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ABSTRACT

This paper discusses formal quantitative algorithms that can be used to identify business cycle

turning points. An intuitive, graphical derivation of these algorithms is presented along with a

description of how they can be implemented making very minimal distributional assumptions. We

also provide the intuition and detailed description of these algorithms for both simple parametric

univariate inference as well as latent-variable multiple-indicator inference using a state-space

Markov-switching approach. We illustrate the promise of this approach by reconstructing the

inferences that would have been generated if parameters had to be estimated and inferences drawn

based on data as they were originally released at each historical date. Waiting until one extra quarter

of GDP growth is reported or one extra month of the monthly indicators released before making a

call of a business cycle turning point helps reduce the risk of misclassification. We introduce two

new measures for dating business cycle turning points, which we call the “quarterly real-time GDP-

based recession probability index” and the “monthly real-time multiple-indicator recession

probability index” that incorporate these principles. Both indexes perform quite well in simulation

with real-time data bases. We also discuss some of the potential complicating factors one might want

to consider for such an analysis, such as the reduced volatility of output growth rates since 1984 and

the changing cyclical behavior of employment. Although such refinements can improve the

inference, we nevertheless find that the simpler specifications perform very well historically and may

be more robust for recognizing future business cycle turning points of unknown character.
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1 Introduction

The National Bureau of Economic Research (NBER) is a private research organization that, among

other activities, identifies dates at which the U.S. would be said to be experiencing an economic

recession.1 These dates, reported at http://www.nber.org/cycles/cyclesmain.html, are regarded

as authoritative by both academic researchers and the public at large.

For example, in July, 2003, the NBER announced that the most recent recession had finally

ended. Remarkably, what the NBER announced in July, 2003 was that the recession had actually

ended in November, 2001. There had been a similar two-year delay in the previous recession, for

which the NBER announced in December, 1992 that the recession had ended in March, 1991.

These quasi-official dates are the outcome of discussions of the NBER’s Business Cycle Dating

Committee, a group of highly respected academics who review a variety of economic indicators

to form a qualitative judgment about the state of the economy. The delays are explained by the

fact that the Committee wants to be quite confident about its assessment before making a public

declaration. There is nevertheless a cost to this accuracy, in that many members of the public can

continue to believe that the economy is in a recession long after a solid recovery is under way. For

example, in the 1992 election, the opposition party declared that the U.S. was experiencing the

worst economic downturn since the Great Depression. A look at most of the facts would lead one

to dismiss this claim as political hyperbole. However, if it had been the case that the recession

beginning in July 1990 was still persisting as of November 1992, as one might have legitimately

inferred from the failure of the NBER to announce the recession as over, it indeed would have

qualified as the longest economic downturn since the Depression. More recently, the widespread

belief by the American public that the U.S. was still in recession in 2003 may have played a role

in tax cuts approved by the U.S. Congress, the outcome of a special election for the governor of

California, and a host of other policy and planning decisions by government bodies, private firms,

1 This research paper is the work of the authors alone and should not be interpreted as the opinions, findings, or
procedures of the NBER’s Business Cycle Dating Committee. The manner in which the NBER currently arrives
at business cycle dates is described at http://www.nber.org/cycles/recessions.html.
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and individual households.

During the last decade, academic researchers have come to treat the question of whether the

economy is experiencing a recession as a formal statistical issue rather than a subjective qualitative

assessment. This approach started with Hamilton (1989) and has since been adopted in hundreds

of academic studies.2 Given the importance to the public at large of identifying where the

economy is at any given point in time, it seems worthwhile to investigate whether these formal

quantitative methods could be used to produce announcements that might be useful to the public

in real time. The purpose of this chapter is to review the performance of several such methods.

We begin in Section 2 with a background discussion of this approach in a very simple application

that uses only data on U.S. real GDP growth and minimal distributional assumptions. In Section

3 we implement a parametric version of this approach to GDP data. Section 4 describes a

method for combining the inference from a number of different economic indicators.3 Section 5

presents results from such multivariate inference, while Section 6 explores the robustness of these

multivariate inferences to several alternative specifications.4

2 What can we infer from U.S. GDP growth rates?

Figure 1 plots quarterly growth rates (quoted at an annual rate) of U.S. real GDP since 1947, with

dates of economic recessions as determined by the NBER indicated with shaded regions. Consider

what we can say from this GDP data alone about the broad properties of NBER’s classifications.

Forty-five of the 229 quarters between 1947:II and 2004:II were classified as “recession” and the

remaining 184 as “expansion.” First consider the 45 recession quarters as representatives of a

certain population, namely, what GDP growth looks like when the economy is in recession. The

2 For some alternatives see Lundbergh and Terasvirta (2002), van Dijk, Terasvirta and Franses (2002), Harding
and Pagan (2002) and Artis, Marcelino and Proietti (2004).

3 More specifically, we use a dynamic factor model with regime switching, as in Chauvet (1998), which is a
nonlinear state space model. This class of models is very popular in several fields. Some of the important work
in this area includes Gordon and Smith (1990), Carlin, Polson, and Stoffer (1992), Kitagawa (1987), Fridman and
Harris (1998), Kim and Nelson (1999a), Durbin and Koopman (1997), among others.

4 A companion paper by Chauvet and Piger (2005) compares the results from the method described in Section
4 with mechanical business cycle dating rules proposed by Harding and Pagan (2002).
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average quarterly growth rate in recession is -1.23% (expressed at an annual rate), with a standard

deviation of 3.55. The top panel of Figure 2 plots a nonparametric kernel estimate of the density

of these 45 quarters.5 One is more likely to see GDP falling than rising during a recession, but

this is by no means certain; in fact, 15 of the 45 recession quarters are associated with positive

GDP growth.

[ insert Figure 1 about here ]

The bottom panel of Figure 2 plots the corresponding density for the 184 postwar quarters

classified as economic expansion. These are characterized by a mean annualized growth rate

of 4.49% with a standard deviation of 3.24. This distribution is overwhelmingly dominated by

positive growth rates, though there again is some small probability of observing a negative growth

rate during what is considered to be an economic expansion.

[ insert Figure 2 about here ]

If one simply selects a postwar quarterly growth rate at random, there’s a 20% probability it

would be one of the 45 quarters classified as a recession and an 80% probability of falling in an

expansion. The unconditional distribution of GDP growth rates can be viewed as a mixture of the

two distributions in Figure 2. This mixture is represented in the top panel of Figure 3, in which

the height of the long-dashed line is found by multiplying the height of the top panel of Figure 2

by 0.2. The short-dashed line represents 0.8 times the bottom curve of Figure 2. The sum of

these two curves (the solid line in the top panel of Figure 3) represents the unconditional density

of one quarter’s growth rate without knowing whether or not the quarter would be classified as

recession.

[ insert Figure 3 about here ]

From the top panel of Figure 3, one could make an intelligent prediction as to what classification

NBER will eventually arrive at (expansion or recession) as soon as the GDP figures are released.

5 This was calculated using the “density” command in RATS with a Gaussian kernel and bandwidth set equal
to 3.
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If GDP falls by more than 6%, most of the height of the solid line is coming from the long-dashed

density, suggesting that it is overwhelmingly likely that the quarter will be classified as recession.

If GDP rises by more than 6%, almost none of the density comes from the short-dashed line,

leading us to expect NBER to classify that quarter as expansion. Intuitively, we might use the

ratio of the height of the long-dashed line to the height of the solid line as a measure of the

likelihood that NBER would classify a quarter with GDP growth of an amount specified on the

horizontal axis as being part of a recession. This ratio is plotted in the bottom panel of Figure 3.

Using this ratio in this way is more than intuitively appealing. It turns out to be precisely an

application of Bayes Law for this setting. Specifically, let St = 1 if the NBER ends up classifying

quarter t as an expansion and St = 2 if recession. Let yt denote the quarter t GDP growth rate.

Then f(yt|St = 2) is the density of GDP growth rates in recession, a nonparametric estimate of

which is given by the top panel of Figure 2, while the expansion density f(yt|St = 1) corresponds

to the bottom panel. Let Pr(St = 2) = 0.20 be the probability that any given quarter is classified

as recession. Bayes Law states that the probability that NBER will declare a recession given that

the GDP growth for the quarter is known to be yt can be calculated from

Pr(St = 2|yt) = f(yt|St = 2)Pr(St = 2)
f(yt|St = 1)Pr(St = 1) + f(yt|St = 2)Pr(St = 2) . (1)

But f(yt|St = 2)Pr(St = 2) is simply the height of the long-dashed line in Figure 3, while

f(yt|St = 1)Pr(St = 1) is the height of the short-dashed line. Hence the ratio plotted in the

bottom panel of Figure 3,

Pr(St = 2|yt) = 0.2 f(yt|St = 2)
0.8 f(yt|St = 1) + 0.2 f(yt|St = 2) ,

is indeed the optimal prediction Pr(St = 2|yt) about what NBER will declare if the quarter’s GDP

growth is yt.

Predicting NBER’s declaration if we get growth rates as extreme as ±6% is obviously quite

robust and sensible. Unfortunately, it is not particularly useful, since the vast majority of GDP

growth rates are not this extreme, and for typical data the prediction about what NBER will
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declare in the bottom panel of Figure 3 is not very precise. Fortunately, there is another piece

of information about the NBER’s classifications that can be extremely helpful here, which is the

fact that the Committee usually makes the same declaration in t + 1 that it made in t. Of the

45 quarters characterized as recession, 35 or 78% were followed by another quarter of recession.

Of the 183 expansion quarters between 1947:II and 2004:I, 173 or 95% were followed by another

quarter of expansion.

Suppose we observe a particular GDP growth rate for quarter t of yt; perhaps this is a value

like yt = −6, which we are reasonably confident will be described as a recession. Given this

information, the probability that next quarter t + 1 will also be classified as a recession is no

longer 0.20 but is much higher. Specifically,

Pr(St+1 = 2|yt) = Pr(St+1 = 2|St = 2, yt)Pr(St = 2|yt) + Pr(St+1 = 2|St = 1, yt)Pr(St = 1|yt)

= 0.78Pr(St = 2|yt) + (1− 0.95)Pr(St = 1|yt)

where we’ve assumed that Pr(St+1 = 2|St = 2, yt) = Pr(St+1 = 2|St = 2) = 0.78. For example,

if there was convincing evidence of a recession in period t (say, Pr(St = 2|yt) = 0.9), then the

probability that we will still be in recession in t+1 would be (0.78)(0.9)+(1−0.95)(1−0.9) = 0.71.

If we then learn the quarter t+ 1 growth rate yt+1 as well, the inference about St+1 is found not

from the height of the bottom panel of Figure 3, but instead from a mixture whose recession

probability is 0.71 rather than 0.20, that is, equation (1) would be replaced with

Pr(St+1 = 2|yt+1, yt) =
f(yt+1|St+1 = 2, yt)Pr(St+1 = 2|yt)P2
j=1 f(yt+1|St+1 = j, yt)Pr(St+1 = j|yt)

=
0.71 f(yt+1|St+1 = 2, yt)

0.29 f(yt+1|St+1 = 1, yt) + 0.71 f(yt+1|St+1 = 2, yt) . (2)

If we assume that recessions are the only source of GDP dynamics, so that f(yt+1|st+1, yt) =

f(yt+1|st+1), we could again use the height of the top panel of Figure 2 at the given value of yt+1

as our estimate of f(yt+1|St+1 = 2, yt), in which case we just replace the mixture in the top panel

of Figure 3 (which assumed a 20% weight on the recession density and 80% on the expansion
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density), with a mixture that puts 71% weight on the recession density and 29% on the expansion

density, as in the top panel of Figure 4. The ratio of the height of the long-dashed curve to the

solid curve in the top panel of Figure 4 gives the inference (2), plotted in the bottom panel of

Figure 4. If we were reasonably confident that quarter t was a recession, we are much more prone

to call t+ 1 a recession as well.

[ insert Figure 4 about here ]

Another perspective on this form of inference is obtained as follows. Suppose that GDP

growth for quarter t is given by yt = y, from which we calculate Pr(St = 2|yt = y) as in the

bottom panel of Figure 3. We can then use this magnitude Pr(St = 2|yt = y) in place of the

constant 0.20 to weight the recession distribution. The ratio of the heights of the recession curve

to the combined distribution would then correspond to Pr(St+1 = 2|yt+1 = y, yt = y), that is, it

is the probability of recession if we happened to observe GDP growth equal to y for two quarters

in a row. This quantity is plotted in the bottom panel of Figure 5, which is substantially steeper

than the plot of Pr(St+1 = 2|yt+1 = y) shown in the top panel. For example, if we had only a

single quarter’s observation of GDP, we would not have 50% confidence in predicting a recession

unless GDP growth was below −3.4%. By contrast, two consecutive quarters GDP growth of

-1.8% would also give us 50% confidence that the economy had entered a recession.

[ insert Figure 5 about here ]

We could use the same principle to get a better picture of whether the economy was in a

recession in quarter t once we know the economic growth rate in quarter t + 1. Specifically, we

first make a prediction about both St and St+1 based on yt alone,

Pr(St+1 = j, St = i|yt) = Pr(St+1 = j|St = i, yt)Pr(St = i|yt).
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This magnitude can be calculated by multiplying Pr(St = i|yt) by the appropriate constant:

Pr(St+1 = j|St = i, yt) =



0.95 if i = 1, j = 1

0.05 if i = 1, j = 2

0.22 if i = 2, j = 1

0.78 if i = 2, j = 2

.

We then use Bayes Law to update this joint inference based on observation of yt+1:

Pr(St+1 = j, St = i|yt+1, yt)

=
Pr(St+1 = j, St = i|yt)f(yt+1|St+1 = j, St = i, yt)P2

i=1

P2
j=1 Pr(St+1 = j, St = i|yt)f(yt+1|St+1 = j, St = i, yt)

. (3)

We can again estimate f(yt+1|St+1 = j, St = i, yt) by f(yt+1|St+1 = j), that is, by the top panel of

Figure 2 when j = 2 and the bottom panel when j = 1. The desired inference about the economy

at date t based on information observed at date t+ 1 is then

Pr(St = i|yt+1, yt) =
2X
j=1

Pr(St+1 = j, St = i|yt+1, yt). (4)

We have thus seen how, given nonparametric knowledge of how the distribution of GDP growth

is different between expansions and contractions,

f(yt|St = i) for i = 1, 2,

of how frequently the economy stays in the same regime,

Pr(St+1 = j|St = i) for i, j = 1, 2,

and the approximation that the state of the economy (recession or expansion) is the only proba-

bilistic link between one quarter and the next,6

Pr(St+1 = j|St = i) = Pr(St+1 = j|St = i, St−1 = k, ..., yt, yt−1, ...)
6 In the parametric application of this approach described in the next section, we tested this assumption by

using several alternative specifications of the Markov switching model, including higher autoregressive processes
or allowing the variance and mean to follow the same or distinct Markov processes. We find that the simplest
representation describes the data quite well and is most robust on a recursive sample of real-time data.
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f(yt+1|St+1 = j) = f(yt+1|St+1 = j, St = i, St−1 = k, ..., yt, yt−1, ...), (5)

one can use knowledge of GDP growth rates through date t to make a prediction about whether

the economy is in recession at any date τ ,

Pr(Sτ = i|y1, y2, ..., yt).

If t = τ , these are referred to as the “filter probabilities”, whereas when t > τ they are described

as “smoothed probabilities.”

3 Parametric representation.

Although it is interesting to know how to perform these calculations nonparametrically, this degree

of generality is really not needed for the problem at hand, since it appears from Figure 2 that a

Gaussian distribution works quite well to describe these densities. The fact that the recession

distribution has a standard deviation very similar to that for the expansion distribution implies

that we would also lose little by assuming that the two distributions differ only in their means

and share the same standard deviation σ. The suggestion is then that we replace the arbitrary

density f(yt|St = 2) in the top panel of Figure 2 with the N(µ2,σ2) distribution,

f(yt|St = 2) = 1√
2πσ

exp

µ−(yt − µ2)2
2σ2

¶
, (6)

where µ2, the mean growth rate in contractions, should be about -1.2 with σ around 3.5. Likewise

we could easily parameterize the bottom panel of Figure 2, f(yt|St = 1), with theN(µ1,σ2) density

for µ1 = 4.5. Let p11 denote the probability that the economy remains in expansion from one

quarter to the next,

p11 = Pr(St+1 = 1|St = 1),

and p22 the analogous probability for recessions:

p22 = Pr(St+1 = 2|St = 2).
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Again the historical experience would lead us to expect that p11 = 0.95 and p22 = 0.78. Let

θ = (µ1, µ2,σ, p11, p22)
0 denote the various unknown parameters.

A two-state Markov chain with transition probabilities pii has unconditional distribution given

by7

Pr(St = 2) =
1− p11

2− p11 − p22 = π2.

The likelihood of the first observation in the sample (yt for t = 1) is then given by the mixture

f(y1;θ) =
2X
i=1

πi√
2πσ

exp

µ−(y1 − µi)2
2σ2

¶
,

which is simply a parametric expression for the calculations that produced the solid curve in the

top panel of Figure 3. The filtered probability for the first observation is

Pr(S1 = i|y1;θ) = [f(y1;θ)]−1 πi√
2πσ

exp

µ−(y1 − µi)2
2σ2

¶
, (7)

as in the bottom panel of Figure 3.

These probabilities in turn imply a predicted probability for the second observation of

Pr(S2 = j|y1;θ) =
2X
i=1

pij Pr(S1 = i|y1;θ). (8)

The conditional likelihood of the second observation is given by the mixture whose weights are

the predicted probabilities from (8),

f(y2|y1;θ) =
2X
j=1

1√
2πσ

exp

Ã
−(y2 − µj)2

2σ2

!
Pr(S2 = j|y1;θ), (9)

or the kind of calculation that produced the solid curve in the top panel of Figure 4. From this

we obtain as in the bottom panel of Figure 4 the filtered probabilities for the second observation,

Pr(S2 = i|y2, y1;θ) = [f(y2|y1;θ)]−1 1√
2πσ

exp

µ−(y2 − µi)2
2σ2

¶
Pr(S2 = i|y1;θ), (10)

and predicted probabilities for the third:

Pr(S3 = j|y2, y1;θ) = pij Pr(S2 = i|y2, y1;θ).
7 See for example Hamilton (1994, p. 683).
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Iterating in this fashion we obtain the log likelihood for the complete sample of observed GDP

growth rates, y1, y2, ...., yT , as a function of the parameter vector θ:

log f(y1;θ) +
TX
t=2

log f(yt|yt−1, yt−2, ..., y1;θ). (11)

We motivated this way of thinking about the data by taking the NBER’s conclusions as given

and trying to characterize what the NBER has done.8 However, no aspect of the NBER’s

dating appears in the final result (11), which is solely a function of observed GDP growth rates

and the unknown parameters θ. One could accordingly choose as an estimate of θ the value

that maximizes the sample log likelihood of GDP growth rates (11). This maximum likelihood

estimate is compared with the values we would have expected on the basis of the NBER inferences

in Table 1.9 The two sets of parameter values, although arrived at by different methods, are

remarkably similar. This similarity is very encouraging, for two different reasons. First, it

enhances the intellectual legitimacy of the perspective that the economy can be classified as being

in an expansion or recession at any point in time, and that whether or not the economy is in

recession can account for much of the variability and serial dependence of GDP growth rates. We

did not impose any kind of conditions on the two means µ1 and µ2, and one could imagine the

data being better described by all sorts of choices, such as “very rapid growth” versus “normal

growth”, or “normal growth” versus “slow growth.” Table 1 implies that, using just GDP data

alone without any reference to what NBER may have said, we would come up with a very similar

conceptual scheme to the one that economists and the NBER have traditionally relied on.

[ insert Table 1 about here ]

A second reason that the correspondence between the two columns in Table 1 is encouraging

8 An alternative approach developed by Bry and Boschan (1971) attempts to formalize and elaborate on the rule
of thumb that two quarters of falling GDP constitute a recession. However, this rule of thumb does not describe
the decisions of the NBER Business Cycle Dating Committee, which defines a recession as “a significant decline in
economic activity spread across the economy, lasting more than a few months, normally visible in real GDP, real
income, employment, industrial production, and wholesale-retail sales” (http://www.nber.org/cycles.html/). We
view our approach, unlike Bry and Boschan, as a direct statistical formalization of the NBER’s stated method for
qualitative evaluation.

9 Maximum likelihood estimates were found using the EM algorithm described in Hamilton (1990).
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is that it raises the promise that we might be able to use GDP growth rates alone to arrive at

classifications in a more timely and objective fashion than the NBER. The top panel of Figure

6 plots the filtered recession probabilities Pr(St = 2|yt, yt−1, ..., y1; θ̂) implied by the maximum

likelihood estimate of the parameter vector θ. For any date t this is the probability that the

economy is in recession based on observations of GDP growth rates at the time. The dates of

economic recessions as determined after the fact by NBER are indicated by shaded regions on

the graph. It seems clear that the two methodologies are identifying the same series of events

over the postwar period, with the filter probabilities rising above 75% at some point during every

postwar recession and typically remaining below 30% in times of expansions. There are some

minor differences, with the two consecutive quarters of falling GDP in 1947:II-III and the -1.9%

growth in 1956:I temporarily pushing the filter probabilities a little over 50% in episodes that the

NBER did not characterize as recessions. Also, in the 1990-91 recession, the filter probabilities

did not come back below 50% until 1991:IV, although the NBER says that the recession ended in

1991:I. Overall, though, the correspondence seems quite strong.

[ insert Figure 6 about here ]

The bottom panel of Figure 6 plots the smoothed probabilities, for which the full sample of

observations through 2004:II was used to form an inference about the state of the economy at any

given date. Using the full sample substantially smooths out a number of the minor temporary

blips evident in the filter estimates, and brings the 1947 and 1956 inferences just under 50%, ever

so slightly favoring the NBER final call. Dates at which recessions began and ended according

to the NBER are compared with the dates for which the smoothed probabilities are above 50% in

Table 2. The smoothed probabilities date the 1980 recession as beginning 3 quarters earlier than

the date assigned by the NBER. The two methods never differ by more than a quarter for either

the starting date or ending date for any other recession.

[ insert Table 2 about here ]

This suggests that using a mechanical algorithm to identify business cycle turning points holds
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considerable promise. However, even the filter probabilities in the top panel of Figure 6 do not

accurately capture the predictions that one could actually make with this framework in real time,

for two reasons. First, the complete sample of data through 2004 was used to estimate the values

of the parameter vector θ. This perhaps is not an overwhelming concern, since, as we saw in

Table 1, one would have arrived at very similar magnitudes for θ just based on the properties that

one expects expansions and recessions should have. The second, more serious, problem is that

the GDP figures as originally released by the Bureau of Economic Analysis can differ substantially

from the historical series now available.

Croushore and Stark (2003) have established that the second issue can be extremely important

in practice, and have helped develop an extensive data set archived at the Federal Reserve Bank

of Philadelphia (available at http://www.phil.frb.org/econ/forecast/reaindex.html). This data

set includes the history of GDP values that would have actually been available to a researcher or

forecaster at any given point in time. The database consists of one set of GDP levels for 1947:I-

1965:III that would have been reported as of the middle of 1965:IV, a second set of GDP levels

for 1947:I-1965:IV reported as of the middle of 1966:I, and so on, ending with a data set of GDP

levels from 1947:I-2004:II as reported in the middle of 2004:III, with the latter data set being the

one on which Figure 6 was based. There are a few gaps in this series, such as resulted from the

benchmark GDP revision released in 1992:I. As originally released this revision only went back to

1959:I rather than all the way to 1947:I. To construct the inferences reported below, we assume

that a researcher in 1992:I had available the GDP figures for 1947:I-1958:IV that technically were

not published until 1993:I.

For each date T between 1968:II and 2004:II, we constructed the values for GDP growth for

quarter t that a researcher would have had available as of date T +1, denoted y[T ]t , for t = 1947:II

through T . We estimated the value θ̂
[T ]
that maximized the log likelihood of {y[T ]1 , y

[T ]
2 , ..., y

[T ]
T }

and used this estimate to form inferences about the economy for each date t between 1947:II

and T . The last value for GDP growth in this sample,y[T ]T , (for example, the value of GDP for
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2004:II as reported in 2004:III), is apt to be particularly noisy. Furthermore, there is a substantial

gain in accuracy from using the one-quarter smoothed probability rather than the current filtered

probability. For these reasons, one obvious way to reduce the risk of misclassification is to wait

to make a real-time assessment of the state of the economy in 2004:I until the first estimate of

2004:II growth (and revised estimate of 2004:I growth) is released in August 2004.

The top panel of Figure 7 plots these real-time one-quarter-smoothed inferences Pr(ST−1 =

2|y[T ]1 , y
[T ]
2 , ..., y

[T ]
T ; θ̂

[T ]
) as a function of T − 1. The quality of the inference degrades a bit

using real-time released data in place of the full revised data set as now available. In particular,

successfully calling the end of the 1990-1991 recession would have been quite difficult with the

data as actually released in 1992. Notwithstanding, the inference in each of the other recessions

based on using real-time GDP estimates with one-quarter of smoothing seems to produce quite a

satisfactory result overall.

[ insert Figure 7 about here ]

We will refer to the magnitude q(q)t = 100 × Pr(St = 2|y[t+1]1 , y
[t+1]
2 , ..., y

[t+1]
t+1 ; θ̂

[t+1]
) as our

“quarterly real-time GDP-based recession probability index,” whose value represents an inferred

probability (in percent) as to whether the economy was in a recession at date t using the first-

reported GDP growth for quarter t+ 1. The “(q)” superscript indicates that the index is based

on quarterly data, in contrast to the monthly index that is developed in Section 5 below. We are

also interested in the possibility of rendering quasi-official pronouncements based on this index.

For this purpose, it seems prudent to build in a bit of conservatism into any announced changes

in the economy. Let D(q)t = “expansion” if we are declaring the economy to have been in an

expansion in quarter t and D(q)t = “recession” otherwise, where this declaration is intended as a

qualitative summary of the information in q(q)t . If last quarter we had declared the economy to

be in an expansion (D(q)t−1 = “expansion”), then this quarter we propose to declare the same thing
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as long as the one-quarter-smoothed probability of expansion remains above 35%:

D
(q)
t =


“expansion” if D(q)t−1 = “expansion” and q

(q)
t ≤ 65

“recession” if D(q)
t−1 = “expansion” and q

(q)
t > 65

.

Likewise, if last quarter we had declared the economy to be in a recession, then this quarter we

will declare the same thing as long as the one-quarter-smoothed probability of recession remains

above 35%:

D
(q)
t =


“recession” if D(q)t−1 = “recession” and q

(q)
t ≥ 35

“expansion” if D(q)t−1 = “recession” and q
(q)
t < 35

.

Table 3 reports values for our real-time GDP-based recession probability index q(q)t along with

the proposed announcement D(q)t for each quarter. The algorithm does quite a satisfactory job

of identifying the dates at which recessions began and ended. Its performance is compared

with NBER news releases in Table 4. NBER would have beaten our mechanical algorithm by

one quarter on two occasions, declaring the start of the 2001 recession and the end of the 1991

recession one quarter earlier than we would have. On two other occasions (the start of the 1990-91

recession and end of the 1979-1980 recession), the mechanical rule beat NBER by one quarter.

Our algorithm also would have declared the start of the 1979-80 recession two quarters earlier,

and end of the 2001 recession four quarters earlier than did NBER. In all the other episodes, the

two approaches would have made the same announcement in the same historical quarter.

[ insert Table 3 about here ]

These calculations suggest that an algorithmically-based inference could do quite a satisfactory

job of calling business cycle turning points in real time. Not only does its quantitative performance

seem to be a little better than NBER’s, but there is an added benefit of objectivity. Given the

potential of recession pronouncements to influence elections and policy decisions, there is always

a possibility that there could be pressure to delay or accelerate making a subjective declaration

in order to try to influence these outcomes. Our approach, by contrast, is completely objective

and its mechanical operation transparent and reproducible.
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[ insert Table 4 about here ]

Our approach does have an ambiguity that the NBER announcements lack, however, in that

it highlights the uncertainty inherent in the enterprise and calls direct attention to the fact that

sometimes the situation is very difficult to call one way or another (for example, when the recession

probability index is near 50%). We would suggest, however, that this is inherent in the nature of

the question being asked, and that openly recognizing this ambiguity is intellectually more honest

and accurate than trying to conceal it. As long as we take the view that an economic recession

is a real, objective event that may or may not have accounted for the observed data, there will

always be some uncertainty in determining when and if one actually occurred. For better or

worse, an objective assessment of the state of the economy of necessity must communicate not

just a judgment (expansion or recession), but also some information about how compelling that

conclusion is, given the data. The combined information conveyed by our proposed measures qt

and Dt seems a very promising way to communicate this information.

4 Using multiple indicators to identify turning points.

One drawback of the GDP-based measure is that it is only available quarterly. Given the lags

in data collection and revision, this introduces an inherent 5-month delay in reporting of the

index. A variety of measures available on a monthly basis might be used to produce much

better inferences. By modeling the behavior of a number of different variables simultaneously, we

can capture pervasive cyclical fluctuations in various sectors of the economy. As recessions and

expansions are caused by different shocks over time, the inclusion of different variables increases the

ability of the model to represent and signal phases of the business cycle in the monthly frequency.

In addition, the combination of variables reduces measurement errors in the individual series and,

consequently, the likelihood of false turning point signals, which is particularly important when

monthly data are used.

Certainly the NBER dating committee does not base its conclusions just on the behavior of
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quarterly GDP. Inspired by the seminal work of Burns and Mitchell (1946), the NBER Business

Cycle Dating Committee today primarily looks at four key monthly indicators10 , including the

growth rates of manufacturing and trade sales (sales), total personal income less transfer payments

(income), civilian labor force employed in nonagricultural industries (employment), and industrial

production (IP). Let yt denote the (4 × 1) vector whose first element y1t is sales growth, y2t is

income growth, y3t is employment growth, and y4t is IP growth. In this section, we show how

one can adapt the method of the previous section to use all four variables to infer the state of the

business cycle.

A simple vector generalization of the approach in the preceding section would be quite straight-

forward. We could simply posit that the vector yt has one mean µ(1) in expansions and a second

mean µ(2) in recessions, where we indicate the economic regime with a superscript, reserving

subscripts in this section to denote individual elements of a vector or to indicate the value of a

variable for a particular date t. For example, the first element of the vector µ(2) would denote

the average growth rate of sales during a recession. If H denotes the variance-covariance matrix

of these growth rates in either expansion or recession, then we could simply replace the scalar

N(µ2,σ
2) distribution in (6) with the vector N(µ(2),H) distribution,

f(yt|St = 2) = 1

(2π)n/2
|H|−1/2 exp

n
−(1/2)[yt −µ(2)]0H−1[yt −µ(2)]

o
, (12)

where n = 4 denotes the number of elements in the vector yt. In every formula where we

previously had the scalar f(yt|St = j) we would now have the scalar f(yt|St = j). For example,

to calculate the probability of a recession given only GDP growth yt in Figure 3 we took the

ratio of the height of two lines. In the vector case we would be taking the ratio of the height of

10 In NBER’s FAQ page on business cycle dating at http://www.nber.org/cycles/recessions.html#faq, it is stated
that “The committee places particular emphasis on two monthly measures of activity across the entire economy: (1)
personal income less transfer payments, in real terms and (2) employment. In addition, the committee refers to two
indicators with coverage primarily of manufacturing and goods: (3) industrial production and (4) the volume of sales
of the manufacturing and wholesale-retail sectors adjusted for price changes. The committee also looks at monthly
estimates of real GDP such as those prepared by Macroeconomic Advisers (see http://www.macroadvisers.com).
Although these indicators are the most important measures considered by the NBER in developing its business cycle
chronology, there is no fixed rule about which other measures contribute information to the process.” We follow
Chauvet (1998) in using civilian labor force in nonagricultural industries rather than employees on nonagricultural
payrolls as used by NBER, for reasons detailed in Section 6 below.
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two multidimensional surfaces, where the ratio of f(yt|St = 2)Pr(St = 2) to the sum [f(yt|St =

1)Pr(St = 1) + f(yt|St = 2)Pr(St = 2)] would tell us the probability of a recession given that

the vector of growth rates is observed to equal yt, a calculation that could be performed for any

possible yt. In essence, we would be judging the probability of a recession by whether, taken as

a group, the elements of yt are closer to the values we typically associate with expansions, µ(1),

or closer to the values we typically associate with recessions, µ(2), with closeness based on the

respective values of [yt − µ(j)]0H−1[yt − µ(j)] for j = 1 or 2, but also taking into account how

likely we expected an expansion or recession to be Pr(St = j) before seeing the data yt.

Though this would be one possibility, it is not the best way to approach monthly data, since

our simplifying assumption in equation (5) that recessions account for all of the observed dynamic

behavior of yt is no longer a very good one when we get to these higher frequency, more detailed

data. We therefore adopt a generalization of the above method which has the basic effect of

allowing µ(j), the vector of growth rates that we expect when the economy is in regime j at date

t, to depend not just on the current regime j but also on the previous economic regime St−1 = i

as well as the whole history of previous values for yt−m. The same is potentially true for the

variance-covariance matrix H. Thus the general approach is based on a specification of

f(yt|St = j, St−1 = i,Yt−1)

=
1

(2π)n/2

¯̄̄
H
(i,j)
t

¯̄̄−1/2
exp

½
−(1/2)

h
yt −µ(i,j)t

i0 h
H
(i,j)
t

i−1 h
yt −µ(i,j)t

i¾
(13)

where Yt−1 denotes the history of observations obtained through date t− 1 :

Yt−1 = (y
0
t−1,y

0
t−2, ...,y

0
1)
0.

The dependence on both St and St−1 presents no real problems. Rather than forming an

inference in the form of a probability that the current regime St = j, we will be calculating a joint

probability that St = j and St−1 = i,

Pr(St = j, St−1 = i|Yt).

18



Indeed, we already saw exactly how to do this in equation (3). Here we are basically calculating

how close the various elements of yt are to the corresponding elements of µ
(i,j)
t , that is, how close

they are to what we would have predicted given that St = j and St−1 = i and the past observations

yt−m. The inference then favors those combinations i, j with the best fit to yt, taking into account

also how likely the combination i, j was regarded to be before seeing yt.

The question then is what growth rates µ(i,j)t we expect for yt in different phases of the

business cycle. We follow Chauvet (1998) and Kim and Nelson (1999a) in their specification of

how a recession may affect different economic indicators at the same time.

Our basic assumption is that there exists an aggregate cyclical factor Ft that evolves according

to

Ft = α(St) + φFt−1 + ηt St = 1, 2, (14)

where ηt ∼ N(0,σ2η) and α(St) = α(1) when the economy overall is in an expansion (St = 1) and

α(St) = α(2) in contraction. Note that if Ft corresponded to GDP growth, equation (14) would

include the dynamic process assumed for quarterly recession dynamics in the previous section as a

special case when φ = 0, with α(1) then corresponding to µ1 (the mean growth rate in expansions)

and α(2) corresponding to µ2. When φ is a number greater than zero (but presumably less than

unity), expression (14) also allows for serial correlation in growth rates even without a business

cycle turning point, and implies that in an expansion, the aggregate factor eventually trends

toward a growth rate of α(1)/(1− φ).

We assume that the growth rate of the rth monthly indicator yrt is determined by the aggregate

factor Ft and an idiosyncratic factor vrt,

yrt = λrFt + vrt for r = 1, 2, 3, 4 (15)

with vrt itself exhibiting AR(1) dynamics:11

vrt = θrvr,t−1 + εrt. (16)

11 Residual diagnostics and likelihood ratio tests favor first-order autoregressive processes for both the disturbance
terms and the dynamic factor.
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When the aggregate factor Ft changes, this induces a change in each variable in yt, with the rth

series changing by λr∆ when the aggregate factor changes by ∆; the bigger λr, the more series r

responds to these aggregate fluctuations. The rth series also experiences shocks vrt that have no

consequences for the variables in yt other than yrt.

We will continue to assume as in the preceding section that business cycle transitions are the

outcome of a Markov chain that is independent of previous realizations:12

Pr(St = j|St−1 = i, St−2 = k, ...,Yt−1) = pij .

The above system can be cast as a Markov-switching state space representation such as those

analyzed by Chauvet (1998) and Kim and Nelson (1999a). The key to such a representation is

a state vector ft which contains (along with the regime St) all the information needed to forecast

any of the individual series in yt. For this set-up, the state vector is a (5× 1) vector,

ft = (Ft, v1t, v2t, v3t, v4t)
0

whose dynamics are characterized by

Ft

v1t

v2t

v3t

v4t


=



α(St)

0

0

0

0


+



φ 0 0 0 0

0 θ1 0 0 0

0 0 θ2 0 0

0 0 0 θ3 0

0 0 0 0 θ4





Ft−1

v1,t−1

v2,t−1

v3,t−1

v4,t−1


+



ηt

ε1t

ε2t

ε3t

ε4t


or in matrix notation,

ft = α(St)e5 +Φf t−1 + at (17)

where e5 = (1, 0, 0, 0, 0)0. We assume that the disturbances in at are uncorrelated with each other

12 We test for the number of states versus a linear version of the model using the approach described in Garcia
(1998). Garcia uses the results from Hansen (1993, 1996), treating the transition probabilities as nuisance parame-
ters to test regime switching models. We construct Garcia’s test statistic and compare with the the critical values
reported in his paper. The critical values are significantly smaller than the likelihood ratio test for the dynamic
factor with Markov regime switching yielding some evidence in rejecting the one state null hypothesis.

20



and uncorrelated across time:

at|at−1,at−2, ...,a1, St, St−1, ... ∼ N(0,Ω)

where Ω is a diagonal matrix.

The observed variables yt are related to the state vector through the observation equation,



y1t

y2t

y3t

y4t


=



λ1 1 0 0 0

λ2 0 1 0 0

λ3 0 0 1 0

λ4 0 0 0 1





Ft

v1t

v2t

v3t

v4t


. (18)

The rth row of (18) just reproduces (15). Again (18) can be conveniently written in matrix form

as

yt = Λf t. (19)

The model also requires a normalization condition, because if we doubled the standard deviation

of each element of at and halved the value of each λr, the implied observed behavior of yt would

be identical. Our benchmark model resolves this normalization by setting σ2η, the first element

of Ω, equal to unity.

Note that equations (14) through (16) imply

yrt = λr
h
α(St) + φFt−1 + ηt

i
+ θrvr,t−1 + εrt

or

yrt = µ
(St)
rt + λrηt + εrt (20)

where

µ
(St)
rt = λr

h
α(St) + φFt−1

i
+ θrvr,t−1.

Equation (20) can be stacked into a vector for r = 1, 2, 3, 4 using the notation of (17) and (19),

yt = Λα(St)e5 +ΛΦf t−1 +Λat
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= µ
(St)
t +Λat (21)

for

µ
(St)
t = α(St)Λe5 +ΛΦf t−1.

In other words,

yt|St = j, ft−1 ∼ N
³
µ
(j)
t ,ΛΩΛ

0
´
. (22)

If we observed ft−1, this distribution would play the role of the N(µ
(i,j)
t ,H

(i,j)
t ) distribution in

(13), and indeed, would be a little simpler than the general case in that µ(i,j)t would not depend

on i and H(i,j)
t would not depend on i, j, or t. In this simple case, we see from (20) that µ(St)rt ,

the growth rate we expect for yrt when St = 2, would be the sum of: (a) λrα(2) (the product of

λr, the response of series r to the aggregate factor, with α(2), the contribution of a recession to

the aggregate factor); (b) λrφFt−1 (the product of λr with φFt−1, where φFt−1 is our forecast of

the non-recession component of the aggregate factor Ft); and (c) θrvr,t−1 (our expectation of vrt,

the factor that is unique to series r).13

Unfortunately, using this framework is a little more complicated than this, because even if we

knew for certain that St−1 = i, and had observed the values of yt−1,yt−2, ...,y1, we still would

not know the value ft−1. We could, however, use methods described below to form an estimate

of it, denoted f (i)t−1|t−1:

f
(i)
t−1|t−1 = E(ft−1|St−1 = i,Yt−1).

The true value ft−1 differs from this estimate by some error h(i)t−1|t−1:

ft−1 = f
(i)
t−1|t−1 + h

(i)
t−1|t−1. (23)

Suppose we approximate the distribution of this error with the Normal distribution:

h
(i)
t−1|t−1 ∼ N

³
0,P

(i)
t−1|t−1

´
. (24)

13 Extensions of the model such as allowing for more than two regimes, time-varying transition probabilities, and
different lags for the factors are straightforward extensions of the specification described here.
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The rth diagonal element of P(i)t−1|t−1 would be small if we had a good inference about the value

of fr,t−1. Treating ft−1 as known corresponds to the special case when P
(i)
t−1|t−1 = 0.

Imperfect inference about ft−1 affects our ability to forecast ft. Substituting (23) into (17),

ft = α(St)e5 +Φ
h
f
(i)
t−1|t−1 + h

(i)
t−1|t−1

i
+ at

= α(St)e5 +Φf
(i)
t−1|t−1 + q

(i)
t|t−1 (25)

where

q
(i)
t|t−1 = Φh

(i)
t−1|t−1 + at ∼ N(0,Q(i)t|t−1)

Q
(i)
t|t−1 = ΦP

(i)
t−1|t−1Φ

0 +Ω (26)

with the last expression following from the definition of P(i)t−1|t−1 in (24) and the fact that at is

independent of anything dated t− 1 or earlier. Substituting (25) into (19),

yt = α(St)Λe5 +ΛΦf
(i)
t−1|t−1 +Λq

(i)
t|t−1. (27)

Considering the case when St−1 = i and St = j, expression (27) implies that

yt|St = j, St−1 = i,Yt−1 ∼ N
³
µ
(i,j)
t|t−1,H

(i)
t|t−1

´
(28)

where

µ
(i,j)
t|t−1 = α(j)Λe5 +ΛΦf

(i)
t−1|t−1 (29)

H
(i)
t|t−1 = ΛQ

(i)
t|t−1Λ

0.

Expression (28) is the generalization we sought in (13). In this case, the value we expect for yrt

when St−1 = i and St = 2 is the sum of: (a) λrα(2), just as in the case when we regarded ft−1 as if

known; (b) λrφF
(i)
t−1|t−1 (the product of λr with φF

(i)
t−1|t−1, where φF

(i)
t−1|t−1 is our expectation of

the non-recession component of the aggregate factor Ft, with this expectation based on F
(i)
t−1|t−1,

which is where we thought the factor was at date t− 1, given that St−1 = i); and (c) θrv(i)r,t−1|t−1
(what we expect for the dynamic factor vrt that is unique to series r based on where we thought

the idiosyncratic factor was at t−1). The variance of our error in forecasting yt, denoted H(i)
t|t−1,
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depends on the date because having a larger number of observations {y1,y2, ...,yt−1} can help us

to improve the accuracy of the inference f (i)t−1|t−1.

The one additional step necessary before proceeding on to observation t + 1 is to update the

inference f (i)t−1|t−1 to incorporate date t’s information. This is accomplished through a device

known as the Kalman filter. The basic idea is to use the known correlation between the new

observation yt and the unobserved magnitude ft to revise the prediction of ft that we would have

made using f (i)t−1|t−1 alone. One could imagine doing this with a regression of ft on yt and f
(i)
t−1|t−1.

Although we don’t have any observations on ft with which to perform such a regression, we know

from the structure of the model what the regression coefficients would turn out to be if we had

an infinite number of such observations. In the appendix we show that these ideal regression

coefficients are given by

f
(i,j)
t|t = E(ft|St = j, St−1 = i,Yt)

= α(j)e5 +Φf
(i)
t−t|t−1 +Q

(i)
t|t−1Λ

0
h
H
(i)
t|t−1

i−1 h
yt −µ(i,j)t|t−1

i
. (30)

Expression (30) gives the inference about ft given both St−1 = i and St = j in addition to the

observed data yt,yt−1, ...,y1. The inference conditioning only on the current regime St = j is

found from

f
(j)
t|t = E(ft|St = j,Yt)

=
2X
i=1

E(ft|St = j, St−1 = i,Yt)Pr(St−1 = i|St = j,Yt)

=
2X
i=1

f
(i,j)
t|t Pr(St−1 = i|St = j,Yt). (31)

The probability necessary to calculate this last magnitude can again be found from Bayes Law:

Pr(St−1 = i|St = j,Yt) =
Pr(St = j, St−1 = i|Yt)

Pr(St = j|Yt)
.

The appendix also shows that the population mean squared error of the inference (31) is given
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by

P
(i,j)
t|t = E

½h
ft − f (j)t|t

i h
ft − f (j)t|t

i0 ¯̄̄̄
St = j, St−1 = i,Yt

¾
= Q

(i)
t|t−1 −Q(i)

t|t−1Λ
0
h
H
(i)
t|t−1

i−1
ΛQ

(i)
t|t−1 +

h
f
(i,j)
t|t − f (j)t|t

i h
f
(i,j)
t|t − f (j)t|t

i0
. (32)

Again this is converted to a magnitude that only depends on j from

P
(j)
t|t = E

½h
ft − f (j)t|t

i h
ft − f (j)t|t

i0 ¯̄̄̄
St = j,Yt

¾
=

2X
i=1

P
(i,j)
t|t Pr(St−1 = i|St = j,Yt).

There is just one problem with this algorithm. We assumed in (24) that the date t − 1

inference had an error with a Normal distribution, conditional on St−1 = i. But when we sum

the inferences over the two values of i as in the last line of (31), this would produce not a Normal

distribution but a mixture of Normals. The mean and variance of this distribution are correctly

given by f (j)t|t and P
(j)
t|t , and the updating rule in (30) can still be motivated as the population

regression. But when h(i)t−1|t−1 is not Normal, the distribution in (28) is no longer exact but

only an approximation. This approximation, suggested by Kim (1994), is certainly necessary,

because without the summation in (31), the number of possibilities would end up cascading, with

the inference about fT depending on ST , ST−1, ..., S1. Fortunately, experience has shown that

approximating the mixture distribution with a Normal distribution works very well in practice

and we seem to lose little when we adopt it.14

To summarize, our inference for the vector case is based on an iterative algorithm, calculated

sequentially for t = 1, 2, ..., T. As a result of step t − 1 of these calculations, we would have

calculated the following three magnitudes:

Pr(St−1 = i|Yt−1) (33)

f
(i)
t−1|t−1 (34)

14 For example, Chauvet and Piger (2005) estimate the dynamic factor model with regime switching in real time
using both Kim’s algorithm and Bayesian estimation methods (see Shepard 1994, Albert and Chib 1993, or Kim
and Nelson 1999a). The results obtained using these two methods were found to be very similar.
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P
(i)
t−1|t−1. (35)

At step t we then calculate

Pr(St = j, St−1 = i|Yt−1) = pij Pr(St−1 = i|Yt−1)

µ
(i,j)
t|t−1 = α(j)Λe5 +ΛΦf

(i)
t−1|t−1

Q
(i)
t|t−1 = ΦP

(i)
t−1|t−1Φ

0 +Ω

H
(i)
t|t−1 = ΛQ

(i)
t|t−1Λ

0.

These magnitudes are then all we need to construct the density of the tth observation given

St−1 = i, St = j,

f(yt|St−1 = i, St = j,Yt−1) =

1

(2π)n/2

¯̄̄
H
(i)
t|t−1

¯̄̄−1/2
exp

½
−(1/2)

h
yt −µ(i,j)t|t−1

i0 h
H
(i)
t|t−1

i−1 h
yt −µ(i,j)t|t−1

i¾
,

the density not conditioning on St−1 or St,

f(yt|Yt−1) =
2X
i=1

2X
j=1

f(yt|St−1 = i, St = j,Yt−1)Pr(St = j, St−1 = i|Yt−1), (36)

and the filter probability that St = j:

Pr(St = j|Yt) =
2X
i=1

f(yt|St = j, St−1 = i,Yt−1)Pr(St = j, St−1 = i|Yt−1)
f(yt|Yt−1)

. (37)

This last calculation gives us the input (33) that we will need to proceed with the iteration for

t+ 1. We update (34) by calculating

Pr(St−1 = i|St = j,Yt) =
f(yt|St = j, St−1 = i,Yt−1)Pr(St = j, St−1 = i|Yt−1)P2
i=1 f(yt|St = j, St−1 = i,Yt−1)Pr(St = j, St−1 = i|Yt−1)

(38)

f
(i,j)
t|t = α(j)e5 +Φf

(i)
t−t|t−1 +Q

(i)
t|t−1Λ

0
h
H
(i)
t|t−1

i−1 h
yt −µ(i,j)t|t−1

i
f
(j)
t|t =

2X
i=1

f
(i,j)
t|t Pr(St−1 = i|St = j,Yt).

Finally, we update the third input (35) from

P
(i,j)
t|t = Q

(i)
t|t−1 −Q(i)

t|t−1Λ
0
h
H
(i)
t|t−1

i−1
ΛQ

(i)
t|t−1 +

h
f
(i,j)
t|t − f (j)t|t

i h
f
(i,j)
t|t − f (j)t|t

i0
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P
(j)
t|t =

2X
i=1

P
(i,j)
t|t Pr(St−1 = i|St = j,Yt).

Note that as a consequence of performing this iteration for t = 1, 2, ..., T, we have calculated

the filter probabilities (37), one-month smoothed probabilities (38), and conditional density of the

tth observation (36). The latter can be used to construct the log likelihood for the entire sample,

ln f(YT ) = ln f(y1) +
TX
t=2

ln f(yt|Yt−1). (39)

The value obtained from (39) will depend on the values of the population parameters that were

used to perform the above calculations. These consist of θ = (α(1),α(2), p11, p22,φ, θ1, θ2, θ3,

θ4,λ1,λ2,λ3,λ4,σ
2
ε1 ,σ

2
ε2 ,σ

2
ε3 , σ

2
ε4)

0. We then choose values of these parameters so as to maximize

the log likelihood (39).

All that is needed to implement the above procedure is the starting values of (33) through (35)

for observation t = 1, given initial values for θ. For the probabilities we use as initial condition the

probabilities associated with the ergodic distribution of the Markov chain , Pr(St−2 = h, St−1 =

i|Yt−1) = Pr(S0 = i) = πi = (1− pjj)/(2− pii− pjj), i = 1, 2, where πi is the ergodic probability.

For the state vector, its unconditional mean and unconditional covariance matrix are used as

initial values, that is, f (i)0|0 = E(ft) and P
(i)
0|0 = ΦP

(i)
0|0Φ

0 +Ω.15

5 Empirical performance of the monthly recession proba-
bility index.

In this section we investigate the ability of the multivariate version of the Markov switching model

in dating business cycle turning points at the monthly frequency. We used numerical search

algorithms (e.g., Hamilton, 1994, Section 5.7) to find the value of the parameter vector θ̂ that

maximizes the log likelihood (39) of the observed historical sample of growth rates of sales, income,

employment, and IP. These maximum likelihood estimates are reported in Table 5. For any date

t we can evaluate current filtered probabilities of expansions, Pr(St = 1|Yt; θ̂), and recessions,

15 Since ft is unobserved, we use the average of the unconditional mean of the four series in Yt.
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Pr(St = 2|Yt; θ̂), as calculated in equation (37) now based on the maximum likelihood estimate

θ̂. We can also construct a smoothed inference that uses both current and future observations of

the series yt. For example, the conditional probability that the economy is in a recession at date

t based on all future observations of the series yt is Pr(St = 2|YT ; θ̂).

[ insert Table 5 about here ]

As a first step in evaluating the ability of the model to reproduce the NBER dates, consider

Figure 8, which plots the estimated full sample smoothed probabilities of recessions. The shaded

areas represent periods dated as recessions by the NBER. The probabilities indicate that our

model reproduces the NBER chronology very closely. During periods that the NBER classifies as

expansions, the probabilities of recession are usually close to zero. At around the beginning of the

NBER-dated recessions the probabilities rise and remain high until around the time the NBER

dates the end of the recession. In particular, every time the probability of recession increases

above 50%, a recession follows. Conversely, the recession probabilities decrease below 50% at the

recession trough.

[ insert Figure 8 about here ]

The model-based inferences about recession dates are compared with the dates determined by

the NBER in Table 6. The first column reports the month in which the recession started according

to the NBER dates. The second column shows the first month in which the full sample smoothed

probability of a recession rose above 50%. The NBER recession dates and the model-based dates

are very close, either exactly coinciding or differing by only one month. The one exception is the

2001 recession, in which the estimated probabilities started increasing in 2000, six months before

the recession began as declared by the NBER. Our quarterly GDP-based full-sample inferences

reported in Table 2 also suggested that this recession actually began in the fourth quarter of 2000.

Some special features of this recession will be discussed in more detail below in connection with

data that would have actually been available in real time.

[ insert Table 6 about here ]
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The third column of Table 6 indicates the NBER date for the end of the recession, and the

fourth column reports the last month for which the smoothed probability of a recession was above

50%. Once again the model-based inference and the NBER dating for troughs are strikingly

similar, even more so than for business cycle peaks.

These full sample smoothed probabilities are an important tool that can be used to revise

historically the model assessment of business cycle phases. However, since these smoothed prob-

abilities rely on future information T − t steps ahead, they can not be used to evaluate the state

of the business cycle on a current basis. In order to investigate the real-time performance of the

multivariate Markov switching model for dating business cycles, two features should be taken into

account that not even the use of current filtered probabilities would accomplish. First, only infor-

mation available at the time the forecast is formed should be used. Thus, recursive estimation is

applied to estimate the parameters of the model and infer the probabilities. Second, the real-time

exercise needs to be implemented using only the same knowledge of data revisions that would have

been available at the time. Thus, for each end of sample date in the recursive estimation the first

release of the data that was available is used.

For each month between January 1978 and January 2004, we obtained values for the complete

history of each of the four monthly variables in yt going back to January 1959, as that history

would have been reported as of the indicated date. These data were assembled by hand from

various issues of Business Conditions Digest and the Survey of Current Business, Employment

and Earnings (both published monthly by the Bureau of Economic Analysis), and Economic

Indicators (published monthly by the Council of Economic Advisers). As with our real-time

GDP series described in Section 3, there were gaps in the full series for some vintages that were

filled in with the next available observation. There were also occasionally large outliers, which

were also replaced with the next release.

Using these data, we ran recursive estimations of the model starting with the sample from

January 1959 to November 1977. The filter probability for the terminal date of this first data set,
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Pr(St = 2|y[t]1 ,y[t]2 , ...,y[t]t ; θ̂
[t]
) where t corresponds to November 1977, is the first data point of

the real-time filter probabilities corresponding to the single date t. We will refer below to 100

times this magnitude,

p
(m)
t = 100× Pr(St = 2|y[t]1 ,y[t]2 , ...,y[t]t ; θ̂

[t]
),

as our “preliminary monthly real-time recession probability index”. The sample is then extended

by one month, to December 1977, using now a completely new set of observations y[t+1]1 ,y
[t+1]
2 , ...,y

[t+1]
t+1

to come up with a new maximum likelihood estimate θ̂
[t+1]

and a new terminal filter probability

Pr(St+1 = 2|y[t+1]1 ,y
[t+1]
2 , ...,y

[t+1]
t ; θ̂

[t+1]
) which will produce the preliminary index p(m)t+1 for date

t+ 1. This procedure is repeated for each of the 315 recursive estimations until the final sample

is reached, which extends from January 1959 to January 2004.

Notice that for each end of sample date in the recursive estimation procedure we use the first

release of the data that was available for all four variables. The series employment and industrial

production are more timely - they are released with only one month delay, whereas personal income

and manufacturing and trade sales are released with a delay of two months.16 In order for the

four real-time variables to enter the model estimation, we use the data vintage that contains the

latest information on sales and personal income. For example, for the second sample from January

1959 to December 1977, we use the first release of data that included information on all four series

for December 1977, which is February 1978.

Figure 9 plots the real-time recursive probability of a recession. Each point in the graph

corresponds to a recursive estimation of real-time unrevised data, p(m)t /100, plotted as a function

of t.17 The probabilities match closely the NBER recessions, rising around the beginning of

recessions and decreasing around their end. Once again, the probabilities remain below 50% during

16 The first releases of employment and industrial production for a given month are available, respectively, around
the first and third weeks of the subsequent month, whereas the first releases of personal income and manufacturing
and trade sales are available in the last week of the second month.
17 The values plotted in Figure 10 for dates t before November 1977 are the filter probabilities from the sample

of the first vintage, Pr(St = 2|y(1977:11)1 ,y
(1977:11)
2 , ...,y

(1977:11)
t ; θ̂

(1977:11)
).
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expansions, usually only rising beyond this threshold during recessions as dated by the NBER.

[ insert Figure 9 about here ]

The real-time recursive filtered probabilities are spikier than the filtered or smoothed prob-

abilities obtained using revised data, which is expected given that unrevised data are generally

noisier than revised releases. The real-time filtered probabilities are also intrinsically more noisy

than their smoothed counterparts. We could immediately call a business cycle turning point if

the real-time filtered probabilities move from below 50% to above 50% or vice versa. This rule

maximizes the speed at which a turning point might be identified, but increases the chances of

declaring a false positive. It seems more prudent to require confirmation of the turning point,

by verifying it with more information As in Section 3, we investigate the gain in accuracy from

using a low-order smoothed probability in addition to the current filtered probability. We combine

the information on the readily available filtered probabilities with the more precise information

obtained from h-step ahead (where h is a low number) smoothed probabilities in real-time assess-

ment of the business cycle phases. For example, the one-month ahead smoothed probabilities are

used to create what we call our “revised monthly real-time recession probability index”:

q
(m)
t = 100× Pr(St = 2|Y[t+1]

t+1 ; θ̂
[t+1]

) =
2X
i=1

Pr(St = 2, St+1 = i|Y[t+1]
t+1 ; θ̂

[t+1]
). (40)

Figure 10 displays real-time h-month-smoothed inferences for h = 1, 2, 3. The shaded areas

correspond to recessions as dated by the NBER. The quality of the inference in terms of accuracy

improves as more information is used to form the smoothed probabilities. Figure 11 shows the real-

time current filtered probabilities and the h-month-smoothed probabilities recession by recession.

A distinct common pattern across the probabilities for the 1980, 1981, and 1990 recessions is that

the current filtered probabilities declare the beginning of recessions a couple of months after the

NBER says that a recession began, while they call the end of recessions at about the same time

as the NBER dating. This is less accentuated for the 1980 and 1981 recessions than for the 1990

recession. The smoothed probabilities, however, increasingly adjust the date of recession peaks to
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earlier months, converging to a match to the NBER date. Regarding the end of recessions, the

dates called by the current filtered probabilities for these recessions are timely with the NBER,

and the smoothed probabilities obtained 1, 2, and 3 months later simply confirm these dates.

Thus, there seems to be a gain in combining information from the current filtered probability and

the smoothed probabilities in tabulating a chronology of expansion peaks in real time.

[ insert Figure 10 about here ]

[ insert Figure 11 about here ]

The inference from the multivariate Markov switching model for the 2001 recession is a bit

distinct from previous downturns. The current filtered probabilities declare the beginning of the

recession to have occurred at about the same time as the NBER date. The smoothed probabilities,

however, increasingly adjust the peak date to a couple of months before the NBER date. We

earlier observed the same thing with inferences based on quarterly GDP growth rates. In the

case of the monthly index, these dynamics of the estimated probabilities are associated with the

behavior of the growth rates of industrial production and personal income, which showed a decline

already in 2000, before the recession had begun. The end of the 2001 recession is in accord with

the NBER dating even when only the current filtered probabilities are used, as it is the case

for previous recessions. However, this result for the last recession is sensitive to the choice of the

employment series used in the estimation of the multivariate Markov switching model, as discussed

in the next section.

While visual inspection of the probabilities yields some insight, it is difficult to ascertain how

close the turning points determined by the multivariate model are to the NBER dates without

compiling specific dates. In order to do this a formal definition is needed to convert the estimated

probabilities into business cycle dates. We use a combination of the current filtered probabilities

p
(m)
t and one-month-smoothed probabilities q(m)t to evaluate the performance of the multivariate

Markov switching model in signalling business cycle turning points. We follow a similar rule to the

one adopted for the univariate inference using real-time quarterly GDP, though there we only made
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use of the one-quarter smoothed probabilities q(q)t . Note that, just as we waited until one extra

quarter’s data on GDP growth (y[t+1]t+1 ) becomes available before announcing the quarterly index

q
(q)
t for quarter t, we will require one extra month’s data on sales, income, employment, and IP

(y
[t+1]
t+1 ) before announcing the revised monthly index q

(m)
t for month t. Let D(m)t = “recession”

if we declare the economy to have been in a recession in month t and D(m)t = “expansion”

otherwise. If we had declared that the economy was in an expansion in month t − 1, (D(m)t−1 =

“expansion”), then we would declare that a recession began in month t only if (1) the filtered

probability of recession at t had risen above 65% (the preliminary index p(m)t > 65) and (2) this

result is confirmed by the one-month ahead smoothed probability of expansion for assessment of

the economy for that same month t (the revised index q(m)t > 65). Otherwise, we would declare

the expansion to have continued through month t. Formally,

D
(m)
t =


“expansion” if D(m)t−1 = “expansion”, and either p

(m)
t ≤ 65 or q(m)t ≤ 65

“recession” if D(m)t−1 = “expansion”, and both p
(m)
t > 65 and q(m)t > 65

.

Similarly, if we had declared that the economy was in a recession in month t−1, then we would

declare that a recovery began in month t only if both the filtered and the one-month smoothed

probabilities of recession for month t are less than 35%:

D
(m)
t =


“recession” if D(m)t−1 = “recession”, and either p

(m)
t ≥ 35 or q(m)t+1|t ≥ 35

“expansion” if D(m)t−1 = “recession”, and both p
(m)
t < 35 and q(m)t+1|t < 35

.

The preliminary index p(m)t , revised index q(m)t , and announcement D(m)t are reported in Table 7.

[ insert Table 7 about here ]

Note that a more precise turning point signal comes at the expense of how quickly we would

call it, since the timing when we would be able to make the announcement in real time would be

delayed by one extra month. For example, for assessment of the current state of the economy

at t = 1990:7, the first release of the real-time data for all four variables would be available in

1990:9. By using the one-month smoothed probability, we would have to wait until data released

in 1990:10 to make a decision. Thus, there is a three-month delay in announcing turning points.
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We find that the gain in precision by using q(m)t in addition to p(m)t more than compensates the

small loss in timing by one month.

Table 8 compares NBER news releases with the performance of the multivariate Markov switch-

ing model in dating and announcing business cycle chronology. Regarding dating the phases, the

model would have made the identical declaration of the date of the 2001 business cycle peak as

did the NBER, but lags the NBER dates by two or three months for the other three recessions.

The difference between the model-based dates and the NBER’s is smaller for troughs, coinciding

in two occasions and differing by one or two months in the other two recessions.

[ insert Table 8 about here ]

The great advantage of the objective method regards the timely announcement of turning

points. The algorithm does very well in announcing the beginning and end of downturns compared

with statements released by the NBER. The model would have beaten the NBER in calling the

beginning of a recession in two out of four occasions (the start of the 1990 and 2001 recessions,

respectively) and would have coincided in two cases (the start of the 1980 and 1982 recessions).

The advantage of the dates inferred from the multivariate model is even more significant for dating

the end of recessions. The model beats the NBER announcements in all occasions, with leads

from three to seventeen months. The model would have announced the end of the 1980 recession

8 months before the NBER’s announcement, the end of the 1982 recession three months earlier

than the NBER, the 1990 recession 17 months earlier, and the more recent recession in 2001 would

have been declared to have ended 14 months before the announcement by the NBER.

Comparing the quarterly and monthly results, the multivariate Markov switching model and

the univariate one applied to GDP usually convey similar information, but complement each other

on some occasions. This indicates that there are clear gains in combining information from our

quarterly real-time GDP-based recession probability index (D(q)t and q(q)t ) and our monthly real-

time multivariate-based recession probability indicators (D(m)t , p(m)t , and q(m)t ) in dating business

cycle and announcing these dates in real time. For example, the quarterly real-time index dates
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the end of the 1990 recession only in the second quarter of 1992, and the announcement of this date

would have been available in February 1993, three months after the NBER announcement. The

monthly index, on the other hand, dates the end of this recession as March 1991, coinciding with

the trough declared by the NBER. This date would have been available from the monthly index

in July 1991, 17 months before the announcement by the NBER in December 1992. Regarding

the 2001 recession, the monthly index dates the end of the 2001 recession in January 2002, two

months after the trough in November 2001 declared by the NBER. The quarterly index, on the

other hand, declares the end of this recession in the fourth quarter of 2001, coinciding with the

NBER date. The monthly index would have announced this trough 14 months before the NBER

declared the end of this recession, and the quarterly index would have announced it 12 months

before.

In general, there is a gain in speed of announcement by using the monthly-based recession

index, given that the monthly data are available more quickly than quarterly GDP mainly with

respect to business cycle troughs. While the NBER’s announcements sometimes beat the quarterly

index, the monthly index consistently anticipates the recession end before the NBER’s decisions.

On the other hand, the monthly index (particularly if one relied only on p(m)t or q(m)t alone)

shows more short-run volatility than does the quarterly index. Although combined inference is

best, either index alone would have overall delivered more timely indications than did NBER in

declaring the start or the end of the recessions in the real time sample, and the business cycle

chronology obtained would have matched closely the NBER dating.

These results suggest that the algorithm-based inference contributes to the assessment of busi-

ness cycle phases in real time, and offers quantitative improvements compared to the NBER

methods. In addition, our approach is more objective and mechanical, which makes its potential

use widespread.
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6 Alternative approaches to monthly inference.

In this section we report briefly on our investigations of some alternative specifications for the

monthly index. We explored different autoregressive processes for the components of the state

equation and tried specifications with one or two of the elements of yt deleted or one or two other

monthly series added. None of these changes seemed to make much difference for the inference.

One feature that does modify the results somewhat is the changing cyclical behavior of em-

ployment. In particular, the employment series used by the NBER, employees on non-agricultural

payrolls (ENAP), displayed a very slow recovery in the last recession. In fact, real-time assess-

ment of the recent economic recession using this series would have indicated that the downturn

did not end until 2003. The real-time probabilities of recession obtained when this measure of

employment is included in the estimation suggested that there was a slight recovery in economic

activity from October 2001 to July 2002, but this was followed by a weakening of the economy

in the subsequent months until early 2003. The use of this employment series also yields delays

in signaling turning points for previous recessions. This is in agreement with Chauvet (1998),

who found that this employment series lags the business cycles and documented the improvement

in using alternative employment variables. Stock and Watson (1991) also found that payroll

employment is a lagging indicator rather than a coincident variable of business cycle since its

estimated residuals are serially correlated. For this reason, both Chauvet and Stock and Watson

included lagged values for the factor in the measurement equation for payroll employment. On

the other hand, this correction is not necessary when using other employment measurements.

Our analysis in Section 5 was instead based on an alternative employment series, Total Civilian

Employment (TCE). This variable coincides with business cycle phases and delivers a much faster

call of turning points in real time, as described in the previous section. The inclusion of this series

allows us to keep the specification simple and yet robust to the use of real time data.

There are several reasons why these two series diverge sometimes, and a lot of controversy has
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emerged in the last few years on the best measure of employment. ENAP is based on a survey

of business establishments, whereas TCE is based on a survey among households. These two

employment series have generally moved together, with some minor differences around business

cycle turning points until very recently. In particular, ENAP tends to overestimate employment

around the beginning of recessions and underestimate around their end. As the results of esti-

mation of our model based on the two different measures has reflected, these dynamics became

very accentuated in the last recession in 2001. The main differences between these two series

are that ENAP does not count agricultural and self-employed workers. More important, ENAP

counts an individual twice if he or she works two jobs or changes jobs during the pay period. As

a result of a debate regarding the sources of the differences, the Bureau of Labor and Statistics

has produced some studies and concluded that a correction in population trend and addition of

non-farmer workers in the TCE series would bring the two closer together in level and ex-post for

the recent period (Di Natale, 2003; U.S. Department of Labor, 2004). This is also discussed in

Juhn and Potter (1999). A comprehensive summary of these results and the debate can be found

in Kane (2004).

However, the adjustment by BLS does not deal with the reliability and differences between

these two series in real time, which is the focus of our analysis. The ENAP series only includes

job destruction and creation with a lag, it does not include self-employment and contractors or

off-the-books employment, and it double counts jobs if a person changes jobs within a payroll

survey reference period. These can be very important cyclical factors around business cycle

turning points. In particular, the first three differences can lead ENAP to signal a more severe

recession and delay detection of a recovery, while the fourth one can overestimate employment

around peaks. In addition, the first release of ENAP is preliminary and undergoes substantial

revisions in subsequent months. There is also a significant revision of this series once a year

when the smaller initial sample collected is adjusted by using as a benchmark the universe count

of employment derived from Unemployment Insurance tax records that almost all employers are

37



required to file. These corrections make real-time data on ENAP very different from the revised

versions. Thus, although the revised ENAP may reflect better labor conditions ex-post, its

performance in capturing real time cyclical changes in the economy is meager compared to the

household survey (TCE).

In addition, we have also examined the performance of the model when a break in volatility

in 1984 is taken into account. Kim and Nelson (1999b), McConnell and Perez-Quiros (2000), and

Chauvet and Potter (2001) have found that the US economy became more stable since this date,

particularly the quarterly GDP series. When this feature is incorporated in the model the results

improve substantially with respect to the last two recessions, which took place after the structural

break in volatility. We have nevertheless chosen not to correct for the decrease in volatility in

the US economy in order to keep the analysis simple and robust.

Different rules were also investigated to declare the beginning and end of recessions. The

one chosen, as described in the previous section, was not the one that necessarily maximizes the

precision or speed of business cycle signals, but the one that worked as well with both simple

and more complicated specifications. That is, we have chosen the rule that gives us the most

confidence that it will be robust in future applications. We are less interested in fine-tuning the

improvement of the algorithm than in obtaining a specification and rules that have a better chance

to work well in the future. For this reason our analysis employs the simpler specification, which

does not make any allowance for changes in the variance of economic fluctuations over time.

Overall, most of the options we investigated would result in quite reasonable estimates. Our

conclusion is nevertheless that the benchmark model and inference rules presented in Section 5

appear to be the most robust with respect to changes in specification and data revision, and

therefore recommend them as likely to prove most reliable for analyzing data and recognizing the

business cycle trends in an ever-changing economy.
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Appendix

Here we derive equations (30) and (32). Suppose we have vectors z and y which have mean

zero and a joint Normal distribution. Then the expectation of z given y turns out to be18

E(z|x) =E(zx0) [E(xx0)]−1 x (41)

which is just a population version of the familiar regression formula. The conditional variance is

known to be

E [z−E(z|x)] [z−E(z|x)]0 = E(zz0)−E(zx0) [E(xx0)]−1E(xz0). (42)

To apply these formulas here, let z = f t−α(j)e5−Φf (i)t−t|t−1 and x = yt−µ(i,j)t|t−1, which both have

mean zero conditional on St = j, St−1 = i,yt−1,yt−2, ...,y1. The updated inference about ft is

then given by

E
h
ft − α(j)e5 −Φf (i)t−t|t−1|yt;St = j, St−1 = i,Yt−1

i
= E

½h
ft − α(j)e5 −Φf (i)t−t|t−1

i h
yt −µ(i,j)t|t−1

i0 ¯̄̄̄
St = j, St−1 = i,Yt−1

¾
×µ

E

½h
yt −µ(i,j)t|t−1

i h
yt −µ(i,j)t|t−1

i0 ¯̄̄̄
St = j, St−1 = i,Yt−1

¾¶−1 h
yt −µ(i,j)t|t−1

i
. (43)

But notice from (25) and (27) that

E

½h
ft − α(j)e5 −Φf (i)t−t|t−1

i h
yt −µ(i,j)t|t−1

i0 ¯̄̄̄
St = j, St−1 = i,Yt−1

¾
= E

½
q
(i)
t|t−1

h
q
(i)
t|t−1

i0
Λ0
¾

= Q
(i)
t|t−1Λ

0 (44)

for Q(i)
t|t−1 the variance of q

(i)
t|t−1 defined in (26). Similarly from (28),

E

½h
yt −µ(i,j)t|t−1

i h
yt −µ(i,j)t|t−1

i0 ¯̄̄̄
St = j, St−1 = i,Yt−1

¾
=H

(i)
t|t−1. (45)

Substituting (44) and (45) into (43),

E
h
ft − α(j)e5 −Φf (i)t−t|t−1|yt;St = j, St−1 = i,Yt−1

i
= Q

(i)
t|t−1Λ

0
³
H
(i)
t|t−1

´−1 h
yt −µ(i,j)t|t−1

i
,

18 See for example Hamilton (1994, p. 102).
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which upon rearranging yields (30).

Similar calculations allow the updated variance to be found from (42):

E

½h
ft − f (i,j)t|t

i h
ft − f (i,j)t|t

i0 ¯̄̄̄
St = j, St−1 = i,Yt

¾
= Q

(i)
t|t−1 −Q(i)

t|t−1Λ
0
h
H
(i)
t|t−1

i−1
ΛQ

(i)
t|t−1. (46)

To relate this magnitude to that given in (32), notice that

P
(i,j)
t|t = E

½h
ft − f (j)t|t

i h
ft − f (j)t|t

i0 ¯̄̄̄
St = j, St−1 = i,Yt

¾
= E

½h
ft − f (i,j)t|t + f

(i,j)
t|t − f (j)t|t

i h
ft − f (i,j)t|t + f

(i,j)
t|t − f (j)t|t

i0 ¯̄̄̄
St = j, St−1 = i,Yt

¾
= E

½h
ft − f (i,j)t|t

i h
ft − f (i,j)t|t

i0 ¯̄̄̄
St = j, St−1 = i,Yt

¾
+
h
f
(i,j)
t|t − f (j)t|t

i h
f
(i,j)
t|t − f (j)t|t

i0
(47)

where cross-product terms disappear from the last expression because E
n
ft − f (i,j)t|t

¯̄̄
St = j,Yt

o
=

0 and
h
f
(i,j)
t|t − f (j)t|t

i
is a deterministic function of St = j, St−1 = i,Yt. Substituting (46) into (47)

results in (32).

40



References

Albert, J. and S. Chib (1993), Bayes inference via Gibbs sampling of autoregressive time series

subject to Markov mean and variance shifts, Journal of Business and Economic Statistics 11:1-15.

Artis, M., Marcellino, M. and Proietti, T. (2004), Dating business cycles: A methodological

contribution with an application to the euro area,” Oxford Bulletin of Economics and Statistics

66:537-574.

Bry, G. and C. Boschan (1971), Cyclical Analysis of Times Series: Selected Procedures and

Computer Programs (National Bureau of Economic Research, New York).

Burns, Arthur F., andWesley C. Mitchell (1946), Measuring Business Cycles, (National Bureau

of Economic Research, New York).

Carlin, Bradley.P., Nicholas G. Polson, and David S. Stoffer (1992), A Monte-Carlo approach

to nonnormal and nonlinear state-space modeling, Journal of the American Statistical Association

87:493-500.

Chauvet, Marcelle (1998), An economic characterization of business cycle dynamics with factor

structure and regime switches, International Economic Review, 39:969-996.

Chauvet, Marcelle, and Jeremy Piger (2005), The real-time performance of business cycle

dating methods, Working paper, University of California, Riverside.

Chauvet, Marcelle, and Simon Potter (2001), Recent changes in the U.S. business cycle, The

Manchester School, 69:481-508.

Croushore, Dean, and Tom Stark (2003), A real-time data set for macroeconomists: Does the

data vintage matter?, Review of Economics and Statistics 85:605-617.

Diebold Francis X. and Glenn D. Rudebusch (1996), Measuring business cycles: A modern

perspective, Review of Economics and Statistics 78:67-77.

Di Natale, Marisa L. (2003) Creating comparability in CPS employment series, U.S. Depart-

ment of Labor, Bureau of Labor Statistics, at www.bls.gov/cps/cpscomp.pdf.

41



Durbin, J. and S. J. Koopman (1997) Monte Carlo maximum likelihood estimation of non-

Gaussian state space model, Biometrika 84:669-684.

Fridman, M. and L. Harris (1998), A maximum likelihood approach for non-Gaussian stochastic

volatility models, Journal of Business and Economic Statistics 16:284-291.

Garcia, R. (1998), Asymptotic null distribution of the likelihood ratio test in Markov switching

models, International Economic Review 39:763-788.

Gordon, K. and A.F.M. Smith (1990), Modelling and monitoring biomedical time series, Jour-

nal of the American Statistical Association 85:328-337.

Hamilton, James D. (1989), A new approach to the economic analysis of nonstationary time

series and the business cycle, Econometrica 57:357-384.

Hamilton, James D. (1990), Analysis of time series subject to changes in regime, Journal of

Econometrics 45:357-384.

Hamilton, James D. (1994), Time Series Analysis, (Princeton University Press, Princeton).

Harding, D. and Pagan, A. (2002), Dissecting the cycle: a methodological investigation, Journal

of Monetary Economics 49:365-381

Hansen, B. E. (1993) The likelihood ratio test under non-standard conditions: Testing the

Markov trend model of GNP, in M.H. Pesaran and S. Potter, eds., Nonlinear Dynamics Chaos

and Econometrics, (John Wiley & Sons, New York) 53-73.

Hansen, B. E. (1996) Inference when a nuisance parameter is not identified under the null

hypothesis, Econometrica 64:413-430.

Harding, Don and Adrian Pagan (2002), Synchronization of cycles, Working paper, Australian

National University.

Harrison, P.J., and C.F. Stevens (1976), Bayesian forecasting, Journal of the Royal Statistical

Society Series B 38:205-247.

Juhn, Chinhui and Simon Potter (1999), Explaining the recent divergence in payroll and

household employment growth, Current Issues in Economics and Finance, Federal Reserve Bank

42



of New York, December, 1-6.

Kane, Tim (2004), Diverging employment data: A critical view of the payroll survey, The

Heritage Foundation Center for Data Analysis, CDA04-03, available at http://www.heritage.org/

Research/Labor/CDA04-03.cfm.

Kim, Chang-Jin (1994), Dynamic linear models with Markov-switching, Journal of Economet-

rics 60:1-22.

Kim, Chang-Jin and Charles R. Nelson (1999a), State-Space Models with Regime Switching,

(MIT Press, Cambridge, MA).

Kim, Chang-Jin and Charles R. Nelson (1999b), Has the U.S. economy become more stable? A

Bayesian approach based on a Markov-switching model of the business cycle, Review of Economics

and Statistics 81:608-616.

Kitagawa, G. (1987), Non-Gaussian state-space modeling of nonstationary time series, Journal

of the American Statistical Association 82:1032-63.

Lundbergh, S and T. Terasvirta (2002), Forecasting with smooth transition autoregressive

models, in Michael P. Clements and David F. Hendry, eds., A Companion to Economic Forecasting,

(Blackwell, Oxford) 485-509.

Mariano, R.S., and Y. Murasawa (2003), A new coincident index of business cycles based on

monthly and quarterly series, Journal of Applied Econometrics 18:427-443.

Perez-Quiros, Gabriel, and Margaret McConnell (2000), Output fluctuations in the United

States: What has changed since the early 1980’s?, American Economic Review 90:1464-1476.

Shepard, N. (1994), Partial non-Gaussian state space, Biometrika 81:115-131.

Stock, James H. and Mark W. Watson (1991), A probability model of the coincident economic

indicators, in Kajal Lahiri and Geoffrey H. Moore, eds., Leading Economic Indicators: New

Approaches and Forecasting Records, (Cambridge University Press, Cambridge, U.K.).

U.S. Department of Labor, Bureau of Labor Statistics (2004), Current population survey 1990—

2003 employment adjusted for population controls, available at at www.bls.gov/cps/cpspopsm.pdf

43



(March 2, 2004).

van Dijk, D., T. Terasvirta, and P.H. Franses (2002), Smooth transition autoregressive models:

A survey of recent developments, Econometric Reviews 21:1-47.

44



Figure legends

Figure 1. U.S. real GDP growth rates, 1947-2004.

Figure 2. Top panel: nonparametric estimate of the density of U.S. annualized growth rates

for those postwar U.S. quarters classified by NBER as falling in recessions. Bottom panel: density

for expansions.

Figure 3. Determining the probability of a recession from GDP growth rate alone. Top panel:

probability of observing given GDP growth during expansions or contractions. Bottom panel:

probability of being in a contraction having observed specified value for GDP growth.

Figure 4. Determining the probability of a recession when previous quarter gave a strong

recession signal. Top panel: probability of observing given GDP growth in quarter t + 1 given

probability of recession of 0.90 in quarter t. Bottom panel: probability of being in a contraction

in quarter t + 1 given previous quarter’s probability of 0.90 and having observed specified value

for GDP growth in quartert+ 1.

Figure 5. Probability of being in a recession based on one quarter’s GDP data alone (top

panel) and based on two quarter’s GDP growth rates (bottom panel).

Figure 6. Probability that the U.S. economy is in recession based on revised quarterly data.

Top panel: filter probabilities (inference using only GDP growth rates available at the time).

Bottom panel: smoothed probabilities (inference using the full historical record). Shaded regions:

dates of recessions as determined by NBER up to two years after the fact.

Figure 7. Probability that the U.S. economy is in recession. Top panel: one-quarter smoothed

probabilities based on data as released historically as of two quarters after the indicated date

(e.g., the entry for 2003:I is based on GDP growth rates for 2003:II as reported in August 2003).

Bottom panel: one-quarter smoothed probabilities based on historically revised data as reported

for all quarters in August 2004.

Figure 8. Full-sample smoothed probabilities and NBER recessions based on revised monthly
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data.

Figure 9. Current filter probabilities and NBER recessions based on real-time monthly data

after 1977:12 and revised monthly data before 1977:12.

Figure 10. Current filtered probabilities and h-month-smoothed probabilities of recession (h=1,

2, 3) based on real-time monthly data.

Figure 11. Filtered and smoothed probabilities with real-time monthly data over recursive

samples. Top panel: 1980 and 1981-82 recessions. Middle panel: 1990-1991 recession. Bottom

panel: 2001 recession.
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Tables

Table 1

Parameter estimates based on (1) characteristics of expansions and recessions as classified by

NBER, and (2) values that maximize the observed sample log likelihood of postwar GDP growth

rates

Parameter Interpretation
Value from NBER

classifications
Value from GDP alone

µ1 average growth in expansion 4.5 4.62

µ2 average growth in recession −1.2 −0.48

σ standard deviation of growth 3.5 3.34

p11 prob. expansion continues 0.95 0.92

p22 prob. recession continues 0.78 0.74
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    Table 2 

Dates of recessions as determined by (1) NBER and (2) properties of GDP growth alone 

Start of recession End of recession 
NBER Smoothed probabilities NBER Smoothed probabilities 
1948:IV 1948:IV 1949:IV 1949:IV 
1953:II 1953:III 1954:II 1954:II 
1957:III 1957:II 1958:II 1958:I 
1960:II 1960:II 1961:I 1960:IV 
1969:IV 1969:III 1970:IV 1970:IV 
1973:IV 1973:III 1975:I 1975:I 
1980:I 1979:II 1980:III 1980:III 
1981:III 1981:II 1982:IV 1982:IV 
1990:III 1990:II 1991:I 1991:II 
2001:I 2000:IV 2001:IV 2001:IV 
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Table 3 

Real-time GDP-based recession probability index 
and proposed announcements.  Note: index and 
announcements are not released until 5 months 
after the end of the indicated quarter. 
Quarter (t) qt Dt 
1967:IV 4 expansion 
1968:I 2 expansion 
1968:II 1 expansion 
1968:III 2 expansion 
1968:IV 6 expansion 
1969:I 13 expansion 
1969:II 20 expansion 
1969:III 46 expansion 
1969:IV 89 recession 
1970:I 98 recession 
1970:II 92 recession 
1970:III 95 recession 
1970:IV 95 recession 
1971:I 16 expansion 
1971:II 10 expansion 
1971:III 12 expansion 
1971:IV 4 expansion 
1972:I 1 expansion 
1972:II 0 expansion 
1972:III 1 expansion 
1972:IV 0 expansion 
1973:I 1 expansion 
1973:II 10 expansion 
1973:III 20 expansion 
1973:IV 72 recession 
1974:I 100 recession 
1974:II 99 recession 
1974:III 99 recession 
1974:IV 100 recession 
1975:I 100 recession 
1975:II 43 recession 
1975:III 0 expansion 
1975:IV 0 expansion 
1976:I 0 expansion 
1976:II 1 expansion 
1976:III 2 expansion 
1976:IV 2 expansion 
1977:I 0 expansion 

1977:II 0 expansion 
1977:III 1 expansion 
1977:IV 7 expansion 
1978:I 12 expansion 
1978:II 0 expansion 
1978:III 2 expansion 
1978:IV 1 expansion 
1979:I 49 expansion 
1979:II 70 recession 
1979:III 40 recession 
1979:IV 39 recession 
1980:I 82 recession 
1980:II 100 recession 
1980:III 37 recession 
1980:IV 7 expansion 
1981:I 2 expansion 
1981:II 60 expansion 
1981:III 79 recession 
1981:IV 99 recession 
1982:I 99 recession 
1982:II 79 recession 
1982:III 92 recession 
1982:IV 85 recession 
1983:I 32 expansion 
1983:II 1 expansion 
1983:III 0 expansion 
1983:IV 1 expansion 
1984:I 0 expansion 
1984:II 1 expansion 
1984:III 7 expansion 
1984:IV 7 expansion 
1985:I 30 expansion 
1985:II 19 expansion 
1985:III 17 expansion 
1985:IV 27 expansion 
1986:I 10 expansion 
1986:II 20 expansion 
1986:III 16 expansion 
1986:IV 14 expansion 
1987:I 7 expansion 
1987:II 6 expansion 
1987:III 2 expansion 
1987:IV 2 expansion 
1988:I 3 expansion 
1988:II 5 expansion 
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1988:III 8 expansion 
1988:IV 4 expansion 
1989:I 5 expansion 
1989:II 6 expansion 
1989:III 9 expansion 
1989:IV 12 expansion 
1990:I 29 expansion 
1990:II 41 expansion 
1990:III 80 recession 
1990:IV 95 recession 
1991:I 97 recession 
1991:II 90 recession 
1991:III 81 recession 
1991:IV 78 recession 
1992:I 63 recession 
1992:II 54 recession 
1992:III 24 expansion 
1992:IV 14 expansion 
1993:I 35 expansion 
1993:II 21 expansion 
1993:III 8 expansion 
1993:IV 3 expansion 
1994:I 4 expansion 
1994:II 4 expansion 
1994:III 3 expansion 
1994:IV 3 expansion 
1995:I 12 expansion 
1995:II 10 expansion 
1995:III 33 expansion 
1995:IV 33 expansion 
1996:I 21 expansion 
1996:II 11 expansion 
1996:III 8 expansion 
1996:IV 5 expansion 

1997:I 4 expansion 
1997:II 4 expansion 
1997:III 4 expansion 
1997:IV 4 expansion 
1998:I 3 expansion 
1998:II 6 expansion 
1998:III 3 expansion 
1998:IV 1 expansion 
1999:I 2 expansion 
1999:II 5 expansion 
1999:III 1 expansion 
1999:IV 0 expansion 
2000:I 1 expansion 
2000:II 1 expansion 
2000:III 8 expansion 
2000:IV 16 expansion 
2001:I 27 expansion 
2001:II 58 expansion 
2001:III 84 recession 
2001:IV 36 recession 
2002:I 23 expansion 
2002:II 20 expansion 
2002:III 17 expansion 
2002:IV 22 expansion 
2003:I 24 expansion 
2003:II 6 expansion 
2003:III 1 expansion 
2003:IV 2 expansion 
2004:I 3 expansion 
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     Table 4 

Dates at which recession starts and ends were announced by NBER and would have been announced using 
the one-quarter smoothed inferences from real-time released data. 

 
Start of recession End of recession 

Start as 
determined by 
NBER 

Date start 
announced by 
NBER 

Date start 
announced by 
algorithm 

End as 
determined by 
NBER 

Date end 
announced by 
NBER 

Date end 
announced by 
algorithm 

1969:IV N.A. May 1970 1970:IV N.A. Aug 1971 
1973:IV N.A. May 1974 1975:I N.A. Feb 1976 
1980:I June 1980 Nov 1979 1980:III July 1981 May 1981 
1981:III Jan 1982 Feb 1982 1982:IV July 1983 Aug 1983 
1990:III April 1991 Feb 1991 1991:I Dec 1992 Feb 1993 
2001:I Nov 2001 Feb 2002 2001:IV July 2003 Aug 2002 
 

 

 

    
 
 



Table 5

Parameter estimates and asymptotic standard errors based on values that
maximize the observed sample log likelihood of the multivariate monthly model

Parameter Estimate Parameter Estimate

(std error) (std error)

α1 0.95

0.18
λ1

0.33

0.028

α2 −0.4

0.24
λ2

0.23

0.015

φ
0.37

0.07
λ3

0.12

0.009

θ1
−0.30

0.04
λ4

0.37

0.03

θ2
−0.029

0.06
σ1

2 0.74

0.05

θ3
−0.021

0.05
σ2

2 0.08

0.008

θ4
−0.19

0.05
σ3

2 0.07

0.005

p11
0.97

0.01
σ4

2 0.33

0.027

p22
0.90

0.05
ln fYT −1594.61
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 Table 6 
 
Dates of recessions as determined by (1) NBER and (2) Multivariate Markov-Switching Model (MMS) 
based on full-sample smoothed probabilities with revised monthly data 
 

Start of recession End of Recession 
NBER Smoothed probabilities 

MMS 
NBER Smoothed probabilities 

MMS 
Apr 1960 Feb 1960 Feb 1961 Dec 1960 
Dec 1969 Nov 1969 Nov 1970 Nov 1970 
Nov 1973 Dec 1973 Mar 1975 Mar 1975 
Jan 1980 Jan 1980 Jul 1980 Jun 1980 
Jul 1981 Aug 1981 Nov 1982 Nov 1982 
Jul 1990 May 1990 Mar 1991 Feb 1991 
Mar 2001 Sept 2000 Nov 2001 Oct 2001 
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Table 7  

Monthly real-time multiple-indicator recession probability index and proposed announcements.  Note: preliminary index released 2 months after the indicated 
month; revised index and determination are not released until 3 months after the indicated month. 

 Preliminary Revised Determination 

Month (t) 
Index )( )(m

tp  Index )( )(m
tq  )( )(m

tD  

Nov 1977 1 1 expansion 
Dec 1977 1 20 expansion 
Jan 1978 57 23 expansion 
Feb 1978 8 1 expansion 
Mar 1978 0 0 expansion 
Apr 1978 0 0 expansion 
May 1978 2 1 expansion 
Jun 1978 1 2 expansion 
Jul 1978 8 3 expansion 
Aug 1978 3 2 expansion 
Sep 1978 2 1 expansion 
Oct 1978 1 0 expansion 
Nov 1978 1 0 expansion 
Dec 1978 1 3 expansion 
Jan 1979 8 4 expansion 
Feb 1979 3 1 expansion 
Mar 1979 1 22 expansion 
Apr 1979 77 48 expansion 
May 1979 21 15 expansion 
Jun 1979 13 16 expansion 
Jul 1979 16 39 expansion 
Aug 1979 41 31 expansion 
Sep 1979 24 10 expansion 
Oct 1979 6 5 expansion 
Nov 1979 5 3 expansion 
Dec 1979 3 2 expansion 
Jan 1980 3 10 expansion 
Feb 1980 17 79 expansion 
Mar 1980 88 100 recession 
Apr 1980 100 100 recession 
May 1980 99 100 recession 
Jun 1980 90 90 recession 
Jul 1980 75 41 recession 

Aug 1980 14 3 expansion 
Sep 1980 0 0 expansion 
Oct 1980 0 0 expansion 
Nov 1980 0 0 expansion 
Dec 1980 2 9 expansion 
Jan 1981 19 34 expansion 
Feb 1981 35 22 expansion 
Mar 1981 16 24 expansion 
Apr 1981 24 11 expansion 
May 1981 7 8 expansion 
Jun 1981 9 2 expansion 
Jul 1981 1 1 expansion 
Aug 1981 4 31 expansion 
Sep 1981 49 85 expansion 
Oct 1981 85 97 recession 
Nov 1981 94 99 recession 
Dec 1981 96 99 recession 
Jan 1982 97 85 recession 
Feb 1982 77 60 recession 
Mar 1982 70 58 recession 
Apr 1982 58 43 recession 
May 1982 80 83 recession 
Jun 1982 82 94 recession 
Jul 1982 90 95 recession 
Aug 1982 89 93 recession 
Sep 1982 84 96 recession 
Oct 1982 94 94 recession 
Nov 1982 81 81 recession 
Dec 1982 70 28 recession 
Jan 1983 3 8 expansion 
Feb 1983 13 3 expansion 
Mar 1983 1 0 expansion 
Apr 1983 1 0 expansion 
May 1983 1 0 expansion 
Jun 1983 0 0 expansion 
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Jul 1983 0 0 expansion 
Aug 1983 3 1 expansion 
Sep 1983 0 0 expansion 
Oct 1983 0 0 expansion 
Nov 1983 1 0 expansion 
Dec 1983 0 0 expansion 
Jan 1984 0 0 expansion 
Feb 1984 2 1 expansion 
Mar 1984 1 0 expansion 
Apr 1984 1 0 expansion 
May 1984 1 0 expansion 
Jun 1984 1 1 expansion 
Jul 1984 2 4 expansion 
Aug 1984 7 5 expansion 
Sep 1984 5 6 expansion 
Oct 1984 8 3 expansion 
Nov 1984 2 1 expansion 
Dec 1984 2 4 expansion 
Jan 1985 8 5 expansion 
Feb 1985 4 2 expansion 
Mar 1985 2 3 expansion 
Apr 1985 7 5 expansion 
May 1985 6 14 expansion 
Jun 1985 18 49 expansion 
Jul 1985 53 19 expansion 
Aug 1985 5 2 expansion 
Sep 1985 1 1 expansion 
Oct 1985 3 4 expansion 
Nov 1985 5 1 expansion 
Dec 1985 1 1 expansion 
Jan 1986 3 5 expansion 
Feb 1986 9 6 expansion 
Mar 1986 6 3 expansion 
Apr 1986 3 3 expansion 
May 1986 5 5 expansion 
Jun 1986 7 3 expansion 
Jul 1986 2 2 expansion 
Aug 1986 3 2 expansion 

Sep 1986 2 3 expansion 
Oct 1986 5 4 expansion 
Nov 1986 4 1 expansion 
Dec 1986 1 6 expansion 
Jan 1987 19 4 expansion 
Feb 1987 1 0 expansion 
Mar 1987 2 2 expansion 
Apr 1987 3 1 expansion 
May 1987 1 1 expansion 
Jun 1987 3 1 expansion 
Jul 1987 1 0 expansion 
Aug 1987 1 1 expansion 
Sep 1987 4 1 expansion 
Oct 1987 1 0 expansion 
Nov 1987 2 1 expansion 
Dec 1987 1 3 expansion 
Jan 1988 12 4 expansion 
Feb 1988 2 2 expansion 
Mar 1988 3 2 expansion 
Apr 1988 2 4 expansion 
May 1988 8 3 expansion 
Jun 1988 2 1 expansion 
Jul 1988 2 2 expansion 
Aug 1988 3 6 expansion 
Sep 1988 9 3 expansion 
Oct 1988 2 1 expansion 
Nov 1988 2 1 expansion 
Dec 1988 1 0 expansion 
Jan 1989 1 3 expansion 
Feb 1989 11 10 expansion 
Mar 1989 10 13 expansion 
Apr 1989 15 54 expansion 
May 1989 60 43 expansion 
Jun 1989 30 70 expansion 
Jul 1989 72 34 expansion 
Aug 1989 7 22 expansion 
Sep 1989 27 33 expansion 
Oct 1989 31 10 expansion 
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Nov 1989 4 2 expansion 
Dec 1989 3 3 expansion 
Jan 1990 6 2 expansion 
Feb 1990 1 1 expansion 
Mar 1990 3 4 expansion 
Apr 1990 8 11 expansion 
May 1990 13 9 expansion 
Jun 1990 9 13 expansion 
Jul 1990 14 25 expansion 
Aug 1990 26 61 expansion 
Sep 1990 63 96 expansion 
Oct 1990 96 99 recession 
Nov 1990 94 96 recession 
Dec 1990 88 98 recession 
Jan 1991 96 97 recession 
Feb 1991 85 87 recession 
Mar 1991 77 43 recession 
Apr 1991 15 8 expansion 
May 1991 7 2 expansion 
Jun 1991 1 3 expansion 
Jul 1991 7 11 expansion 
Aug 1991 13 4 expansion 
Sep 1991 2 8 expansion 
Oct 1991 16 19 expansion 
Nov 1991 19 36 expansion 
Dec 1991 37 30 expansion 
Jan 1992 25 7 expansion 
Feb 1992 2 1 expansion 
Mar 1992 2 1 expansion 
Apr 1992 1 2 expansion 
May 1992 4 4 expansion 
Jun 1992 6 2 expansion 
Jul 1992 2 12 expansion 
Aug 1992 27 12 expansion 
Sep 1992 7 2 expansion 
Oct 1992 2 1 expansion 
Nov 1992 2 2 expansion 
Dec 1992 5 2 expansion 

Jan 1993 2 2 expansion 
Feb 1993 4 12 expansion 
Mar 1993 17 4 expansion 
Apr 1993 0 0 expansion 
May 1993 3 3 expansion 
Jun 1993 5 5 expansion 
Jul 1993 7 4 expansion 
Aug 1993 4 4 expansion 
Sep 1993 6 2 expansion 
Oct 1993 2 1 expansion 
Nov 1993 2 1 expansion 
Dec 1993 1 2 expansion 
Jan 1994 5 2 expansion 
Feb 1994 1 0 expansion 
Mar 1994 1 0 expansion 
Apr 1994 1 0 expansion 
May 1994 1 1 expansion 
Jun 1994 3 5 expansion 
Jul 1994 7 2 expansion 
Aug 1994 1 1 expansion 
Sep 1994 2 0 expansion 
Oct 1994 1 0 expansion 
Nov 1994 2 1 expansion 
Dec 1994 1 1 expansion 
Jan 1995 2 4 expansion 
Feb 1995 8 12 expansion 
Mar 1995 14 24 expansion 
Apr 1995 26 36 expansion 
May 1995 35 16 expansion 
Jun 1995 9 17 expansion 
Jul 1995 19 5 expansion 
Aug 1995 1 1 expansion 
Sep 1995 1 2 expansion 
Oct 1995 6 3 expansion 
Nov 1995 3 2 expansion 
Dec 1995 3 14 expansion 
Jan 1996 25 5 expansion 
Feb 1996 1 1 expansion 
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Mar 1996 3 1 expansion 
Apr 1996 2 1 expansion 
May 1996 1 0 expansion 
Jun 1996 1 1 expansion 
Jul 1996 5 2 expansion 
Aug 1996 1 1 expansion 
Sep 1996 1 1 expansion 
Oct 1996 3 1 expansion 
Nov 1996 1 1 expansion 
Dec 1996 3 5 expansion 
Jan 1997 9 2 expansion 
Feb 1997 1 1 expansion 
Mar 1997 1 1 expansion 
Apr 1997 2 1 expansion 
May 1997 2 1 expansion 
Jun 1997 2 1 expansion 
Jul 1997 1 0 expansion 
Aug 1997 1 1 expansion 
Sep 1997 2 1 expansion 
Oct 1997 1 0 expansion 
Nov 1997 1 1 expansion 
Dec 1997 2 1 expansion 
Jan 1998 1 0 expansion 
Feb 1998 1 1 expansion 
Mar 1998 1 1 expansion 
Apr 1998 2 1 expansion 
May 1998 2 3 expansion 
Jun 1998 6 10 expansion 
Jul 1998 13 3 expansion 
Aug 1998 1 0 expansion 
Sep 1998 2 1 expansion 
Oct 1998 2 1 expansion 
Nov 1998 2 2 expansion 
Dec 1998 3 2 expansion 
Jan 1999 2 1 expansion 
Feb 1999 2 2 expansion 
Mar 1999 4 8 expansion 
Apr 1999 12 4 expansion 

May 1999 2 2 expansion 
Jun 1999 3 2 expansion 
Jul 1999 3 1 expansion 
Aug 1999 1 4 expansion 
Sep 1999 10 2 expansion 
Oct 1999 1 0 expansion 
Nov 1999 1 0 expansion 
Dec 1999 1 0 expansion 
Jan 2000 0 0 expansion 
Feb 2000 2 2 expansion 
Mar 2000 3 1 expansion 
Apr 2000 2 3 expansion 
May 2000 8 5 expansion 
Jun 2000 5 5 expansion 
Jul 2000 7 9 expansion 
Aug 2000 10 7 expansion 
Sep 2000 7 11 expansion 
Oct 2000 13 26 expansion 
Nov 2000 29 38 expansion 
Dec 2000 36 60 expansion 
Jan 2001 60 66 expansion 
Feb 2001 59 75 expansion 
Mar 2001 71 92 recession 
Apr 2001 90 96 recession 
May 2001 90 94 recession 
Jun 2001 87 81 recession 
Jul 2001 60 76 recession 
Aug 2001 72 91 recession 
Sep 2001 89 78 recession 
Oct 2001 52 61 recession 
Nov 2001 56 58 recession 
Dec 2001 52 53 recession 
Jan 2002 46 26 recession 
Feb 2002 17 27 expansion 
Mar 2002 28 14 expansion 
Apr 2002 10 5 expansion 
May 2002 4 3 expansion 
Jun 2002 3 7 expansion 
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Jul 2002 12 12 expansion 
Aug 2002 12 20 expansion 
Sep 2002 22 43 expansion 
Oct 2002 44 48 expansion 
Nov 2002 43 75 expansion 
Dec 2002 75 39 expansion 
Jan 2003 11 17 expansion 
Feb 2003 18 35 expansion 
Mar 2003 37 30 expansion 
Apr 2003 24 14 expansion 
May 2003 11 9 expansion 

Jun 2003 9 3 expansion 
Jul 2003 2 2 expansion 
Aug 2003 5 3 expansion 
Sep 2003 3 2 expansion 
Oct 2003 2 1 expansion 
Nov 2003 1 1 expansion 
Dec 2003 4 3 expansion 
Jan 2004 4 4 expansion 
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Table 8  
 

Dates of recession as determined by (1) NBER and in real time by (2) multivariate Markov-switching model estimated over recursive samples 
 

Start Date: NBER Start Date: MMS 
Model  

Lead (+)/ Lag (-) 
Discrepancy 

Start Date Announced: 
NBER 

Start Date Available: 
MMS Model 

Lead Announcement 
Date of 

MMS Model 
Jan 1980 Mar 1980 2 months Jun 3, 1980 June 1980 0 months 

Jul 1981 Oct 1981 3 months Jan 6, 1982 Jan 1982 0 months 

Jul 1990 Oct 1990 3 months Apr 25, 1991 Jan 1991 3 months 

Mar 2001 Mar 2001 0 months Nov 26, 2001 June 2001 5 months 

 
 

End Date: NBER  End Date: MMS Model Lead (+)/ Lag (-) 
Discrepancy 

End Date Announced: 
NBER 

End Date Available: 
MMS Model 

Lead Announcement 
Date of MMS Model 

Jul 1980 Jul 1980 0 months Jul 8, 1981 Nov 1980 8 months 

Nov 1982 Dec 1982 1 month Jul 8, 1983 Apr 1983 3 months 

Mar 1991 Mar 1991 0 months Dec 22, 1992 Jul 1991 17 months 

Nov 2001  Jan 2002 2 months Jul 17, 2003 May 2002 14 months 

Note: Leads or lags are represented by + or -, respectively, and indicate how many months the Markov switching model anticipates or lags the NBER dating, 
whereas 0 indicates that the two dating systems coincide. A business cycle downturn is announced when there are two succeeding months all with probabilities 
greater than 0.65.  An upturn is announced when there are two successive months with probabilities below 0.35. 
 

 



Figure 1. U.S. real GDP growth rates, 1947-2004
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Figure 2
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Figure 3

Density of mixture
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Figure 4
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Figure 5

Probabilty of recession given y(t)=y

GDP growth in t
-15 -10 -5 0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

Probability of recession given y(t+1)=y(t)=y

GDP growth in t and t+1
-15 -10 -5 0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0



Figure 6 
 

Probability that the U.S. economy is in recession based on revised quarterly data.  Top panel: 
filter probabilities (inference using only GDP growth rates available at the time).  Bottom panel: 
smoothed probabilities (inference using the full historical record).  Shaded regions: dates of 
recessions as determined by NBER up to two years after the fact. 
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Full-sample smoothed probabilities and NBER recessions

1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

  
 



Figure 7 
 

Probability that the U.S. economy is in recession.  Top panel: one-quarter smoothed probabilities 
based on data as released historically as of two quarters after the indicated date (e.g., the entry 
for 2003:I is based on GDP growth rates for 2003:II as reported in August 2003).  Bottom panel: 
one-quarter smoothed probabilities based on historically revised data as reported for all quarters 
in August 2004. 
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1-qtr smoothed probabilities using all data now available

1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

 
 



 
Figure 8 

Full-sample smoothed probabilities and NBER recessions based on revised monthly data 
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Figure 9 
Current filter probabilities and NBER recessions based on real-time monthly data after 
1977:12 and revised monthly data before 1977:12 
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Figure 10  

Current filtered probabilities and h-month-smoothed probabilities of recession (h=1, 2, 3) based on real-time monthly data 
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Figure 11 
Filtered and smoothed probabilities with real-time monthly data over recursive samples 
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