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ABSTRACT

In this paper we examine temporal properties of eleven natural resource real price series from 1870-

1990 by employing a Lagrangian Multiplier unit root test that allows for two endogenously

determined structural breaks with and without a quadratic trend. Contrary to previous research, we

find evidence against the unit root hypothesis for all price series. Our findings support characterizing

natural resource prices as stationary around deterministic trends with structural breaks. This result

is important in both a positive and normative sense. For example, without an appropriate

understanding of the dynamics of a time series, empirical verification of theories, forecasting, and

proper inference are potentially fruitless. More generally, we show that both pre-testing for unit

roots with breaks and allowing for breaks in the forecast model can improve forecast accuracy.
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I.  Introduction 

An important literature has developed recently that empirically examines 

nonrenewable natural resource price paths and investigates whether they are trend- or 

difference-stationary.  For example, Ahrens and Sharma (1997) use annual data on eleven 

commodity price series ranging from 1870-1990 and conclude that six of these series are 

stationary around a deterministic trend, while the remaining five display stochastic trends 

implying a unit root.  In a related paper, Berck and Roberts (1996) use a subset of the 

same data and find overwhelming support for non-stationary unit roots.  Slade (1988) and 

Abgeyegbe (1993), among others, find similar overwhelming support for non-stationary 

natural resource prices.  A consistent theme across much of this literature is that most 

natural resource prices are non-stationary. 

Our motivation in this paper is to further the boundaries of econometric 

methodologies and provide new insights into natural resource price time paths.  Previous 

empirical work on natural resource prices typically neglects possible structural change in 

the time series.  Since the seminal work of Perron (1989), it is well known that ignoring 

structural change in unit root tests will lead to a bias against rejecting the unit root null 

hypothesis when it should in fact be rejected (e.g., see also Amsler and Lee, 1995).  In 

this study, we advance the literature on time paths of natural resource prices by 

endogenously determining structural breaks and extending the two-break Lagrangian 

Multiplier (LM) unit root test of Lee and Strazicich (2003) to include a quadratic trend.  

Given that a quadratic trend might exist in some natural resource price series we believe 

that allowing for a quadratic trend in conjunction with structural breaks may provide 

additional insights. 
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Understanding the nature of resource price time paths is important for several 

reasons.  Theoretically speaking, Ahrens and Sharma (1997, page 61), for example, note 

that in regards to both a simple and more general Hotelling (1931) model as described in 

Slade (1988), “price movement is still systematic and may be modeled appropriately as a 

deterministic trend.”  In contrast, in a world with uncertainty “in which speculative 

motives drive the behavior of extracting firms or unanticipated events largely 

characterize the market, resource prices may be generated by a random walk process” 

(Ahrens and Sharma, 1997, pages 61-62).  Thus, knowing the correct time series behavior 

of natural resource prices can be vital to distinguish among theories that most accurately 

describe observed behavior. 

Knowledge of the time series properties of natural resource prices is also 

important for proper econometric estimation.  For example, Ahrens and Sharma (1997) 

and Labson and Crompton (1993) note that conventional regression analysis and 

hypothesis testing cannot be correctly undertaken without first understanding 

characteristics of the time series.  Otherwise, results from estimating regression models 

may be rendered invalid.  Several additional examples can be found in the literature (see, 

e.g., Hamilton, 1996). 

Finally, given that good policymaking typically depends on sound economic 

forecasts, appropriately modeling the nature of the time series can be invaluable to 

forecasters (Diebold and Senhadji, 1996).  This task recently came to hand in Berck and 

Roberts (1996), who did not consider structural breaks.  They found that each commodity 

price series had a unit root and hence initially paid more credence to their ARIMA 

forecasts.  Berck and Roberts (1996), however, found that their ARMA forecasts 



 3

outperformed their ARIMA counterparts.  In the later part of our paper, we investigate 

whether pre-testing for unit roots with structural change can help to identify the most 

accurate forecasting model.  This question has not been previously examined in the 

literature. 

Our investigation begins by examining annual data comprised of eleven fuel and 

metal real price series ranging from 1870-1990.1  After including structural breaks, we 

find evidence against a unit root in each of the eleven series.  We then estimate different 

forecasting models and find that ARMA models with breaks generally outperform 

ARIMA models with breaks, which is consistent with our pre-test expectations.  These 

results help to solve the puzzling results noted by Berck and Roberts (1996), and 

demonstrate the importance of considering structural breaks in economic forecasting.  A 

second major finding is that our unit root test results are robust-with or without quadratic 

trends natural resource prices are stationary around deterministic trends with two 

structural breaks in intercept and trend slope.  Thus, while nonlinear time trends are 

important in certain price series, rejection of the underlying unit root hypothesis and 

support for trend-break stationary price series does not depend on inclusion of such 

trends.  Finally, we find that both pre-testing for unit roots and including structural breaks 

can improve the accuracy of forecasting natural resource prices. 

The remainder of the paper is structured as follows.  Section II provides a brief 

background on unit root tests and further describes the importance of understanding the 

time-series properties of exhaustible resource prices.  Section III describes our empirical 

                                                 
1 This data was utilized to most accurately compare our empirical findings to the previous works.  
In section V, we estimate a variety of forecasting models with updated data through 2002. 
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methodologies.  Section IV presents our empirical results.  In Section V, we examine 

how structural breaks affect the accuracy of forecasts.  Section VI concludes. 

 
II.  Background 

Recent years have witnessed an explosion of research that examines the time-

series properties of economic data.  An important stimulant in this time-series renaissance 

was Nelson and Plosser’s (1982) study, which applied unit root analysis to test for the 

stationarity of macroeconomic and financial time series.  Since this seminal study, many 

authors have analyzed data ranging from stock prices to air pollutant emissions, with the 

bulk of research having clear implications theoretically as well as from a policy 

perspective (see, e.g., List, 1999).  Certainly, the empirical results from many of these 

studies have broad implications in numerous areas of research. 

Within the natural resource literature, Slade (1988), Berck and Roberts (1996), 

and Ahrens and Sharma (1997), among others, discuss the notion that exogenous shocks 

can affect the time path of natural resource prices.  These studies use a variety of unit root 

tests to examine time paths of commodity prices.  Rejection of the unit root null supports 

the alternative hypothesis of a mean or trend reverting stationary series, implying that 

shock effects are transitory.  Alternatively, failure to reject the unit root null implies a 

non-stationary series in which shocks have permanent effects; following a shock there is 

no tendency for commodity prices to revert to a stable mean or trend.  The most recent of 

these studies—Ahrens and Sharma (1997)—assumes one known or exogenously given 

structural break common to all commodity price series in 1929, 1939, or 1945; the other 

studies mentioned do not consider structural breaks. 
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 Natural resource theory has stark predictions on the time pattern of resource 

prices.  In fact, in his treatise on the economics of exhaustible resources, Hotelling (1931) 

predicts that, under certain assumptions, the price of an exhaustible resource will rise at 

the rate of interest.  But a quick glance at the majority of mineral commodity price series 

suggests that relative commodity prices have declined, rather than increased, for long 

periods of time.  Barnett and Morse (1963), who observed this seemingly anomalous 

pattern, concluded that scarcity was not a real problem.  Although these particular results 

are crucial evidence against the original premise of Hotelling, modifications of the simple 

Hotelling model can produce predictions of falling or stagnant prices over time.  For 

example, environmental constraints and natural resource abundance may induce price 

declinations (Berck and Roberts, 1996).  Resource prices may also decrease when a 

backstop technology is introduced, causing an inward shift in the demand for natural 

resources (e.g., Heal, 1976).  Technical change and an endogenous change also could 

produce decreasing, or U-shaped paths for relative prices (e.g., Slade, 1982).  Finally, 

modifications of initial informational assumptions, such as knowledge of the original 

resource stock, can induce the model to predict price decreases (see Pindyck, 1980, for 

one scenario). 

 
III.  A New Modeling Approach 

In this paper we begin our testing approach by employing the recently developed 

two-break LM unit root test of Lee and Strazicich (2003).  One important advantage of 

the LM unit root test is that it is free of spurious rejections.  Nunes, Newbold, and Kuan 

(1997) and Lee and Strazicich (2001) showed that the endogenous break ADF-type unit 
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root tests are subject to spurious rejections in the presence of a unit root with break.2  

Because these tests assume no breaks under the null and derive their critical values under 

this assumption, rejection of the null need not imply rejection of a unit root per se, but 

may imply rejection of a unit root without break.  As such, researchers may incorrectly 

conclude that a time series is (trend) stationary with break(s) when in fact the series is 

non-stationary with break(s).  In contrast, rejection of the null using the LM test is 

unaffected by breaks.  Thus, rejection of the null using the LM test unambiguously 

indicates a trend-stationary series with break(s). 3 

To illustrate the underlying model and LM testing procedure, we consider the 

following data-generating process (DGP): 

 yt = δ' Zt + et          (1) 

 et = β et-1 + ut,         (2) 

where yt is the commodity price in period t, δ is a vector of coefficients, Zt is a matrix of 

exogenous variables, and ut is an error term.  We define Zt = [1, t, D1t, D2t, DT1t, DT2t] to 

allow for a constant term, linear time trend, and two structural breaks in level and trend, 

where TBj denotes the time period of the breaks.  Under the trend-break stationary 

alternative, the Djt terms describe an intercept shift in the deterministic trend, where Djt = 

                                                 
2 The endogenous break ADF-type unit root tests include the one-break minimum test of Zivot 
and Andrews (1992) and two-break minimum test of Lumsdaine and Papell (1997).  These tests 
have been popular in the literature.  However, as shown in Lee and Strazicich (2001, 2003), these 
tests tend to estimate the break point incorrectly at one period prior to the true break(s) where bias 
in estimating the unit root test coefficient is greatest.  The outcome is a size distortion that 
increases with the magnitude of the break.  Due to a different detrending procedure in the 
endogenous break LM test, this type of size distortion does not occur. 
3 As is common practice in the literature, we refer to a time series that is stationary around a 
breaking trend as “trend-break stationary.” 
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1 for t ≥ TBj + 1, j = 1, 2, and zero otherwise; DTjt describes a change in slope of the 

deterministic trend, where DTjt = t for t ≥ TBj + 1, j = 1, 2, and zero otherwise. 

While Berck and Roberts (1996) considered an LM unit root test with quadratic 

trend, they did not consider structural breaks.  Ahrens and Sharma (1997) advance the 

literature by considering one structural break that is given a priori.  To further advance 

the literature, we consider two structural breaks that are endogenously determined by the 

data.  In addition, we extend the two-break LM unit root test to allow for a quadratic 

trend.  Defining Zt appropriately, the DGP in (1) with quadratic trend and two breaks in 

intercept and trend slope can be described by Zt = [1, t, t2, D1t, D2t, DT1t, DT2t].  To the 

best of our knowledge, this is the first paper in any field of research to consider a 

quadratic time trend in an endogenous break unit root test. 4 

Test statistics for the LM unit root test are obtained from the following regression: 

∆yt  = δ '∆Zt + φ S∼t-1 + ut  , (3) 

where S∼t = yt - ψ
∼

x - Ztδ
∼, t=2,..,T, and ψ∼x = y1 - Z1δ∼.  S∼t is a detrended series of yt using the 

coefficients in δ∼, which are estimated from the regression in first differences of ∆yt on 

∆Zt = [1, ∆D1t, ∆D2t, ∆DT1t, ∆DT2t].  This procedure follows from the LM (score) 

principle, which imposes the null restriction.  Subtracting ψ∼x makes the detrended series 

begin at zero so that S∼1 = 0.  This detrending method based on δ∼ differs from that adopted 

in the DF type tests, where the parameter δ is estimated from the regression of yt on Zt in 

                                                 
4 There are technical difficulties in obtaining relevant asymptotic distributions and corresponding 
critical values of endogenous break unit root tests with three or more breaks.  However, for our 
purposes, including three or more breaks does not appear necessary.  First, visual inspection of 
the data reveals that more than two breaks are unlikely.  Second, the two-break test is found to 
have sufficient ability to reject the unit root in all cases. 
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levels.  Vougas (2003) has shown that the LM type test using the above detrending 

method is more powerful than the DF type test. 

Under the null hypothesis of a unit root φ = 0, and under the alternative φ < 0.  

The LM unit root test statistic is denoted as: 

  τ∼ = t-statistic testing the null hypothesis φ = 0.    (4) 

The search for two breaks (λj = TBj/T, j=1,2) that minimize τ∼ can be described by a grid 

search as follows: 5 

LMτ = Inf
 λ

 τ∼(λ).        (5) 

 
Correction for autocorrelated errors in (3) is accomplished by including augmentation 

terms ∆S∼t-j, j=1,..,k, as in the standard ADF test.  To determine k we follow the “general 

to specific” procedure described in Perron (1989).  Beginning with a maximum number 

of ∆S∼t-i terms, maxk = 8, we examine the last augmented term ∆S∼t-8 for significance at the 

10% level (asymptotic normal critical value is 1.645).  If insignificant, the last augmented 

term is dropped from the regression and the model is re-estimated using k = 7 terms, etc., 

until the maximum lagged term is found or k = 0, at which point the procedure ends.  We 

repeat this procedure at each combination of two break points λ = (λ1, λ2)′ over the time 

interval [.1T, .9T] (to eliminate end points).6 

 
IV.  Empirical Results 

                                                 
5 Note that the break locations and unit root test statistic are jointly estimated in the minimum LM 
unit root test.  Critical values were derived given this joint estimation (Lee and Strazicich, 2003). 
6 This “general to specific” procedure has been shown to perform well as compared to other data-
dependent procedures in selecting the optimal number of augmented terms (see, e.g., Ng and 
Perron, 1995). 
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Our data, generously provided by W. Ashley Ahrens and Vijaya Sharma, are 

annual real price series for eleven fuels and metals.  The series are typically available 

from 1870-1990 and include aluminum, bituminous coal, copper, iron, lead, nickel, 

petroleum, natural gas, silver, tin, and zinc.7  To allow a direct comparison with previous 

research, we use commodity price series similar to those examined in Slade (1988) and 

Berck and Roberts (1996), and, of course, identical to the data used in Ahrens and 

Sharma (1997).8  Visual inspection of each time series in Figure 1 suggests that most are 

stationary with one or two structural breaks.  In a few series, there is evidence suggesting 

a possible nonlinear (quadratic) trend.  Curvature of trend would be consistent with 

Hotelling’s basic premise.  Yet, in Figure 1, the trends are not typically convex with a 

positive first derivative—a majority of the figures show that relative commodity prices 

have declined rather than increased.  This finding matches results in previous studies and 

casts doubt on some predictions of the simple Hotelling (1931) model. 

Although casual inspection of Figure 1 provides some insights, formal 

econometric tests are necessary to determine the properties of each time series.  In our 

analysis, we strive for the most general results possible.  Accordingly, we employ five 

different unit root tests to analyze each price series.  Our first test, also employed by 

Berck and Roberts (1996), is the no-break LM unit root test of Schmidt and Phillips 

(1992, SP hereafter) with an added quadratic time trend.  Our second test is the two-break 

LM unit root test developed in Lee and Strazicich (2003).  To check the robustness of our 

                                                 
7 Price series for aluminum, iron, and petroleum are available through 1984, 1973, and 1989, 
respectively.  Aluminum, gas, nickel, and tin begin in 1895, 1919, 1913, and 1885, respectively. 
 
8 These data were previously converted to real prices by deflating with the producer price index 
(1967 = 100).  Most of the data comes originally from Manthy (1978) and Schurr (1960). 
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findings, and more clearly examine the effect of including two breaks instead of one, in 

our third test we utilize the one-break minimum LM unit root test of Lee and Strazicich 

(2004).  In our most general empirical model we extend the two-break LM unit root test 

to include a quadratic time trend.  Finally, we extend the one-break LM test to include a 

quadratic trend.  Our combination of testing procedures permits us to compare our 

findings with previous studies, while simultaneously allowing us to isolate effects of 

allowing for breaks. 

Quadratic Trend with No Break 

Results using the no-break SP LM unit root test with linear and quadratic time 

trends are presented in Table 1.  The second column provides sample sizes; the third 

column notes the starting year; the fourth column presents the number of lagged 

augmentation terms included in each regression.  The resulting t-statistics testing the unit 

root null hypothesis are presented in the fifth column.  The rightmost column contains 

summary estimation results of equation (3)—estimated coefficients of the augmented 

terms are omitted to save space.  Critical values are contained in the Table notes. 

The test results in Table 1 suggest that five of the eleven real price series reject 

the unit root null at the p < .05 level (coal, iron, lead, gas, and zinc).  Interestingly, four 

of these five series (all except lead) have a quadratic time trend that is significantly 

different from zero at conventional levels, whereas the six series that do not reject the 

unit root have insignificant quadratic time trend terms.  Thus, non-rejection of a unit root 

hypothesis for these six series may be due to lower power caused by including an 

insignificant quadratic time trend, or to bias from omitting breaks.  Consistent with 

Ahrens and Sharma (1997; their Table IV), our results reject the unit root in nearly half 
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the series; but our rejections do not overlap completely.  One explanation for this finding 

is our inclusion of a quadratic time trend—Ahrens and Sharma (1997) do not include a 

quadratic trend in their ADF tests.  Ahrens and Sharma (1997) also employ the test 

suggested by Ouliaris et al. (1989, OPP hereafter), which includes a quadratic time trend 

but no structural break.  Our results still do not exactly replicate their findings.  One 

possible explanation, which is noted by Ahrens and Sharma (1997), is that the OPP test is 

plagued by size distortions.  Fortunately, similar size distortions do not occur in the no-

break SP LM test and may help to explain the difference in results. 

Comparing our results with those in Berck and Roberts (1996), which use the 

same no-break SP LM test with quadratic trend, we find that inferences across the two 

sets of empirical results differ significantly.  Whereas we reject the unit root in five price 

series, they cannot reject the unit root in any of their nine series at the 5% level.  This 

difference in results is most likely due to the longer time series in our tests, leading to 

greater power to reject the null—whereas we make use of the entire data set, Berck and 

Roberts (1996) use two smaller subsets of the data (i.e., 1940-76 and 1940-91).  Using 

these shorter time series, we were able to replicate the results in Berck and Roberts 

(1996).  We should note that replication was achieved even though they used a 

transformed test based on estimating the long-run variance, whereas we employed an 

augmented version of the no-break SP LM unit root test.  This provides evidence that the 

difference in results is not due to different methods of correcting for autocorrelated 

errors. 

Two Endogenous Breaks with a Linear Trend 
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Moving to our more flexible models, we present empirical results from the two-

break LM unit root test in Table 2.  Critical values are provided in the Table notes.  

Empirical results may well reflect the reduction in bias from including variables to model 

structural change.  Compared to the no-break SP LM test results in Table 1, we find 

significantly more rejections of the unit root null.  Whereas the no-break model in Table 

1 rejects the unit root null for five of eleven series at the p < .05 level, the two-break 

model in Table 2 rejects the unit root null in eight of eleven series at p < .05.  If one 

considers a slightly less stringent p < .10 test, the two-break model rejects the unit root 

null in all eleven series.  These findings provide the strongest evidence to date against the 

unit root process as a description of natural resource prices. 

Our test results in Table 2 strengthen the findings of Ahrens and Sharma (1997), 

and differ from the conclusions of Agbeyegbe (1993), Berck and Roberts (1996), and 

Slade (1988), among others.  Whereas Ahrens and Sharma (1997) allow for one known 

break in 1929, 1939, or 1945 and reject the unit root in five of eight price series, after 

allowing for two endogenously determined breaks we reject the unit root in all eleven 

series.  By including one (known) structural break Ahrens and Sharma (1997) can be seen 

as an extension of Berck and Roberts (1996), while our tests can be seen as a further 

extension to a more general model. 9 

                                                 
9 An anonymous referee notes that the shorter time span (1940-1991) examined in Berck and 
Roberts (1996) can be viewed as allowing for a structural break in 1940.  However, as our results 
will demonstrate, while World War II is one of the major structural breaks identified by our tests, 
there are other breaks that we identify.  By considering a longer time span of data, our testing 
procedure should benefit from greater power and a reduction in bias from including additional 
breaks.  It is also possible that failure to reject the unit root null in Berck and Roberts (1996) 
might be due to their inclusion of a quadratic trend.  If a quadratic trend does not occur, especially 
in the post-1940 time period, then inclusion would lower power.  We thank an anonymous referee 
for noting this possibility. 
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To further examine the effect of allowing for two breaks instead of one, we 

additionally test all price series using the endogenous one-break LM test.  The results are 

displayed in Table 3.  Compared to the two-break results, we find fewer rejections of the 

unit root using the one-break test (seven of eleven series reject the null at p < .05 and p < 

.10).  This difference in results is likely due to bias from omitting the second break 

variable, and demonstrates the impact of allowing for two breaks instead of one. 10 

Comparing the breaks identified by our two-break LM tests in Table 2 with those 

in Ahrens and Sharma (1997), only one of our estimated break years (1945, lead) 

coincides exactly with an assumed break year selected by Ahrens and Sharma (1997).  

However, five additional breaks identified by our two-break tests (1928, 1932, 1942, 

1943, and 1944) are close to one of their assumed breaks (1929, 1939, and 1945).  

Overall, our identified break years in Table 2 are intuitively appealing as they broadly 

correspond to years associated with World War I, the Great Depression, World War II, 

and the energy crisis of the early 1970s.  Fifteen of the twenty-two breaks (68%) 

correspond to these time periods, with the most common time period for breaks in the 

early 1970s.  Besides these obvious break years, other estimated breaks occur 

concurrently with important events.  For example, the model shows that a structural break 

occurred in 1902 for coal prices.  This year coincides with the 100,000 United Mine 

Worker strike that crippled coal production in the U.S. for five months. 

Two Endogenous Breaks with a Quadratic Trend 

                                                 
10 For comparison purposes, we also performed unit root tests using the ADF-type one-break 
Zivot and Andrews (1992) test and two-break Lumsdaine and Papell (1997) test.  While these 
tests tend to over-reject the null, their results are similar to ours.  The two-break LP test rejects 
the null at the 10% level for all series except for gas and petroleum.  Details of these results are 
available upon request. 
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In Table 4 we present results from our most general model, the two-break LM 

unit root test with a quadratic time trend.  Since this test is new to the literature, we 

follow the procedure of Lee and Strazicich (2003) and simulate critical values, which are 

presented in the Table notes.11  Compared to the two-break test results in Table 2, which 

include only a linear trend, we report a few significant differences.  Whereas exclusion of 

the quadratic time trend in Table 2 leads to rejection of the unit root at the 10% level for 

all eleven series (8 of 11 at p < .05), after including quadratic time trends, unit roots are 

not rejected (at the 10% level) for aluminum and petroleum.  However, the results for 

aluminum should be interpreted with care, as the coefficient on the quadratic time trend is 

not significantly different from zero at conventional levels, suggesting the linear time 

trend specification is more appropriate.  Although we find that the quadratic time trend is 

significant at the 10% level in five of the eleven price series, other results are 

qualitatively unchanged.  Overall, at the 5% level, the results in Table 4 suggest that we 

should reject the unit root in nine of the eleven series, providing additional evidence that 

commodity prices are stationary around a breaking deterministic trend. 

To further examine the effect of allowing for two breaks instead of one, we 

additionally test all price series using an endogenous one-break LM test with quadratic 

                                                 
11 Since the two-break LM unit root test with quadratic trend is a new test, we derive critical 
values by generating pseudo-iid N(0,1) random numbers using the Gauss (version 6.0.5) RNDNS 
procedure.  Critical values are derived using 5,000 replications involving a grid search of all 
combinations of the endogenous break points for minimum statistics in samples of T = 100.  The 
asymptotic distribution of the two-break minimum LM test with quadratic trend can be shown by 
a simple modification of the expression for that of the two-break minimum LM test with linear 
trend.  The expression of the demeaned and de-breaked Brownian bridge V_(r, λ) in Lee and 
Strazicich (2003, equations 6c, Appendix A.6) must be changed to incorporate a detrended p-
level Brownian bridge as given in SP (1992, equation 40).  This expression is described as a 
residual process projected onto the subspace generated by dz(λ,r) = [1, r, d1(λ1,r), d2(λ2,r)].  The 
trend function is given as r = {rj, j=0,1,..,p-1}, where dj(λj,r) = 1 if r > λj, for j=1,2, and 0 
otherwise. 
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trend.12  The results are displayed in Table 5.  Compared to the two-break with quadratic 

trend results in Table 4, we find the same number of rejections of the unit root null (nine 

of eleven series reject the null at p < .05 and p < .10).  The only notable difference in 

results is with regards to the two series that do not reject the unit root.  In Table 4 

aluminum and petroleum did not reject the unit root, but in the one-break test results of 

Table 5 petroleum rejects the unit root (at p < .05) while silver does not.  The difference 

in results for silver is likely due to bias from omitting the second break variable.  The 

difference for petroleum may be due to including an unnecessary break in the two-break 

quadratic trend model, which would be expected to reduce power. 

Again, the majority of identified break years correspond primarily to the two 

World Wars, the Great Depression, and the 1970s energy crisis: fifteen of the twenty-two 

breaks (68%) correspond to these time periods, with the most common time period for 

breaks in the early 1970s.  In addition, other important events, such as the Lead and Zinc 

Stabilization Program in 1961, seem to also coincide with an identified break. 

The most appropriate model in the literature to compare our results is, again, 

Ahrens and Sharma’s (1997) OPP test, which allows for a quadratic trend but no 

structural break(s).  Using the OPP test, Ahrens and Sharma (1997) reject the unit root 

null in five of eight series at p < .05.  Using the two-break LM test with quadratic trend, 

we reject the unit root in nine of eleven series at the 5% level.  This difference is likely 

due to allowing for structural breaks. 

To examine further the effects of allowing for breaks, we present plots showing 

each commodity price series in Figure 1.  Each panel shows the actual commodity price 

                                                 
12 We thank an anonymous referee who suggested this robustness check. 
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series as well as fitted values from a linear time trend regression connecting the two 

breaks in intercept and trend slope identified in Table 2.  The plots suggest that most 

price series are trend-stationary around a small number of breaks.  More importantly, a 

visual inspection indicates that it may be more appropriate to specify the model with 

discrete shifts in a deterministic linear trend rather than a quadratic trend.  Even in some 

series for which a quadratic trend appears to fit, the linear trend model with two structural 

breaks also appears to fit the data well.  Overall, seven of the eleven series have 

downward trends in the most recent period. 

In sum, the above results provide the strongest evidence to date against the unit 

root hypothesis and suggest that natural resource price series are stationary around 

deterministic trends with occasional changes in intercept and trend slope.  Our findings 

are at odds with those in previous studies.  In addition, our findings strengthen those of 

Ahrens and Sharma (1997), who concluded that the majority (six of eleven) of natural 

resource price series reject the unit root hypothesis.  In certain respects, our unit root test 

results are consistent with the scores of theoretical models that suggest resource price 

paths are deterministic, but downward or U-shaped.  In the next section, we examine how 

structural change affects forecasting. 

 
V.  Forecasting Issues 

As aforementioned, we view one contribution of the above analysis as informing 

the forecaster.  Whether, and to what extent, structural change in natural resource prices 

influences the selection and performance of forecasting models is largely unknown, 

however.  In this section we fill this void by exploring whether pre-testing for a unit root 

with structural change and inclusion of breaks in the forecast model can lead to more 
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accurate forecasts.  Diebold and Kilian (2000) previously examined whether pre-testing 

for unit roots matters for forecasting, given that a priori information on the properties of a 

time series is not available.  The issue that we examine is similar in spirit, yet we 

consider structural breaks.  One may argue that allowing for breaks when pre-testing for 

unit roots can give potentially different results, since a unit root process with breaks can 

sometimes be viewed as observationally equivalent to, or hardly distinguishable from, a 

trend stationary process with breaks.  Intuitively speaking, this can be the case because 

structural change implies persistent effects similar to those in a unit root process (see 

Phillips, 1988).  Since the pioneering work of Perron (1989), however, it is well known 

that inference in unit root tests will be adversely affected by ignoring structural change.  

Under the alternative hypothesis of a trend-break stationary series, structural change 

would be described by occasional predetermined large shocks that permanently alter the 

level and slope of the deterministic trend.  This is the common view in the literature as 

consistently advocated in numerous theoretical and empirical papers.  Following this 

view, the existence of structural change is not considered to be sufficient support for the 

unit root hypothesis.   

In this section, we seek to determine how structural change will affect the 

selection and accuracy of forecasting models when we do not know a priori if a time 

series is (trend) stationary (with breaks) or nonstationary (with breaks).  Several authors 

have noted the deleterious effects of ignoring structural breaks in forecasting models (see, 

e.g., Pesaran and Timmermann, 2002, 2004, and Clark and McCracken, 2003).  However, 

these previous papers deal with mostly stationary data and do not address the question of 
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whether forecasts in levels perform better than forecasts in differences in the presence of 

breaks.   

We begin our investigation by conducting Monte Carlo simulations to study the 

role of structural breaks in selecting and estimating the most accurate forecasting model.  

To do so, we compare the unconditional prediction mean squared error (PMSE) of the 

following five strategies: 

(M1)  Difference the data and include two breaks in intercept and trend slope. 

(M2)  Analyze the data in levels and include two breaks in intercept and trend slope. 

(M3)  Pre-test with unit root tests that allow for two breaks in intercept and trend 

slope and proceed as follows: if the unit root null is rejected, then select M2; if 

we cannot reject the unit root, then select M1. 

(M4)  Difference the data and do not allow for breaks. 

(M5)  Analyze the data in levels and do not allow for breaks. 

Note that models M1-M3 are conditional on the existing breaks, while M4 and M5 are 

not.  Thus, we can compare the performance of pre-testing for a unit root in addition to 

the effect of including known breaks in the forecasting model.  In general, when 

comparing the accuracy of forecasts with different models the common approach is to 

compare out-of-sample forecasts.  We follow this approach.13 

                                                 
13 There does not appear to be a unanimous consensus on this issue, however.  Inoue and Kilian 
(2004) suggest that comparing in-sample tests of forecast accuracy are more reliable than out-of-
sample tests.  The underlying issue is potential data mining or un-modeled structural change.  
Also, the accuracy of out-of-sample forecasts can depend on the selection of the holdout period. 
 



 19

  For simplicity, we restrict our simulations to AR(1) or ARI(1,1) models as in  

Diebold and Kilian (2000).  Thus, M1 is an ARI(1, 1) model with two breaks and can be 

described  as follows: 

∆yt = µ + b∆yt-1  + d1B1t + d2B 2t + d3D1t + d4D2t +  vt ,    (6) 

where Bjt = 1 for t = TBj + 1, j = 1, 2, and zero otherwise.  M2 is an AR(1) model with 

two breaks as follows: 

 yt = c + byt-1  + d1D1t + d2D 2t + γt+ d3DT1t + d4DT2t +  wt .   (7) 

M3 would be either the model in (6) or (7) depending on the results from pre-testing for a 

unit root (with two breaks).  M4 and M5 can be described by (6) and (7), respectively, 

without the dummy variables describing the breaks.  We can rewrite the DGP in (1) to be 

as follows: 

 (yt –  c – γt – d1D1t – d2D2t – d3DT1t – d4DT2t) = β(yt-1 –  c – γ(t-1) – d1D1,t-1 –  

  d2D2,t-1 – d3DT1,t-1 – d4DT2,t-1) + ut ,     (8) 

where we let c = 0, γ = 0.1, and σu
2 = 1.  Then, we vary the values of the persistent 

parameter β as follows.  To generate nonstationary data we let β = 1.0; to generate 

stationary data we let β = 0.95 and β = 0.5.  Another interesting question is how big 

should structural breaks be to be recognized as such?  We address this question by 

varying the magnitude of the breaks as follows: d = (d1, d2, d3, d4) = (0, 0, 0, 0), (2, 2, 0.2, 

0.2), (6, 6, 0.6, 0.6), and (10, 10, 1.0, 1.0), where d1 and d2 denote intercept shifts, and d3 

and d4 denote trend slope changes, respectively.  To abbreviate, we denote these different 

magnitudes as d = 0, d = 2, d = 6, and d = 10, respectively, where d = 0 indicates the 

model without breaks.  All break sizes are described using standardized units.  We 

consider different break locations at ΤB1/T = 0.3 and ΤB2/T = 0.6. 
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  To undertake our comparisons we examine the recursive one-step ahead 

predictions of yT+h at forecast horizons h ranging from 1 to 100 periods, and employ 

sample sizes T = 100 and T = 500.  Pre-testing is performed using the two-break LM unit 

root test and critical values at the 5% level of significance.  To compare the forecast 

accuracy of each model, we calculate the ratio of the prediction mean squared error 

(PMSE) for each h in each model relative to the PMSE of the reference pre-test strategy 

M3.  The calculated ratios are denoted as M1/M3, M2/M3, M4/M3, and M5/M3.  For the 

models estimated in first-differences, the forecasted values are converted to levels prior 

to calculating their mean squared error.  The forecast error is calculated as the difference 

between the (simulated) data and the predicted values (in levels), or yT+h - ŷT+h, h = 

1,…,100.  Thus, PMSE(h) = h-1 ∑
j=1 

h
 (yT+j -  ŷT+j)2 using forecast errors through t = h.  When 

the selected forecasting model is more accurate than the model suggested by pre-testing, 

then the ratio will be less than one and vice versa.  For parsimony, we report only the 

summary results for selected values of h. 

  We first examine the simulation results using nonstationary data (β = 1.0) in 

Table 6.  When the DGP is nonstationary, the differencing strategy of M1 (ARI with 

breaks) has the lowest PMSE in nearly all cases.  There are only very small differences in 

some cases.  In nearly all cases the best model (M1) is also the model that is selected by 

the pre-testing.  Any differences are approximately zero, and the results are unaffected by 

the size of the breaks or the sample size.  Overall, these results clearly support the use of 

pre-testing for a unit root and including structural breaks.  For the case of no breaks there 

is a small gain from omitting the breaks in the (differenced) forecasting model (M4).  For 

the case of small breaks (d = 2), the results demonstrate little difference between 
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including breaks (M1) and omitting breaks (M4).  Thus, as one might expect, small 

breaks have only minimal effects on the PMSE and can be hardly considered as structural 

breaks.  However, as the size of the breaks increases the benefit of including breaks 

increases especially at longer forecast horizons. 

  We next examine the simulation results using stationary data in Table 6.  When 

the DGP is clearly stationary (β = 0.5), the model in levels with breaks (M2) is superior 

in virtually all cases.  Any differences are so small that they are approximately zero and 

can be ignored.  In addition, M2 is the model that is selected with pre-testing in nearly 

every case.  Again, any differences are quite small, and the results are unaffected by the 

break size, forecast horizon, and sample size.  When β = 0.95 and the unit root null is 

more difficult to reject, the most accurate forecasting model is in differences (M1) instead 

of levels (M2).  However, the difference model is also the model most frequently selected 

by pre-testing.  Thus, pre-testing for a unit root (with breaks) is again the preferred 

method to select the most accurate forecasting model.  As in the nonstationary case, 

including breaks when they exist is always beneficial.  Figures 2 and 3 summarize the 

simulation results by displaying spectrum with varying sample sizes of T = 20n, n = 

1,..,50, over the continuum of forecasting horizons h = 1,..,100.  These figures generalize 

the results in Table 6 and are consistent with the above discussion. 

  To further our investigation, we next examine and compare the accuracy of the 

different forecasting strategies by using actual data on natural resource prices.  To 

perform our investigation, we utilize more recent data on eight natural resource real 

prices (aluminum, copper, iron, lead, nickel, silver, tin, and zinc).  These data come from 
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the U.S. Geological Survey (Kelly et al., 2005), and are available annually from 1900-

2002 in real (1998) dollars per ton.14 

 Our testing procedure is as follows.  We first perform pre-testing for each real 

price series as before using the two-break LM unit root test with linear trend.  In nearly 

all cases (except for nickel), the unit root null is rejected at the 10% level of significance.  

We also perform pre-testing using the two-break LM unit root test with quadratic trend 

and reject the unit root in all cases at the 10% level of significance. 15  Next, we estimate 

four forecasting models for each series with a linear trend as in (6) and (7) (M1, M2, M4, 

and M5), and then with a quadratic trend (M1Q, M2Q, M4Q, and M5Q). 

 Instead of the AR(1) and ARI(1, 1) models (with and without breaks) considered 

in the simulations of Table 6, we consider more general ARMA(p,q) models and 

ARIMA(p,1,q) models that might be more realistically considered in applications.  To 

determine the order p and q of each ARMA and ARIMA model, and the location of two 

breaks, we utilize the SBC statistic.  We consider all combinations of p and q over the 

range 0 to 5 at each combination of two breaks to find the model with the lowest SBC.  

As such, our estimation procedure allows for the location of breaks to be jointly 

determined with the best fitting model.  In each case, we estimate the forecasting model 

using data from 1900-1990 and generate out-of-sample forecasts in levels for 1991-

                                                 
14 We would have preferred to update our data, but the new data uses a different PPI to deflate the 
data and different units of measurement.  And, the new data is only available for eight of our 
previous eleven natural resource price series.  However, besides using more recent data (past 
1990), the new data has the advantage that each series is available for the same time period 
(1990-2002). 
15 These results are available upon request. 
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2002.16  Then, the out-of-sample forecasts are compared to the actual data to calculate the 

relevant PMSE.  To test the statistical significance of the break variables in the models 

that include breaks, F-tests were performed to test for the significance of the breaks.  In 

each case, the null hypothesis that break coefficients are jointly equal to zero was rejected 

at the 1% level of significance.  These results provide additional evidence that structural 

breaks are important. 

 The PMSE are displayed in Table 7 for each model type at forecast horizons h = 1, 

3, 5, 8, and 12.  The number in bold denotes the model with the most accurate forecasts 

(smallest PMSE), which is shown separately for the models with linear and quadratic 

trends.  At each forecast horizon (h), the best overall model is denoted with an asterisk 

(*).  Given that pre-testing implied that price series are trend-break stationary, we expect 

that M2 (ARMA model in levels with breaks) will have the lowest PMSE in nearly all 

cases. 

We now examine the results in Table 7.  Except for tin, and to a lesser extent iron, 

we see little evidence that including a quadratic trend improves the accuracy of the 

forecast, as the best model has a linear trend in all other cases.  For aluminum, copper, 

and lead our pre-test expectations are realized as the most accurate model in every case 

but one (lead, h =1) is the ARMA model in levels with breaks (M2).  While iron selects 

the quadratic trend model at three of the five forecast horizons, three of its five best 

models are in levels with breaks (M2, M2Q) as suggested by the pre-test.  For the other 

four price series the results are mixed.  In all cases but one (h = 1), the best forecasting 

                                                 
16 As noted in footnote 14, the out-of-sample PMSE results might vary depending on how we 
define the out-of-sample period.  We also considered 1996 as a starting period for the out-of-
sample forecasts, but the main conclusions did not vary. 
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model for nickel is the ARMA model in levels without breaks (M5).  For silver, the 

results are unexpected as four of the five best models are in differences (M1, M4), and 

three of these are without breaks (M4).  Tin is the series where the quadratic trend model 

is most often selected (four of five best models).  Although including a quadratic trend 

provides better forecasting accuracy for tin, the best model chosen in all cases is in 

differences and without breaks (M4, M4Q).  Finally, zinc selects an ARMA model in 

levels in all cases as predicted by pre-testing, but the best model is without breaks (M5). 

Overall, the results in Table 7 using actual natural resource data present a less 

clear picture than our simulation results in Table 6.  However, as expected, the most 

consistently selected model is the same as selected in the pre-test; in four of the eight 

series the ARMA model with breaks (M2 or M2Q) is the most accurate in nearly all cases.  

For the other four series the results are less clear.  In some of these cases, the best model 

is in levels as expected, but without breaks.  In other cases the superior model is in 

differences.  Thus, while the model selected by pre-testing is not always the best model it 

appears that pre-testing for a unit root and considering breaks are important.  The gain 

from considering breaks is most obvious when comparing the PMSE of those superior 

models that include breaks to the other models.   

 In general, as is well known, forecasting future values out-of-sample is a difficult 

task.  Therefore, it may not be desirable to draw any generalized conclusions regarding 

forecasting strategies from a particular data application to a particular out-of-sample 

period.  Choosing different data and different out-of-sample periods may lead to different 

conclusions.  Thus, we give stronger credence to our simulation results as a guide to more 
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accurate forecasting.  We conclude that it is better to follow a forecasting strategy of pre-

testing for a unit root with breaks and including existing breaks in the forecast model. 

 
VI.  Concluding Remarks 

Without an appropriate understanding of the dynamics of a time series, empirical 

verification of theories, forecasting, and proper inference are potentially misleading.  In 

this paper we examine temporal properties of eleven nonrenewable natural resource real 

price series from 1870-1990.  Previous efforts largely suggest that these series are 

difference-stationary with stochastic trends.  We re-examine these data and advance the 

literature by considering unit root tests with two structural breaks that are endogenously 

determined by the data.  In addition, we consider models with linear and quadratic trends. 

Overall, we find evidence to indicate that natural resource prices are stationary 

around deterministic trends with structural breaks in intercept and trend slope.  In 

particular, after controlling for breaks, the previous empirical findings of Agbeyegbe 

(1993), Berck and Roberts (1996), and Slade (1988) are essentially reversed.  Our 

findings strengthen those of Ahrens and Sharma (1997), who allowed for one known 

break and concluded that the majority of natural resource price series (six of eleven) 

reject the unit root.  Following our unit root tests, we examined forecasting models with 

breaks by employing both simulations and actual natural resource price data.  From our 

simulations, we conclude that it is better to pre-test for a unit root (with breaks) prior to 

selecting the best forecast model, and to include breaks, if they exist, in all cases.  While 

our forecasting results with actual data are less clear than our simulations, the most 

consistently selected model is the same as selected in the pre-test. 
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Given that accurate forecasting and empirical verification of theories can depend 

critically on understanding the appropriate nature of time-series, our results should have 

important implications for academics and policymakers alike.  With the proliferation of 

environmental and natural resource data having a temporal dimension, researchers 

interested in dynamic issues as broad as environmental quality expenditures, 

environmental degradation, species extinction rates, and land-use patterns should have a 

firm grounding in time-series analysis.  We hope that our paper will further the 

development of this literature. 



 27

References 
 
Abgeyegbe, T. D., “The Stochastic Behavior of Mineral-Commodity Prices,” in “Models, 

Methods, and Applications in Econometrics: Essays in Honor of A. R. Bergstrom” (P. 
C. B. Phillips, Ed.), Blackwell Science, Oxford (1993). 

 
Ahrens, W. A. and V. R. Sharma, “Trends in Natural Resource Commodity Prices: 

Deterministic or Stochastic?” Journal of Environmental Economics and Management 
33, 59-74 (1997). 

 
Amsler, C. and J. Lee, “An LM Test for a Unit-Root in the Presence of a Structural 

Change,” Econometric Theory 11, 359-368 (1995). 
 
Barnett, H. J. and C. Morse, “Scarcity and Growth: The Economics of Natural Resource 

Availability,” John Hopkins Press, Baltimore (1963). 
 
Berck, P. and M. Roberts, “Natural Resource Prices: Will They Ever Turn Up?” Journal 

of Environmental Economics and Management 31, 65-78 (1996). 
 
Clark, T., and M. W. McCracken, “The Power of Tests of Predictive Ability in the 

Presence of Structural Breaks,” working paper, Federal Reserve Bank of Kansas City 
(2003). 

 
Diebold, F. X., and L. Kilian, “Unit-Root Tests Are Useful for Selecting Forecasting 

Models,” Journal of Business & Economic Statistics, 18 (3), 265-273 (2000). 
 
Diebold F.X. and A.S. Senhadji, “The Uncertain Unit Root in real GNP: Comment,” 

American Economic Review 86, 1291-1299 (1996). 
 
Hamilton, J. D., “This Is What Happened to the Oil Price-Macroeconomy,” Journal of 

Monetary Economics 38(2), 215-20 (1996). 
 
Heal, G. M., “The relationship between Price and Extraction Cost for Resource with a 

Backstop Technology,” Bell Journal of Economics 7, 317-378 (1976). 
 
Hotelling, H., “The Economics of Exhaustible Resources,” Journal of Political Economy 

39, 137-175 (1931). 
 
Inoue, A. and L. Kilian, “In-sample or Out-of-sample Tests of Predictability: Which one 

Should We Use?” Econometric Review, 23(4), 371-403 (2004). 
 
Kelly, T., Buckingham, D., DiFrancesco, C., Porter, K., Goonan, T., Sznopek, J., Berry, 

C., and M. Crane, Historical Statistics for Mineral and Material Commodities in the 
United States, United States Geological Survey Open-File Report 01-006, Version 9.2, 
Washington, DC (2005). 

 



 28

Labson, B. S., and P. L. Crompton, “Common Trends in Economics Activity and Metals 
Demand: Cointegration and the Intensity of Use Debate,” Journal of Environmental 
Economics and Management 25, 147-161 (1993). 

 
Lee, J. and M.C. Strazicich, “Break Point Estimation and Spurious Rejections with 

Endogenous Unit Root Tests,” Oxford Bulletin of Economics and Statistics 63, 535-
558 (2001). 

 
Lee, J., and M.C. Strazicich, “Minimum LM Unit Root Test with Two Structural 

Breaks,” Review of Economics and Statistics 85(4), 1082-1089 (2003). 
 
Lee, J., and M.C. Strazicich.  “Minimum LM Unit Root Test with One Structural Break.”  

Working Paper, Department of Economics, Appalachian State University, (2004). 
 
List, J., “Have Air Pollutant Emissions Converged Amongst US Regions?  Evidence 

from Unit-Root Tests,” Southern Economic Journal 66 (1), 144-155 (1999). 
 
Lumsdaine, R. and D. Papell, “Multiple Trend Breaks and the Unit-Root Hypothesis,” 

The Review of Economics and Statistics, 79(2), 212-218 (1997). 
 
Manthy, R. S., “Natural Resource Commodities: A Century of Statistics,” Johns Hopkins 

Press, Baltimore (1978). 
 
Nelson, C. R. and C. I. Plosser, “Trends and Random Walks in Macroeconomic Time 

Series,” Journal of Monetary Economics 10, 139-162 (1982). 
 
Ng, S. and P. Perron, “Unit Root Tests in ARMA Models with Data-Dependent Methods 

for the Selection of the Truncation Lag,” Journal of the American Statistical 
Association 90, 269-281 (1995). 

 
Nunes, L., P. Newbold, and C. Kuan, “Testing for Unit Roots with Breaks: Evidence on 

the Great Crash and the Unit Root Hypothesis Reconsidered,” Oxford Bulletin of 
Economics and Statistics 59, 435-448 (1997). 

 
Ouliaris, S., J. Y. Park, and P. C. Phillips, “Testing for a Unit Root in the Presence of a 

Maintained Trend,” in Advances in Econometrics (B. Raj, Ed.), Kluwer Academic, 
Dordrecht/Norwell, MA (1989). 

 
Perron, P., “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis,” 

Econometrica 57, 1361-1401 (1989). 
 
Pesaran, H. M., and A. Timmermann, “Small Sample Properties of forecasts from 

Autoregressive Models Under Structural Breaks,” working paper, University of 
California, San Diego (2004). 

 



 29

Pesaran, H. M., and A. Timmermann, “How Costly Is It to Ignore Breaks When 
Forecasting the Direction of a Time Series?” working paper, University of California, 
San Diego (2002). 

 
Pindyck, R.S., “Uncertainty and Exhaustible Resource Markets,” Journal of Political 

Economy 88, 1203-1225 (1980). 
 
Schmidt, P. and P. C. B. Phillips, “LM Tests for a Unit Root in the Presence of 

Deterministic Trends,” Oxford Bulletin of Economics and Statistics 54, 257-287 
(1992). 

 
Schurr, S. H., “Historical Statistics of Minerals in the United States,” Resources for the 

Future, Inc. (1960). 
 
Slade, M. E., “Trends in Natural-Resource Commodity Prices: An Analysis of the Time 

Domain,” Journal of Environmental Economics and Management 9, 122-137 (1982). 
 
−−−“Grade Selection Under Uncertainty: Least Cost Last and Other Anomalies,” Journal 

of Environmental Economics and Management 15, 189-205 (1988). 
 
Vougas D, “Reconsidering LM Unit Root Testing,” Journal of Applied Statistics, 30 (7), 

727-741 (2003).  
Zivot, E. and D. W. K. Andrews, “Further Evidence on the Great Crash, the Oil-Price 

Shock and the Unit Root Hypothesis,” Journal of Business and Economic Statistics 
10, 251-270 (1992). 



Table 1.  LM Unit Root Test with a Quadratic Trend 
 

Series 
 

T 
Starting 

Year 
 

k̂  
Test  
Stat. Estimation Results a 

Aluminum 90 1895 7 0.88 ∆yt = .02St
∼

−1 + .76 - .09t + lags 
         (0.88)  (0.25)  (-0.80) 

Coal 121 1870 7 -3.75** ∆yt = -.02St
∼

−1 - .30 + 0.004t + lags 
        (-3.75)  (-2.06)  (1.91) + 

Copper 121 1870 3 -3.06 ∆yt = -.21St
∼

−1 + .62 - .02t + lags 
        (-3.06)  (0.49) (-1.06) 

Iron 104 1870 1 -4.83** ∆yt = -.40St
∼

−1 - .73 –  0.17t + lags 
         (-4.83)  (-0.29)  (-2.97) ++ 

Lead 121 1870 0 -4.69** ∆yt = -.32St
∼

−1 - .12 + .01t + lags 
         (-4.69)  (-0.34)  (1.21) 

Gas 72 1919 5 -3.87** ∆yt = -.13St
∼

−1 + .77 - .04t + lags 
         (-3.87)  (1.14)  (-1.95) + 

Nickel 78 1913 2 -2.00 ∆yt = -.16St
∼

−1 - 1.07 - .23t + lags 
         (-2.00)  (-0.24)  (-1.27) 

Petroleum 120 1870 2 -1.77 ∆yt = -.08St
∼

−1 -.11 - .01t + lags 
         (-1.77) (-0.59) (-1.13) 

Silver 121 1870 2 -2.94 ∆yt = -.24St
∼

−1 - 6.59 - 0.05t + lags 
         (-2.94)  (-0.42)   (-.22) 

Tin 106 1885 0 -2.20 ∆yt = -.08St
∼

−1 - 4.70 + .23t + lags 
         (-2.20)   (-0.86)   (1.58) 

Zinc 121 1870 2 -3.74** ∆yt = -.41St
∼

−1 + 2.85 - .09t + lags 
         (-3.74)   (2.61)   (-3.40)++ 

Notes: Critical values of the LM test with quadratic trend are –4.16, –3.60, and –3.31 at the 1%, 5%, and 10% levels, respectively, for samples 
of size T = 100.  Critical values are –4.28, –3.65, and –3.34 for T = 50, and –4.12, –3.55, and –3.28 for T = 200, respectively.  t-statistics are 
given in parentheses.  a: Result is based on equation (3).  Estimated coefficients of the augmented terms (lags) are omitted to conserve space.  
Note that under the stationary alternative hypothesis the coefficient of t corresponds to a quadratic trend, and the constant term corresponds to 
a linear trend, in Zt, respectively  * and ** denote significant at the 10% and 5% levels, respectively.  + and ++  denote significance of the 
quadratic trend term at the 10% and 5% levels, respectively. 
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Table 2.  Two Break Minimum LM Unit Root Test 
 

Series 
 

T 
Starting 

Year 
 

k̂  
 

T̂B 

Test 
Stat. 

 
Estimation Results a 

Aluminum 90 1895 8 1913, 1944 -5.39* ∆yt = -1.04St
∼

−1-40.05–32.55B1t+6.17B2t+51.63D1t–12.98D2t +lags 
           (-5.39)   (-5.07)   (-2.73)   (0.66)     (5.17)     (-4.01) 

Coal 121 1870 7 1902, 1972 -7.75** ∆yt = -.61St
∼

−1 - .24+.69B1t –1.95B2t –.16D1t + 1.81D2t + lags 
          (-7.75) (-2.44) (1.48)  (-3.63)   (-1.46)    (6.60) 

Copper 121 1870 1 1918, 1969 -6.01** ∆yt = -.53St
∼

−1+3.93–5.41B1t+ 12.91B2t – 7.14D1t –2.65D2t + lags 
          (-6.01)  (3.60)  (-0.91)   (2.16)        (-4.10)   (-1.71) 

Iron 104 1870 3 1932, 1951 -6.72** ∆yt =-.72St
∼

−1-4.49+4.92B1t –6.66B2t + 2.95D1t +11.43D2t + lags 
         (-6.72) (-3.20) (0.47)   (-0.63)      (1.07)      (3.02) 

Lead 121 1870 5 1945, 1961 -6.91** ∆yt = -.90St
∼

−1+ .46 – 2.19B1t+ 10.46B2t+ 3.08D1t – 5.73D2t + lags 
         (-6.91)  (2.07) (-1.16)      (5.46)      (4.55)       (-5.81) 

Gas 72 1919 7 1943, 1975 -6.46** ∆yt = -.41St
∼

−1+ 1.86 + .92B1t– 4.51B2t– 2.59D1t+ 6.30D2t + lags 
          (-6.46)   (3.08)  (0.43)  (-1.93)    (-3.15)     (5.06) 

Nickel 78 1913 1 1928, 1942 -5.44* ∆yt = -.58St
∼

−1-13.83- 15.05B1t+ 1.71B2t+23.94D1t– 9.38D2t+ lags 
          (-5.44) (-2.89)  (-0.88)     (0.10)     (3.22)      (-1.71) 

Petroleum 120 1870 6 1896, 1971 -5.65* ∆yt = -.48St
∼

−1- 1.59 - 1.82B1t– 1.59B2t+ 1.58D1t+ 1.43D2t + lags 
         (-5.65) (-5.02)  (-2.18)   (-1.85)     (4.82)      (4.51) 

Silver 121 1870 0 1899, 1972 -7.22** ∆yt = -.63St
∼

−1+ 32.43+21.90B1t–38.82B2t–64.03D1t+117.82D2t+lags 
         (-7.23)    (2.11)   (0.28)     (-0.48)     (-3.29)      (4.38) 

Tin 106 1885 6 1963, 1974 -6.66** ∆yt = -.67St
∼

−1+3.61+51.76B1t–115.19B2t-16.23D1t+31.46D2t+ lags 
         (-6.66)  (1.68)   (2.72)      (-5.45)      (-2.26)     (3.00) 

Zinc 121 1870 0 1917, 1952 -10.4** ∆yt = -.97St
∼

−1+1.46 –1.24B1t –3.89B2t –2.92D1t –0.65D2t + lags 
        (-10.40)  (2.69) (-0.34)    (-1.07)    (-3.38)    (-0.76) 

Notes: Critical values of the two-break LM test with structural breaks in level and trend vary depending on the location of breaks (λ).  Critical values are shown at the 1%, 
5%, and 10% levels, respectively, for samples of size T = 100.  Critical values are –6.16, –5.59, and –5.28 for λ = (.2,.4); –6.40, –5.74, and –5.32 for λ = (.2,.6); –6.33, –
5.71, and –5.33 for λ = (.2,.8); –6.46, –5.67, and –5.31 for λ = (.4,.6); –6.42, –5.65, and –5.32 for λ = (.4,.8); –6.32, –5.73, and –5.32 for λ = (.6,.8), where λ indicates the 
relative location of the breaks.  Other critical values can be interpolated.  The critical values are symmetric around λ1 and λ2.  B1t, B2t and D1t, D2t correspond to changes in 
intercept and trend slope under the alternative, respectively.  B1t and B2t denote one-period jumps in level and D1t and D2t correspond to changes in drift under the null 
hypothesis, respectively.  Note that the constant term corresponds to a linear trend in Zt under the alternative.  k

^
 denotes the estimated optimal number of first-differenced 

lagged terms included to correct for serial correlation.  t-statistics are shown in parentheses.  a: See notes in Table 1.  * and ** denote significant at the 10% and 5% levels, 
respectively.  Critical values come from Lee and Strazicich (2003). 



 32

Table 3.  One Break Minimum LM Unit Root Test 
 

Series 
 

T 
Starting 

Year 
 

k̂  
 

T̂B 

Test 
 Stat. 

 
Estimation Results a 

Aluminum 90 1895 3 1914 -3.45 ∆yt = -.26St
∼

−1 - 13.87 + 47.79B1t + 6.94D1t + lags 
         (-3.45)   (-3.72)      (4.73)       (2.34) 

Coal 121 1870 7 1915 -4.08 ∆yt = -.20St
∼

−1 - .03 - .27B1t + .33D1t + lags 
         (-4.08)   (-0.41)  (-0.52)   (2.69) 

Copper 121 1870 0 1918 -5.18** ∆yt = -.37St
∼

−1 + 2.73 – 10.45B1t – 2.48D1t + lags 
         (-5.18)   (2.69)   (-1.76)      (-2.03) 

Iron 104 1870 1 1927 -5.49** ∆yt = -.47St
∼

−1 + .98 – 15.93B1t + 9.81D1t + lags 
         (-5.49)    (0.61)    (-1.34)      (3.60) 

Lead 121 1870 5 1946 -5.22** ∆yt = -.67St
∼

−1 - .03 +  7.34B1t - 1.28D1t + lags 
         (-5.22)    (-0.16)    (3.97)      (-3.11) 

Gas 72 1919 5 1973 -5.24** ∆yt = -.22St
∼

−1 + .03 – 2.04B1t + 5.38D1t + lags 
         (-5.24)   (0.09)   (-0.91)       (5.39) 

Nickel 78 1913 1 1969 -5.08** ∆yt = -.48St
∼

−1 - 15.33 + 21.66B1t + 9.24D1t + lags 
         (-5.08)    (-4.19)     (1.32)      (2.02) 

Petroleum 120 1870 6 1896 -3.82 ∆yt = -.22St
∼

−1 - .79 – 1.36B1t + .69D1t + lags 
         (-3.82)    (-3.09)  (-1.60)    (2.78) 

Silver 121 1870 2 1960 -3.84 ∆yt = -.37St
∼

−1 - 6.07 – 45.44B1t + 53.93D1t + lags 
          (-3.84)   (-0.71)   (-0.56)       (2.54) 

Tin 106 1885 6 1969 -4.97** ∆yt = -.44St
∼

−1 - 2.49 – 29.73B1t + 27.08D1t + lags 
         (-4.97)   (-1.05)   (-1.36)      (3.31) 

Zinc 121 1870 1 1955 -5.96** ∆yt = -.71St
∼

−1+ .32 + 3.32B1t – 2.53D1t + lags 
          (-5.96)  (0.78)  (0.88)     (-2.86) 

Notes: Critical values of the one-break LM test with a structural break in level and trend vary depending on the location of the break (λ).  Critical values are shown at the 
1%, 5%, and 10% levels, respectively, for samples of size T = 100.  Critical values are –5.11, –4.50, and –4.21 for λ = .1; –5.07, –4.47, and –4.20 for λ = .2; –5.15, –4.45, 
and –4.18 for λ = .3; –5.05, –4.50, and –4.18 for λ = .4; –5.11, –4.51, and –4.17 for λ = .5, where λ indicates the relative location of the breaks.  Other critical values can be 
interpolated.  The critical values are symmetric around λ.  B1t and D1t correspond to changes in intercept and trend slope under the alternative, respectively.  B1t denotes a 
one-period jump in level, and D1t corresponds to a change in drift under the null hypothesis, respectively.  Note that the constant term corresponds to a linear trend in Zt 
under the alternative.  k

^
 denotes the estimated optimal number of first-differenced lagged terms included to correct for serial correlation.  t-statistics are shown in 

parentheses.  a: See notes in Table 1.  * and ** denote significant at the 10% and 5% levels, respectively.  Critical values come from Lee and Strazicich (2004). 
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Table 4.  Two Break Minimum LM Unit Root Test with Quadratic Trend 
 

Series 
 

T 
Starting 

Year 
 

k̂  
 

T̂B 

Test  
Stat. 

 
Estimation Results a 

Aluminum 90 1895 8 1913, 1942 -5.15 ∆yt = -.99St
∼

−1 - 38.51 + .06 t – 31.56B1t +  6.96B2t + 48.35D1t – 14.44D2t+ lags 
          (-5.15)     (-4.63)    (1.13)   (-2.62)          (0.70)        (4.95)          (-2.70) 

Coal 121 1870 7 1949, 1972 -8.51** ∆yt = -.69St
∼

−1+ .01 - .002t – .06B1t – 2.26B2t - .24D1t + 2.35D2t + lags 
          (-8.51)    (0.09)  (-1.65) +  (-0.14)   (-4.25)     (-1.49)     (7.20) 

Copper 121 1870 2 1897, 1970 -6.70** ∆yt = -.65St
∼

−1 + 5.07 - 0.08t – 5.22B1t – 6.68B2t + 5.12D1t + 3.39D2t + lags 
          (-6.70)    (3.28)   (-3.77) ++   (-0.93)   (-1.21)       (2.41)        (1.58) 

Iron 104 1870 3 1933, 1951 -6.66** ∆yt = -.75St
∼

−1 - 1.26 - .06 t – 1.17B1t – 8.53B2t + 7.61D1t + 14.34D2t + lags 
          (-6.65)   (-0.43)   (-1.36)   (-0.11)     (-0.79)      (1.79)         (3.18) 

Lead 121 1870 5 1945, 1961 -7.30** ∆yt = - .97St
∼

−1 + .81 -.01t  – 2.64B1t + 10.57B2t + 4.58D1t – 5.81D2t + lags 
          (-7.30)     (1.71) (-1.80)+ (-1.41)      (5.59)         (5.01)       (-5.92) 

Gas 72 1919 7 1929, 1979 -9.54** ∆yt = - .57St
∼

−1 + .79 - .05t + 4.19B1t – 1.06B2t + 2.20D1t + 4.11D2t + lags 
          (-9.54)    (0.76) (-3.92)++  (2.43)     (-0.54)     (1.94)          (2.50) 

Nickel 78 1913 1 1930, 1974 -6.22** ∆yt = -.71St
∼

−1 - 13.62 + .04t + 6.66B1t – 17.51B2t + 16.54D1t – 14.04D2t + lags 
          (-6.22)     (-3.05)   (0.44)  (0.41)       (-1.10)           (2.10)         (-1.96) 

Petroleum 120 1870 1 1914, 1926 -5.74 ∆yt = - .34St
∼

−1 - 1.25 + .01t – .72B1t -. 92B2t + .42D1t – .92D2t + lags 
          (-5.74)    (-4.89)  (3.65) ++ (-0.74)  (-0.97)     (1.19)     (-2.40) 

Silver 121 1870 0 1892, 1972 -7.49** ∆yt = - .66St
∼

−1+ 12.70 + .17⋅t – 2.24B1t– 42.01B2t– 60.46D1t+ 102.80D2t+ lags 
           (-7.49)      (0.74)     (0.88)   (-0.03)     (-0.52)       (-2.17)         (3.29) 

Tin 106 1885 6 1963, 1974 -6.97** ∆yt = - .72St
∼

−1+ 4.70 - .08t + 51.75B1t– 119.67B2t – 6.07D1t + 37.27D2t + lags 
           (-6.97)      (0.99)   (-1.54)  (2.75)       (-5.69)        (-0.79)         (3.44) 

Zinc 121 1870 0 1917, 1952 -10.4** ∆yt = - .98St
∼

−1 + 2.08 + .01t  – 1.51B1t – 4.23B2t – 3.73D1t – .91D2t + lags 
          (-10.4)     (2.32)     (0.33)    (-0.41)      (-1.14)       (-2.53)       (-0.68) 

Notes: Critical values of the two-break minimum LM test with quadratic trend vary depending on the location of breaks (λ).  Critical values are shown at the 1%, 5%, and 10% 
levels, respectively, for samples of size T = 100.  Critical values are –6.80, –6.24, and –5.92 for λ = (.2,.4); –6.79, –6.19, and –5.89 for λ = (.2,.6); –6.68, –6.19, and –5.91 for λ 
= (.2,.8); –6.91, –6.27, and –5.89 for λ = (.4,.6); –7.01, –6.24, and –5.88 for λ = (.4,.8); –6.81, –6.19, and –5.88 for λ = (.6,.8), where λ indicates the relative location of the 
breaks.  Other critical values can be interpolated.  The critical values are symmetric around λ1 and λ2.  B1t, B2t and D1t, D2t correspond to changes in intercept and trend slope 
under the alternative, respectively.  B1t and B2t denote one-period jumps in level and D1t and D2t correspond to changes in drift under the null hypothesis, respectively.  Note that 
the coefficient of t corresponds to a quadratic trend, and the constant term corresponds to a linear trend in Zt, respectively, under the alternative.  k

^
 denotes the estimated optimal 

number of first-differenced lagged terms included to correct for serial correlation.  t-statistics are shown in parentheses.  a: see notes in Table 1.  * and ** denote significant at 
the 10% and 5% levels, respectively.  + and ++  denote significance of the quadratic trend term at the 10% and 5% levels, respectively. 
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Table 5.  One Break Minimum LM Unit Root Test with Quadratic Trend 
 

 
Series 

 
T 

Starting 
Year 

 
k̂  

 

T̂B 

Test  
Stat. 

 
Estimation Results a 

Aluminum 90 1895 8 1913 -4.38 ∆yt = -.70St
∼

−1 - 24.07 - .08t – 26.40B1t + 38.45D1t + lags 
         (-4.38)   (-3.74)     (-2.41) ++  (-2.15)     (4.18) 

Coal 121 1870 7 1972 -6.95** ∆yt = -.54St
∼

−1 - .28 + .001t – 1.69B1t + 1.39D1t + lags 
         (-6.95)     (-2.33)   (0.70)   (-3.08)     (5.16) 

Copper 121 1870 1 1934 -5.33** ∆yt = -.43St
∼

−1 + 2.34- .03t – 1.12B1t + 2.55D1t + lags 
         (-5.33)     (1.69)   (-1.78) +   (-0.18)   (1.14) 

Iron 104 1870 3 1951 -6.31** ∆yt = -.70St
∼

−1 + .63 - .06t – 8.42B1t + 19.89D1t + lags 
         (-6.31)     (0.24)  (-1.83) + (-0.77)     (3.85) 

Lead 121 1870 5 1946 -5.30** ∆yt = -.75St
∼

−1 + 1.59 - .01t +  6.81B1t - .59D1t + lags 
         (-5.30)      (2.83)   (-2.08) ++ (3.55)     (-0.86) 

Gas 72 1919 7 1978 -7.33** ∆yt = -.46St
∼

−1 + 5.32 - .09t – 4.78B1t + 10.63D1t + lags 
         (-7.33)     (4.88)    (-5.05) ++ (-1.83)     (4.68) 

Nickel 78 1913 1 1977 -5.27** ∆yt = -.54St
∼

−1 - 12.09 + .18t – 6.72B1t – 14.30D1t + lags 
         (-5.27)    (-2.62)     (2.89) ++ (-0.39)     (-2.01) 

Petroleum 120 1870 6 1919 -5.30** ∆yt = -.47St
∼

−1 - 1.81 + .02t + 1.95B1t - .67D1t + lags 
         (-5.30)     (-5.15)   (4.84) ++ (2.31)    (-2.17) 

Silver 121 1870 2 1968 -4.31 ∆yt = -.47St
∼

−1 + 32.04 - .44t – 60.90B1t + 114.58D1t + lags 
          (-4.31)       (1.68)  (-2.41) ++ (-0.72)       (3.05) 

Tin 106 1885 1 1973 -5.56** ∆yt = -.43St
∼

−1 - 6.20 - .08t – 84.33B1t + 7.28D1t + lags 
         (-5.56)      (1.52)  (-1.86) + (4.55)        (1.00) 

Zinc 121 1870 0 1917 -9.38** ∆yt = -.87St
∼

−1+ 2.54 - .02t – 2.97B1t – .59D1t + lags 
          (-9.38)     (3.29)  (-1.78)+ (-0.77)    (-0.44) 

Notes: Critical values of the one-break LM test with a structural break in level and trend vary depending on the location of the break (λ).  Critical values are shown at the 1%, 
5%, and 10% levels, respectively, for samples of size T = 100.  Critical values are –5.39, –4.86, and –4.57 for λ = .1; –5.31, –4.74, and –4.46 for λ = .2; –5.29, –4.78, and –4.50 
for λ = .3; –5.35, –4.80, and –4.51 for λ = .4; –5.31, –4.77, and –4.49 for λ = .5, where λ indicates the relative location of the breaks.  Other critical values can be interpolated.  
The critical values are symmetric around λ.  B1t and D1t correspond to changes in intercept and trend slope under the alternative, respectively.  B1t denotes a one-period jump in 
level, and D1t corresponds to a change in drift under the null hypothesis, respectively.  Note that the constant term corresponds to a linear trend in Zt under the alternative.  k

^
 

denotes the estimated optimal number of first-differenced lagged terms included to correct for serial correlation.  t-statistics are shown in parentheses.  a: See notes in Table 1.  * 
and ** denote significant at the 10% and 5% levels, respectively.  + and ++  denote significance of the quadratic trend term at the 10% and 5% levels, respectively. 
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Table 6.  Simulation Results Comparing the Forecast Accuracy of Different Strategies 
 

   T = 100 T = 500 
d h  β = 1.0 β = 0.95 β = 0.5 β = 1.0 β = 0.5 

   
M1/ 
M3 

M2/ 
M3 

M4/ 
M3 

M5/ 
M3 

M1/ 
M3 

M2/ 
M3 

M4/ 
M3 

M5/ 
M3 

M1/ 
M3 

M2/ 
M3 

M4/ 
M3 

M5/ 
M3 

M1/ 
M3 

M2/ 
M3 

M4/ 
M3 

M5/ 
M3 

M1/ 
M3 

M2/ 
M3 

M4/ 
M3 

M5/ 
M3 

0 1  0.99 1.10 0.98 1.02 0.99 1.07 0.97 0.98 1.14 0.99 1.12 0.94 1.00 1.02 1.00 1.01 1.23 1.00 1.23 0.99 
 2  0.99 1.16 0.96 1.04 0.99 1.13 0.94 0.98 1.28 0.98 1.24 0.88 1.00 1.04 0.99 1.01 1.45 1.00 1.44 0.98 
 5  0.99 1.21 0.92 1.07 0.99 1.19 0.89 0.95 1.46 0.97 1.35 0.80 0.99 1.09 0.98 1.03 1.73 1.00 1.71 0.97 
 10  1.00 1.21 0.87 1.06 0.99 1.19 0.81 0.87 1.51 0.97 1.29 0.72 0.99 1.14 0.97 1.05 1.82 1.00 1.77 0.96 
 50  1.00 1.27 0.66 0.97 1.00 1.34 0.46 0.56 1.74 0.94 0.81 0.36 0.99 1.21 0.88 1.05 2.13 1.00 1.82 0.93 
 100  1.00 1.34 0.57 1.31 0.99 1.45 0.30 0.47 1.83 0.93 0.56 0.19 1.00 1.22 0.80 1.01 2.60 1.00 1.87 0.87 

2 1  0.99 1.14 0.99 1.01 0.99 1.12 0.98 0.99 1.13 1.00 1.14 1.18 1.00 1.02 1.02 1.00 1.23 1.00 1.27 1.32 
 2  0.98 1.22 1.00 1.03 0.98 1.18 0.97 1.00 1.28 0.99 1.29 1.37 1.00 1.05 1.05 1.00 1.47 1.00 1.57 1.59 
 5  0.99 1.27 1.00 1.07 0.99 1.22 0.97 1.02 1.48 0.97 1.62 1.95 0.99 1.10 1.13 1.02 1.74 1.00 2.29 1.94 
 10  0.99 1.25 1.02 1.09 0.99 1.20 0.97 1.00 1.54 0.97 2.20 2.97 0.99 1.16 1.25 1.05 1.82 1.00 3.92 2.14 
 50  1.00 1.25 1.06 1.27 1.00 1.32 1.11 1.00 1.76 0.93 9.38 6.29 0.99 1.21 2.03 1.30 2.15 1.00 51.7 4.94 
 100  1.00 1.30 1.07 2.33 1.00 1.43 1.28 1.42 1.88 0.92 14.75 7.25 1.00 1.21 2.74 1.68 2.69 1.00 188.2 10.4 

6 1  0.98 1.47 1.10 0.99 0.97 1.42 1.09 0.98 1.10 0.99 1.26 1.14 1.00 1.04 1.19 1.03 1.24 1.00 1.57 1.35 
 2  0.98 1.59 1.21 1.00 0.97 1.51 1.21 0.99 1.30 0.99 1.72 1.35 0.99 1.09 1.42 1.06 1.45 1.00 2.39 1.64 
 5  0.99 1.52 1.60 1.07 0.98 1.43 1.60 1.04 1.53 0.97 3.66 1.60 0.99 1.17 2.13 1.15 1.71 1.00 6.50 2.29 
 10  0.99 1.36 2.12 1.15 0.99 1.29 2.22 1.11 1.58 0.97 9.17 1.69 0.99 1.26 3.35 1.33 1.82 1.00 20.61 3.75 
 50  1.00 1.21 4.21 1.88 1.00 1.24 6.26 1.84 2.00 0.94 77.61 2.30 0.99 1.27 11.21 3.08 2.21 1.00 449.6 61.3 
 100  1.00 1.22 5.07 2.83 0.99 1.30 9.00 2.87 2.21 0.92 127.1 2.86 1.00 1.24 18.09 5.98 2.81 1.00 1663. 318.1

10 1  0.95 2.17 1.26 0.97 0.95 1.99 1.26 0.96 1.04 1.00 1.41 1.08 0.99 1.09 1.41 1.08 1.20 1.00 1.90 1.35 
 2  0.96 2.18 1.63 1.02 0.96 2.01 1.65 1.01 1.27 0.99 2.38 1.34 0.99 1.17 1.94 1.16 1.42 1.00 3.54 1.76 
 5  0.98 1.77 2.75 1.12 0.99 1.62 2.79 1.11 1.52 0.98 7.43 1.68 0.98 1.32 3.85 1.43 1.76 1.00 14.18 3.37 
 10  0.99 1.45 4.27 1.30 0.99 1.35 4.57 1.26 1.63 0.97 22.79 2.10 0.98 1.43 7.10 1.89 1.85 1.00 52.15 8.21 
 50  1.00 1.20 10.22 2.66 1.00 1.24 16.43 3.04 2.11 0.94 215.1 11.11 0.99 1.32 29.37 6.70 2.23 1.00 1217. 210.9
 100  1.00 1.20 12.93 4.11 1.00 1.28 24.70 5.36 2.34 0.93 350.1 23.07 1.00 1.25 48.39 14.68 3.00 1.00 4490. 1110.
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Table 7.  Comparison of Post-1990 PMSE using Different Models with Actual Data 
 

 Linear trend Quadratic trend (All prices are in 
1998$ per ton) h M1 M2 M4 M5 M1Q M2Q M4Q M5Q 

Aluminum 1 688 472* 656 497 995 716 2,368 2,168 
($000) 3 432 192* 277 236 1,883 1,235 3,642 3,108 
 5 299 226* 386 383 1,989 1,018 3,522 2,908 
 8 339 215* 532 588 3,289 1,182 4,402 3,583 
 12 718 215* 1,055 948 6,095 1,588 6,111 4,966 
Copper 1 278 1* 135 69 158 265 2 437 
($000) 3 768 8* 539 477 931 498 385 2,273 
 5 554 285* 377 419 773 333 303 2,000 
 8 1,085 246* 583 1,003 1,289 550 837 4,114 
 12 1,958 228* 921 1,960 2,334 774 1,899 7,051 
Iron 1 13 0* 24 88 0 1 18 25 
($) 3 23 1* 148 195 3 1 46 118 
 5 87 26 281 315 43 15* 60 206 
 8 347 155 382 401 186 87 53* 295 
 12 758 342 476 631 371 176 77* 508 
Lead 1 245 99 366 32* 156 152 194 126 
($000) 3 355 74* 704 204 166 171 251 186 
 5 346 48* 853 179 136 156 232 214 
 8 293 33* 962 164 102 166 194 167 
 12 291 22* 1,207 210 120 314 220 165 
Nickel 1 5 19 1* 3 1 4 22 36 
($000,000) 3 23 89 46 9* 18 25 108 106 
 5 107 310 50 9* 83 104 77 97 
 8 287 816 72 9* 228 278 110 114 
 12 685 1,922 98 9* 550 657 135 141 
Silver 1 666 359* 4,959 5,885 392 752 21,031 46,651 
($000,000) 3 4,832* 5,481 9,743 13,276 5,967 5,854 61,788 196,423 
 5 16,589 19,602 8,236* 13,270 21,256 19,586 86,698 334,376 
 8 42,002 45,291 7,936* 15,868 49,476 43,546 120,814 446,318 
 12 84,740 87,582 9,185* 22,059 96,442 81,707 167,586 371,394 
Tin 1 2 19 0* 2 16 1 0 10 
($000,000) 3 6 69 3 16 68 16 2* 16 
 5 19 103 4 20 150 45 1* 39 
 8 47 199 7 35 332 81 1* 69 
 12 99 348 15 60 668 155 1* 122 
Zinc 1 305 246 271 28* 239 295 170 523 
($000) 3 345 475 435 50* 362 452 303 1,120 
 5 358 447 518 80* 457 524 375 1,386 
 8 366 474 592 69* 561 584 468 1,576 
 12 487 640 814 139* 854 783 753 1,892 

Notes: PMSE is the predicted mean squared error of the post-1990 out-of-sample forecast period (h).  M1 = 
differences with breaks, M2 = levels with breaks, M4 = differences without breaks, M5 = levels without 
breaks, and Q denotes that the model includes a quadratic trend instead of linear trend.  Structural breaks 
were jointly significant in all models that included breaks at p < 0.01.  * denotes the model with the lowest 
PMSE. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Plot of Data with Structural Breaks and Fitted Trends 
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Figure 1 (continued).  Plot of Data with Structural Breaks and Fitted Trends 
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      (a) Difference with Breaks (M1 / M3)       (b) Level with Breaks (M2 / M3) 

 

     
 

      (c) Difference without Breaks (M4 / M3)      (d) Level without Breaks (M5 / M3) 
 

Figure 2.  Comparison of Forecast Accuracy using Different Strategies (DGP: β = 1, d = 6)  
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      (a) Difference with Breaks (M1 / M3)    (b) Level with Breaks (M2 / M3) 

 

     
 

      (c) Difference without Breaks (M4 / M3)    (d) Level without Breaks (M5 / M3) 
 

Figure 3.  Comparison of Forecast Accuracy using Different Strategies (DGP: β = 0.5, d = 6) 




