) can now be found (Figure 5, bottom

panel). These results show that the leading asset pricing models we consider fail to explain

the mispricing of the standard model because they mischaracterize the joint behavior of

consumption and asset returns in recessions.

Two points about these results deserve emphasis. First, the �ndings for the four consumption-

based models we consider are unlikely to depend on the precise calibration of the models.

Although this is impossible to verify in general for the models that require numerical so-

lutions, it is straight forward to verify in the MSV model, for which closed-form solutions

exist. Speci�cally, in the MSV model, the excess return on the market portfolio is an a¢ ne

function of the innovation in consumption, where only the magnitude (but not the sign)

of the parameters of the a¢ ne function depend on the calibration. Thus, su¢ ciently small

realizations of consumption growth will always coincide with negative excess returns on the

risky asset.

Second, it is straightforward to show that many simple models of limited stock market

participation will also satisfy su¢ cient conditions of the type presented above regardless

of the correlation between stockholder and aggregate consumption, as long as stockholder

consumption is jointly lognormally distributed with aggregate consumption and returns. We

analyze an example of this case in the next subsection.

3.2.1 A Limited Participation/Incomplete Markets Model With Joint Lognor-
mality

Suppose that the consumption measure Ct, used by an econometrician to estimate the Euler

equation (2) is mismeasured, perhaps because per capita aggregate consumption is a poor

measure of individual assetholder consumption (markets are incomplete), or the consumption

of stockholders (limited stock market participation). For our purposed here, a model of

limited stock market participation is isomorphic to a model of incomplete markets, since what

matters is the common implication that the consumption of the marginal assetholder may

behave di¤erently from per capita aggregate consumption.21 Suppose also that aggregate

consumption, stockholder or individual consumption, and asset returns are unconditionally

jointly lognormally distributed. We use lowercase letters to denote log variables, e.g.,�ct+1 �
log (Ct+1=Ct) :

21With limited stock market participation, the set of Euler equations of stockholder consumption imply that

a representative stockholder�s marginal rate of substitution is a valid stochastic discount factor. Similarly,

with incomplete consumption insurance the set of Euler equations of household consumption imply that any

household�s marginal rate of substitution is a valid stochastic discount factor.
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Denote the MRS of an individual stockholder as

M i
t+1 � �i

�
Cit+1
Cit

��
i
; (13)

where Cit is the consumption of stockholder i, �i is the subjective time discount factor of this

stockholder, and 
i is the stockholder�s coe¢ cient of relative risk aversion. If agents have

unrestricted access to �nancial markets, then M i
t+1 correctly prices any traded asset return

held by the stockholder, implying that E
�
M i
t+1R

j
t+1

�
= 1 for any traded asset return. The

risk-free rate is de�ned as a one-period riskless bond, Rft+1 = 1=Et
�
M i
t+1

�
:

We can interpret the MRS,M i
t+1; either as that of a representative stockholder in a limited

participation setting (in which case Cit is the consumption of a representative stockholder),

or as that of an individual assetholder in an incomplete markets setting (in which case Cit is

the consumption of any marginal assetholder, e.g., Constantinides and Du¢ e (1996)). For

brevity, we hereafter refer to Cit+1 simply as stockholder consumption, and to (13) simply as

the limited participation model.

An econometrician who maintained the assumption of power utility but erroneously es-

timated Euler equations using data on per capita aggregate consumption, Ct+1 in place of

Cit+1, would use the misspeci�ed �MRS�M
c
t+1:

M c
t+1 � �c

�
Ct+1
Ct

��
c
; (14)

where �c and 
c are generic parameter values that do not necessarily correspond to the true

preference parameters of stockholder i. Notice that while the Euler equation error associated

with the true MRS, M i
t+1, is zero by construction, the Euler equation error associated with

the erroneous MRS, M c
t+1, need not be zero.

Most economic models will satisfy the technical Assumptions 2-4 given above. In ad-

dition, many lognormal models of limited participation will satisfy Assumption 1. As one

example, suppose the log di¤erence in stockholder consumption, �cit; follows a stationary

ARMA(p; q) process and consider an orthogonal decomposition of aggregate consumption

growth into a part that is correlated with asset-holder consumption and a part, "it, orthogonal

to stockholder consumption,

�ct = ��cit + "it; (15)

where � =
Cov(�ct;�cit)
Var(�cit)

= �ci�c
�i

: Here �ci denotes the correlation between �ct and �c
i
t. If the

log di¤erence in stockholder consumption has a Wold representation taking the form

�cit = k +

1X
j=0

�j�t�j;

where �t is an i.i.d. innovation.
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To relate consumption to returns, note that the innovation in log asset return surprises

on any asset must be equal to the revision in expected future dividend growth on the asset

(discounted at some constant rate �) minus the revision in expected future returns (also

discounted at �, see Campbell (1991)). If the stock return is modeled as a claim to assetholder

consumption, and if risk premia are constant, return surprises will then be linearly related to

the consumption innovation, since both the revision in expected discounted dividend growth

and the revision in expected discounted risk-free rates are functions of the consumption

innovation �t+1: For example, if the risk-free rate is constant, the innovation in the log stock

return is linear in the consumption innovation:

rst+1 � Etr
s
t+1 = �t+1

�
�0 + ��1 + �2�2 + :::

�
� !�t+1:

Hence if a positive shock to stockholder consumption today is good news about future con-

sumption (! > 0) and if stockholder consumption is positively correlated with aggregate

consumption (� > 0), Assumption 1 is satis�ed. This follows from the lognormality assump-

tion (with its unbounded support for consumption growth) and the linear relation between

return innovations and consumption innovations. Notice that, if stockholder consumption

growth is negatively correlated with aggregate consumption growth (� < 0), the model will

satisfy an analogous set of su¢ cient conditions to those given above, in which there exists

an X such that, for all realizations of consumption growth greater than X, the expected

risk premium is negative. Either way, the assumption of lognormality implies that we can

always �nd values for �c and 
c such that the Euler equations of the standard model in the

just-identi�ed two asset case are exactly satis�ed.

In addition, it is possible to derive explicit expressions for preference parameters that

exactly satisfy the Euler equations of the standard model.22 To do so, �rst note that, under

joint lognormality, the pricing error may be written

ejR = E
�
Rj
�
E [M c] exp

�
Cov

�
mc; rj

�	
� 1: (16)

Noting that the Euler equation error is identically zero under M i, implying

E
�
Rj
�
E
�
M i
�
exp

�
Cov

�
mi; rj

�	
= 1;

and using m = log (�)� 
�c, we may write

ejR =
E [M c]

E [M i]
exp

�
�
cCov

�
�c; rj

�
+ 
iCov

�
�ci; rj

�	
� 1: (17)

22The calculations below are similar in spirit to those in Vissing-Jorgensen (1999), who shows how limited

stock market participation biases estimates of relative risk aversion based on aggregate consumption. Vissing-

Jorgensen�s calculations presume heterogenous households rather than a representative-stockholder, as below.
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For a single risky asset return Rst+1and the risk-free return R
f
t+1, there are two equations

in two unknowns, with analytical solutions given by

b
c = 
i

�
�is � �if
�cs � �cf

�
; (18)

b�c = � exp

�

c�c �


2c�
2
c

2
� 
i�i +


2i�
2
i

2
+ 
c�cs � 
i�is

�
; (19)

where �cs �Cov(�c; rs), �if �Cov
�
�ci; rf

�
; �cf �Cov

�
�c; rf

�
; �2c � V ar (�c), �2i �

V ar (�ci), �c is the mean growth rate of aggregate consumption, and �i is the mean growth

rate of the consumption of asset-holder i:23

A more intuitively appealing expression for b
c can be obtained by assuming the risk-free
rate is constant. While this is an approximation, it turns out to be well satis�ed in the data,

since most proxies for the risk-free rate (such as the Treasury-bill rate) are extremely stable.

Using the orthogonal decomposition (15), (18) can be written

b
c = 
i
� +

�"is
�is

; (20)

where �"is =Cov
�
"it; R

s
t+1

�
. For assets that are uncorrelated with "it, (e.g., any risky asset

that is on the log mean-variance e¢ cient frontier), �"is = 0 and (20) collapses to

b
c = 
i
�
= 
i

�i
�ci�c

: (21)

The above expression tells us that limited participation can in principal account for high

estimated values of 
c (and �c) obtained when �tting data to (14), if stockholder consumption

is more volatile than aggregate consumption and/or very weakly correlated correlated with

it.

It is important to emphasize, however, that, in the two asset case, the values of 
c, and

�c obtained when the model is estimated using the misspeci�ed MRS based on aggregate

consumption growth still insure that the log pricing errors for Rst+1 and R
f
t+1 are identically

zero, ejR = 0. This follows because, under lognormality, the log model is linear and the

problem collapses to solving two linear equations in two unknowns. This is demonstrated in

Figure 6, for the two-asset cases using actual historical return data. The �data�line plots

23Notice that, in equilibrium, b
c and b�c will take the same value regardless of the identity of the assetholder.
This follows because any two households must in equilibrium agree on asset prices, so that the Euler equation

holds for each individual household. Thus,


c = 
i

�
�is � �if
�cs � �cf

�
= 
k

�
�ks � �kf
�cs � �cf

�
for any two asset-holders i and k:
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RMSE/RMSR over a range of values for 
c, after choosing �c so as to minimize the sum

of squared Euler equation errors ejR;t, which do not impose lognormality. The line labeled

�lognormality�plots the RMSE/RMSR over a range of values for 
c, after choosing �c to

minimize the sum of squared pricing errors in (16), under the assumption that returns and

consumption growth are jointly lognormal. Under lognormality, a value for 
c can be found

that exactly satis�es the Euler equation, in contrast to the data. Thus, the only consequence

of using aggregate per capita consumption in this setting is a bias in the estimated parametersb
c and b�c; there is no consequence for the Euler equation errors themselves, which remain
zero. It follows that any lognormal model of limited participation cannot explain the large

empirical Euler equation errors of the standard model found in the data.

In the case of multiple risky assets, lognormality does not necessarily imply that such

Euler equation errors will each be identically zero, since in this case there are more moment

conditions than free parameters. Nevertheless, a lognormal model is unlikely to match the

magnitude of the Euler equation errors found in the data. The Appendix discusses this case

and shows that the lognormal model cannot match the magnitude of the Euler equation

errors for the eight-asset case, especially in the empirically relevant region where 
c is large.

It should be noted that the results in this subsection hold for any pricing kernel M i
t+1

that is jointly lognormally distributed with returns and aggregate consumption growth; it is

not necessary that the pricing kernel take the form given in (13). As long as the true kernel

M i
t+1 is jointly lognormally distributed with aggregate consumption and returns, values for

the discount factor and risk aversion can be found for which the standard model generates

identically zero unconditional Euler equation errors for any two asset returns.

3.3 Limited Participation/Incomplete Markets With State De-

pendent Correlations

We now revisit the potential role of limited participation in explaining the large Euler equa-

tion violations of the standard consumption-based model, with an eye toward the important

role of recessions in these �ndings. This requires relaxing the assumption of unconditional

joint lognormality.

3.3.1 Limited Participation with State Dependent Correlations

An intriguing feature of aggregate consumption and return data is that violations of Euler

equations in (2) are especially large in recessions. For example, in the troughs of recessions

in the 1950s, 1970s, early 1960s, 1980s and 1990s, as identi�ed by the National Bureau of

Economic Research, net aggregate consumption growth is negative but the aggregate stock
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return and Treasury-bill rate are, more often than not, positive (Table 2). These �ndings

suggest that the link between the aggregate economy and asset returns is fundamentally

di¤erent in economic downturns than in upturns. The �ndings above suggest that a complete

description of the joint behavior of consumption and asset returns must be consistent with

this state dependency.

As a preliminary step, we consider the following modi�cation to the simple limited par-

ticipation model motivated by the empirical �ndings above. Assume that both stockholder

and aggregate consumption growth are i.i.d. processes, with normally distributed shocks.

For simplicity, stockholders are presumed to have CRRA utility and, as above, stock prices

are determined only by stockholder�s consumption. We modify the previous framework, how-

ever, by assuming that the correlation between the growth rates of stockholder consumption

and aggregate consumption is time-varying and depends on the state of the economy. In

�normal�times, the correlation between consumption growth of stockholders and aggregate

consumption growth is one. Normal times are modeled as any period in which aggregate con-

sumption growth is not unusually low, say one standard deviation or more below its mean.

In �bad�times, the correlation between consumption growth of stockholders and aggregate

consumption growth is signi�cantly less than one, even negative. Bad times are modeled as

any period when aggregate consumption growth is more than one standard deviation below

its mean. This changing correlation could be due to unemployment shocks that primarily

a¤ect less wealthy nonstockholders, to binding borrowing constraints that make it harder for

nonstockholders to smooth consumption in recessions, or to cyclical shifts in the composition

of income between labor and capital.

Interestingly, a time-varying correlation of this type between stockholder consumption

and aggregate consumption growth generates deviations from joint log-normality of aggre-

gate consumption growth and asset returns in the model that are remarkably similar to

those found in the data. (Although the shocks to aggregate consumption and stockholder

consumption growth are normally distributed, the time-varying correlation means that their

joint distribution with endogenous returns is unconditionally nonnormal.) It also allows the

model to rationalize the large Euler equation errors of the standard, representative agent,

CRRA model. To illustrate, we model the equity claim as a claim to stockholder consump-

tion, cit, and model additional risky securities, indexed by j, as those with dividend processes

taking the form �dj = �j�cit + "jt ;where "
j
t is an i.i.d. shock uncorrelated with �c

i
t. By

varying �j across assets, we create a spread in the covariance of returns on these securi-

ties with stockholder consumption growth, and therefore a spread in risk premia. Values

for �j and the standard deviation of "jt are chosen to mimic the spread in returns in the

6 Fama-French portfolios for which we have historical data. For the results below, stock-

holder risk-aversion is set to 
 = 10: Since we have assumed, for illustrative simplicity, that
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stockholders have CRRA utility, this stylized model has some important limitations. For

example, with 
 = 10, the model generates a mean risk-free rate that is much higher than

in the data (Weil (1989)); thus we set � = 1:2 to obtain more reasonable values. Never-

theless, the simplicity of the model serves to illustrate an important point, namely that a

state-dependent correlation between the consumption of stockholders and nonstockholders

can help explain why the standard consumption-based model�s Euler equations are violated

by such large magnitudes.

Figure 7 shows QQ plots from model-simulated data, which are directly comparable to

those using historical data in Figure 2. Note that the deviations from joint log-normality

are concentrated in periods with observations that are in the tails of the joint distribution,

both in the data and in the model. These deviations from log-normality are of the type

necessary to generate large Euler equation errors for the misspeci�ed SDF based on aggregate

consumption and power utility. Table 6 shows that the state-dependent correlations model

is able to generate pricing errors for the standard model that rival those in the data, both for

the set of two asset returns that include the stock market return and the risk-free rate, as well

as for a larger cross-section of returns that include the 6 additional risky securities. The table

has a layout similar to that of Table 5, except that we vary the correlation in bad states at the

top of each column, rather than the unconditional correlation. The calibrations that deliver

the largest Euler equation errors are those for which the correlation between aggregate and

stockholder consumption is unity most of the time (in good states), but is negative in bad

states (de�ned as states in which aggregate consumption is more than one standard-deviation

below its mean). For example, when the correlation in bad states is -0.5 and the standard

deviation of stockholder consumption growth is twice that of aggregate consumption growth,

this model implies Euler equation errors for the standard consumption-based model, as

measured by RMSE/RMSR, of 0.47, a value that almost exactly replicates that found in the

data when the standard model is �t to historical data on aggregate consumption, the stock

market and Treasury-bill (Table 1). Finally, Figure 8 shows �tted values from nonparametric

regressions of excess returns on consumption growth as in (12) using simulated data from this

model. The �tted values have a pattern that is remarkably similar to those in the data: the

lowest consumption realizations coincide with positive excess returns on average, violating

Assumption 1. These results are promising because they go signi�cantly in the direction

required to explain why the standard model appears so misspeci�ed.

We close this section by noting that limited participation combined with arbitrary de-

partures from normality does not in general explain the mispricing of the standard model.

The Appendix provides an analysis of this issue by considering a range of non-normal mod-

els based on Hermite expansions around the normal density. Most non-normal models we

considered imply that the wrong pricing kernel based on aggregate consumption delivers
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tiny pricing errors even when the joint distribution of �ct, �cit, and returns are signi�cantly

non-normal. This suggests that the explanation for the large pricing errors of the standard

representative agent model must be more than limited participation per se. The joint dis-

tribution of assetholder, aggregate consumption and returns has to be of a particular form,

and it is that form that must be the central part of the story.

The examples in this section are designed to be illustrative and are not meant to be taken

as realistic models. Nevertheless, they are useful for building intuition about why the lead-

ing models fail to match the empirical properties of the standard model�s Euler equations

found in the data. The previous section showed that a very low or even negative uncon-

ditional correlation between stockholder and nonstockholder consumption is not by itself

enough to explain why the standard model fails: when the MSV model is modi�ed to have

limited participation, a low unconditional correlation between stockholder and nonstock-

holder consumption does not generate non-negligible pricing errors. Instead, what is needed

is a state-dependent correlation, of the type explored above. It is straightforward to intro-

duce the same state-dependent correlation between stockholder and aggregate consumption

into the limited participation version of the MSV habit model. Doing so, we obtain results

very similar to those reported above. This is encouraging because it suggests that leading

consumption-based models can be modi�ed to �t the Euler equation facts, while at the same

time preserving their favorable implications for a range of other asset pricing phenomena.

4 Conclusion

It is well understood that the standard, representative agent, consumption-based asset pric-

ing theory based on constant relative risk aversion utility fails to explain the behavior of

risky assets. Some aspects of this failure have been famously pointed out by authors like

Mehra and Prescott (1985), who argue that the model is incapable of rationalizing the eq-

uity premium for reasonable levels of risk aversion. Other researchers have estimated the

Euler equations of the model using GMM, and found that the model is formally rejected in

statistical tests (e.g., Hansen and Singleton (1982)). This paper points out that the puzzle

with this model runs much deeper: the unconditional Euler equation errors for the stan-

dard consumption-based model cannot be driven to zero�indeed they remain economically

large�for any value of risk aversion or the subjective rate of time-preference.

The empirical failure of the standard consumption-based model (including its rejection

in GMM tests of the model�s Euler equations) has driven the search for new consumption-

based models. Many of these theories have delivered important insights into �nancial market

behavior. We show here, however, that none explain why the standard model is so soundly
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rejected in basic GMM tests of its Euler equations. If the data on asset returns and con-

sumption were generated by any of the leading models considered in the previous section,

an econometrician would estimate zero Euler equation errors and the consequence of using

the wrong pricing kernel would simply be incorrect estimates of � and 
. Assets could be

priced just as well using the misspeci�ed standard consumption-based model as they could

using anyone of the newer models. This is true both for explaining the behavior of the

market return and risk-free rate generated by the models�own baseline calibrations, and for

explaining larger cross-sections of risky returns. Moreover, some leading models imply that

the standard consumption-based has negligible asset pricing errors even when it is based

both on the wrong consumption measure (aggregate consumption instead of individual as-

setholder consumption) and on the wrong model of underlying preferences (CRRA instead

of habit or recursive preferences).

We show that the leading asset pricing models we study fail to explain the mispricing

of the standard model because they fundamentally mischaracterize the joint behavior of

consumption and asset returns in periods of signi�cant economic change, namely in economic

downturns, when aggregate consumption is falling. An important question is why the models

we study perform so poorly in recessions relative to other times.

We suggested one speci�c direction along which the current models can be improved,

based on a time-varying, state-dependent correlation between stockholder and aggregate con-

sumption growth. But our preliminary analysis leaves room for much future work. Ultimately

it will be important to model the primitive technological sources of any state-dependent cor-

relation between the consumption of stockholders and that of the rest of the economy. The

theoretical results also raise tantalizing empirical questions. Is there any direct evidence

that the correlation of stockholder and non-stockholder consumption is state-dependent? If

so, can this time-variation be linked to asset returns and cyclical variation in the economy?

Unfortunately, these questions are di¢ cult to answer because of the dearth of time-series

data on household consumption.

A number of alternative research directions could prove fruitful for explaining the mis-

spricing of the standard consumption-based model. Possibilities include classes of economic

models with endogenously distorted beliefs, as surveyed in the work of Hansen and Sargent

(2000) or illustrated in the learning model of Cogley and Sargent (2004). In such models,

beliefs are distorted away from what a model of rational expectations would impose, so asset

return volatility can be driven by �uctuations in beliefs not necessarily highly correlated

with consumption. Other candidates include any modi�cations to the standard model that

would make unconditional Euler equations more di¢ cult to satisfy, especially in recessions,

such as binding restrictions on the ability to trade and smooth consumption, short-sales con-

straints, and transactions costs (e.g., Luttmer (1996); He and Modest (1995); Heaton and
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Lucas (1996, 1997); Ludvigson (1999); Guo (2004)) or infrequent adjustment in consump-

tion (Gabaix and Laibson (2002); Jagannathan and Wang (2005)). An important area for

future research will be to determine whether such modi�cations are capable of delivering the

empirical facts, once introduced into plausibly calibrated economic models with empirically

credible frictions.
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5 Appendix

5.1 Data Description

This appendix describes the data. The sources and description of each data series we use

are listed below.

CONSUMPTION

Consumption is measured in per capita terms as expenditures on nondurables and services,

excluding shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in

billions of chain- weighted 1996 dollars. The components are chain-weighted together, and

this series is scaled up so that the sample mean matches the sample mean of total personal

consumption expenditures. We exclude shoes and clothing expenditure from this series since

they are partly durable and are therefore inappropriate in a measure of the service �ow

of consumption. Our source is the U.S. Department of Commerce, Bureau of Economic

Analysis.

POPULATION

Ameasure of population is created by dividing real total disposable income by real per capita

disposable income. Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

ASSET RETURNS

� Three-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis%; Source: H.15 Release �Federal Reserve Board of Governors.

� Six size/book-market returns: Six portfolios, monthly returns from July 1926-December
2003. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.



� The stock market return is the Center for Research and Security Prices (CRSP) value-
weighted stock market return. Our source is the Center for Research in Security Prices.

5.2 Detailed Description of Models

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Cit �X i

t)
1�
 � 1

1� 


)
; 
 > 0 (22)

where Cit is individual consumption and Xt is habit level which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Cit is equal to aggregate consumption, Ct.

CC de�ne the surplus consumption ratio

St �
Ct �Xt

Ct
< 1;

and model its log process as evolving according to a heteroskedastic �rst-order autoregressive

process (where as before lowercase letters denote log variables):

st+1 = (1� �) s+ �st + � (st) (ct+1 � ct � g) ;

where �, g, and s are parameters. � (st) is the so-called sensitivity function that CC choose

to satisfy three conditions: (1) the risk-free rate is constant, (2) habit is predetermined at

steady state, and (3) habit moves nonnegatively with consumption everywhere. We refer the

reader to the CC paper for the speci�c functional form of � (st) : The stochastic discount

factor in the CC model is given by

MCC
t+1 = �

�
Ct+1
Ct

St+1
St

��

:

In all of the models considered here, the return on a risk-free asset whose value is known

with certainty at time t is given by

Rft+1 � (Et [Mt+1])
�1 ;

where Mt+1 is the pricing kernel of whichever model we are considering.

MSV model the behavior of Yt; the inverse surplus consumption ratio:

Yt =
1

1� (Xt=Ct)
> 1:

Following Campbell and Cochrane (1999), MSV assume that Yt follows a mean-reverting

process, perfectly negatively correlated with innovations in consumption growth:

�Yt = k
�
Y � Y

�
� � (Yt � �) (�ct � Et�1�ct) ;



where Y is the long-run mean of Y and k, �; and � are parameters, calibrated as in MSV.

Here �ct � log (Ct+1=Ct), which they assume it follows an i.i.d. process

�ct = �+ �vt;

where vt is a normally distributed i.i.d. shock. The stochastic discount factor in the MSV

model is

MMSV
t+1 = �

�
Ct+1
Ct

Yt
Yt+1

��

:

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

For the representative stockholder, we model the �rst di¤erence of Y i
t as in MSV:

�Y i
t = k

�
Y
i � Y i

�
� �

�
Y i
t � �

� �
�cit � Et�1�c

i
t

�
;

and compute equilibrium asset returns based on the stochastic discount factor MMSV i
t+1 =

�
�
Cit+1=C

i
t

��
 �
Y i
t =Y

i
t+1

��

: As before, this is straightforward using the analytical solutions

provided in MSV.

Next, we compute two types of unconditional pricing errors. First, we compute the

pricing errors generated from erroneously using aggregate consumption in the pricing kernel

in place of assetholder consumption. That is, we compute the pricing errors that arise from

using M ch
t+1 � �c (Ct+1=Ct)

�
c
�
Y c
t =Y

c
t+1

��
c in place of MMSV i
t+1 to price assets, where �c and


c are chosen freely to �t the data, and where Y
c
t follows the process

�Y c
t = k

�
Y
c � Y c

�
� � (Y c

t � �) (�ct � Et�1�ct) :

With the exception of �, all parameters are set as in MSV. The parameter � is set to keep

the mean return on the aggregate wealth portfolio the same as in MSV. Thus, if �i=�c = 2,

the value of � in MSV is divided by two.



To model multiple risky securities, MSV model the share of aggregate consumption that

each asset produces,

sjt =
Dj
t

Ct
for j = 1; :::; n;

where n represents the total number of risky �nancial assets paying a dividend D. MSV

assume that these shares are bounded, mean-reverting and evolve according to

�sjt = �j
�
sj � sjt

�
+ sjt� (si) �t;

where � (sj) is an N�dimensional row vector of volatilities and �t is an N�dimensional
column vector of standard normal random variables, and �j and sj are parameters. (N �
n + 1 because MSV allow for other sources of income, e.g., labor income, that support

consumption.) Cross-sectional variation in unconditional mean returns across risky securities

in this model is governed by cross-sectional variation in the covariance between shares and

aggregate consumption growth: Cov
�
�sjt
sjt
; �ct
ct

�
, for j = 1; :::; n. This in turn is determined

by cross-sectional variation in �j, sj and � (sj) : We create n arti�cial risky securities using

an evenly spaced grid of values for these parameters. The values of �j lie on a grid between

0 and 1, and the values of sj 2 [0; 1) lie on a grid such that the sum over all j is unity.

The parametric process for � (sj) follows the speci�cation in MSV in which the volatilities

depend on a N -dimensional vector of parameters vj as well as the individual share processes

� (sj) = v
j �

nX
k=0

skt v
k:

We choose the parameters �j, sj, and vj, to generate a spread in average returns across

assets. In analogy to the empirical exercise (Panel B of Table 1), we do this for n = 6 risky

securities plus the aggregate wealth portfolio return and the risk-free for a total of 8 asset

returns.

Closed-form solutions are not available for the individual risky securities, but MSV show

that equilibrium price-dividend ratios on the risky assets are given by the approximate

relation
P jt

Dj
t

� aj0 + aj1St + aj2
sj

sjt
+ aj3

sj

sit
St; (23)

where St � 1=Y i
t and where Y

i
t again denotes the inverse surplus ratio of an individual

assetholder indexed by i, which should not be confused with the indexation by j, which

denotes a security. The parameters aj0, a
j
1; a

j
2; and a

j
3 are all de�ned in terms of the other

parameters above. Using these solutions for individual price-dividend ratios, we create a

cross-section of equilibrium risky securities using

Rit+1 =

 
P jt+1=D

j
t+1 + 1

P jt =D
j
t

!
exp

�
�djt+1

�
: (24)



Bansal and Yaron (2004) consider a representative agent who maximizes utility given by

recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The utility function

to be maximized takes the form

U = E

( 1X
t=0

�t
n
(1� �)C

1�

�

t + �
�
EtU

1�

t+1

� 1
�

o �
1�


)
; (25)

where � � (1� 
) = (1� 1= ) ;  is the intertemporal elasticity of substitution in consump-
tion (IES), 
 is the coe¢ cient of relative risk aversion, and � is the subjective discount factor.

The stochastic discount factor under Epstein-Zin-Weil utility takes the form given in (7).

5.3 Proof of Proposition 1

For 
 = 0: E[X�

t Zt] > 0 since E[Zt] > 0 (i.e., the unconditional risk premium is positive).

Given continuity (Assumption 4), the question then becomes, is there a 
 so that E[X�
Z] <

0?

E[X�

t Zt] = E[X�


t E[ZtjXt]] = E[X�

t f(Xt)]

= P (Xt < �X)E[X�

t f(Xt)jXt < �X] + P (Xt � �X)E[X�


t f(Xt)jXt � �X]

SinceX�

t is decreasing inX if 
 > 0, the second conditional expectation has the following

property:

E[X�

t f(Xt)jXt > �X] < �X�


t E[f(Xt)jXt � �X]

The �rst conditional expectation has the following property:

E[X�

t f(Xt)jXt < �X] < E[X�


t �jXt < �X]

= � �X�
E[(Xt= �X)
�
jXt < �X]

Thus,

E[X�

t Zt] < �X�
 �P (Xt < �X)�E[(Xt= �X)

�
jXt < �X] + P (Xt � �X)E[f(Xt)jXt � �X]
�

As 
 goes to in�nity the right hand side goes to minus in�nity since

�X�
 !1 since �X < 1

E[f(Xt)jXt � �X] is �nite by Assumption 3,

�E[(Xt= �X)
�
jXt < �X]! �1 by Assumption 2 and since � < 0

Q.E.D.



5.4 A Simple Limited Participation/Incomplete Markets Model

with Joint Lognormality: Multiple Risky Assets Case

This appendix discusses the distortion in parameter values and Euler equation errors that

arise in the simple lognormal model with multiple risky asset returns. In this case, lognor-

mality does not necessarily imply that such Euler equation errors will each be identically

zero, since in this case there are more moment conditions than free parameters. For N > 2

asset returns, it is not possible to give a intuitively appealing analytical expression for the

distortion in parameter values, although values can be obtained numerically. It is, however,

possible to illustrate analytically the distortion in 
c to a very close approximation, by fo-

cusing on log pricing errors and assuming that the risk-free rate is constant. In this case we

can choose �c so that E [M i] = E [M c] ; which insures that the pricing error for the risk-free

rate is zero. Note that this does not imply that the risk-free rate puzzle is trivial, since �c
is unrestricted and in particular can be chosen to be greater than unity if required to set

the pricing error to zero. While this is an approximation, it turns out to be well satis�ed in

the data, since the Treasury-bill rate is extremely stable.24 We maintain this approximation

purely for expositional purposes; the reader should be aware that exact results are very close.

With this approximation in hand, the value of 
c that minimizes the sum of squared log

errors, log
�
1 + ejR

�
, is given by

b
c = 
i

 P
j �cj�ijP
j �

2
cj

!
; (26)

where �cj �Cov(�c; rj) ; �ij �Cov(�ci; rj) ; and �
P

j�indicates summation over all asset

returns j being priced. �Hats�indicate parameter values estimated by minimizing the sum

of squared Euler equation errors (using GMM with the identity weighting matrix), as above.

A more complicated expression can be obtained for b�c. Note that the estimates of �c and 
c
are biased, and do not correspond to any marginal investor�s true risk aversion parameter.

Figure A1 shows that a lognormal model is unlikely to match the magnitude of the

Euler equation errors found in the data. As above, the �data� line plots RMSE/RMSR

over a range of values for 
c, after choosing �c so as to minimize the sum of squared Euler

equation errors ejR;t, which do not impose lognormality. The line labeled �lognormality�

plots the RMSE/RMSR over a range of values for 
c, after choosing �c to minimize the

sum of squared pricing errors in (16), under the assumption that returns and consumption

24If M i
t is the true pricing kernel, then E

�
M i
t

�
= E

h
1=Rft

i
: Since we assume E

�
M i
t

�
= E [M c

t ], our

assumption implies E [M c
t ] = E

h
1=Rft

i
, which prices the risk-free rate exactly if Rft is constant. It follows

that the approximation error in pricing the risk-free rate is E
h
1=Rft

i
� 1=E

h
Rft

i
, which is -0.01 percent per

annum.



growth are jointly lognormal. One way to interpret the �lognormal� line is to note that,

under joint lognormality, we can always �nd a pricing kernel M i
t+1 = expflog (�)� 
�cit+1g

that generates a set of log returns taking the form rjt = �j�cit + �jt , for some constant �
j

and i.i.d. innovation �jt , that have the same means, variances and covariances with �ct as

those in the historical data, and prices those asset exactly. This is done by choosing �j to

match the mean excess return for each asset, choosing var(�j) to match the volatility of each

return, and choosing cov(�; "i) to match the cov(rj;�c) from the data. The dashed line

labeled �lognormality� then gives the pricing errors that would arise from �tting M c
t+1 to

data generated from this lognormal model. Figure A1 shows that no lognormal model can

explain the magnitude of the pricing errors in the data.

5.5 Hermite Expansions Around the Normal Density

Gallant and Tauchen (1989) show that the Hermite expansion can be put in tractable form

by specifying the density as

h (y) =
a (y)2 f (y)R R R

a (u)2 f (u) du1du2du3
:

Here, a (y) is the sum of polynomial basis functions of the variables in y; it is squared to

insure positivity and divided by the integral over R3 to insure the density integrates to
unity. We set a (y)2 = (a0 + a1y1;t + a2y2;t + a3y3;t)

2, a �rst-order expansion but one that

can nonetheless accommodate quite signi�cant departures from normality. We investigate a

large number of possible joint distributions by varying the parameters a0,...,a3:When a0 = 1

and a1 = a2 = a3 = 0, h (y) collapses to the Gaussian joint distribution, f (y).

Under the assumptions above, the equilibrium price-dividend ratio is a constant, P=D,

that satis�es
P=D

P=D + 1
=

Z Z
�i exp

�
�
iy2

�
exp (y3)h (y2; y3) dy2dy3:

5.5.1 Expansions Around Normality

We employ �rst-order Hermite expansions around the multivariate normal distribution, and

consider the Euler equation errors associated with two assets, a stock market return and a

risk-free rate. Let yt = (�ct;�cit;�dt)
0 � (y1;t; y2;t; y3;t)0, where�ct is aggregate consumption

growth, �cit is individual asset-holder consumption growth, and �dt is dividend growth of an

aggregate stock market claim. We will consider asset pricing models in which these variables

are i.i.d., but not necessarily jointly lognormally distributed.

Ideally, the unconditional joint density of yt would be estimated. Unfortunately, this

density must be calibrated because a lack of su¢ ciently long time-series data on stockholder



consumption prohibits estimation. Let the joint density of yt be denoted h (y).

The MRS of individual assetholder consumption, M i
t+1 � �

�
Cit+1=C

i
t

��

, is a valid sto-

chastic discount factor. Under the assumptions above, the equilibrium price-dividend ratio

is a constant, P=D. Given a distribution h (y) and the equilibrium value for P=D, it is

straightforward to compute the pricing errors associated with erroneously using M c
t+1 �

�c (Ct+1=Ct)
�
c to price assets. As above, we assume the asset return data are generated by

M i
t+1 and solve numerically for the values of �c and 
c that minimize an equally-weighted

sum of squared pricing errors ejR that arise from using M c
t+1 to price assets.

Parameters of the leading normal density are calibrated to match data on aggregate con-

sumption growth and dividend growth for the CRSP value-weighted stock market index, on

an annual basis.25 The parameters for asset-holder consumption and assetholder preferences

are somewhat arbitrary since there is insu¢ cient data available to measure these empiri-

cally. We therefore consider a range for 
; �, �i=�c, �i=�c; �ci; and �id, where �i � E (�cit),

�c � E (�ct), �i �
p
Var (�cit), �c �

p
Var (�ct), and �id �Cov(�cit;�ct) are parameters

of f (y). Because our calibration corresponds to an annual frequency, the Euler equation

errors we compute are comparable to the annualized errors from U.S. data reported in Table

1.

We evaluated pricing errors obtained from a wide grid (over 20,000 parameter combina-

tions) for the Hermite parameters a0 through a3. To conserve space, we report a limited

number of results. Table A1 reports results for which 
 is set to 5, � to 0.99, �i=�c = 1, 2,

4, �i=�c = 0:85, 1:5, �ci = 0:1, �id = 0:9. The point of this table is that there are a wide

range of cases in which the joint distribution of yt deviates considerably from normality (of-

ten producing bimodal marginal density shapes) and yet the pricing errors associated with

erroneously using M c
t+1 to price assets in place of M

i
t+1 are, to numerical accuracy, zero. For

example, the kurtosis of the marginal distribution of �ct is often greater than 11, and the

skewness greater than 4, but still the Euler equation errors from using a representative agent

pricing kernel are zero. The parameter estimates are biased, however, echoing the lognormal

results. The parameter 
c is larger than the true 
 when asset-holder consumption growth is

more volatile than aggregate consumption growth or when it is not highly correlated with it,

as suggested by (21). When Cov(�c;�d) = �cd is negative, 
c is negative, as also suggested

25From annual post-war data used in Lettau and Ludvigson (2005), we take the E (�c) to be 2% annually

and E (�d) to be 4% annually; the standard deviation �c is �c = 1:14% and the standard deviation of �d

is �d = 12:2%. The covariance �cd between �c and �d is notoriously hard to measure. It is estimated to be

negative, equal to -0.000177 in the annual post-war data used by Lettau and Ludvigson (2005), but others

have estimated a positive correlation (e.g., Campbell (2003)). We therefore consider both small negative

values for this covariance (equal to the point estimate from Lettau and Ludvigson (2005)), and small positive

values of the same order of magnitude, e.g., 0.000177.



by (21).

We reach similar conclusions when evaluating the Euler equation errors for a larger cross-

section of returns. These results have been omitted to conserve space, but can be summarized

as follows. As in the two-asset case, we �nd that the average pricing errors from using M c
t+1

to price assets are often very small, indeed close to zero, even for signi�cant perturbations

from joint lognormality. A small number of cases provided larger pricing errors, but these

cases were relatively rare, occurring in less than 0.2% of the parameter permutations.

5.6 Additional Diagnostics

5.6.1 Time Aggregated Consumption

To explore how time aggregation of aggregate data is likely to a¤ect our results, we assume

that agents make decisions quarterly but that the data sampling interval is annual. We also

allow for the possibility that aggregate consumption is a misspeci�ed measure of assetholder

consumption. For all models the essential results for the Euler equation errors remain: values

of �c and 
c can always be found such that the unconditional pricing errors associated with

usingM c
t+1 to price assets are very small relative to the data, even when using time-averaged

data. As one example, Table A.1 shows results for the MSVmodel with limited participation.

To conserve space, we report only the results for this model, since the conclusion is unchanged

for the other models, although note that the results above for the BY model are already

based on time-aggregate data. The table shows that the pricing errors are again small,

even when data is time-aggregated. Most values of RMSE/RMSR are close to zero. The

largest occurs for the eight asset case and is equal to 0.07, far smaller than the value of

0.33 found in the data, which happens only if we assume stockholder consumption growth

is negatively correlated with aggregate consumption growth. Since time-averaging changes

both the serial dependence of the consumption data and its unconditional correlation with

returns, this suggests that the exact time-series properties of consumption growth are not

crucial for explaining the large pricing errors of the standard model.

5.6.2 Finite Sample Pricing Errors

To investigate how �nite sample considerations are likely to a¤ect our conclusions, we redo

the simulation exercises reported on above using samples of the size employed in our empirical

application. Table A.2 reports the maximum RMSE/RMSR over 1,000 samples of size 204

that arises from �tting M c
t+1 to data generated from the relevant model. We do not report

small-sample results for the eight-asset MSV model. The small sample behavior of the MSV

model is problematic because the model is solved in continuous time and moreover holds only



as an approximation for multiple risky securities. As a result, we �nd that small amounts of

approximation error are compounded by discretization error in small samples and it is not

possible to reduce these errors to reasonable levels unless the number of decisions within the

period is almost in�nite. Nevertheless, we are able to report the results for the two-asset

case, since the solutions for the aggregate consumption claim and risk-free rate in the MSV

model are not approximate. Table A.2 shows that, for the three representative agent models,

CC, MSV, and BY, the maximum Euler equation errors that arise from �tting M c
t+1 to data

are numerically zero, for both the two-asset and eight-asset speci�cations. The Guvenen

model produces a slightly higher maximum RMSE/RMSR in �nite samples, equal to about

0.87% at an annual rate, but still well below the value of almost 50% found in historical data

(Table 1).
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Table 1: Euler Equation Errors with CRRA Preferences

Assets δ̂ γ̂ RMSE (in %) RMSE/RMSR p (W = I) p (W = S−1)

Rs, Rf 1.41 89.78 2.71 0.48 N/A N/A

Rs, Rf , 6 FF 1.39 87.18 3.05 0.33 0.00 0.00

Excluding Periods with low Consumption Growth

Rs, Rf 2.55 326.11 0.73 0.13 N/A N/A

Rs, Rf , 6 FF 2.58 356.07 1.94 0.21 0.00 0.00

Notes: This table reports the minimized annualized postwar data Euler Equation errors for CRRA preferences. The
preference parameters δ̂c and γ̂c are chosen to minimize the mean square pricing error for different sets of returns:
minδc,γc

[
g(δc, γc)

′Wg(δc, γc)
]

where g(δc, γc) = E[δc(Ct/Ct−1)−γcRt − 1]. Rs is the CRSP-VW stock returns, Rf is the
3-month T-bill rate and Ct is real per-capita consumption of nondurables and services excluding shoes and clothing. The
table also reports results when the periods with the lowest six consumption growth rates are eliminated. The table reports
estimated δ̂, γ̂ and the minimized value of RMSR/RMSRR where RMSE is the square root of the average squared Euler
Equation error and RMSR is the square root of the averaged squared returns of the assets under consideration for W = I.
The last two colums report χ2 p-values for tests for the null hypothesis that Euler Equation errors are jointly zero for
W = I and W = S−1 where S is the spectral density matrix at frequency zero. The data span the period 1951Q4 to
2002Q4.



Table 2: Low Consumption Growth Periods

Quarter NBER Recession Dates Ct/Ct−1 − 1 Rs
t Rf

t

1980Q02 80Q1-80Q3 -1.28 16.08 3.59

1990Q04 90Q3-91Q1 -0.87 8.75 2.16

1974Q01 73Q4-75Q1 -0.85 -1.26 2.37

1958Q01 57Q3-58Q2 -0.84 7.03 0.65

1960Q03 60Q2-61Q1 -0.64 -4.93 0.67

1953Q04 53Q1-54Q2 -0.60 7.87 0.47

Notes: This table reports consumption growth, the return of the CRSP-VW stock returns Rs and the 3-month T-bill
rate Rf (all in in percent per quarter) in the six quarters of our sample with the lowest consumption growth rates. The
consumption measure is real per-capita expenditures on nondurables and services excluding shoes and clothing. The data
span the period 1951Q4 to 2002Q4.



Table 3: Euler Equation Errors

Model δ̂c γ̂c RMSE/RMSR (Rs, Rf ) RMSE/RMSR (8 assets)

Data 0.48 0.33

CC Habit 1.28 57.48 0.00 N/A

MSV Habit 1.71 30.64 0.00 0.00

BY LR Risk 0.93 48.97 0.00 0.00

Notes: This table reports the annualized Euler Equation errors for stock returns Rs and the riskfree rate Rf from
simulated data from Campbell and Cochrane’s habit model (CC Habit), Menzly, Santos and Veronesi’s habit model
(MSV Habit) and Bansal and Yaron’s long run risk model (BY LR Risk) for CRRA preferences. The preference pa-

rameters δ̂c and γ̂c are chosen to minimize the mean square Euler Equation error: minδc,γc

[
g(δc, γc)

′g(δc, γc)
]

where
g(δc, γc) = E[δc(Ct/Ct−1)−γcRt − 1]. RMSR is the square root of the averaged squared returns of the assets under
consideration. RMSE is the square root of the average squared Euler Equation error. Euler Equation errors are computed
from simulations with 10,000 observations.



Table 4: Properties of Guvenen’s Model

Panel A: Consumption Growth

Ct/Ct−1 − 1 Ci
t/C

i
t−1 − 1 Cn

t /C
n
t−1 − 1 Rs

t Rf
t

Mean 0.01 0.02 0.00 1.31 0.64

Std. Dev. 2.04 4.53 0.83 7.30 1.69

Correlation 1.00 1.00 0.99 1.00 0.17
1.00 1.00 0.98 0.99 0.17
0.99 0.98 1.00 0.99 0.16
1.00 0.99 0.99 1.00 0.19
0.17 0.17 0.16 0.19 1.00

Panel B: Stochastic Discount Factors

M i
t (0.99, 2.00) M c

t (0.99, 2.00) M c
t (0.99, 4.49)

Mean 0.99 0.99 0.99

Std. Dev. 0.09 0.04 0.09

Correlation 1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

Panel C: Euler Equation Errors

Consumption (δ, γ) E[Mt(δ, γ) Rs
t − 1] E[Mt(δ, γ) R

f
t − 1]

SH (0.99, 2.00) 0.02% 0.02%

AC (0.99, 2.00) 0.39% -0.34%

AC (0.99, 4.49) 0.00% 0.01%

Notes: This table reports properties of Guvenen’s model. Panel A reports the properties of consumption growth rates
of aggregate consumption Ct/Ct−1, stockholders consumption Cit/C

i
t−1, nonstockholders consumption Cnt /C

n
t−1, stock

returns Rst and the riskfree rate Rft in Guvenen’s model. Panel B reports properties of stochastic discount factors. The
first row reports properties of the SDF for stockholders consumption. The remaining rows report SDF properties for
total consumption and different preference parameters. The stochastic discount factors are of the CRRA form Mt =
δ(Ct/Ct−1)−γ . The first parameter in parenthesis is δ, the second one is γ. Panel C reports the annual Euler Equation
error Guvenen’s model. The preference parameters δ and γ are chosen to minimize the equally weighted sum of Euler
Equation errors for the stock returns Rs and the riskfree rate Rf . The first row labelled “SH” reports the Euler Equation
errors for stockholders consumption. The remaining rows labelled “AC” report Euler Equation errors for aggregate
consumption and different preference parameters. All statistics are quarterly.



Table 5: Properties of a Limited Participation Habit Model

σi/σc ρ(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

δ̂c

1 0.51 0.24 0.03 5.27 2.69 1.61
2 0.52 0.24 0.03 5.20 2.75 1.83
5 0.48 0.23 0.03 4.94 2.81 1.79

γ̂c

1 -30.71 -60.15 -128.80 127.03 58.59 27.93
2 -29.22 -61.24 -132.02 117.99 61.69 33.28
5 -33.48 -64.30 -131.01 117.94 64.43 32.56

RMSE/RMSR

1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

8 Assets

δ̂c

1 0.50 0.24 0.04 5.44 2.76 1.74
2 0.50 0.23 0.04 5.60 2.80 1.74
5 0.48 0.21 0.03 5.74 2.94 1.85

γ̂c

1 -30.83 -61.99 -123.23 124.24 61.51 31.21
2 -31.69 -62.76 -124.21 126.92 62.34 31.22
5 -33.73 -67.43 -134.53 133.41 65.50 34.11

RMSE/RMSR

1 0.03 0.03 0.03 0.03 0.04 0.03
2 0.04 0.03 0.03 0.03 0.03 0.03
5 0.03 0.03 0.04 0.03 0.03 0.04

Notes: This table reports preference parameters and Euler Equation errors in Menzly, Santos and Veronesi’s (2004) habit
model. Consumption growth of stockholders is assumed to follow a random walk with a mean of 2% and standard deviation
of 1%. All parameters are as in Menzly, Santos and Veronesi except α, which is set obtain the same average stock return
as in Menzly-Santos-Veronesi. σi and σc are the standard deviations of stockholder’s and aggregate consumption growth,
respectively, and ρ(Cit/C

i
t−1, Ct/Ct−1) is their correlation. The preference parameters δ̂c and γ̂c are chosen to minimize

the mean square Euler Equation error minδc,γc

[
g(δc, γc)

′Wg(δc, γc)
]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc .

Ct is aggregate consumption, Rs is the return of equity, Rf is the riskfree rate, and W = I. R includes the return of
the market Rs, the riskfree rate Rf and the returns of six individual assets. RMSR is the square root of the averaged
squared returns of the assets under consideration. RMSE is the square root of the average squared Euler Equation error.
The weighting matrix W is the identity matrix.



Table 6: Limited Participation CRRA Model and State-Dependent Correlation Estimated with Aggregate
Consumption CRRA SDF

σi/σc ρ−(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

δ̂c

1 1.39 2.27 3.33 2.16 1.67 1.26
2 2.11 3.04 4.27 6.67 3.75 2.19
5 4.42 4.30 5.15 0.00 2.55 5.15

γ̂c

1 19.30 47.77 72.82 44.27 29.26 14.07
2 47.37 68.58 90.13 162.03 83.06 45.21
5 107.78 93.29 95.69 142.34 193.52 101.68

RMSE/RMSR

1 0.55 0.43 0.27 0.00 0.00 0.00
2 0.53 0.47 0.40 0.00 0.00 0.00
5 0.33 0.41 0.41 0.00 0.00 0.00

8 Assets

δ̂c

1 1.33 2.22 3.23 2.19 1.71 1.30
2 2.00 2.81 3.75 6.95 3.80 2.25
5 3.86 3.10 3.17 5.12 6.69 4.79

γ̂c

1 19.30 47.77 72.82 44.27 29.26 14.07
2 47.37 68.58 90.13 162.03 83.06 45.21
5 107.78 93.29 95.69 142.34 193.52 101.68

RMSE/RMSR

1 0.31 0.25 0.16 0.00 0.00 0.00
2 0.29 0.26 0.22 0.01 0.00 0.00
5 0.17 0.22 0.22 0.19 0.12 0.02

Notes: This table reports preference parameters and Euler Equation errors in a CRRA model with state-dependent
correlation of stockholder’s and aggregate consumption growth rates. Aggregate consumption growth is assumed to
follow a random walk with a mean of 2% and standard deviation σc of 1% (annually). The standard deviation of
stockholders is σi. Aggregate consumption growth and stockholders consumption growth is perfectly correlation unless
aggregate consumption growth is more than one standard deviation below its mean. In such periods, the correlation is
ρ−(Cit/C

i
t−1, Ct/Ct−1). Risk aversion of stockholders is 10 and their time discount factor is 1.2. Equity is modelled as lev-

ered claims to stockholders consumption. The Euler eqution is estimated using aggregate consumption growth. The pref-
erence parameters δ̂c and γ̂c are chosen to minimize the mean square Euler Equation error minδc,γc

[
g(δc, γc)

′Wg(δc, γc)
]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc . Ct is aggregate consumption, Rs is the return of equity, Rf is the

riskfree rate, and W = I. R includes the return of the market Rs, the riskfree rate Rf and the returns of six individual
assets. RMSR is the square root of the averaged squared returns of the assets under consideration. RMSE is the square
root of the average squared Euler Equation error. The weighting matrix W is the identity matrix.
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Figure 1: Euler Equation Errors for CRRA Preferences: Excess Returns

Notes: The figure plots RMSE/RMSR as a function of γ for excess returns. The Euler equation

errors are eX = E
[
δ(Ct+1/Ct)

−γ(Rt+1 −Rf
t+1)

]
. The solid line shows RMSE/RMSR for R =

Rs, the dotted line shows RMSE/RMSR for R = (Rs, 6 FF). For each value of γ, δ is chosen

to minimize the Euler equation error for the risk-free rate.



Figure 2: QQ Plots – Data

Notes: This figure shows multivariate quantile-quantile (QQ) plots of log consumption growth

and asset returns. Each panel plots the sample quantiles (on the y-axis) against the quantiles

of a given distribution (on the x-axis) as well pointwise 5% and 95% bands. The top panel

shows the QQ plot for the joint distribution of ∆c, rs and rf , i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
3 distribution. The bottom panel shows the QQ

plot for the joint distribution of ∆c, rs, rf and 6 FF portfolios, i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
9 distribution. The squared Mahalanobis distance Dt

for a p-dimensional multivariate distribution xt with mean µx and variance-covariance matrix

V is defined as Dt = (xt − µx)′V −1(xs − µx). Under the null hypothesis that ∆c, rs and rf
are jointly normally distributed, Dt has a χ2

p distribution.



Figure 3: Nonparametric Regressions – Models

Notes: The figure shows fitted values for nonparametric regressions Rt = m(Ct/Ct−1)+et using

a Gaussian kernel with optimally chosen bandwidth for simulated data generated by the asset

pricing models of Campbell-Cochrane, Menzly-Santos-Veronesi, Bansal-Yaron and Guvenen.



Figure 4: Nonparametric Regressions – Data

Notes: The figures shows fitted values of nonparametric regression Rt = m(Ct/Ct−1) + et using

a Gaussian kernel with optimally chosen bandwidth.



Figure 5: Nonparametric Regressions Excluding Recessions

Notes: The top panel shows fitted values of nonparametric regression Rt = m(Ct/Ct−1) + et
where quarters designated as recessions by the NBER are excluded. The bottom panel plots

pricing errors as in Figure 1 but when quarters designated as recessions by the NBER are

excluded.



Figure 6: Euler Equation Errors with and without Lognormality – 2 Assets

Notes: This figure plots RMSE/RMSR with and without the assumption of joint lognor-

mality as a function of γc. δc is chosen to minimize the RMSE for each value of γc for

R = (Rs, Rf ). The Euler equation error for asset j without assuming lognormality is

ejR = δcE [exp {−γc∆c+ rj}]− 1. Under the assumption of joint lognormality, the Euler equa-

tion error is ejR = δc exp {−γcE∆c+ γ2
cσ

2
c/2 + Erj + σ2

r/2− γcCov(∆c, rj)} − 1.



Figure 7: QQ Plots – Model with State-Dependent Correlation

Panel A: 2 Assets

Panel B: 8 Assets

Notes: This figure shows multivariate quantile-quantile (QQ) plots of log consumption growth

and asset returns for data generated by the CRRA model with state-dependent correlation. See

the notes to figure 3 for a description of the QQ plots and the notes to table 7 for a description

of the model and values for the parameters. ρ−(Ci
t/C

i
t−1, Ct/Ct−1)is−0.5 and σi/σc is 2. Panel

A shows the case of 2 assets, Panel B presents the 8 asset case.



Figure 8: Nonparametric Regressions: State-Dependant CRRA Model

Notes: The figure shows fitted values for nonparametric regressions for simulated data generated

by the CRRA asset pricing model with state dependant correlation. The regression specification

is the same as in Figure 4.



Figure A.1: Euler Equation Errors with and without Lognormality – 8 Assets

Notes: This figure plots RMSE/RMSR with and without the assumption of joint lognor-

mality as a function of γc. δc is chosen to minimize the RMSE for each value of γc for

R = (Rs, Rf , 6 FF). The Euler equation error for asset j without assuming lognormality is

ejR = δcE [exp {−γc∆c+ rj}]− 1. Under the assumption of joint lognormality, the Euler equa-

tion error is ejR = δc exp {−γcE∆c+ γ2
cσ

2
c/2 + Erj + σ2

r/2− γcCov(∆c, rj)} − 1.




