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ABSTRACT

This paper develops a measure of segregation based on two premises: (1) a measure of segregation

should disaggregate to the level of individuals, and (2) an individual is more segregated the more

segregated are the agents with whom she interacts. Developing three desirable axioms that any

segregation measure should satisfy, we prove that one and only one segregation index satisfies our

three axioms, and the two aims mentioned above; which we coin the Spectral Segregation Index. We

apply the index to two well-studied social phenomena: residential and school segregation. We

calculate the extent of residential segregation across major US cities using data from the 2000 US

Census. The correlation between the Spectral index and the commonly-used dissimilarity index is

.42. Using detailed data on friendship networks, available in the National Longitudinal Study of

Adolescent Health, we calculate the prevalence of within-school racial segregation. The results

suggests that the percent of minority students within a school, commonly used as a substitute for a

measure of in-school segregation, is a poor proxy for social interactions.

Federico Echenique
The Division of the Humanities and Social Sciences
228-77
California Institute of Technology
Pasadena, CA 91125
fede@hss.caltech.edu

Roland G. Fryer, Jr.
Department of Economics
Harvard University
Littauer Center, M-7
Cambridge, MA 02138
and NBER
rfryer@fas.harvard.edu



1 Introduction

Ethnic and racial segregation is an important and well-studied social phenomenon. For over

50 years, social scientists have been concerned with measuring the extent, and estimating

the impact of segregation in education, housing, and the labor market. The result of this

scholarship has been nearly 20 different indexes of segregation, and a consensus that the

spatial separation of many minorities from jobs, role models, health care, and quality local

public goods is a leading cause of racial and ethnic differences on many economic, social, and

health related outcomes (Almond, Chay, and Greenstone 2003, Borjas 1995, Case and Katz

1991, Kain 1968, Cutler and Glaeser 1997, Massey and Denton 1993, Collins and Williams

1999). Fundamental to understanding the potential impact of segregation is measuring it.

We propose a new approach to measuring segregation based on two premises: (1) a

measure of segregation should disaggregate to the level of individuals, and (2) an individual

is more segregated the more segregated are the agents with whom she interacts. Having a

measure of segregation with the flexibility to disaggregate to the level of individuals opens up

windows of opportunity for empirical work, and a better understanding of the mechanisms

by which segregation affects economic outcomes. We also desire a measure that gives a larger

level of segregation for individuals whose contacts are more segregated. Consider Figure 1,

which depicts the distribution of blacks across metropolitan Detroit. There is a large oval

in the center of the city containing almost exclusively black households. Any measure of

segregation should report that the household in the epicenter is more segregated than a

household equidistant from the center and the edge, even when each household has all black
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neighbors. These are two features that are absent in all existing measures of segregation.

We use networks — individuals and their connections — as our mathematical framework.

In this framework, we propose three specific axioms that any measure of segregation on a

network should satisfy. We prove that one and only one index satisfies these axioms and

the two broad principles above; which we coin the “Spectral Segregation Index” (SSI). The

axioms require that: (a) [Monotonicity] if all individuals in Network A have more interactions

with agents of the same race than in Network B, then Network A is more segregated than

B; (b) [Linearity] an individual is more segregated the more segregated are the agents with

whom she interacts, and this relationship takes on a linear form; and (c) [Homogeneity] if

all individuals in a network have half of their interactions with members of the same race,

the index of segregation is one-half. The latter condition normalizes the index.

We defer a formal definition of the SSI to Section 4. Informally, the SSI measures the

connectedness of individuals of the same race. Put differently, the SSI captures the growth

of race-specific capital in a network. Consider the following thought experiment. Let there

be a network of many individuals. Suppose that, in each period of time, individuals possess

a degree of own-race capital–how adept they are at reciting ‘Tu Pac’ or how well they

whistle Vivaldi. In each time-period they transmit some of their capital to other individuals

of the same race with whom they interact. The SSI will, as time passes, approximate the

growth rate of own-race capital, providing a measure of connectedness and own-race social

interaction. In highly segregated areas (areas with high SSI) same-race fads will grow quickly

because of the frequency of same-race social interactions.
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The SSI has important advantages over existing measures of segregation. First, as a gauge

of residential segregation, it is invariant to arbitrary partitions of a city, in that it does not

depend on the way that local communities choose to draw their census regions. This is im-

portant for a variety of reasons — most crucially having to do with the permanent structure

of census regions and the relative mobility of populations. Second, it allows us to investigate

how segregated multiple minority groups are, allowing one to compare the segregation of

Asians, Blacks, Hispanics, Native Americans, and so on, within and across cities.1 The SSI

makes it possible to compare Hispanic segregation across cities, compare the Hispanics of

east Los Angeles from the Hispanics in south Los Angeles, or compare them to Blacks in

Chicago. Third, our index allows one to analyze the full distribution of segregation, allowing

researches to move beyond aggregate statistics, which can be misleading. For instance, while

the average Black may be more segregated than the average Hispanic, it is plausible that

the most segregated Hispanic is more segregated than any Blacks. Indeed, we find that this

is the case for residential segregation in the US. This is potentially an important distinction

for empirical work. Fourth, there are inherent multiplicative effects captured by SSI which

other indexes omit. That is, an individual’s susceptibility to group-transmitted influences

depends on how many contacts the individuals have with members of the group, and the

susceptibility of her contacts. Fifth, the SSI can be used for calculations of concentration

far beyond the measurement of racial segregation. Natural applications of our index include

1Another way to analyze multiple groups with existing indexes is to calculate the weighted average of
several dichotomous indexes (see Reardon and Firebaugh 2002). It is not clear how to interpret the findings
from such an exercise.
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the measurement of traffic, power in organizations, concentration of buyer-supplier networks,

academic field specialization, segregation of friendship networks, measures of social popu-

larity, and so on. Generally, the SSI provides a mathematical tool adept at measuring the

clustering of particular nodes in networks.

The SSI has some disadvantages as well. It depends on the quality of the information one

can obtain about social interactions. In the case of residential segregation, for example, the

information is restricted to where individuals live and not how they interact within a city.

Unlike other indexes, however, as better information on the nature of social interactions is

obtained, the SSI becomes a sharpened proxy of those interactions. Second, it is sensitive

to the fraction of individuals in a network who have the race/ethnicity under study. We

address this issue by calculating a “baseline” SSI, and comparing actual SSI to the baseline.

Finally, implementing the SSI can be computationally demanding, though our applications

demonstrate that the computational tasks are feasible.2

After formally deriving the SSI, we apply the index to two well-known social phenomena:

measuring the extent of residential and school segregation. We begin by evaluating the extent

of segregation across major cities in the US, using data from the 2000 Census. The results

we obtain are interesting, and in some cases quite surprising. The most segregated cities for

Asians (including Pacific-Islanders), Blacks, Hispanics and Whites are Honolulu, HI, Detroit,

MI, McAllen, TX, and Lowell, MA respectively. On average, Blacks are more segregated than

any other racial group, but the most segregated Hispanics are more segregated than the most

2To ease this burden, we have posted results from some of the more computationally intense calculations
on the following webpage: http://post.economics.harvard.edu/faculty/fryer/projects.html
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segregated Blacks. However, the real power of the SSI is the ability to measure segregation at

disaggregated levels, allowing one to measure the intensity of same-race clusters or uncover

the most segregated city blocks in America. The largest minority ghetto in the US consists

of Hispanics in Los Angeles, CA — 17,909 blocks are connected to each other! The second-

largest ghetto is comprised of Blacks in Detroit, MI, and the most segregated ghetto consists

of Blacks in Jackson, MS. The most segregated city block in America is a Hispanic block

in Western San Antonio, TX. It is important to emphasize that the latter results cannot be

obtained with any of the existing measures of segregation.

We also apply the SSI to the measurement of within-school segregation patterns, us-

ing data on friendship networks available in the National Adolescent Study of Health (Ad-

dhealth). Our analysis uncovers many new facts. First, the common practice of using the

percentage of black students in a school as a substitute for within-school segregation mea-

sures, is a poor proxy for actual social interactions. When black students are relatively scarce

in a school, they tend to be integrated. As their share of the student population increases,

segregation increases dramatically, hitting a ceiling when blacks comprise roughly twenty

percent of the student population. Schools that have twenty percent or more black students

exhibit severe within-school racial segregation.

Second, we correlate individual-level segregation with several traits. More segregated

Black students are less likely to smoke (a behavior predominant among white teens) and

have lower vocabulary test scores. More segregated Asians are less likely to skip school, they

have higher vocabulary test scores, put in more effort, and report being happier. Among
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Hispanics, more segregation is associated with less smoking, lower vocabulary test scores,

lower probability of attending college, and lower grades. Students of all races are less likely

to date interracially when schools are more segregated.

The organization of the paper is as follows. Section 2 provides background and a brief

discussion of existing indexes of segregation. Section 3 provides an example that previews

many of the ideas and intuitions involved in the general modeling. Section 4 provides an

axiomatic derivation of our new index of segregation. Section 5 uses the SSI to estimate the

prevalence of residential and school segregation across. Section 6 concludes. There are two

appendices. Appendix A contains the technical proofs of all formal results and Appendix B

provides a theoretical foundation for Baseline SSI.

2 Background and Previous Literature

At an abstract level, segregation is the degree to which two or more groups are separated

from each other. However, practical definitions can be quite distinct from one another,

conceptually and empirically. Massey and Denton (1988) group existing indexes into five

classes: evenness, exposure, concentration, centralization, and clustering, which they take to

resemble the totality of what is usually meant by “segregation.” Evenness refers to the

differential distribution of two groups across areas in a city. Measures of exposure are

designed to approximate the amount of potential contact and interaction between members

of different groups. Concentration indexes measure the relative amount of physical space

occupied by a minority group. Centralization is the extent to which a group is located near
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the center of an urban area, and clustering measures the degree to which geographic units

inhabited by minority members abut one another, or cluster spatially. Of the five dimensions

of segregation, only two are used in the vast majority of applied work in the social sciences:

evenness and exposure. Economists ultimately care about the degree to which segregation

affects social interactions. For this purpose, concentration and centralization are inadequate,

and measures of clustering are largely avoided due to their sensitivity to the number and

population of census regions.

The most popular measure of segregation is the “dissimilarity” index (developed by Jahn,

Schmid, and Schrag 1947), a measure of evenness.3 Suppose a city is divided into N sections.

The dissimilarity index measures the percentage of a group’s population that would have to

change sections for each section to have the same percentage of that group as the whole city.

In symbols:

index of dissimilarity =
1

2

NX
i=1

¯̄̄̄
blacki

blacktotal
− nonblacki

nonblacktotal

¯̄̄̄
, (1)

where blacki is the number of blacks in area i, blacktotal is the total number of blacks in the

city as a whole, nonblacki is the number of non-blacks in area i, and nonblacktotal is the

number of non-blacks in the city. The dissimilarity index has the appealing feature that it

is invariant to the size of a minority group.

A second commonly-used measure of segregation is “isolation,” a measure of exposure.

3Other measures of evenness include the Gini coefficient (the mean absolute difference between minority
proportions weighted across all pairs of geographic units, expressed as a proportion of the maximum weighted
mean difference), the Atkinson index (similar to Gini coefficient, but allows researchers to decide how to
weight geographic units which are over or under the city-wide distribution), and Entropy (the weighted
average of each geographic units deviation from the racial entropy of the city as a whole).
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As Blau (1977) recognized, Blacks can be evenly distributed among residential areas in a

city, but experience little exposure to non-Blacks if they are a relatively large proportion

of the city. Isolation measures the extent to which Blacks are exposed only to one other,

rather than to non-Blacks. The index is computed as the minority-weighted average of each

section’s minority population:

index of isolation =

P³
blacki

blacktotal
· blacki
personi

´
−
³

blacktotal
persontotal

´
min

³
blacktotal
personi

, 1
´
−
³

blacktotal
persontotal

´ , (2)

where personi refers to the total population of area i and persontotal refers to the total

population.4

Dissimilarity and isolation possess at least two undesirable properties. First, they explic-

itly depend on the arbitrary ways in which cities are partitioned into sections (e.g. census

tracts).5 That is, fixing the location of minorities and non-minorities in a city and re-drawing

the sections can drastically change the measure of segregation. An exaggerated example is

depicted in Figure 2. The city depicted in the figure has a dissimilarity index of 0 — perfect

integration — when sections are drawn vertically and has a dissimilarity index of 1 — extreme

segregation — when sections are drawn horizontally; no household has moved. Similarly, ver-

tical partitions yield an isolation index of 0 whereas horizontal partitions produce an index

of .5. This is a highly undesirable property of any segregation index, as it may artificially

4Another commonly used measure of exposure is the interaction index, which is the inverse of the isolation
index presented above.

5We are not the first to draw attention to this flaw in measures of segregation, see Cowgill and Cowgill
(1951), Appendix A in Tauber and Tauber (1965), and Massey and Denton (1988). While this property
is problematic for measures of residential segregation, it is less likely to effect measures of occupational or
school segregation - where there is a natural clustering of individuals.
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indicate that a city is more or less segregated as a function of how the tracks are drawn.

Second, existing measures are not defined when trying to measure segregation at the

level of individuals. It is difficult to correctly identify the relationship between segregation

and outcomes without individual-level variation in segregation. As a descriptive matter,

individual segregation may be more useful than city-wide segregation. Rather than corre-

late individual economic outcomes with city-wide segregation, one can correlate individual

outcomes with individual measures of segregation. On the other hand, the right level of

aggregation depends on the problem at hand; group-level, neighborhood, or city-level seg-

regation may be the appropriate level of aggregation in many applications. It is an open

empirical question, one that cannot be answered without a measure that disaggregates to

the individual level.6

The literature in economics involving the measurement of segregation is small (Phillipson

1993, Hutchens 2001, Frankel and Volij 2004). Similar to our exercise, their approach is

axiomatic — identifying desirable properties that indexes should possess. But, the literature

takes an arbitrary partition of a city as given, and uses the partition to identify indexes

axiomatically. As such, there is little in common with our approach.

6This critique is conceptual — not purely data driven. That is, existing measures are not equipped to
measure segregation at the level of individuals, irrespective of the available data.
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3 A Motivating Example

Before moving to a full description of the model, we present an example where we calculate

our index, and discuss informally some of its properties. Consider City 1, depicted in Figure

3. The nodes in City 1 represent households. Each household can be one of three races:

black, white, or gray. In the figure, household (A, 1) is white, (B, 2) is black, (B, 4) is gray,

and so on.

There are three steps involved in calculating the SSI for City 1. First, we need to define

who is a neighbor of whom. Here, we pick a simple definition; two nodes are neighbors if

they are adjacent.7 In general, however, this is the most important decision in implementing

the index. Second, we represent a minority’s neighborhood relations in a “social-interactions

matrix.” The ij entry of the matrix equals 1/4 if minority-members i and j are neighbors;

otherwise it is 0. Why 1/4? Black and gray households have 4 neighbors each, and for

the purposes of this example, we assume that their relations with each neighbor is equally

7This restrictive definition is solely for the purposes of the motivating example.
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intense. For blacks in City 1 the interaction matrix is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(B,2) (C,2) (D,2) (B,3) (C,3) (D,3) (D,4) (D,5)

(B,2) 0 1
4

0 1
4

0 0 0 0

(C,2)
1
4

0 1
4

0 1
4

0 0 0

(D,2) 0 1
4

0 0 0 1
4

0 0

(B,3)
1
4

0 0 0 1
4

0 0 0

(C,3) 0 1
4

0 1
4

0 1
4

0 0

(D,3) 0 0 1
4

0 1
4

0 1
4

0

(D,4) 0 0 0 0 0 1
4

0 1
4

(D,5) 0 0 0 0 0 0 0 1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similarly, the “gray graph” gives a 4× 4 matrix.

The interactions matrix is always a given in the calculation of the SSI. Any information

about the intensity of relations between households can (and should) be incorporated in the

matrix. For example, in some applications one can infer the relative importance of particular

interactions. In measuring residential segregation, however, all information regarding inter-

actions is gleaned from geographical distance; the matrix thus looks like the one for City 1,

except households will have different numbers of neighbors.

The third and final step is to calculate the largest eigenvalue of the matrix, and the

associated eigenvector. The eigenvalue is the SSI. The eigenvector, after normalizing such

that the minority-level SSI is the average of the individual-level values, gives the individual-
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level values of SSI. The results are depicted in Table 1. bSh denotes the SSI for blacks/grays

while bshi denotes the individual-level SSI for each household in City 1.
Table 1: Spectral segregation for Grays in City 1.

i (B, 4) (B, 5) (C, 4) (C, 5) bShbshi .5 .5 .5 .5 .5

Table 2: Spectral segregation for Blacks in City 1.

i (B, 2) (B, 3) (C, 2) (C, 3) (D, 2) (D, 3) (D, 4) (D, 5) bShbshi .596 .606 .875 .912 .668 .787 .378 .152 .622

Blacks are more segregated than grays. Households (B, 2), (B, 3), (C, 2) and (C, 3) are

situated like the grays, thus the blacks must be at least as segregated as the grays. All grays

have the same degree of segregation. The most segregated black household is (C,3), the least

segregated black is (D,5).

The example provides a snap-shot of how an individual measure of segregation allows

the identification of new testable implications. If segregation is strongly correlated with

poverty, less schooling, and poor health, we would expect (D, 3) to be poorer, less educated,

and have lower life expectancy relative to (D, 5) — all else equal. Further, the SSI allows

one to ask questions that were not possible before. For example, In City 1, who is more

segregated, household (B, 2) or household (C, 4)? Each has two black neighbors and two

white neighbors. The Spectral index gives a higher level of segregation to (B, 2), because

(B, 2)’s black neighbors are more segregated than (C, 4)’s. If segregation reflects the strength
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of a household’s same race social interactions, as a result of who its neighbors are, the Spectral

index seems to capture the right thing.

City 2 in Figure 3 doubles the size of City 1 by adjoining an exact replica. Black and gray

segregation in City 2 is the same as in the original city, because neither blacks or grays have

new neighbors of the same race. The segregation of whites, however, increases substantially

in City 2, as they have become more connected. Notice, if we eliminated columns 6 and 7,

black and gray segregation would increase. In essence, the SSI provides a weighted average

of all the minority components throughout a network.

4 The Spectral Segregation Index

A. Basic Definitions

Let G = (V,E) denote a graph with vertex-set V and edge-set E, E ⊆ [V ]2. 8 The

elements of V are vertexes (or nodes) of G, and the elements of E are two-element subsets

of V which represent the edges of G. Vertexes represent the individuals in a network, and

edges represent relationships. The adjacency matrix of G, with V = {1, 2, ...n} , is the n×n

matrix A = (aij) whose (i, j)− entry aij is 1 if there is an edge between i and j, and 0

otherwise. Two vertexes are adjacent (or neighbors) if they are connected by an edge.

B. The Model

8We use the most basic notions in Graph Theory. A reader can consult any graph-theory textbook, for
example Diestel (1997). Some of the ideas we use are from the field of Spectral Graph Theory; see e.g.
Cvetkovíc, D., Rowlinson, P., and Simíc, S. (1997) for a comprehensive treatment.
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For each i, j ∈ V let there be a real number rij that measures how much i interacts with

j. Interactions are assumed to be non-negative and bilateral; rij ≥ 0 and rij > 0 if and only

if rji > 0. Let R = (rij) be the matrix of interaction-measures. R is a non-negative (not

necessarily symmetric) |V | × |V | matrix.

The matrix R is a primitive of our model. One can assume different Rs, depending on

the detail with which one can judge how intense interactions are.9 Social science can play a

key role in deriving the matrix R. If, through derivation of an economic model, or detailed

participant observation, we know that there exist peculiar behavioral patterns in the manner

in which individuals interact (Chicagoans never talk with people South of them, Cambridge

residents do not befriend anyone across the Charles, or students rarely interact with other

students outside their school district, e.g.) we can incorporate these behaviors into the

matrix R. It is important to emphasize that as empirical researchers get better information

regarding the structure of social interactions, the index will become a sharpened proxy for

those interactions.

Let H = {1, 2, ...K} be a finite set of races and ethnic groups, and let a : V → H denote

an assignment of individuals to a race. Thus, h = a(v) implies that, under assignment a,

9There are many ways to think of constructing R. Our leading example is the neighborhood model. In
this setup, individuals either interact if they are neighbors or do not interact if they are not (this still leaves
room for indirect interactions: my interactions, through my neighbors, with my neighbors’ neighbors). Thus,
rij ∈ {0, 1}. A more relaxed version of the neighborhood model is one in which rij can take one of a number
of finite values, and where larger values reflect longer geographical distances — degrees of “neighborhoodness”
say. For example, let rij be 0 if i and j are further than 10 miles apart, and rij = 1 if they are 1 mile apart,
rij = 0.9 if they are 2 miles apart, rij = 0.8 if they are 3 miles apart, and so on. An even different model is
where there is an interaction time constraint. Suppose that for each i there is a set Fi ⊆ V of individuals
with whom i could feasibly interact. Then rij ∈

©
0, 1T ,

2
T , ..., 1

ª
and

P
j∈Fi rij ≤ 1. These models are just

a few ways one can derive the matrix of social interaction, R. Our theoretical approach is agnostic on this
dimension. The structure of R is an important decision for applied researchers.
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individual v belongs to race h. Let A = HV be the set of all such assignments.

Given an assignment a ∈ A and a matrix of social interactionsR, let β = (a,R) denote the

assignment-interactions pair. An assignment-interactions pair defines a matrix of “same-race

interactions,” B(β) = (bij), where entry bij of B(β) is 0 if a(i) 6= a(j), and rij if a(i) = a(j).

Let nh(β) be the number of h-race individuals under β, and letBh(β) be the nh(β)×nh(β)

submatrix of B(β) where the rows (and columns) i are such that h = a(i). When an

assignment-interactions pair β = (a,R) is understood, we shall abuse notation in two ways:

we denote by h the set of individuals assigned to race h, so h sometimes denotes a−1(h), and

we use Bh to denote Bh(β). Finally, let Gh(β) be the graph with vertex set h, and where ij

is an edge if and only if bij > 0.

C. Three Axioms of a Desirable Measure of Segregation

Before describing the axioms, it is useful to introduce a bit more notation. Given β =

(a,R), for an individual i, let Nβ
i be the set of individuals j that interact with i (rij > 0),

and are the same race (a (i) = a (j)). So Nβ
i is the set of neighbors of i in Gh(β).

We say that β0 = (a0, R0) has more race h-segregation than β = (a,R) if, under β
0
, every

agent in race h has at least as many same-race interactions. That is, letting Bh(β) = (bij)

and Bh(β0) = (b0ij), bij ≤ b0ij for all i and j in h. In the simplifying case in which rij ∈ {0, 1}

(which we refer to as the the neighborhood model), this occurs when (Nβ
i )i∈V and (N

β0

i )i∈V

satisfy Nβ
i ⊆ Nβ0

i , for all i ∈ V .
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A segregation index is a map

β 7→
³
Sh(β),

¡
shi (β)

¢
i∈h

´
,

where shi (β) ≥ 0, and Sh(a) is the average of the shi (a) over i ∈ h.

Our definition of a segregation index reflects our requirement that segregation be mea-

sured at the individual level. Individual segregation is measured in the same units as racial

segregation. Race-h segregation is the average of the segregation of all individuals of race h.

Axiom 1 states that if two graphs have the same number of race-h nodes, then the graph

with more h-segregation is more segregated.

Axiom 1 (Monotonicity) If β0 has more h-segregation than β, and nh(β) = nh(β0), then

Sh(β) ≤ Sh(β0).

Our second axiom is a normalization of the index. Let d > 0 be a scalar. An assignment-

interactions pair β is h-homogeneous of degree d if, for all i in h,
P

j∈Nβ
i
bij = d. In the

neighborhood model, an assignment is h-homogeneous if Nβ
i has exactly d households for all

i with h = a(i).

Axiom 2 (Homogeneity) Let β be h-homogeneous of degree d, then Sh(β) = d.

Our third axiom is the most controversial. We want the segregation of an individual i

to depend on the segregation of the individuals with whom she interacts. Axiom 3 requires

this dependence to take a linear form.
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Let Ci be the connected component of Gh(β) that i belongs to. That is, Ci is the set of

individuals j with some connection to i, those with some connections to the individuals with

some connection to i, and so on. Let SCi(β) be the average segregation (shi ) of individuals

in Ci.

Axiom 3 (Linearity) If SCi(β) > 0,

shi (β) =
1

SCi(β)

X
j∈Nβ

i

rijs
h
j (β)

D. Interpreting the Axioms

The above axioms are, for the most part, intuitive. We require the segregation of a

household i to depend on how many of i’s neighbors are the same race as i. Monotonicity

and Homogeneity are expressions of this requirement. Monotonicity requires that if City A’s

same race neighbors have more interactions than City B’s, and they have the same number

of that race, City A exhibits a higher degree of segregation than B. Homogeneity says that

if a city were regular, so everyone has exactly the same amount of same-race interactions,

the index should simply be this fraction. Thus, Homogeneity describes the index’s unit of

measurement; providing a way to interpret a value of the index. If Sh (β) = .4, then we know

that there is more segregation than if every individual of minority h had a weighted average

of one-third of their time with other members of race h, but less than half. Homogeneity

also provides a “scale free” like property: If City A has more households than City B, but
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each household in both cities has the same fraction of same-race neighbors, the index will

report the same level of segregation for both cities.

The linearity axiom is our key innovation. We require shi (β) to depend on the strength of

i’s h—specific interactions. As described in the Introduction, if one considers Figure 1, which

depicts the distribution of blacks across metropolitan Detroit, it seems evident that individ-

uals in the center of the of the city’s black ghetto should be measured as more segregated

than those closer to the edge. Linearity is one embodiment of this requirement.

E. Deriving the Spectral Segregation Index

Fix a race h. Let Ck, k = 1, 2, . . .K, be the connected components of Gh(β). Abusing

notation, let Ck also denote the submatrix of Bh with columns (and rows) indexed by the

elements of Ck. Let λk be the largest eigenvalue of Ck, and xk be its associated eigenvector,

normalized so its entries add to one. Note that λk and xk must exist by the Perron-Froebenius

Theorem.

The Spectral Segregation Index (SSI) is the index

β 7→
³
Ŝh(β), (ŝi(β))i∈h

´
,

where Ŝh(β) =
P

i∈h
ŝi(β)
nh(β)

and ŝi(β) = λkxki |Ck| .

The next theorem presents our main theoretical result; that SSI satisfies monotonicity,

homogeneity, and linearity, and no other index does.
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Theorem 1 A segregation index satisfies Monotonicity, Homogeneity and Linearity if and

only if it is the Spectral Segregation Index.

The key idea in the proof of Theorem 1 is quite simple: Linearity requires that, when

SCi(β) > 0, SCi(β)shi (β) =
P

j∈Na
i
rijs

h
j (β), which is equivalent to requiring that §Ci(β) be

an eigenvalue of Ck. And, by a corollary to the Perron-Froebenius Theorem for irreducible

non-negative matrices, Ck has exactly one positive eigenvalue. Thus, Linearity is almost by

itself a definition of the SSI. While not a deep axiomatization of SSI, we think Theorem 1

is still valuable because the three axioms are easy to interpret economically, while the index

itself is not. The axioms allow one to evaluate the relatively basic assumptions behind the

SSI. 10

Without assuming linearity, we would be unable to derive a unique numerical index. If,

for example, the linearity assumption is replaced with a monotonicity condition — higher

segregation among i’s same-race neighbors imply higher shi (β) — one cannot pin down a

specific numerical index. The situation is analogous to that of income distribution measures,

where general properties lead to orderings of Lorenz curves, that do not allow one to compare

any two distributions. 11

We state two additional properties of SSI.

10Palacios-Huerta and Volij (2004) provide a characterization of eigenvectors of irreducible matrices in
terms of more primitive axioms. Their methods are not applicable to our problem because we also need–
crucially, in fact–to characterize the eigenvalue. In Palacios-Huerta and Volij’s model, the eigenvalue is
always fixed.

11In our framework a Lorenz-curve-type ordering is readily obtained: let race h be more segregated in β
than in β0 if the distribution of (

P
j r

0
ij) dominates that of (

P
j rij).
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Proposition 1 If i ∈ h has at least one same-race neighbor, ŝhi (β) > 0. If i has no same-

race neighbors, ŝhi (β) = 0.

Proposition 2 If Ck, k = 1 . . .K are the connected components (the irreducible submatri-

ces) of Bh(β), then

Ŝh(β) =
KX
k=1

µ
|Ck|
nha

¶
ŜCk(β),

and SCk(β) is the largest eigenvalue of Ck. So Ŝh(β) is the weighted average of the compo-

nents’ largest eigenvalues.

Proposition 1 says that SSI will identify the isolated individuals in a network, as those

individuals have an SSI of 0. Proposition 2 demonstrates that SSI is the average SSI over the

connected components of Gh(β). These connected components are particularly interesting

in some applications. In residential segregation, they can be interpreted as ghettos, and in

school segregation as same-race cliques.

F. The Economics of SSI.

The three axioms provide the precise assumptions underlying the SSI. An alternative

way to envision the SSI is through a model of group-specific capital transmission. SSI is a

measure of how fast same-race capital is disseminated as a result of social contacts.12

Here, suppose that Gh(β) is a connected graph; without this assumption, the result will

hold in each connected component of Gh(β).

12We thank Erzo Luttmer for suggesting this interpretation.
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Let xi be a measure of how much race-specific capital an individual i has. Suppose that,

in each period t, individual i’s h-capital grows depending on how much h-specific capital her

contacts have, and on how much i interacts with them.

Specifically, suppose that

xit = xit−1 +
X
j∈h

bijxjt−1, (3)

and that xi0 is given, for all i. While simple, this model has been used recently to study

cultural transmission in networks (Brueckner and Smirnov 2004) and has a direct link to

SSI.

Proposition 3 For all (x0j)j, and all i,

lim
t→∞

xit
xit−1

= 1 + Sh(β)

Proposition 3 shows that we can interpret SSI as the rate of growth of same-race capital.

It follows from a familiar calculation in Perron-Froebenius theory. In economics the result is

reminiscent of the balanced growth result in the theory of Leontief systems (see e.g. Dorfman,

Samuelson and Solow (1958)).

Examples of this type of cultural transmission (or any diffusion process) include language

(Lazear 1999) and the choice of first names (Fryer and Levitt 2004). In a simple model of

culture and language, Lazear (1999) shows that incentives to assimilate by learning to speak

the native language are decreasing in the size of an ethnic enclave. Fryer and Levitt (2004)

argue that the choice of distinctive first names is a cultural expression, and show that this
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practice is more common in highly segregated areas. Both of these papers are consistent with

the basic model of cultural transmission described above and, ipso facto, with our measure

of segregation.

Another interesting feature of SSI is that it captures certain multiplier effects in a network;

this feature is related to the dynamics of the model described in equation 3. An individual’s

susceptibility to own-race influences (patterns of speech, names, and other race specific

behavior) depends on how many contacts the individual has with their own-race and the

susceptibility of those contacts.

Consider the following thought experiment, depicted in Figure 4, which captures the

essence of the multiplier effects. Network A in Figure 4 has 3 individuals of the same race

and one individual (4) of a different race. To illustrate the multiplier effects captured in SSI,

Network B changes the race of Individual 4 to be identical to the others.

1 2 3 4 Ŝ
Before 0.67 0.67 0.67 0 0.5
After 0.78 0.78 0.91 0.42 0.72

Table 3: SSI before and after the change

Table 3 shows the levels of segregation before and after Individual 4 changes race. Ini-

tially, the segregation of 1, 2, and 3 is unchanged. The segregation of 4 adjusts from 0 to 1.3.

In a second period, 4’s change induces a change in 3’s segregation, but in no other individual.

In a third period, the change reaches (by linearity) individuals 1 and 2. Now, the changes in

1 and 2 affect 3 again, and ultimately 4, and so on. Figure 5 demonstrates how the levels of
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segregation ultimately converge to the levels shown in Table 3, which captures the multiplier

effects inherent in SSI.

G. Graph-theoretic properties of SSI

We provide two results that help interpret the SSI. The first relates SSI to how many

neighbors individuals have. The second result shows how SSI measures the connectivity of

the h-race network.

The degree of a vertex v, d (v) , is the number of edges at v. Let dmin (C) = min {d (v) |v ∈ V }

denote the minimum degree of G, dmax (C) = max {d (v) |v ∈ V } represents its maximum de-

gree, and d (C) := 1
|V |
P

v∈V d (v) the average degree of G. If all vertexes of G have the same

degree, then G is regular. In this section we assume the neighborhood model (rij ∈ {0, 1} ).

A natural alternative to SSI is the average degree (or average number of own-race social

interactions). We discard the average degree because it fails linearity. The following result

provides a relationship between the measure of spectral segregation of a minority group and

the degree of the minority graph associated with that group.

Proposition 4 Let dmin, d and dmax be the minimum, average, and maximum degrees of

Bh, respectively. Then

dmin ≤ d ≤ Ŝh ≤ dmax

Let di be the number of same-race neighbors of household i. Proposition 4 proves that,

Homogeneity notwithstanding, Ŝh(β) is larger than the average di over the individuals with

a (i) = h. This relationship is strict when a city is irregular. The intuition is related to the
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feedback mechanism involved in the Linearity axiom. Recall, a household is more segregated

the more segregated its neighbors are, and this cascades through the network similar to our

thought experiment in the previous section. Proposition 4 indicates that the limit of this

process is larger than the average degree of a minority graph.

SSI is a measure of the connectedness of race-h individuals in a network, an interpretation

that was implicit in the discussion in Section E. Now we use walks in a graph to bring out the

relation between SSI and connectivity. A walk of length k is a sequence of (not necessarily

different) vertexes v1, v2, ..., vk, vk+1 such that for each i = 1, 2, ..., k there is an edge from

vi to vi+1. A walk is closed if vk+1 = v1. Let W θ
i be the number of walks of length θ that

individual i ∈ h can take in Bh, and define W θ =
P

iW
θ
i . Let W

θ
ij be the number of walks

of length θ between individual i ∈ h and j ∈ h. A graph is bi-partite if its vertex-set admits

a partition into 2 classes such that every edge has its ends in different classes. The graphs

one encounters in applications of SSI are never bi-partite.

Proposition 5 For θ sufficiently large: (1) W θ
i

(Ŝh(β))θ−1
is approximately proportional to ŝhi (β),

and the constant of proportionality is independent of i; (2) θ
p
W θ/nh(β) approximates Ŝh(β);

and (3) if Bh is non-bipartite, W θ
ij is approximately proportional to (Ŝ

h(β))θ−2ŝhi (β)ŝ
h
j (β).

Proposition 5 (1) says that, as θ grows, W θ
i (Ŝ

h(β))θ−1 converges. Thus Ŝ measures

the growth in the number of walks that i can take. Further, it converges to something

proportional to ŝi, thus individual SSI measures explain the differences, among individuals,

in how many walks they can take relative to Ŝ. Statement (2) in Proposition 5 says that

W θ ∼ nh(β)
³
Ŝh(β)

´θ
. The total number of walks will grow at rate Ŝh(β) (a statement
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which is similar, and has a similar proof, to that of Proposition 3). Finally, (3) says that two

individuals’ measures are related to how many walks there are between the two individuals,

relative to the total number of walks (given by Ŝh(β), in light of Statement (2)).

5 Two Applications of SSI: Measuring Residential and

School Segregation

Here we develop two illustrative applications of SSI: estimating residential segregation, and

racial segregation of friendship networks in schools.

5.1 Residential Segregation

We begin by explaining how we take the model in Section 4 to data. The first step involves

constructing the graphGh(β) of same-race interactions for each race and city that we analyze.

As an example consider Figure 6, which depicts Asian blocks around Downtown Boston. A

block is considered “Asian” if Asians represent the largest share of individuals in that block.

We assume that two blocks are neighbors if they are within one kilometer of each other.

The second panel of Figure 6 illustrates circles of 1 kilometer radius around the centroid

of each Asian block to depict the relevant neighborhood.13 From this, we can construct

the graph of Asians in Downtown Boston. The next step is to calculate the intensities of

13We have used one kilometer radii because one kilometer is the median radius of a census tract (1.03),
and tracts are the traditional notion of neighborhood in the literature. Our results alter little when we
change criterion to 0.5 or 1.5 kilometers.
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neighborhood interactions; the rij of Section 4. We obtain the total number, di, of neighbors

of block i, i.e. the number of blocks that are within one kilometer of i, and let rij be 1/di.

The justification for using 1/di is that we think of i as having a budget constraint for

social interactions, and we assume that i spends an equal amount of that budget on all its

neighbors. Of course, if one had more information about these interactions, one could do

something better.

The graph, and the intensities, give us Bh. We then calculate the largest eigenvalue of

(each irreducible submatrix of) Bh, and thus obtain the SSI. 14

A. The Data

The ideal data to estimate residential segregation would contain information on the nature

of interactions with other households. This information is, of course, not available. In

lieu of this, we use block-level data from the 2000 US Census, restricting our sample to all

Metropolitan Statistical Areas (MSAs).15 Census blocks contain, on average, 300 households,

and are approximately 100 meters in radius. We identify a block with the race/ethnicity

of the majority of its inhabitants. This assumption is not too problematic, as blocks are

strikingly homogeneous: 94.3% of Iowans live in a homogeneous census block and so do

77% of Texans. Save Washington DC, more than 60% of the blocks in all states contain

households of only one race (for half the states, 80% or more of the blocks contain only one

race).

14The Matlab programs to calculate all indexes reported in the paper are available at
http://post.economics.harvard.edu/faculty/fryer/fryer.html

15We have a proposal being reviewed at the US Census Bureau that would provide household level data
for 25 states; those in which it has been collected.
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One issue with our application of SSI to residential segregation is that it ignores block

density.16 To correct for this, one could assign all individuals in a census block to the centroid

of that block, and run the resulting individual-level estimation. This method, however, is

computationally very costly. Measuring the segregation of Chicago amounts to solving the

eigenvalues of a matrix whose dimensions are well over 1 million × 1 million.17

C. Baseline Residential Segregation

Since SSI for race h is a measure of the connectivity of the race-h network (or of the

growth of race-h social capital) it will tend to be larger in cities with larger fractions of

race-h individuals, even if individuals located at random in the city.

We refer to the SSI one would expect to see in a city when individuals locate at random

as Baseline SSI. We provide estimates of both SSI, and of the SSI in excess of Baseline SSI.

We have obtained measures of Baseline SSI by simulating random assignment of races

to large regular (in a graph-theoretic sense) cities with the corresponding fraction of race-

h inhabitants. Figure 7 shows the results of our simulations. On the horizontal axis is

the fraction of race-h inhabitants, while the vertical axis shows the average SSI. When the

share of race-h inhabitants in a city is relatively small, SSI mirrors the percent race-h in

a city closely. This is to be expected. When race-h inhabitants are relatively few and

assigned to a city graph at random, linearity has little power to alter SSI from percent black.

16This likely induces little error in the estimates of segregation, given our definition of neighbor usually
encompasses several blocks. In areas such as New York, however, this limitation may be quite restrictive.

17Typical cities such as Austin, Texas and Tampa, Florida currently take one day to compute. Imputing
all individuals to the centroid of their block in these cities would increase computing time to approximately
1 year.
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As the fraction of race-h individuals increases, however, SSI significantly departs from the

percentage of race-h in a city. We have used only large cities, as we can prove (See Appendix

B) that baseline SSI converges as a city grows. In fact the simulations show the convergence

to be quite fast.

D. The Extent of Segregation Across Cities

Table 4 reports the top 10 most segregated cities for Whites, Blacks, Hispanics, and

Asians (including pacific-islanders). Detroit is the most segregated city for Blacks; Lowell,

MA for whites; McAllen, TX for Hispanics and Honolulu, HI for Asians . The list seems

quite intuitive. It also confirms the statement in Section C: SSI is clearly correlated with the

size of a minority group. The latter point begs for a distinction between “raw” segregation,

as measured by SSI, and “behavioral” segregation: the segregation in excess of baseline

segregation. It is unclear which is most closely related to economic outcomes. Behavioral

segregation tells us more about preferences, while the original SSI is a better measure of the

growth of same-race capital. We are agnostic; they simply measure different things.

Table 5 reports the top 10 most behaviorally segregated cities. The rankings change

dramatically. Detroit, the most segregated city for Blacks in Table 1, is not even in the top

10. The most segregated cities after taking out the baseline for Asians, Blacks, Hispanics,

and Whites are: Los Angeles, CA; Milwaukee, WI; Flagstaff, AZ; and Pine Bluff, AR,

respectively. Approximately 11% of households in Milwaukee are black, implying a SSI of

.1145. The actual measure of segregation is a factor of 9 larger. Indeed, to generate the

level of SSI in Milwaukee, assuming blocks were assigned a race at random, Blacks need to
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comprise 80% of the population. It is also interesting to note that behavioral segregation

is larger for blacks than for other minorities. That is, the difference between the actual

percentage, and the one needed to generate the same SSI at random, is largest for blacks.

We have emphasized how the SSI allows one to consider more disaggregated units than

the city. One of the most interesting units is the agglomeration of same-race blocks: racially

homogenous ghettos, which SSI identifies endogenously as connected components (see Sec-

tion 4). This is related to city-wide SSI, but SSI weights the ghetto’s SSI against members

of the same race in other parts of the city, who are more integrated. For Blacks and Whites,

the largest ghetto is Detroit — implying an enormous amount of city-wide segregation. Re-

markably, 87% of black blocks in Detroit comprise one large ghetto. The largest connected

component is San Francisco for Asians, and Los Angeles for Hispanics. Hispanics in Los An-

geles comprise the largest minority ghetto in America; 17,909 Hispanic blocks are connected.

Table 6 provides more facts that are only obtainable with SSI; the top 15 most segregated

blocks in America. A Hispanic block in San Antonio is the most segregated block, followed

by a Black block in Lafayette, LA and an Asian block in Los Angeles.18

Table 7 presents a correlation matrix of popular measures of segregation. These measures

include dissimilarity, isolation, Gini coefficient, exposure, entropy, and interaction. Also

included in the matrix are SSI, SSI minus the baseline, and the ranking of cities based solely

on the their fraction of Blacks. All measures were calculated using data at the census block

18The table reports the most segregated block per unique PMSA. Because of Linearity, the (literal) top
15 most segregated Blocks are all in San Antonio. To avoid this redundancy, we report blocks from unique
PMSAs.
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level for 326 MSAs. The Spectral index has surprisingly little correlation with dissimilarity,

gini, entropy, and interaction — averaging less than .5 — and high correlation with isolation and

exposure; averaging more than .90. Given the nature of the isolation and exposure indexes,

it is not surprising that SSI is more correlated with the measures relative to the others.

However, we did not expect there to be such a striking similarity between them. Thus,

as a measure of residential segregation, our measure is very similar to existing measures

of exposure with the added ability to disaggregate to the level of individuals, and a well-

understood theoretical foundation. Taking out the relevant baseline, SSI becomes even less

correlated with dissimilarity and isolation. The fraction black in a city is highly correlated

with SSI, but linearity assures that this correlation is less than perfect.

E. The Impact of Residential Segregation on Economic Outcomes

The economic literature on the effects of segregation on outcomes is impressive. Case

and Katz (1991) show that youths in a central city are affected by the characteristics of their

neighbors. Almond, Chay, and Greenstone (2003) show that segregation of hospitals in the

Jim Crow era had a significant negative effect on infant mortality. Using evidence from the

Moving to Opportunity experiment, Katz, Kling, and Liebman (2001) and Kling, Liebman,

and Katz (2005) provide evidence that moving individuals to lower poverty neighborhoods

has substantial effects on mental and physical health of parents and children.

Cutler and Glaeser (1997) is one of the most influential papers in economics on the

impact of segregation. They use the dissimilarity index as a measure of segregation. We
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re-estimate the impact of black segregation on economic outcomes with Cutler and Glaeser’s

specification. Econometrically, we estimate models of the form:

outcomei = X
0
β + β1segregationj + β2segregationj ∗ blacki + εi, (4)

where outcomei is measured at the individual level and segregationj is measured at the MSA

level, and compare the results obtained with SSI and the dissimilarity index.

Identical to Cutler and Glaeser (1997), we correlate measures of segregation with various

economic and social outcomes for young people aged 20-30. We choose to focus on younger

individuals for three reasons. First, they are most susceptible to group level influences as

a result of social interactions. Second, the problems of mobility across metropolitan areas

is more easily avoided. Third, and most importantly, it mirrors the specifications in Cutler

and Glaeser (1997). Data from the 5% Census Public Micro Use Sample are used.

Outcome measures are divided into 3 categories: educational attainment, labor market,

and social outcomes. Educational attainment is measured as the probability an individual

graduates from high school or college. There are two measures of labor market outcomes.

The first is whether or not an individual is idle (not working and not employed). The

second is earning (sum of wages, salary, and self-employment income). In all specifications,

we use the natural logarithm of earnings, conditional on the individual not being in school

and reporting positive earnings. The final outcome variable is a social outcome — whether

a woman is an unmarried mother. While these may seem like a motley set of outcomes

to include, they are identical to those analyzed in Cutler and Glaeser (1997) and serve as
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proxies for a broad set of social and economic variables.

Tables 8 presents a series of ordinary least squares estimates of the relationship between

segregation and outcomes for persons aged 20-24 and 25-30, using three different measures of

segregation. All measures of segregation have been normalized such that they have a mean

of zero and a standard deviation of one. Along with a mutually exclusive and collectively

exhaustive set of racial dummies, we include controls for gender, age dummies in one year

increments, logarithm of MSA population, percent black, median household income and

percent of the labor force employed in manufacturing. Each of these variables are also

interacted with a dummy variable for black. Standard errors are clustered at the MSA level.

The top panel of Table 8 replicates Cutler and Glaeser’s (1997) results using the dis-

similarity index. The bottom two panels estimate the same specification using SSI and the

Isolation index. Results differ sharply between SSI and dissimilarity, which is not surprising

given the low correlation between the two indexes reported in Section D. On each outcome,

cities with higher dissimilarity indexes have inferior outcomes: less likely to graduate from

high school or college, more likely to be idle, earn less money, and more likely to be a single

mother. SSI paints a different portrait. On every outcome-measure, the effect of segregation

on black outcomes decreases markedly; only idleness and single motherhood are statistically

distinguishable from zero. The bottom panel presents results using the isolation index. As

one might expect, the estimates using the isolation index lie in between the dissimilarity and

SSI extremes, though the results are more in line with the SSI.

It is quite surprising that estimates of the impact of segregation on our set of outcomes
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differ so substantially when one employs the Spectral index in lieu of the dissimilarity index.

Thinking carefully about these differences and related models of social interaction that can

inform us about why one type of segregation is worse than another is an important line of

inquiry, which we leave for future work.

5.2 School Segregation

There is a growing literature on the effects of school segregation on achievement. Guryan

(2004) estimates that half of the decline in black dropout rates between 1970 and 1980 is

attributable to desegregation plans. Crain and Strauss (1985) find that students randomly

offered the chance to be bussed to a suburban school were more likely to work in professional

jobs nearly 20 years after the experiment. Meta-analytic studies, however, typically find

no consensus reached about the effect of school integration on black student achievement

(Armor 2002, Cook 1984, Crain and Mahard 1981, St. John 1975).

While the literature on the relationship between school segregation and achievement has

amassed an impressive array of facts, the vast majority of it has focused on one aspect of

the problem — segregation across schools.19 This is very much in the legacy of the Brown

Decision; ensuring the placement of black kids in traditionally white school so they can get

the benefit of better resources, more qualified teachers, and so on. Traditional measures of

segregation calculate the fraction of whites at the typical black student’s school (entropy)

or the percentage of blacks that would have to change schools to get an equal distribution

19Clotfelter, Ladd, and Vigdor (2003), which calculates dissimilarity at the classroom level, is a nice
counter-example.
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across a district (dissimilarity). Neither of these indexes are equipped to measure the nature

of interactions within schools.

Estimates of within-school interactions are vitally important for a myriad of educational

policies: ranging from the efficacy of bussing programs to the design of optimal class com-

position. It is one thing to have black kids present in the majority of white schools; it is

something quite different to have black students be apart of the social networks of the typical

white kid.

A. The Data

The National Longitudinal Study of Adolescent Health (Addhealth) database is a nation-

ally representative sample of 90,118 students entering grades 7 through 12 in the 1994-1995

school year. A stratified random sample of 20,745 students was given an additional in-home

interview; 17,700 parents of these children were also interviewed. Thus far, information has

been collected on these students at 3 separate points in time: 1995, 1996, and 2002. There

are 175 schools in 80 communities included in the sample, with an average of more than 490

students per school, allowing within school analysis. Students who are missing data on race

or grade level are dropped from the sample.

A wide range of data are gathered on the students, as described in detail on the Ad-

dhealth website (http://www.cpc.unc.edu/projects/addhealth). For our purposes, the most

interesting and unique aspect of the Addhealth data is the detailed information regarding

friendship associations in schools. All students contained in the in-school survey were asked,

“List your closest male/female friends. List your best male/female friend first, then your
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next best friend, and so on.” Students were allowed to list as many as 5 friends from each

sex. Each friend can be linked in the data and the full range of covariates in the in-school

survey (race, gender, grade point average, etc) can be gleaned from each friend.

B. The Nature of School Segregation

The empirical framework we implement here is similar to that employed in Section 5.1.

First, we calculate the spectral index for each school, and for each individual within a

school. The theory requires that all interactions be bilateral. Empirically, however, a non-

trivial portion of students listed as friends individuals who did not list them. There are two

potential ways to handle this: we can include an individual i as a friend if either i or j list

them as a friend; or we can opt for a more restrictive definition — including i only if both i

and j list them as a friend. We opt for the former — less restrictive — definition.

Figures 8 depicts the relationship between the percentage of minority students in a school

and the level of segregation for each minority student in that school, using the Addhealth

database. Each observation is a school. Grade levels 7-12 are combined.

Many researchers assume the relationship is linear (see, for example, Orfield 1983). This

seems to be true for Whites, Asians, and to a lesser extent Hispanics. For Blacks, however,

the relationship between percent own-race in a school and own-race segregation is highly non-

linear. As the percentage of black students increases from zero to twenty-five percent, black

segregation rises sharply. Above twenty-five percent, Blacks are near complete segregation.

This has important implications for the bussing programs and the optimal organization of

schools, among other things.
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B. The Impact of School Segregation on Academic Achievement

Table 9 presents the first estimates of individual level measures of segregation on indi-

vidual outcomes. We estimate models of the form:

outcomei = Xβ + γsegregationi + ξ1black · segregationi + ξ2asian · segregationi

+ξ3hispanic · segregationi + εi,

including school-level fixed effects.

We examine eight outcome variables: 4 social and 4 academic. The social variables

include smoking, skipping school (without a valid excuse), interracial dating, and whether

or not a student is happy at their school. Smoking and skipping school are answers to the

question, “During the past 12 months, how often did you...” Answer choices range from

never to nearly everyday. Interracial dating is a dichotomous variable equal to 1 if the

student reports ever dating interracially and zero otherwise. Happiness measures whether or

no students report being happy at their school. The academic variables include: Peabody

Vocabulary Test (PVT) scores, whether or not a student plans to attend college, grades

in the previous grading period, and a measure of how much effort the student exerts. All

responses (including grades) are self-reported.

For blacks, individuals who are more segregated are less likely to smoke (a behavior

predominant among white teens) and have lower test scores. Asian students who are more
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connected to each other are less likely to skip school, have lower test scores, put in more

effort, and report being happier. Among Hispanics, more segregation is associated with

less smoking, lower test scores, lower probability of attending college, and lower grades.

Interestingly, students of all races are less likely to date interracially when schools are more

segregated. Similar results are obtained when one excludes school fixed-effects.

6 Conclusion

For decades, social scientists have used measures of evenness and exposure to estimate the

prevalence and impact of segregation in housing, firms, and schools. These measures have

many limitations, which we have discussed throughout. This paper develops a new measure

of segregation based on two key ideas: a measure of segregation should disaggregate to the

level of individuals, and an individual is more segregated the more segregated are the agents

with whom they interact. Developing three axioms that any segregation measure should

satisfy, our main result shows that one and only one segregation index satisfies our three

axioms, and the two aims mentioned above–the Spectral Segregation Index. To illustrate the

potential of the index, it is applied to two well-known social problems: measuring residential

and school segregation and several new insights are gleaned. We hope the Spectral index

will be a useful tool for applied researchers interested in the agglomeration of individuals in

networks.
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7 Appendix A: Proofs

Proof of Theorem 1.

The proof of Theorem 1 proceeds by stating and proving 5 lemmas that together establish

the theorem.

The first lemma unifies some results about irreducible matrices. Mainly the lemma

restates the Perron-Froebenius Theorem.

Lemma 2 Let C be a real, non-negative, irreducible matrix. Then A has a real, positive,

eigenvalue λ with associated eigenvector y. Such that

1. y is strictly positive, so yi > 0 for all i, and y is the unique, up to a scalar multiple,

strictly positive eigenvector of C;

2. λ is larger than |σ|, for any other eigenvalue σ of C; in particular, λ is larger than

any other real eigenvalue.

Proof. By the Perron-Froebenius Theorem (Theorem 8.4.4 in Horn and Johnson), C has

a real, strictly positive, eigenvalue, λ, with associated strictly positive eigenvector y. The

multiplicity of λ is one and λ is larger than |σ|, for any other eigenvalue σ of C (λ is the

spectral radius of C).

Let z be any strictly positive eigenvector, by Corollary 8.1.30 in Horn and Johnson, z is

associated to eigenvalue λ. The z is a scalar multiple of y, as λ has multiplicity one.

Now we verify that the spectral segregation index satisfies our three axioms.
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Lemma 3 The Spectral Segregation Index satisfies Montonicity.

Proof. Let β0 = (a0, R0) have more h-segregation than β = (a,R). Let Bh0 denote the

submatrix of B(β0) whose rows i have h = a0(i). Let Bh denote the corresponding submatrix

of B(β). That β0 has more h-segregation than β implies that, if i is a row in Bh, then i is a

row in Bh0.

Let C 0 = (c0ij) be an irreducible submatrix of B
h0. Then the set of rows in C 0 is the union

of the rows in some collection C1, C2, . . . CL of irreducible submatrices of Bh. Let C = (cij)

be the block-diagonal matrix with C1, C2, . . . CL in its diagonal. Let x0 be an eigenvector

associated to the largest eigenvalue λ0 of C 0. Then C 0x0 = λ0x0, xi > 0 for all i (Lemma 2),

and β0 having more h-segregation than β impliy that

λ0 =
1

x0i

X
j∈C0

c0ijx
0
j ≥

1

x0i

X
j∈C0

cijx
0
j (5)

Let λ = max {|σ| : σ is an eigenvalue of C} be the spectral radius of C. Then, by Horn

and Johnson’s Theorem 8.1.26,

λ ≤ max
i∈C

1

x0i

X
j∈C

cijx
0
j. (6)

Statements (5) and (6) imply that λ ≤ λ0. But λ0 is SC0(β0) (Proposition 2); so λ ≤

ŜC0(β0).

Now we prove that ŜCl(β) ≤ λ, for l = 1 . . . L. Let λl be the largest real eigenvalue of

Cl. Let xl be an eigenvector of Cl, associated to λl; Let y = (yi)i∈C be the vector obtained
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from xl by letting yi = xli if i ∈ Cl and 0 otherwise. Then, since C is block-diagonal, λl is

an eigenvalue of C, with associated eigenvector y. By definition of λ, since λl is real, λl ≤ λ.

But Proposition 2 implies that λl = ŜCl(β), so ŜCl(β) ≤ λ, for l = 1 . . . L.

Let C 0
k, k = 1, . . .K be the irreducible submatrices of Bh0, and let each C 0

k be the union

of Lk irreducible submatrices of Bh, C 0
kl with l = 1, . . . Lk. By Proposition 2

Ŝh(β) =
KX
k=1

LkX
l=1

|Ck|
nh(β)

ŜCkl(β)

≤
KX
k=1

ŜC0k(β0)

LkX
l=1

|Ck|
nh(β)

=
KX
k=1

ŜC0k(β0)
|Ck|
nh(β0)

= Ŝh(β0)

Lemma 4 The Spectral Segregation Index satisfies homogeneity.

Proof. Let a ∈ A be h-homogeneous of degree d. Let y = 1, then homogeneity says that

Ay = d1, so d is an eigenvalue with eigenvector y. By Lemma 2 d must coincide with λ, the

largest eigenvalue of B, and the rescaled eigenvector must coincide with x. So Ŝh(β) = d.

Lemma 5 The Spectral Segregation Index satisfies linearity.

Proof. By Proposition 2, ŜCk(β) is an eigenvalue with eigenvector (xi), the eigenvector

in the definition of the spectral index. The, for any i, si(β) = SCk(β)xi |Ck| = |Ck| (Ck · x|i).
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So

si(β) =
X
j∈Ck

|Ck| rijxj

=
1

λk

X
j∈Ck

|Ck| rijxjλk

=
1

SCk(β)

X
j∈Na

i

sj(β)

Second, we prove that any index that satisfies the three axioms must coincide with the

spectral index. Let
¡
Sh(β), (si(β))i∈h

¢
be a segregation index that satisfies the three axioms.

Lemma 6 If β = (a,R) is such that bij = 0 for all i and j with h = a(i) = a(j), then

si(β) = ŝi(β) for all i with h = a(i).

Proof. By Homogeneity, Sh(β) = 0, so we must have and si(β) = 0 for all i with

h = a(i), as si(β) ≥ 0 and Sh(β) is the average si(β) over i with h = a(i). Thus the index

coincides with the Spectral Segregation Index.

Lemma 7 For any assignment-interaction pair β, si(β) = ŝi(β) for all i.

Proof. Let β be an assignment-interaction pair. Fix h and let Bh(β) = (bij) If β is such

that bij = 0 for all i and j, we are done by Lemma 6. Suppose that bij > 0 for at least one i

and j.
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Let γ = min {bij : bij > 0} . Let D = (dij) be the matrix defined by dij = 0 if bij = 0, and

dij =
γ

|{j : bij > 0}|

if bij > 0. Let β0 = (a,R0) be the assignment-interaction pair that differs from β in that

submatrix for the i with h = a(i) is D. Then, for all i with h = a(i),
P

i∈h r
1
ij = γ. So β0 is

h-homogeneous of degree γ. By homogeneity, Sh(β0) = γ.

Now, for all i with h = a(i), and j, rij ≤ bij. So β has more h-segregation than β0. And

nh(β0) = |a−1 (h)| = nh(β). Monotonicity implies then Sh(β) ≥ Sh(β0) = γ. So Sh(β) > 0.

Fix a component Ck such that SCk(β) > 0; since Sh(β) > 0 there must exist at least one.

For i ∈ Ck, let xi =
shi (β)

|Ck|Sh(β) . Note that, by definition of S
Ck(β)xi,

P
i∈Ck xi = 1.

Then SCk(β)xi = si(β)/ |Ck| = 1
|Ck|

P
j∈Na

i
rijsj/S

Ck(β), by Linearity. Then SCk(β)xi =P
j∈Na

i
rijxj. So SCk(β)x = Ckx; SCk(β) is an eigenvalue of Ck with eigenvector x.

Now, si(β) > 0 for all i. Since si(β) = 0 for some i would imply, by Linearity, that all

j ∈ Na
i have sj(β) = 0. Then, by recursion, sj(β) = 0 for all j ∈ Ck, which would contradict

that SCk(β) > 0. Hence x is a strictly positive eigenvector.

By Proposition 2 and Lemma 2 now SCk(β) = ŜCk(β), and by the rescaling
P

i∈Ck xi = 1,

x must coincide with the defining eigenvector in the definition of the spectral segregation

index. Then, si(β) = ŝi(β) for all i.

Finally, take a component with SCk(β) = 0. Then Monotonicity and Lemma 6 imply

that bij = 0 for all i and j in Ck.

Lemmas (3) through (7), taken together, establish the theorem.
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Proof of Proposition 1 If i ∈ h has at least one same-race neighbor, then i is in Ck,

for some irreducible submatrix Ck. Let λk be the largest eigenvalue of Ck, and xk be its

associated eigenvector. By Lemma 2, xk is strictly positive, so xki > 0. Since λk > 0

(Lemma 2), the definition of ŝhi (β) implies that ŝ
h
i (β) > 0. ¥

Proof of Proposition 2

We show that SCk(β) is the largest eigenvalue of Ck. SCk(β) =
P

i∈Ck si(β)/ |Ck| =

λk
P

i∈Ck xi. Since x was normalized so that
P

i∈Ck xi = 1, it follows that SCk(β) = λk.

That Sh(β) is the weighted average of the SCk(β) follows immediately by definition of Sh(β)

and SCk(β). ¥

Proof of Proposition 3 Let I denote the nh(β)×nh(β) identity matrix. LetD = I+Bh(β).

Then equation 3 implies that the vector xt = (xit)i satisfies xt = Dxt−1, for all t. So

xt = Dtx0. By Lemma 8.4.2 in Horn and Johnson, 1 + Ŝh(a) is the largest eigenvalue of D.

By Lemma 8.2.7 in Horn and Johnson, there is a matrix L such that

lim
t→∞

(1 + Ŝh(a))−tDt = L

Then,

xit
xit−1

= (1 + Ŝh(a))
((1 + Ŝh(a))−tDtx0)i

((1 + Ŝh(a))−t+1Dt−1x0)i
→ (1 + Ŝh(a))

¥

Proof of Proposition 4 See Cvetkovic and Rowlinson (1990).¥

Proof of Proposition 5 Let U = (ui) be the eigenvectors of Bh, normalized to form an
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orthonormal basis, so UTU = I. Let D be the matrix with the eigenvalues of Bh on the

diagonal, and 0 everywhere else. So A = UDUT .

If 1 is the vector with 1 in all its entries, the vector of θ-long walks (W θ
i ) is defined by

(W θ
i ) = Aθ1. So (W θ

i ) = UDθUT1. The (ui) vectors form a basis, so there are scalars (ξi)

such that 1 =
P

i ξiui.

Then (W θ
i ) =

P
i ξiUD

θUTui. But UTui = ei, the vector with i-th entry 1, and 0

elsewhere. So (W θ
i ) =

P
i ξiλ

θ
iUei =

P
i ξ

θ
iλiui. Let λ1 = Sh; λ1 has multiplicity 1, as Bh

has a unique non-trivial eigenvector (Theorem 2.1.3 in Cvetkovic, Rowlinson and Simic). So

Sh (β) > λi, i = 2, 3 . . . |h|.

Then

1

(Sh(β))θ−1
(W θ

i ) = Sh(β)
X
i

ξi
λθi
λθ1

ui (7)

→ Sh(β)ξ1ui, (8)

as λθi /λ
θ
1 → 0 for all i 6= 1. Since u1 is a scalar multiple of the (xi) vector in the definition

of the spectral index, Sh(β)ξ1u1 is a scalar multiple of s
h
i .

The second statement is a theorem of Cvetkovic, stated in the survey by Cvetkovic and

Rowlinson (1990). The third statement is essentially Theorem 2.2.5 in Cvetkovic, Rowlinson

and Simic. ¥
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8 Appendix B: Baseline Segregation

Here we present a theoretical justification for our “baseline” simulations. SSI converges as a

city’s size grows, so we can estimate SSI for relatively large cities (the size of 6400 is enough

in our simulations).

Let H = {0, 1} be the set of races. We are interested in only one race here, so working

with H = {0, 1} is without loss of generality. Let Vn be set of households, such that if n ≤ m

then Vn ⊆ Vm.

Let Ωn = HVn be the set of possible assignments of households to races. Endow the

power set of Ωn with the probability measure pk obtained by letting each household be race

1 with probability π ∈ (0, 1), independently of the races of other households.

Let

EnS =
X
ω∈Ωn

S(ω)pn(ω)

be the expected value of the SSI.

Proposition 6 There is S such that En ↑ S as n→∞.

Proof. We shall prove that, if n ≤ m, then

X
ω∈Ωn

S(ω)pn(ω) ≤
X
ω∈Ωm

S(ω)pm(ω).

Since the EnS are bounded above by 1, the result follows.

Let qn,m be the probability distribution on HVm\Vn induced by letting each household
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be race 1 with probability π ∈ (0, 1), independently of the races of other households.

Abusing notation, we shall use qn,m for the probability distribution induced by qn,m onn
ω ∈ Ωm : ω|Vn = {0}Vn

o
. Then,

X
ω∈Ωm

S(ω)pm(ω) =
X
ω0∈Ωn

pn(ω
0)

⎡⎣ X
{ω∈Ωm:ω|Vn=ω0}

qn,m(ω − ω0)S(ω)

⎤⎦
≥

X
ω0∈Ωn

pn(ω
0)

⎡⎣ X
{ω∈Ωm:ω|Vn=ω0}

qn,m(ω − ω0)S(ω0)

⎤⎦
=

X
ω0∈Ωn

pn(ω
0)S(ω0)

X
{ω∈Ωm:ω|Vn=ω0}

qn,m(ω − ω0)

=
X
ω0∈Ωn

pn(ω
0)S(ω0)
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Figure 1: Segregation in Metropolitan Detroit
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Figure 4: Adding a same-race neighbor.



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Household 3 gets a new same−race neighbor

S
S

I

Period

Figure 5: Changes in individual SSI.



Figure 6: Calculating the Spectral Index for Asians near Downtown Boston, MA



Figure 7: Simulating the Baseline Spectral Segregation Index
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Figure 8: The Relationship Between Group Size and Group Segregation, By Race



Whites SSI Blacks SSI Asians SSI Hispanics SSI
Lowell, MA 0.99984 Detroit, MI 0.95421 Honolulu, HI 0.93403 McAllen, TX 0.9585
Lawrence, MA 0.99984 Monroe, LA 0.94912 San Francisco, CA 0.8056 Laredo, TX 0.9497
Nashua, NH 0.99966 Milwaukee, WI 0.93605 San Jose, CA 0.71692 Los Angeles, CA 0.939
Sharon, PA 0.99952 Flint, MI 0.93027 Los Angeles,  CA 0.65878 El Paso, TX 0.9256
Boston, MA 0.99949 Pine Bluff, AR 0.92744 Vallejo, CA 0.63447 San Antonio, TX 0.9048
York, PA 0.99947 Chicago, IL 0.9206 Oakland, CA 0.56615 Brownsville, TX 0.8769
Barnstable, MA 0.99947 Memphis, TN 0.9166 Anaheim, CA 0.53402 Tuscon, AZ 0.8654
Johnstown, PA 0.99944 Miami, FL 0.91513 Seattle, WA 0.52639 Anaheim,  CA 0.8624
Providence, RI 0.99943 Birmingham, AL 0.91449 New York, NY 0.47642 Corpus Christi, TX 0.8322
Springfield, MA 0.99933 Gary, IN 0.91418 San Diego, CA 0.41735 Albuquerque, NM 0.8246

Table 4: Top 10 Most Segregated Cities, by Racial Group

Notes: Calculations performed using block-level data from from all MSAs in the 2000 US Census. The sample 
includes all census blocks in all MSAs. Racial categories are mutually exclusive. Asians include Pacific Islanders.



Blacks
PMSA SSI-Baseline SSI % Minority % Needed to Give SSI

Milwaukee, WI 0.82155 0.93605 0.11 0.80
Saginaw Bay, MI 0.79187 0.89757 0.1 0.72
Indianapolis, IN 0.77346 0.87916 0.1 0.68
Omaha, NE 0.77144 0.83954 0.07 0.63
Chicago, IL 0.7712 0.9206 0.14 0.76
Wichita, KS 0.7685 0.8298 0.06 0.62
Toledo, OH 0.76485 0.85475 0.09 0.64
Fort Wayne, IN 0.75505 0.80525 0.05 0.60
Los Angeles, CA 0.7545 0.8444 0.09 0.63
Buffalo, NY 0.74787 0.83777 0.09 0.63

Whites
Pine Bluff, AR 0.46306 0.90166 0.38 0.72
Honolulu, HI 0.44971 0.66641 0.2 0.53
Los Angeles, CA 0.27402 0.97952 0.55 0.93
Albany, GA 0.26953 0.90433 0.51 0.73
Sumter, SC 0.26029 0.86269 0.49 0.65
Memphis, TN 0.24103 0.94653 0.55 0.83
Jackson, MS 0.19891 0.90441 0.55 0.73
Monroe, LA 0.19399 0.97809 0.59 0.93
Oakland, CA 0.18802 0.97212 0.59 0.91
Flagstaff, AZ 0.18247 0.94837 0.58 0.83

Asians
Los Angeles, CA 0.54428 0.65878 0.11 0.53
Oakland, CA 0.41675 0.56615 0.14 0.47
San Francisco, CA 0.6283 0.8056 0.17 0.60
Honolulu, HI 0.37023 0.93403 0.47 0.80
New York, NY 0.39272 0.47642 0.08 0.41
Orange County, CA 0.40882 0.53402 0.12 0.45
San Diego, CA 0.35605 0.41735 0.06 0.37
San Jose, CA 0.49312 0.71692 0.21 0.55
Seattle, WA 0.45829 0.52639 0.07 0.44
Vallejo, CA 0.56637 0.63447 0.07 0.51

Hispanics
Flagstaff, AZ 0.71812 0.78622 0.07 0.59
Orange County, CA 0.63855 0.86235 0.21 0.65
Bridgeport, CT 0.59928 0.68918 0.09 0.54
Milwaukee, WI 0.59905 0.63585 0.04 0.51
Tucson, AZ 0.58659 0.86539 0.26 0.66
Lawrence, MA 0.58459 0.67449 0.09 0.53
Fort Worth, TX 0.5657899 0.74309 0.17 0.57
Philadelphia, PA 0.56206 0.59886 0.04 0.49
San Diego, CA 0.54279 0.77799 0.22 0.59
Chicago, IL 0.54143 0.65593 0.11 0.52

Table 5: The Top 'Behaviorally' Segregated Cities, By Racial Group

Notes: Calculations performed using block-level data from from all MSAs in the 2000 US Census. 
The sample includes all census blocks in all MSAs. Racial categories are mutually exclusive. Asians 
include Pacific Islanders. Baseline SSI calculated from simulations described in Section 5.1.C.



PMSA Race CC SSI Size of CC Latitude Longitude Block SSI
San Antonio, TX Hispanic 0.995 6166 29.40878 -98.52187 292.260
Lafayette, LA Black 0.833 406 30.53489 -92.08582 96.407
Los Angeles, CA Asian 0.871 751 33.9731 -117.9167 94.085
Houston, TX Hispanic 0.735 226 29.55255 -95.81261 87.263
Brownsville, TX Hispanic 0.877 559 26.20365 -97.68172 82.148
Fresno, CA Hispanic 0.919 1714 36.73535 -119.8122 66.056
Atlanta, GA Black 0.992 6498 33.76681 -84.41813 62.625
Washington, DC Black 0.993 6465 38.92611 -76.99167 57.627
McAllen, TX Hispanic 0.988 3541 26.27484 -98.20446 56.180
Tallahassee, FL Black 0.878 171 30.58215 -84.59776 45.379
Corpus Christi, TX Hispanic 0.965 1116 27.69691 -97.36656 40.777
Oakland, CA Black 0.837 1567 37.77278 -122.2013 39.056
San Diego, CA Hispanic 0.958 2083 32.71384 -117.0652 38.918
Jackson, MS Black 0.996 1828 32.30819 -90.20749 38.847
Columbus, GA Black 0.957 1157 32.43829 -84.95276 34.448

Table 6: Top 15 Most Segregated Blocks

Notes: The table reports the most segregated block per unique PMSA. Calculations performed using 
block-level data from from all MSAs in the 2000 US Census. The sample includes all census blocks in 
all MSAs. Racial categories are mutually exclusive. Asians include Pacific Islanders. Baseline SSI 
calculated from simulations described in Section 5.1.C. 



SSI Dissimilarity Isolation Exposure Entropy Gini % Black Interaction SSI-Baseline
SSI 1
Dissimilarity 0.419 1
Isolation 0.9283 0.5594 1
Exposure 0.9097 0.594 0.9538 1
Entropy 0.4726 -0.3811 0.3614 0.3434 1
Gini 0.4563 0.9953 0.6009 0.6266 -0.365 1
Percent Black 0.8973 0.3055 0.9224 0.8432 0.5633 0.3498 1
Interaction 0.4684 -0.3518 0.3743 0.3398 0.9835 -0.3328 0.5678 1
SSI-Baseline 0.8913 0.3882 0.7382 0.8007 0.2 0.4112 0.6149 0.1823 1

Table 7: Correlation Between Existing Measures of Segregation and the Spectral Index

Notes: All calculations performed using block-level data from from all MSAs in the 2000 US Census. The sample includes all census blocks in all MSAs. Baseline 
SSI calculated from simulations described in Section 5.1.C. 



Variable Social Social
High School 
Graduate

College 
Graduate Idle

Log 
(Earnings)

Single 
Mother

High School 
Graduate

College 
Graduate Idle

Log 
(Earnings

Single 
Mother

Dissimilarity -0.014 .098 -.034 .058 .043 -.003 .079 -.026 -.082 .079
(.026) (.046) (.031) (.084) (.024) (.019) (.080) (.031) (.088) (.017)

Dissimilarity*Black -.288 -.145 .432 -.344 .340 -.214 -.311 .331 -.249 .303
(.046) (.044) (.069) (.179) (.080) (.041) (.072) (.047) (.133) (.077)

SSI -.001 .009 -.011 .018 .001 -.000 .015 -.011 -.009 .001
(.004) (.007) (.004) (.009) (.003) (.003) (.011) (.004) (.012) (.002)

SSI*Black -.017 -.007 .025 -.082 .037 -.002 -.021 .013 -.028 .025
(.009) (.007) (.012) (.031) (.016) (.007) (.012) (.011) (.022) (.012)

Isolation -.002 .011 -.004 .009 .006 .000 .005 -.001 -.018 .011
(.004) (.007) (.005) (.013) (.003) (.003) (.013 (.005) (.014) (.003)

Isolation*Black -.042 -.020 .061 -.061 .051 -.030 -.040 .041 -.047 .033
(.007) (.007) (.011) (.028) (.012) (.006) (.011) (.008) (.018) (.012)

Number of Observations 62,797 62,797 62,797 28,092 31,861 81,537 81,537 81, 537 54,141 41,933
Notes: Dependent variables vary by column. All calculations performed using 2000 Census data from the 5% Public Use Micro Sample. 
Segregation indices are calculated at the census block-level and normalized such that each has a mean of 0 and standard deviation of 1. Controls 
include gender, age dummies in one year increments, logarithm of MSA population, percent black, median household income and percent of the 
labor force employed in manufacturing. Each of these variables are also interacted with a dummy variable for black. Standard errors are 
clustered at the MSA level.

Table 8: Ordinary Least Squares Estimates of the Effects of Segregation on Outcomes, by Measure of Segregation
Age 20-24 Age 25-30

Education Income Education Income



Smoking Skip School Interracial Dating Happiness PVT Scores No College Grades Effort
Black -0.143** -0.010** 0.085** -0.091** -0.424** -0.013* -0.216** 0.027**

0.004 0.003 0.017 0.007 0.026 0.006 0.011 0.002
Asian -0.081** -0.008* 0.372** -0.025* -0.303** -0.047** 0.258** 0.036**

0.006 0.004 0.029 0.010 0.042 0.007 0.015 0.003
Hispanic -0.040** 0.026** 0.460** -0.016* -0.426** 0.065** -0.182** 0.003

0.005 0.003 0.017 0.007 0.026 0.006 0.010 0.002
Individual SSI 0.000 0.000 -0.007** 0.000 0.001 0.000 0.001 0.000

0.001 0.000 0.002 0.001 0.003 0.001 0.001 0.000
Black*Individual SSI -0.003* -0.001 -0.004 0.003 -0.025* 0.000 0.000 0.000

0.001 0.001 0.009 0.003 0.013 0.003 0.005 0.001
Asian*Individual SSI -0.006 -0.008** -0.067** 0.021** -0.102** 0.000 0.017 0.004*

0.005 0.002 0.017 0.006 0.030 0.007 0.014 0.002
Hispanic*Individual SSI -0.006* -0.002 -0.015 0.004 -0.047** 0.012** -0.013** 0.004**

0.003 0.002 0.014 0.004 0.014 0.003 0.004 0.001
Age 0.029** 0.009** -0.002 -0.037** -0.034** 0.021** -0.024** -0.011**

0.001 0.001 0.003 0.001 0.006 0.001 0.002 0.001
Male -0.002 0.019** 0.004 0.047** 0.124** 0.085** -0.184** -0.047**

0.003 0.002 0.008 0.004 0.014 0.003 0.006 0.001
Mother College Educated -0.024** -0.002 0.001 0.031** 0.099** -0.080** 0.154** 0.006**

0.004 0.002 0.010 0.005 0.019 0.004 0.008 0.002
Father College Educated -0.032** -0.010** 0.014 0.021** 0.078** -0.075** 0.163** 0.013**

0.004 0.002 0.012 0.005 0.021 0.004 0.008 0.002
Mother Professional -0.002 -0.001 0.011 -0.006 0.067** -0.024** 0.062** 0.003*

0.004 0.002 0.010 0.005 0.019 0.004 0.007 0.002
Father Professional -0.008* 0.000 0.018 0.022** 0.127** -0.048** 0.114** 0.001

0.004 0.002 0.011 0.005 0.020 0.004 0.008 0.002
Constant -0.220** -0.108** 0.117* 1.134** 0.725** -0.125** 3.216** 0.989**

0.017 0.011 0.049 0.022 0.088 0.019 0.035 0.008
Observations 78075 77903 9553 73837 14387 69257 72744 79599
R-squared 0.07 0.04 0.37 0.05 0.28 0.1 0.18 0.08
Notes: Dependent variables vary by column. In all cases, dummy variables for missing values and school fixed effects are included. 
Robust standard errors are beneath the coefficients. * significant at 5%; ** significant at 1%.

Table 9: The Effect of Individual Level Segregation on Social and Academic Outcomes
Social Academic




