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ABSTRACT

Stock returns are correlated with contemporaneous earnings growth, dividend growth, future real

activity, and other cash-flow proxies. The correlation between cash-flow proxies and stock returns

may arise from association of cash-flow proxies with one-period expected returns, cash-flow news,

and/or expected-return news. We use Campbell's (1991) return decomposition to measure the relative

importance of these three effects in regressions of returns on cash-flow proxies. In some of the

popular specifications, variables that are motivated as proxies for cash-flow news also track a

nontrivial proportion of one-period expected returns and expected-return news. As a result, the R2

from a regression of returns on cash-flow proxies may overstate or understate the importance of

cash-flow news as a source of return variance.
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Most valuation theories identify time-varying one-period expected returns, news about cash flows, 

and news about future expected returns as the three possible sources of return variation.  Barring the 

existence of infinitely-lived bubbles in asset prices, if an asset’s return is high, its current one-period 

expected return must have been high, expected cash flows must have increased (i.e., cash-flow news must 

have been positive), and/or future expected returns decreased (i.e., expected-return news must have been 

negative.) 

Fama (1990), Schwert (1990), Kothari and Shanken (1992), Liew (1995) and others regress aggregate 

stock returns on cash-flow proxies and find that cash-flow proxies explain returns well.  The typical 

interpretation of these regressions is that cash-flow news are an important source of observed return 

variation.  For example, Kothari and Shanken (p. 178) state, “In this paper, we find that proxies for the 

market’s expectations of future dividends explain a substantial fraction of return variation.”  Some also 

interpret the high explanatory power of these types of regressions more generally as evidence of market 

rationality. 

Using firm-level data, an extensive accounting literature focuses on the contemporaneous correlation 

of stock returns and earnings.  Despite the statistically reliable positive association between stock returns and 

earnings, Ball and Brown (1968), Beaver, Clarke, and Wright (1979), Beaver, Lambert, and Morse (1980), 

Easton and Harris (1991), Collins, Kothari, Shanken, and Sloan (1994), and others find that the explained 

fraction of stock return variation is significantly less than one (typically under 10 percent).  Lev (1989) and 

others suggest that the relatively low explanatory power stems from earnings’ lack of timeliness and/or 

value-irrelevant noise in earnings.  

Irrespective of motivation, however, the explanatory power of cash-flow proxies may arise from the 

correlation of cash-flow proxies with one-period expected returns, cash-flow news, and/or expected-return 

news.  If expected-return variation is responsible for the high explanatory power of the aggregate 

regressions, these R2s should not be interpreted as evidence of cash-flow news driving the returns.  Similarly, 

if expected-return news is highly variable and positively correlated with cash-flow news, the low R2s in 

regressions of firm-level returns on earnings do not necessarily imply that earnings are a noisy or delayed 

measure of the cash-flow-generating ability of the firm.  Even if earnings are a clean signal of cash-flow 

news, expected-return effects (due to variation in risk-adjusted discount rates and/or mispricing) can garble 

the earnings-returns relation. 



 2

The idea that correlation between a cash-flow proxy and stock return may be due to any of the three 

components is not novel.  Fama (1990), Schwert (1990), Kothari and Shanken (1992), Campbell and Ammer 

(1993), and others recognize that when stock returns are regressed on cash-flow proxies, any of the three 

effects may be driving the regression coefficients.  They do not, however, clearly quantify the relative 

importance of these three effects.  Thus, in the end, it is still unclear why cash-flow proxies are or are not 

related to stock returns. 

We measure the significance of the above three effects on various regressions of stock returns on 

cash-flow proxies.  We empirically reinterpret the regression results by Beaver, Clarke, and Wright (1979), 

Fama (1990), Schwert (1990), Easton and Harris (1991), Kothari and Shanken (1992), Collins, Kothari, 

Shanken, and Sloan (1994) who regress aggregate or firm-level stock returns on cash-flow proxies.  Using 

Campbell’s (1991) return decomposition, a regression of returns on cash-flow proxies can be decomposed 

into three separate regressions, each corresponding to one component of return.  Our procedure first assumes 

and estimates a simple return-generating process.  This return-generating process then implies realized 

values for one-period expected returns, cash-flow news, and expected-return news.  Once the three return 

components are extracted, we regress them individually on the cash-flow proxies.  These three regressions 

expose what drives the regression coefficients in the original returns-on-cash-flow-proxies specification. 

Our empirical results show that many of the variables in Fama’s (1990) and Schwert’s (1990) 

regressions generally proxy the return components in both an intended and unintended way.  The default and 

term yield spread positively track one-period expected returns.  However, the default spread is negatively 

related to cash-flow news, making the positive link between stock returns and the default spread 

insignificant. While shocks to the default and term yield spread positively track revisions in future expected 

returns, i.e., expected-return news, shocks to the term spread are also positively correlated with cash-flow 

news, producing an insignificant positive relationship between stock returns and the term spread shocks.  

Between the current and future dividend growth rates, only the current dividend growth is significantly 

positively correlated with cash-flow news.  Since the current dividend growth is also strongly negatively 

correlated with expected-return news, the positive relationship between stock returns and the current 

dividend growth is much larger in magnitude.   

Similar to Fama (1990) and Schwert (1990), many of the variables in Kothari and Shanken (1992) 

also proxy the return components in an intended and unintended way.  For Kothari and Shanken’s returns-
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on-dividend growth-rates specifications, the contemporaneous and future dividend growth rates track more 

than just cash-flow news.  The contemporaneous dividend growth also strongly negatively tracks expected-

return news while the one-year lead dividend growth positively tracks expected-return news.  This result 

helps explain the (perhaps surprising) insignificant negative relationship between one-year lead dividend 

growth and stock returns.  The second- and third-year lead dividend growth also positively track one-period 

expected returns, increasing the correlation with stock returns. 

The additional measurement-error proxies in Kothari and Shanken’s full specification also play a dual 

role in the regression.  Because future dividend growth rates may be partially anticipated by the market, the 

realized dividend growth is a noisy proxy of new information about dividends.  Kothari and Shanken include 

lagged dividend yield and future returns to help “clean-up” this measurement error in future dividend growth 

rates.  In addition to reducing measurement error, our analysis shows that a nontrivial amount of the 

incremental explanatory power of the “clean-up” variables is due to expected-return effects.  The lagged 

dividend yield positively tracks the one-period expected return while the future returns are positively 

correlated with expected-return news. 

The firm-level results differ from the aggregate results in an interesting way.  Consistent with the 

findings of Vuolteenaho (2002) and Cohen, Gompers, and Vuolteenaho (2003), our estimated VARs imply 

strong positive correlation between firm-level expected-return and cash-flow news.  This positive correlation 

may in some cases have dramatic effects on firm-level regressions of returns on cash-flow proxies.  For 

example, Easton and Harris (1991) regress returns on contemporaneous earnings (normalized by lagged 

price).  Estimating a loosely similar regression equation in our sample yields a regression coefficient of 0.75 

and R2 of 10 percent.  However, when we regress the estimated cash-flow news on the same earnings 

variable, we get a coefficient of 1.30 and R2 of 27 percent.  Although the level of earnings variable does a 

decent job tracking cash-flow news, it also tracks the negative of expected-return news with a coefficient of -

0.70 and R2 of 19 percent and the level of expected returns with a coefficient of 0.15 and R2 of 9 percent.  In 

the end, the association of the earnings variable with cash-flow and expected-return news partially cancel 

each other, leaving the original specification with a low coefficient and R2.   

The rest of the paper is organized as follows.  Section one presents the framework for decomposing 

the stock return and the regression coefficient of returns on cash-flow proxies.  Section two decomposes and 
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reinterprets aggregate regressions while section three decomposes and reinterprets firm-level regressions.  

Section four concludes. 

I. Framework 

A. Decomposing returns and regressions of returns on cash-flow proxies 

Using the log-linear approximation of dividend-price ratio derived by Campbell and Shiller (1988, 

refer to Appendix A), Campbell (1991) decomposes the definition of return. 
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Above, r  ≡ log return, ρ  ≡  a constant determined by the average dividend yield and set to 0.96 for the 

remainder of the paper, and d∆  ≡ log dividend growth.  The realized stock return can be split into three 

components: One-period expected return (Et-1rt), cash-flow news (Ncf,t), and negative of expected-return 

news (-Nr,t).  Ignoring the (very small) linearization error, this decomposition accounts for the entire return: 

the stock return equals the sum of these three components. 

Using the above return decomposition, a regression of returns on cash-flow proxies can be 

decomposed into three component regressions, one corresponding to conditional one-period expected return, 

cash-flow news, and expected-return news each.  Consider a typical regression of returns on cash-flow 

proxies: 

 tTtt Xr εβφ += )(  (2) 

The regression (2) explains returns with cash-flow proxies )( TtX φ , where Tφ  denotes the information set at 

the end of the world, recognizing the possibility that some of the variables may not be known at the end of 

the return period.  Relative to tr , tX  can contain past, contemporaneous, and future realizations.  

Using Campbell’s (1991) return decomposition, trtcfttt NNrEr ,,1 −+≈ −  (defined in equation (1)), the 

original regression can be split into three component regressions: 
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Since the explanatory variables in each of the three component regressions are the same as in the original 

regression (2), we can think of the original regression (2) as the sum of the three component regressions1: 

 ( ) ( )tNrtNcftErNrNcfErTtt Xr .,,)( −− +++++= εεεβββφ  (4) 

From (3) and (4) it is clear that the cash-flow proxies, tX , can explain stock returns well for various reasons, 

irrespective of the motivating logic.  The tX  can explain the level of one-period expected returns, cash-flow 

news, or expected-return news – or any combination of the three.  Similarly, if the relationship between tX  

and cash-flow news is offset by the relationship between tX  and expected-return news and/or one-period 

expected returns, it is possible for tX  to explain cash-flow news but not returns. 

For example, returns on a broad stock index, such as the S&P500, are positively correlated with future 

industrial production (Fama (1990), Schwert (1990)).  This correlation may be driven by any of the three 

sources.  First, the correlation may arise from high future production being associated with high one-period 

expected returns.  Second, positive shocks to production may be associated with positive cash-flow news.  

Third, positive shocks to production may be associated with negative expected-return news.  If the first 

and/or third source drives the correlation, concluding from this correlation that changing cash-flow 

expectations drive returns would be erroneous. 

B. Estimating one-period expected returns, cash-flow news, and expected-return news 

The above regression decomposition requires the estimated series of one-period expected returns, 

cash-flow news, and expected-return news as inputs.  As demonstrated by Campbell (1991), a vector 

autoregressive (VAR) model provides a convenient way to implement this return decomposition and to 

calculate estimates of the three series.  In particular, the VAR model enables solving the infinite expected 

sums in equation (1) with simple, closed-form formulas.   

For the aggregate decompositions, we first estimate a VAR to calculate the expected-return and 

expected-return news terms2. Let tz  be a vector of state variables describing the economy at time t.  In 

particular, let the first element of tz  be the aggregate log stock return.  The state vector is assumed to follow 

a linear law: 

 ttt uzΓAz ++= −1 . (5) 

The error term tu  is assumed to have a covariance matrix Σ  and to be independent of everything known at 

1−t .  
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The VAR implies a return decomposition.  Define  ]001[1 L≡′e  and 

 11 −−′≡ ρΓ)ρΓ(Ieλ' . (6) 

Taking expectations of (5) yields an expression for the one-period expected return, )(1 1
'

−+ tzΓAe .  The 

definition (6) introduced by Campbell (1991) simplifies the other expressions considerably:  Expected-return 

news can now be conveniently expressed as tu'λ .  Like Campbell (1991), we then solve for the cash-flow-

news term as the residual (realized return minus expected return plus expected-return news), ( ) tue '1 λ+′ .  If 

returns are unpredictable, i.e., the first row of Γ  is zeros, expected-return news is identically zero and the 

entire return is due to cash-flow news.   

Effectively, Campbell’s (1991) method first computes expected-return news directly and then backs 

out the cash-flow news as unexpected return plus expected-return news.  It may seem that this indirect 

method of calculating cash-flow news as a residual relies on heavier assumptions than does directly 

calculating the change in the discounted sum of expected future dividends.  This concern turns out not to be 

an important one, however: Including dividend growth into the VAR state vector and computing cash-flow 

news directly yields very similar results.  

The firm-level and aggregate methodologies are slightly different.  For the firm-level VAR, tiz ,  

represents a vector of firm-specific state variables.  The first element of tiz ,  is the firm’s market-adjusted log 

stock return.  An individual firm’s state vector is assumed to follow a linear law: 

 i,ti,ti,t uzΓz += −1 . (7) 

Since the firm-level state variables are cross-sectionally demeaned, we can safely omit the intercept and 

aggregate variables present in the aggregate regressions.  Similar to the aggregate methodology, the error 

term tiu ,  is assumed to have a covariance matrix Σ  and to be independent of everything known at 1−t .  As 

before, the firm-level expected-return and cash-flow news can be expressed as tiu ,'λ  and ( ) tiue ,'1 λ+′ , 

respectively.  Most of our firm-level specifications restrict the VAR parameters to be constant over time and 

across firms, but some of our firm-level specifications will relax this restriction by allowing for cross-

sectional variation in the VAR parameters (and including a constant term in (7)).  All of our standard-error 

computations allow for general correlation structure of errors across firms.  

While the VAR framework is convenient for estimating the series of one-period expected returns, 

cash-flow news, and expected-return news in an internally consistent manner, it is incapable of 
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distinguishing between rational variation in expected returns and variation due to mispricing.  For example, 

even if the model of market equilibrium requires constant expected returns and investors thus subjectively 

expect constant returns, the actual rationally expected returns might vary over time if investors forecast cash 

flows with systematic errors.  To the extent that the VAR state vector contains variables that capture 

systematic errors in cash flow forecasts, the VAR framework will attribute this portion of the return variation 

due to mispricing to the time-varying expected returns and expected return news.3 

However, even if expected return variation is due to mispricing, the VAR return decomposition still 

provides a means for isolating the relationship between returns and cash flows.  Even if some investors have 

irrational expectations, there should be other investors with rational expectations, and it is interesting to 

understand asset price behavior from the perspective of these investors.  For example, if cash flow news and 

mispricing (which shows up as expected return news) are not uncorrelated, a simple correlation between 

returns and cash flow news or a regression of returns on cash flow news will over- or underestimate the true 

relationship between returns and cash flows.  The VAR framework provides a means for controlling for the 

correlation structure between expected return and cash flow news, irrespective of whether the expected 

return variation is rational. 

Lastly, the VAR framework has other potential limitations, too.  The linear time series structure of the 

VAR may not provide a good approximation to the true return data generating process.  Even if the linear 

assumption were reasonable, the variance decomposition results are conditional on the information set 

included in the state vector.  Depending on the correlation between the omitted and included state variables, 

it is possible to arrive at incorrect conclusions if the VAR is misspecified.  While Appendix B addresses 

some of the specification concerns by considering alternative state vectors, it is important to interpret all of 

our results with these cautions in mind.   

II. Empirical decompositions of aggregate regressions 

A. Aggregate data 

The main data for the aggregate regressions come from the Center for Research in Security Prices 

(CRSP), Global Financial Data (GFD), Shiller (2000), Schwert (1990), and Macaulay (1938), 1881 to 2001.  

All variables are of annual frequency. 
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Motivated by the vast return predictability literature (see, for example, Fama and French (1989) and 

Campbell and Shiller (1988, 1998)), the state vector of our main VAR includes annual log return (LRET), 

log price-earnings ratio (LPE), and the spread of the ten-year constant maturity bond log yield over the three-

month commercial paper log yield (LTERM).  For 1881-1925, LRET is the log return on the aggregate stock 

market index used in Schwert (1990).  After 1925, LRET is the log return on the CRSP value-weight index.  

LPE is from Shiller (2000), calculated as the price of the S&P 500 divided by the trailing ten-year moving 

average of aggregate earnings of companies in the S&P 500.  The bond and commercial paper yields come 

from GFD. 

In addition to the main VAR state variables, we also use cash-flow and expected-return proxies 

motivated by previous research.  Fama (1990) and Schwert (1990) explain aggregate returns with the lagged 

dividend yield, spread between long-term and short-term government bonds, yield spread between low-grade 

and high-grade grade corporate bonds (LDEF), shocks to both yield spreads, and contemporaneous and 

future industrial-production growth.  Similar to Fama (1990) and Schwert (1990), for our set of expected-

return proxies, we use LDEF, LTERM, shocks to the default spread (LDEFS), and shocks to LTERM 

(LTERMS).  For our cash-flow proxies, we use the current, one-year lead, two-year lead, and three-year lead 

annual log dividend growth rate (LGD, LGDF1, LGDF2, and LGDF3).  Default spread is the spread of 

Moody’s Baa corporate bond log yield over the Aaa corporate bong log yield obtained from GFD.  Since 

Moody’s Baa corporate bond yield is unavailable before 1919, for 1881-1918, LDEF is calculated as the 

spread of the average top five Macaulay railroad bond log yields (excluding the maximum) over the average 

bottom five Macaulay railroad bond log yields (excluding the minimum) obtained from Macaulay (1938).  

The shocks are the estimated residuals from a first-order autoregressive process.  The dividend growth data 

comes from Schwert (1990) for 1881-1925 and CRSP for 1926-2001. 

Kothari and Shanken (1992) explain aggregate returns with the lagged dividend yield, 

contemporaneous and future dividend growth, and future returns.  Similar to Kothari and Shanken (1992), 

for our other two sets of cash-flow proxies, we use the annual log dividend yield (LDP), LGD, LGDF1, 

LGDF2, LGDF3, one-year lead LRET (LRETF1), two-year lead LRET (LRETF2), and three-year lead 

LRET (LRETF3).  For 1881-1925, these data are for the aggregate stock market index used in Schwert 

(1990).  For 1926-2001, these data are for the CRSP value-weight index obtained from CRSP. 
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In Appendix B, we explore alternative aggregate VAR specifications.  Additional variables in these 

specifications include the default spread (LDEF), annual log dividend yield (LDP), annual log dividend-

earnings ratio (LDE), log book-to-market ratio (LBM), log return on equity (LROE), and the stochastically 

detrended three-month commercial paper log yield (LDTY).  Our book-to-market and profitability data are 

constructed by Vuolteenaho (2001).  LDTY is the spread between the current three-month commercial paper 

log yield and the average three-month commercial paper log yield over the previous twelve months. 

Throughout the paper, all relevant variables are deflated by the commercial paper/T-bill wealth index 

obtained from GFD.  The inflation series is unreliable for the early part of our sample. 

Table I shows the descriptive statistics for the aggregate data.  Each panel shows means, standard 

deviations, minimums, percentiles of the variables, and maximums.  Panel A shows the descriptives for the 

VAR state variables.  Panel B shows the descriptives for Fama (1990) and Schwert’s (1990) and  Kothari 

and Shanken’s (1992) cash-flow and expected-return proxies. 

B. Estimated process for aggregate stock returns 

The state vector of our main VAR (equation (8)) includes LRET, LPE, and LTERM.  

 [ ] ( )'1 ,, ttttttttt uuELTERMLPELRETzuzAz =Σ′=+Γ+= −  (8) 

This time series model generates our three components of returns:  One-period expected return (Et-1rt), cash-

flow news (Ncf,t), and negative of expected-return news (-Nr,t).  We consider alternative VAR specifications 

in Appendix B. 

Table II contains the VAR parameter estimates and a variance decomposition obtained using a 1881-

1998 sample.4  Consistent with the previous return-predictability findings (e.g., Keim and Stambaugh 

(1986), Campbell and Shiller (1988), and Fama and French (1989)), LPE and LTERM are statistically 

significant predictors of return.  Both LTERM and, especially, LPE are highly persistent.  Consistent with 

the variance decomposition literature, expected-return news is much more volatile than cash-flow news (e.g., 

Campbell and Ammer (1993)).  The ratio of expected-return-news variance to cash-flow-news variance is 

5.34.  The correlation between the two estimated news series is -0.29.  This negative correlation is consistent 

with a story where unexpected good economic times are associated with lower than normal investor risk 

aversion, producing lower equilibrium expected future returns. 
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C. Reinterpreting regressions of returns on real activity 

Fama’s (1990) and Schwert’s (1990) main cash-flow proxy is current and future industrial-production 

growth.  We regress LRET and its three estimated components (one-period expected return, cash-flow news, 

and negative of expected-return news) individually on explanatory variables (defined above) similar in spirit 

to Fama (1990) and Schwert (1990): 
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Our regressions deviate from Fama’s and Schwert’s specifications slightly.  Fama and Schwert use 

quarterly industrial-production growth rates.  Due to data availability, we use annual aggregate dividend 

growth rates.   

As shown in the first row of Table III Panel A, the above explanatory variables explain 53 percent 

(adjusted R2, period 1882-1998) of the total return variation.  Our adjusted R2 is similar in magnitude to 

Fama’s 59 percent (period 1953-1987) and Schwert’s 39 percent (period 1918-1988).  Similar to Fama and 

Schwert, the term spread and term-spread shock are statistically insignificant. Similar to Schwert but unlike 

Fama, we find that the default-spread shock has a negative and significant coefficient in our regression.  

Unlike Fama’s and Schwert’s, the default spread is statistically insignificant.  Also, our results do not 

indicate that stock returns are more related to future than contemporaneous dividend growth.  The slope on 

the contemporaneous dividend growth is large and highly significant (coefficient 0.51, s.e. 0.09). 

Rows two through four of Table III Panel A show the regressions of the individual return 

components.  The Fama-Schwert proxies explain 67 percent of the time variation of estimated expected 

returns.  Since the proxies include one of the prediction variables in our VAR, LTERM, this is not too 

surprising.  It is important to note, however, that LDEF plays a much stronger role in tracking expected 
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returns (coefficient 4.52, s.e. 1.79).  This link between LDEF and expected returns is impossible to identify 

from looking only at the total return specification. 

The Fama-Schwert proxies explain roughly half of the estimated cash-flow-news series (46 percent 

adjusted R2).  Most of the explanatory power comes from the contemporaneous dividend growth (coefficient 

0.16, s.e. 0.05).  The future dividend growth rates are only marginally positive.  A nontrivial proportion of 

the explanatory power is due to LTERMS (coefficient 1.92, s.e. 0.83).  This significant positive relationship 

partially explains why the shock to the term spread plays almost no role in explaining total return variation.  

Furthermore, cash-flow news is statistically negatively related to the lagged default spread (coefficient –2.23, 

s.e. 0.87).  (No lagged variables would track the news series in sample if all lagged variables in the second-

stage regression were included in the VAR.)  Similar in spirit to the LTERMS situation, the negative 

relationship between LDEF and cash-flow news gives the false impression that LDEF does not track 

expected returns when only looking at the total return specification. 

Fama’s and Schwert’s proxies explain 41 percent of the estimated expected-return news series.  As 

expected, the lagged variables are not related to our news series.  Both LDEFS (coefficient –17, s.e. 4.1) and 

LTERMS (coefficient –0.88, s.e. 1.1) are negatively related to the negative of expected-return news.  Even 

though LTERM is included in our VAR as a predictor variable, the results for LDEFS are stronger.  The 

contemporaneous dividend growth is reliably negatively correlated with future expected returns, i.e. 

positively correlated with our negative of expected-return news series (coefficient 0.31, s.e. 0.07).  This 

result explains why the coefficient on LGD in the total return regression is so large relative to the future 

dividend growth coefficients.  The fact that LGD is negatively correlated with future expected returns makes 

the regression coefficient of returns on dividend growth an upward biased estimator of the regression 

coefficient of cash-flow news on dividend growth.    

In sum, many of Fama’s and Schwert’s proxy variables behave in both an intended and unintended 

way.  Although their expected return proxies, LDEF and LTERM, capture a large proportion of the expected 

return variation, both variables are negatively related to cash-flow news and the negative of expected return 

news.  This additional relationship breaks their link with expected returns when looking at total return 

variation.  The dividend growth variables track cash-flow news, but most of the contemporaneous dividend 

growth’s explanatory power in the total returns regression originates from its large positive correlation with 

the negative of expected return news.  Shocks to the default and term spread are negatively correlated with 
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the negative of expected return news.  However, LTERMS is positively related to cash-flow news, reversing 

the relationship between LTERMS and total returns.  In general, measuring a variables relationship (or lack 

of relationship) with total returns provides a distorted picture on whether that variable is (or is not) tracking a 

particular component of total return.  Empirically, this distortion is of first order importance. 

D. Reinterpreting regressions of returns on dividend growth rates 

Instead of general economic activity, Kothari and Shanken (1992, KS hereafter) use dividend growth 

rates as their main cash-flow proxies.  As above, we individually regress the three estimated components of 

return on the cash-flow proxies used in KS’s dividends-only specification: 
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The results are shown in Table III Panel B1.  We find that the contemporaneous and future dividend 

growth rates explain 39.21 percent of the return variation (first row of Table III Panel B1).  Most of the 

explanatory power comes from the contemporaneous dividend growth rate (coefficient 0.73, s.e. 0.12).  

Although two out of the three future dividend growth rates are positive, only LGDF3 is mildly significant 

(coefficient 0.14, s.e. 0.09). 

Rows two through four of Table III Panel B1 show the regressions on the individual return 

components.  The KS proxies explain 12 percent of the time variation of estimated expected returns.  Except 

for the LGDF1 slope, each of the coefficients is of the same sign as the coefficients estimated in the total 

return regression.  In particular, both LGDF2 (coefficient 0.09, s.e. 0.04) and LGDF3 (coefficient 0.09, s.e. 

0.04) are significant and similar in size to their corresponding slopes in the total return regression.  

With respect to the expected-return news series (row four of Table III Panel B1), the KS proxies 

explain 26 percent of the time variation in expected-return news.  The contemporaneous dividend growth is 

highly significant and positive (coefficient 0.45, s.e. 0.09), explaining over 60% of the slope size estimated 

in the total return regression.  This result is consistent with the aggregate VAR variance decomposition 

(bottom of Table II): Good news about cash flows is associated with lower future returns (higher negative 

expected return news).  Relative to its slope in the other regressions, the magnitude of the LGDF1 coefficient 
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is large and negative (coefficient -0.13, s.e. 0.09), explaining its negative relationship with total returns in 

row 1. 

The VAR estimated cash-flow news is marginally related to the contemporaneous and future dividend 

growth rates.  Row three of Table III Panel B1 reports an adjusted R2 of 24 percent.  Although all of the 

dividend growth variables are positively related to cash-flow news, only the LGD coefficient is 

economically and statistically significant (coefficient 0.20, s.e. 0.07).  However, the slope on LGD still only 

accounts for approximately one quarter of its positive relationship with total returns.  The magnitudes of the 

other slopes are all less than 0.06. 

The above results are simultaneously good and bad news for KS's dividends-only specification.  On a 

positive note, KS’s cash-flow proxies do partially explain the cash-flow-news series estimated from the 

VAR.  All of KS’s cash-flow proxies are positively related to cash-flow news.  However, similar to the 

results using the Fama-Schwert proxies, KS’s total returns on dividend growth regressions hides the fact that 

contemporaneous and future dividend growth are also significantly related to expected-return news.  In 

addition, contemporaneous and future dividend growth rates are also correlated with one-period expected 

returns for KS’s total returns on dividend growth regressions.  This interaction distorts the overall and 

relative “cash-flow” importance of each cash-flow proxy when looking only at the coefficients from the total 

return on dividend growth regressions.  The coefficients from the total return regression tend to be two to 

five times as large as their counterparts measured in the cash-flow news regression. 

E. Reinterpreting regressions of returns on dividend growth rates and clean-up variables 

KS point out that using realized dividend growth rates as proxies for changes in expectations induces 

an errors-in-variables bias.  The portion of realized dividend growth that was expected is measurement error.  

Also, the portion of realized dividend growth representing information that arrived after the return period is 

measurement error. In light of these errors-in-variables problems, KS introduce “clean-up variables.”  In 

order to account for the market’s expectation at the beginning of the return period, KS use the lagged, annual 

log dividend yield (LDP).  In order to control for the information that is contained in the future dividend 

growth rates but arrived after the return period, KS add future returns 3 years out (LRETF1, LRETF2, and 

LRETF3) to the final time-series regression. 

We examine the explanatory power of a regression similar in spirit to KS’s full specification: 
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Including the “clean-up variables” increases the full regression R2 from 39 percent to 45 percent (row 

one of Table III Panel B2).  Both LDP (coefficient 0.12, s.e. 0.07) and LRETF2 (coefficient -0.25, s.e. 0.09) 

play a significant role.  Although statistically insignificant, the slopes on LRETF1 (coefficient -0.05, s.e. 

0.11) and LRETF3 (coefficient -0.15, s.e. 0.09) are similar in sign to LRETF2.  Like the results from KS’s 

“dividends only” specification (Table III Panel B1), contemporaneous dividend growth (coefficient 0.74, s.e. 

0.11) plays an important role.  Including the “clean-up variables” increases the economic and statistical 

significance of the future dividend growth variables LGDF2 (coefficient 0.29, s.e. 0.11) and LGDF3 

(coefficient 0.22, s.e. 0.11).   

Rows two through four of Table III Panel B2 decompose KS’s full regression.  First, the point 

estimates indicate that lagged dividend yield tracks one-period expected returns (coefficient 0.11, s.e. 0.04).  

Its relationship with one-period expected returns almost completely explains the positive correlation between 

the lagged dividend yield and total returns.  Second, all of the future return explanatory variables are 

negatively correlated with the negative of expected-return news, i.e. future realized returns are positively 

correlated with future expected returns.  Of the three future return explanatory variables, the two-year lead 

return is the most economically and statistically significant (coefficient –0.26, s.e. 0.08).  Third, the 

coefficients on the dividend growth variables exhibit a pattern similar to those found in KS’s “dividends 

only” specification (Table III Panel B1).  Although they are all positively related to the cash-flow news 

series (LGD: coefficient 0.20, s.e. 0.07, LGDF1: coefficient 0.01, s.e. 0.05, LGDF2: coefficient 0.04, s.e. 

0.05, LGDF3: coefficient 0.04, s.e. 0.05), the relationship between dividend growth rates and total returns is 

still mainly a result of the strong positive correlations between dividend growth and expected returns and/or 

dividend growth and the negative of expected-return news.  Relative to the other dividend growth variables, 

LGD has the strongest positive relationship with one-period expected returns and the negative of expected-
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return news (coefficient 0.10, s.e. 0.05 and coefficient 0.44, s.e. 0.09, respectively).  Although less 

significant, LGDF2 and LGDF3 are positively related to one-period expected returns and the negative of 

expected-return news too (LGDF2: coefficient 0.08, s.e. 0.05 and coefficient 0.17, s.e. 0.10, LGDF3: 

coefficient 0.05, s.e. 0.04 and coefficient 0.13, s.e. 0.10, respectively).  In sum, the picture emerging from the 

regression decomposition is that a nontrivial amount of the increased explanatory power gained by adding 

the clean-up variables comes from expected-return effects.  The relationship between the dividend growth 

variables and cash-flow news does not appear to be materially affected by the inclusion of the clean-up 

variables. 

We would also like to make the point that adding clean-up variables can in many cases obscure the 

interpretation of regressions of returns on cash-flow proxies.  In Appendix C, we use an analytical and 

simulation argument to show why, for example, Kothari and Shanken’s (1992) main specification and other 

specifications that include future returns as explanatory variables are especially prone to track not only cash-

flow news but also one-period expected returns and expected-return news.  As a part of their empirical 

evidence, Kothari and Shanken (1992) estimate a regression, which explains returns with lagged dividend 

yield, contemporaneous and future dividend growth rates, and future returns.  Via the Campbell-Shiller 

(1988) log-linear framework, we illustrate in Appendix C that this specification is one future dividend yield 

short of an approximate identity.  As more and more future dividend growth rates and returns are added to 

the regression, the future dividend yield becomes less important to the identity, producing a higher and 

higher population regression R2.  Therefore, in the limit, a regression of returns on the lagged dividend yield, 

contemporaneous and future dividend growth rates, and future returns is guaranteed to track all three 

components of returns, irrespective of the true drivers of stock return variation. 

III. Empirical decompositions of firm-level regressions 

A. Firm-level data 

The basic data come from the CRSP-COMPUSTAT intersection, 1954 to 1998.  The Center for 

Research in Securities Prices (CRSP) monthly stock file contains monthly prices, shares outstanding, 

dividends, and returns for NYSE, AMEX, and NASDAQ stocks.  The COMPUSTAT annual research file 

contains the relevant accounting information for most publicly traded U.S. stocks. All variables are of annual 

frequency. 
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In order to be included in the VAR sample, a firm-year must satisfy the following CRSP and 

COMPUSTAT data requirements.  We require all firms to have a December fiscal-year end of t-1, in order 

to align accounting variables across firms.  A firm must have t-1, t-2, and t-3 book equity available, where t 

denotes time in years.  We require t-1 and t-2 net income and long-term debt data.  A valid market-equity 

figure must be available for t-1, t-2, and t-3.  We require that there is a valid trade during the month 

immediately preceding the period t return, ensuring that any return predictability is not spuriously induced 

by stale prices or other similar market micro-structure issues.  We also require at least one monthly return 

observation during each of the preceding five years, from t-1 to t-5.  We screen out clear data errors and 

mismatches by excluding firms with t-1 market equity less than $10 million and book-to-market more than 

100 or less than 1/100.  We carefully avoid imposing any COMPUSTAT or CRSP requirements on year t 

data, because these data are used in the dependent variables in our VAR.  

The stock return is defined as the annual value-weight return on a firm’s common stock issues 

(typically one).  If no year t return data are available, we substitute zeros for both returns and dividends.  

Annual returns are compounded from monthly returns, recorded from the beginning of May to the end of 

April.  If a firm is delisted but the delisting return is missing, we investigate the reason for disappearance.  If 

the delisting is performance-related, we assume a -30 percent delisting return.  Otherwise, we assume a zero 

delisting return.   

Market equity (combined value of all common stock classes outstanding) is taken from CRSP as of 

the end of April.  If the year t market equity is missing, we compound the lagged market equity with return 

without dividends.  

For book equity, we prefer COMPUSTAT data item 60, but if it is unavailable we use item 235.  

Also, if short- and/or long-term deferred taxes are available (data items 35 and 71), we add them to book 

equity.  If both data items 60 and 235 are unavailable, we proxy book equity by the last period’s book equity 

plus earnings, less dividends.  If neither earnings nor book equity is available, we assume that the book-to-

market ratio has not changed and compute the book equity proxy from the last period’s book-to-market and 

this period’s market equity.  We treat negative or zero book equity values as missing. 

ROE is the earnings (COMPUSTAT data item 172) over the last period’s book equity.  When 

earnings are missing, we use the clean-surplus formula to compute a proxy for earnings; i.e., earnings equals 

the change in book equity plus dividends.  In every case, we do not allow the firm to lose more than its book 
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equity.  That is, we define the net income as a maximum of the reported net income (or clean-surplus net 

income, if earnings are not reported) and negative of the beginning of the period book equity.  Hence, the 

minimum ROE is truncated to –100 percent. 

Campbell’s (1991) return decomposition uses log returns.  The log transformations may cause 

problems if some stock returns are close to –100 percent.  We follow Vuolteenaho (2002) and solve this 

complication by redefining the firm as a portfolio of 90 percent common stock and 10 percent Treasury-bills 

using market values.  Every period, the portfolio is rebalanced to these weights.  This affects not only stock 

return and accounting return on equity, but also the book-to-market equity, pulling this ratio slightly towards 

one.  After adding this risk-free investment, the ratios and returns are sufficiently well-behaved for log 

transformations.  Simple market and accounting returns on this portfolio closely approximate simple returns 

on the firm’s common stock only.  The accounting identities hold for the transformed quantities.  

Furthermore, this transformation method is superior to purely statistical transformations (such as the Box-

Cox transformation), because the transformed quantities still correspond to an investment strategy.  The 

results are robust to moderate perturbations (+/- 0.025) of the T-bill weight. 

In addition to the VAR state variables, we also construct cash-flow proxies motivated by previous 

research.  Beaver, Clarke, and Wright (1980) explain returns with simple earnings growth.  We construct a 

similar variable as the ratio of year t earnings per share (COMPUSTAT data item 58) over year t-1 earnings 

per share (EPS).  We set values outside the [exp(-1), exp(1)] range to these range endpoints.  When 

regressing returns on this variable, we also exclude firm-years with either year t or year t-1 EPS less than 

zero.   

Easton and Harris (1991) regress returns on earnings and earnings change normalized by lagged stock 

price.  We compute these variables as EPS(t)/P(t-1) and (EPS(t)-EPS(t-1))/P(t-1), where P(t-1) is the end-of-

April price of the common share class with highest market capitalization.  Following Easton and Harris, we 

exclude firm-years with EPS(t-1)/P(t-1), EPS(t)/P(t-1), or (EPS(t)-EPS(t-1))/P(t-1) outside the range [-1.5, 

1.5], when regressing returns on these variables. 

Collins, Kothari, Shanken, and Sloan (1994) explain returns with contemporaneous and future log 

earnings growth, future returns, and lagged earnings-price ratio.  When regressing returns on these variables, 

we truncate the data for firm-years with any of the right-hand-side log return or log earnings-growth 
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variables outside the [-1, 1] range.  Also, we delete firm years with any of the t-1, t, t+1, t+2, t+3 EPS data 

negative. 

Table IV shows the time-series means of cross-sectional descriptive statistics.5  Each panel shows 

means, standard deviations, minimums, percentiles of the variables, and maximums.  Panel A shows the 

descriptives for the VAR state variables.  A notable feature of the descriptive statistics is that firm-level log 

ROE is almost as variable as firm-level log returns (standard deviation of 0.20 vs. 0.27). Panels B, C, and D 

show the descriptives for Beaver, Clarke, and Wright’s (1980), Easton and Harris’s (1991), and Collins, 

Kothari, Shanken, and Sloan’s (1994) cash-flow proxies, respectively. 

B. Estimated processes for firm-level stock returns  

Our firm-level VAR is designed to capture the following empirical return-predictability results.  

Historically, past long-term losers have outperformed past long-term winners (“long-term reversal,” 

DeBondt and Thaler (1985)), while past short-term winners have outperformed past short-term losers 

(“momentum,” Jegadeesh and Titman (1993)).  High book-to-market-equity firms have earned higher 

average stock returns than low book-to-market-equity firms (“book-to-market anomaly,” Rosenberg, Reid, 

and Lanstein (1985)).  Controlling for other characteristics, firms with higher profitability have earned 

higher average stock returns (Haugen and Baker (1996)).  Also, high-leverage firms have historically 

outperformed low-leverage firms (Bhandari’s (1988) “leverage effect”).  We avoid modeling corporate 

dividend policy by excluding any dividend-based variables from the VAR. 

In estimating the VAR coefficient matrix, we concentrate on robustness and simplicity.  We estimate 

the VAR from the panel using the weighted least-squares (WLS) approach and one pooled prediction 

regression per state variable.  Instead of using the optimal but unknown GLS weights or unit OLS weights, 

we weigh each cross-section equally, much like the Fama-MacBeth (1973) procedure does.  In practice this 

means deflating the data for each firm-year by the number of firms in the corresponding cross-section.  The 

OLS and WLS point estimates are similar, and the results are not sensitive to the choice between OLS and 

WLS.  We use Shao and Rao’s (1993) jackknife method to calculate cross-correlation consistent standard 

errors. 

First, we consider a parsimonious VAR specification that includes market-adjusted log stock return, 

log book-to-market, and log return on equity as the state variables.  Only one lag of each is used to predict 

the state-vector evolution.  The parameter estimates (presented in Table V) imply that expected market-
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adjusted returns are high when past one-year return, the book-to-market ratio, and profitability are high.  

Expected profitability is high when past stock return and past profitability are high and the book-to-market 

ratio is low.  The expected future book-to-market ratio is mostly affected by the past book-to-market ratio.  

As expected, unexpected profitability and stock return covary positively (approximately 0.3 correlation).   

The variance decomposition implied by the VAR is also shown in Table V, and cash-flow news is the 

main driver of market-adjusted firm-level stock returns.  The expected-return-news standard deviation is 16 

percent (variance 0.026 with 0.0074 standard error) and the cash-flow-news standard deviation is 36 percent 

(variance 0.13 with 0.012 standard error).  The ratio of expected-return-news variance to total-unexpected-

return variance is approximately 1/5.  The correlation between the two estimated news series is 0.56 and 

more than five standard errors from zero. 

The firm-level variance-decomposition results differ from the aggregate results in an interesting way.  

Consistent with the findings of Vuolteenaho (2002) and Gompers, Cohen, and Vuolteenaho (2003), our 

estimated VARs imply strong positive correlation between firm-level expected-return and cash-flow news.  

This positive correlation may in some cases have dramatic effects on firm-level regressions of returns on 

cash-flow proxies, as discussed below. 

C. Reinterpreting regressions of returns on cash-flow proxies 

We consider linear regressions with six sets of explanatory variables in our analysis of firm-level 

regressions.  These selected specifications are motivated by classic earnings-returns association studies in the 

accounting literature.  More recent accounting literature has explored more elaborate earnings-returns 

specifications.  Hughes and Ricks (1987) and others study earnings announcements and proxy for 

unexpected earnings with analysts’ forecast errors.  Easton and Zmijewski (1989), Collins and Kothari 

(1989), Ball, Kothari, and Watts (1993), and others allow for cross-sectional and time-series variation in the 

earnings-response coefficients and relate it to economically motivated instruments.  Lang (1991) studies the 

relation of the earnings-response coefficients to investor learning about the earnings process.  Cheng, 

Hopwood, McKeown (1992), Freeman and Tse (1992), Das and Lev (1994), Beneish and Harvey (1998), 

and others relax the linearity assumption of the earnings-return relation.  We leave the task of investigating 

the effect of expected returns, cash-flow news, and expected-return news on these more refined 

specifications to future research. 



 20

The explanatory variable in Table VI Panel A, GEPS, is the gross earnings per share (EPS) growth 

rate, EPS(t)/EPS(t-1).  This explanatory variable is motivated by a study by Beaver, Clarke, and Wright 

(1980).  Following Beaver, Clarke, and Wright, we exclude firm-years with EPS(t) or EPS(t-1) missing, as 

well as observations with negative EPS(t-1).  To ensure that outliers do not dominate the regression results, 

we set EPS(t)/EPS(t-1) greater than exp(1) to exp(1) and EPS(t)/EPS(t-1) less than exp(-1) to exp(-1).   

Consistent with the previous literature, the explanatory power of earnings growth is tiny with a pooled 

R2 of about one percent.  Some of the literature obtains slightly higher estimates, e.g., four percent in Collins, 

Kothari, Shanken, and Sloan’s (1994) Table IV Panel C.  The discrepancy between our results and theirs can 

be explained by the sample composition: Their sample includes only large, surviving firms, while our pooled 

data set is dominated by small firms, most of which disappear during our sample period.  The explanatory 

power of earnings growth is also very limited in the component regressions: One-period expected returns 

zero percent, cash-flow news 1.8 percent, and minus expected-return news 0.10 percent. 

The explanatory variable used in Table VI Panel B1 is the normalized level of earnings, motivated by 

Easton and Harris (1991).  We drop firm years with either EPS(t) or EPS(t-1) missing are exclude outliers.  

Estimating the total-return regression equation in our sample yields a regression coefficient of 0.75 (s.e. 

0.08) and R2 of 10 percent.  However, when we regress the estimated cash-flow news on the same earnings 

variable, we get a coefficient of 1.3 (s.e. 0.17) and R2 of 27 percent.  Although the level of earnings variable 

does a decent job tracking cash-flow news (a high R2 of 27 percent), it also tracks the negative of expected-

return news with a coefficient of -0.70 (s.e. 0.17) and R2 of 19 percent and the level of expected returns with 

a coefficient of 0.15 (s.e. 0.05) and R2 of 9 percent.  In the end, the association of the earnings variable with 

cash-flow and expected-return news partially cancel each other, leaving the original specification with a 

lower coefficient and R2.  Including the normalized change in earnings (Panel B2) results in generally similar 

patterns.  Since both cash-flow proxies negatively track the negative of expected-return news, the cash-flow-

news R2 of 31 percent is much higher than the total-return R2 of 10 percent.  

Panels C1-3 use variables similar to those of Kothari, Collins, Shanken, and Sloan (1994).  Kothari, 

Collins, Shanken, and Sloan regress returns on subsets of the following variables: Contemporaneous and 

three leads of future log earnings growth rates, three leads of future returns, and the lagged earnings-price 

ratio.  In our sample, specifications that include only earnings growth rates (Panel C1 and C2) yield R2s from 

2.1 to 4.4 percent in returns regressions and R2s from 6.4 to 8.0 percent in cash-flow-news component 
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regressions.  Consistent with these results, the earnings growth coefficients from the cash-flow news 

regression are almost always larger than their total returns regression coefficient counterparts.  This is a 

result of the negative relationship between earnings growth and minus expected returns. 

Following Kothari and Shanken (1992), Kothari, Collins, Shanken, and Sloan (1994) include future 

returns and lagged earning-price ratio to “clean up” the measurement error due to the expected component of 

earnings growth.  Adding these variables (Panel C3) increases the return-regression R2s from 4 to 11 percent 

in our sample.  The component regressions show, however, that a significant fraction of the improvement in 

the R2s is due to correlation of these clean-up variables with one-period expected returns; the one-period 

expected-return regression R2 increases from under one percent to 51 percent.  Most of this increased 

explanatory powers is due to the lagged earning-price ratio (coefficient 0.51, s.e. 0.16).  All else equal, firms 

with higher (lower) earning-price ratios have higher (lower) expected stock returns. 

In sum, the firm-level regression results illustrate how the correlation between total returns and cash-

flow proxies can understate or overstate the importance of cash-flow news as a source of return variance.  In 

the case of Easton and Harris (1991), the importance of cash-flow news is understated.  In contrast, the 

specification of Kothari, Collins, Shanken, and Sloan (1994) overstates the importance of cash-flow news. 

IV. Conclusions 

The Campbell-Shiller present-value formula enables one to divide stock returns into three 

components: one-period expected returns, changes in cash-flow expectations (i.e., cash-flow news), and 

changes in expected returns (i.e., expected-return news).  Stock return volatility must originate from volatile 

one-period expected returns, cash-flow news, and/or expected-return news.  Similarly, the correlation 

between stock returns and various cash-flow proxies must originate from three sources: association of cash-

flow proxies with one-period expected returns, cash-flow news, and/or expected-return news.   

Previous research has found that selected aggregate cash-flow proxies, such as contemporaneous and 

future dividens growth rates, explain a large fraction of aggregate stock return variance.  Our empirical 

analysis shows that cash-flow proxies explain aggregate stock returns well (i.e., with a high R2), because 

high realizations of cash-flow proxies are associated with declines in expected stock returns.   

In contrast, at the individual stock level, earnings and other cash-flow proxies explain a relatively 

small fraction of annual stock returns.  Our empirical results help explaining this perhaps surprising finding: 
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High realizations of cash-flow proxies are associated with increases in expected returns, depressing the 

explanatory power in regressions of stock returns on cash-flow proxies in disaggregate data.  Although the 

level of earnings variable does a decent job tracking cash-flow news at the individual stock level, it also 

tracks the negative of expected-return news with an opposite sign.  In the end, the association of the earnings 

variable with cash-flow and expected-return news partially cancel each other, leaving the original returns-on-

earnings specification with a low R2.   
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Appendix A: Campbell-Shiller log-linear approximation of return 

This appendix represents the log-linear approximation of dividend-price ratio derived by Campbell 

and Shiller (1988, CS hereafter).  The intuition behind this linearization is the following: If prices rise 

(decline) today, then there must be a rise (decline) in subsequent dividends and or a decline (rise) in 

subsequent returns.  Otherwise, the price increase today has set off an infinitely-lived bubble.  Because we 

rule such bubbles out by assumption, today’s return must be justified by future dividends and/or returns. 

Following CS, define log return tr  by 
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where tP  and tD denote the period t ex-dividend price and dividend payment, respectively.  Substituting the 

log dividend-price ratio, )log()log( ttt PD −=δ , and log dividend growth rate, )log()log( 1−−= ttt DDd∆ , 

into (1) yields 

 1)1)log(exp( −+++−= tttt dr δ∆δ  (A2) 

Equation (A2) is the exact definition of a one-period log return.  It can be approximated by a first-

order Taylor-series expansion around δ̂ : 
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While any δ̂  can be used, the mean δ  provides an accurate approximation if the variability of δ  is small.  

Reasonable values lead to a discount-coefficient (ρ) close to 0.96.  In the extreme case of constant dividend 

yield, the linearization becomes exact.  

The one-period approximation can be iterated to yield a multi-period approximation.  Solving for tδ  

from (A3) and iterating forward 1−N  times generates 
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Substituting (A4) back into (A3) gives a linearized return identity 
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If there are no infinitely-lived bubbles, the discounted future dividend yield converges to zero as N  

approaches infinity.  Then, the log return is a linear function of current log dividend yield and discounted 

contemporaneous and future dividend growth rates and future returns: 
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All of the terms in (A6) are realized values.  The above mathematics is just accounting.  As stated by CS (p. 

200), the above result “…has been obtained only by the linear approximation… There is no economic 

content to [(A6)].”  The above return formulas hold for all assets: stocks, bonds, portfolio trading strategies, 

etc.  As long as the dividend-price ratio does not explode, the dynamic accounting identity in (A6) holds.  

Appendix B: Additional robustness checks 

A. Aggregate stock returns 

In order to gauge how sensitive our aggregate results are to the state vector used to generate the one-

period expected return, cash-flow news, and expected-return news series, this appendix briefly summarizes 

our results from repeating the analysis of sections II.C, II.D, and II.E using eight different state vectors 

motivated by the return predictability literature.  The tables we refer to in this appendix are not included in 

this published version to save space; however, they are available on the home pages of the authors as well as 

that of the NBER. 

An unpublished table (Table BI) summarizes the results for alternative state vectors by reporting the 

adjusted R2 from each of the three component regressions using the three sets of “cash-flow proxy” 

explanatory variables.  Using the original state vector (LRET, LPE, and LTERM), the Fama-Schwert 

variables produced R2’s of 67, 46, and 41 percent for one-period expected returns, cash-flow news, and 

expected-return news, respectively.  Across all of the various state vectors, the mean R2 is 52, 37, and 43 

percent for one-period expected returns, cash-flow news, and expected-return news, respectively.  For the 

KS “dividends only” variables, the original R2’s (12, 24, and 26 percent) are close to the mean values across 

alternative state vectors (39, 10, and 7 percent).  Similarly, for the KS “dividends only” and “clean-up” 

variables combined, the original R2’s (36, 26, and 34 percent) are close to the mean values (40, 17, and 31 
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percent).  In general, our results appear to be reasonably robust across various sets of return predictor 

variables suggested by the literature. 

B. Firm-level stock returns 

We also estimate a cross-section of VAR models allowing for firm-specific variation in the VAR 

parameters.  Since we do not impose any forward-looking survival requirements, many of our firms have 

very short time series.  Estimating separate VAR parameters for each firm using OLS or WLS is, therefore, 

infeasible.   

Instead of computing firm-by-firm OLS or WLS estimates, we follow Swamy’s (1970) random-

coefficient-model (RCM) approach.  RCM is based on the assumption that firms’ VAR parameters are 

random variables drawn from a common distribution.  The parameters of this common distribution, dubbed 

hyperparameters, are estimated with maximum likelihood.  Given these hyperparameters, maximum-

likelihood predictors of individual firms’ VAR parameters can be computed using the prior-likelihood 

approach of Lee and Griffiths (1979).  The prior-likelihood approach uses the estimated population 

distribution of coefficients as the prior information and uses the Bayes rule to compute posterior-mean 

predictions of the firm-specific coefficients.   

An unpublished table (Table BII) shows the results obtained from these random-coefficient-model 

specifications.  Independent of methodological specifics, our earlier results appear robust to possible firm-

specific variation in the parameters. 

An unpublished table (Table BIII) investigates the sensitivity of our results to variations in the firm-

level VAR’s lag length.  Across the three alternative specifications, the results are very similar to the results 

for a first-order VAR.  In addition, the firm-level results are robust to adding aggregate state variables to the 

VAR forecasting firm-level stock returns.  

Appendix C: The danger in adding clean-up variables to the regression 

In this Appendix, we use Campbell and Shiller’s (CS hereafter) log-linear framework (refer to 

Appendix A) to illustrate one possible explanation of why KS’s additional clean-up variables are prone to 

tracking one-period expected returns and expected-return news.  Using lagged dividend yield and future 

realized returns to “clean-up” measurement error from realized dividend growth rates is one future dividend 

yield short of mapping out the CS realized return identity.  With enough future dividend growth rates and 
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returns, the future dividend yield becomes irrelevant, and KS’ full regression mechanically produces a 

population R2 that tends to 100 percent.  

Compare the CS linearized return identity to the KS full regression: 
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r  is log return,  δ  log dividend yield, and d∆  log dividend growth.  The first of the two equations, (C1), is 

just a first-order Taylor series approximation of the definition of log return iterated forward three times, 

where t,3κ  denotes the linearization error.  (C2) is very similar to KS’s full regression. The only differences 

between the CS identity and the KS regression are the future log dividend-price ratio term, 3+tδ , 

linearization error, t,3κ , and error term tε . 

Our analysis (in Table CI of an unpublished appendix) shows that the linearization error is small.  In 

regressions that include the future dividend yield, one minus the regression R2 can be interpreted as the size 

of the linearization error.  With one forward iteration, the CS linearization produces an R2 of 99.8761 

percent.  Even after iterating forward 15 times, the compounded approximation error is extremely small – the 

regression still produces an R2 of 99.5134 percent.  It is, therefore, safe to assume that tκ  is constant and 

does not affect the regression R2. 

Even if the linearization error is trivially small, KS’s full regression is not a perfect identity, because 

the future dividend-yield term is omitted.  The size of this omitted variable error depends on the number of 

future returns and dividend growth rates included in the regression.  As we add leads to the regression but 

omit the future dividend yield, the adjusted R2 increases steadily from 39.95 percent with one lead up to 

62.66 percent with fifteen leads.  Analytical arguments suggest that in a large sample with covariance 

stationary dividend yield, the omitted variable error converges to zero as more terms are included.  

Taking the 15-lead regression with 105 data points as an example, the first seven future dividend 

growth and the first seven future return terms are significant at the 5 percent level.  Furthermore, the 

dividend coefficients and future return coefficients tend to decay at an exponential rate, as predicted by the 

CS linearization.  Although the empirical work of KS (1992) focuses on the parsimonious three-lead model, 

KS’s stated theoretical motivation for the “clean-up variables” does not constrain the number of leads in 
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their regression.  Thus, if KS's stated theoretical motivation is taken literally (and perhaps out of context, 

since KS never include more than three leads), the return in the 15-lead regression is caused by significant 

revisions of long-term expected future dividend growth rates.  In our opinion, this interpretation is 

implausible, considering the difficulties in predicting dividend growth rates one year ahead with a time-

series model (see, e.g., Cochrane (1994)).  We see this result as a manifestation of the linearized identity, 

which helps to possibly explain why explanatory variables similar to KS’s “clean-up” variables are prone to 

picking up expected-return effects, such as those documented in Table III Panel B2. 

To further explore regressions with only a small number of leads, we calibrate various realistic 

economies and examine the large-sample properties of these regressions with simulated data.  Specifically, 

we estimate a number of return-generating processes with a conditional maximum-likelihood method, while 

constraining the ratio of expected-return-news variance to cash-flow-news variance to values ranging from 

1/5 to 5.  As a result, we have a set of calibrated simulation economies in which the significance of cash-flow 

news as a driver of stock returns varies by construction.  Note that these economies are not otherwise 

perverse, since the constrained maximum-likelihood procedure chooses parameters to best match the data 

while satisfying the constraint. 

These simulation results are summarized in the unpublished Figure C1.  The x-axis of the graph varies 

the var(Nr)/var(Ncf) ratio implied by the calibrated VAR model.  For each var(Nr)/var(Ncf) value, we estimate 

the VAR model parameters from the data with constrained maximum likelihood, constraining 

var(Nr)/var(Ncf) to the particular pre-specified value.  The var(Nr)/var(Ncf) values range from 0.2 to 5.  In 

addition, we constrain the model to be stationary by limiting the maximum absolute eigenvalue of the 

transition matrix.  After this calibration exercise, we have 31 points in the VAR parameter space, each 

corresponding to a single simulation economy. 

In our simulations, we concentrate on KS’s dividends-only and full specifications, because the 

required variables can be conveniently computed from the VAR data.  The figure plots five population R2s 

as functions of the ratio of expected-return-news variance to cash-flow-news variance.  First, we plot KS’s 

full regression R2.  The regression R2s (marked with plus signs) flat-line at around 40 to 45 percent.  Second, 

we plot KS’s dividends-only specification R2.  Again, the R2 is roughly constant at 23 percent (the solid 

line).  This clearly illustrates that it can be erroneous to interpret either KS R2 as measuring the relative 

importance of cash-flow news as a driver of realized stock return variation.  Both R2s are insensitive to the 
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importance of cash-flow news.  These R2s can also be misleading as measures of a regression R2 of returns 

on cash-flow news.   The dashed line plots the R2 of returns on cash-flow news in these economies.  Unlike 

the KS R2s, these R2s do not flat-line.  Instead, the dashed line slopes down as the importance of cash-flow 

news decreases.   

The poor performance of both KS R2s as measures of the importance of cash-flow news may be due 

to a nonzero correlation between the cash-flow and expected-return news process.  Even if the KS 

explanatory variables were tracking the cash-flow-news series, a nonzero correlation between the two news 

series would bias both KS R2s.  KS briefly discussed this point.  To examine this possibility, we repeat our 

simulation procedure by imposing an additional constraint corr(Nr, Ncf)=0.  The results (which correspond to 

the unpublished Figure C2) suggest that none of the above conclusions change because of this additional 

constraint, highlighting a deeper problem for KS-type regression specifications. 

From the general perspective of any returns on cash-flow proxies regression, some of our calibration 

results may be somewhat surprising.  For example, how can the returns-on-dividend-growth R2 be so 

completely disconnect from the returns-on-cash-flow-news R2, even when corr(Nr, Ncf)=0?  We conjecture 

that the data can simultaneously be very informative about the correlation of dividend growth and stock 

return and not very informative about the significance of cash-flow news as a driver of stock returns.  We 

suspect that this phenomenon roots from the fact that the cash-flow news depend on not only the 

contemporaneous correlation of returns and dividend growth but also on the infinite-horizon predictability of 

dividend growth.  The latter is estimated imprecisely from the data and, therefore, the maximum-likelihood 

calibration method matches the var(Nr)/var(Ncf) constraint by altering the long-horizon predictability of 

dividend growth.  More specifically, when the var(Nr)/var(Ncf) constraint is high (low), positive cash-flow 

shocks lead to downward (upward) revisions in future cash-flow growth expectations.  This interaction 

between the cash-flow shock and the revisions in future cash-flow growth expectations disconnects the 

returns-on-dividend-growth R2 from the returns-on-cash-flow-news R2. 

On the positive side, one of KS’s diagnostics regression behaves as expected in both figures.  As the 

importance of expected-return news increases, the large-sample R2 of returns on clean-up variables only 

increases steadily.  However, the large-sample properties of these regressions do not answer the question of 

whether KS’s diagnostics regression is useful.  To examine the “power” of KS’s diagnostics regression, on 

top of the large-sample R2s in the unpublished figures, we indicate the fraction of F-tests that reject at the 5% 
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level in samples of 71 observations.  The rejection probability increases with the population R2s, but even for 

large R2s, KS’s pre-test diagnostics is hardly perfect.  In the calibrated economies in which the variance of 

expected-return news is higher than that of cash-flow news, the pre-test rejects only approximately 40 to 25 

percent of the samples depending on whether the constraint is imposed on the news correlation.  

Nevertheless, these small-sample experiments suggest that KS’s diagnostic helps in ruling out the samples 

that would lead to the most misleading inferences.   
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Table I: Descriptive statistics of the aggregate data  

Panel A shows descriptives of the VAR state variables.  LRET is the annual log stock return on the 
Schwert (1881-1925) or CRSP value-weight index (1926-present), LPE is the log price-earnings ratio, 
and LTERM is the spread of the ten-year constant maturity bond log yield over the three-month 
commercial paper log yield.  All relevant variables are deflated by the commercial paper/T-bill wealth 
index.  Sample period is 1881-1998. 

Panels B shows descriptives of the explanatory variables in aggregate regressions of returns on 
cash-flow and expected return proxies.  The variables in Panel B are motivated by Fama’s (1990), 
Schwert’s (1990), and Kothari and Shanken’s (1992) cash-flow and expected return proxies.  Expected 
return proxies are the log dividend-price ratio (LDP, also considered a cash-flow proxy), the spread of 
Moody’s Baa corporate bond log yield over the Aaa corporate bond log yield (LDEF), and the spread of 
the ten-year constant maturity bond log yield over the three-month commercial paper log yield (LTERM).  
From 1881-1918, LDEF is the spread of the average top five Macaulay railroad bond log yields 
(excluding the maximum) over the average bottom five Macaulay railroad bond log yields (excluding the 
minimum).  Expected-return news proxies are shocks to the default (LDEFS) and term (LTERMS) 
spread.  The shocks are the estimated residuals from a first-order autoregressive process.  Cash-flow 
proxies are current and future dividend growth rates and future returns.  LGD, LGDF1, LGDF2, and 
LGDF3 are the current, 1-year, 2-year, and 3-year leads of the annual log dividend growth rate.  LRETF1, 
LRETF2, and LRETF3 are the 1-year, 2-year, and 3-year leads of LRET.  All relevant variables are 
deflated by the commercial paper/T-bill wealth index.  Sample period is 1881-2001. 

 
Panel A: VAR state variables 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
LRET 0.0474 0.1888 -0.6151 -0.0638 0.0567 0.1866 0.4388
LPE 2.7581 0.3105 1.8478 2.5875 2.7072 3.0024 3.6235
LTERM -0.0022 0.0175 -0.0626 -0.0131 -0.0001 0.0115 0.0310

 
Panel B: Fama’s (1990), Schwert’s (1990), and Kothari and Shanken’s (1992) variables 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
LDP -3.1196 0.2866 -4.0785 -3.2810 -3.1301 -2.9403 -2.4188
LDEF 0.0103 0.0066 0.0030 0.0063 0.0077 0.0124 0.0441
LTERM -0.0022 0.0175 -0.0626 -0.0131 -0.0001 0.0115 0.0310
LDEFS -0.0000 0.0037 -0.0077 -0.0017 -0.0006 0.0004 0.0247
LTERMS 0.0003 0.0152 -0.0700 -0.0061 0.0011 0.0087 0.0537
LGD -0.0073 0.1631 -0.6646 -0.0811 -0.0022 0.0637 0.6706
LGDF1 -0.0072 0.1632 -0.6646 -0.0811 -0.0022 0.0637 0.6706
LGDF2 -0.0097 0.1661 -0.6646 -0.0849 -0.0022 0.0637 0.6706
LGDF3 -0.0088 0.1660 -0.6646 -0.0849 -0.0011 0.0637 0.6706
LRETF1 0.0491 0.1891 -0.6151 -0.0638 0.0787 0.1866 0.4388
LRETF2 0.0484 0.1898 -0.6151 -0.0638 0.0787 0.1866 0.4388
LRETF3 0.0486 0.1895 -0.6151 -0.0638 0.0787 0.1866 0.4388

 



 

Table II: Aggregate VAR  

This table shows the parameter estimates and some implied properties of a VAR(1) specification 
with the following variables: LRET is the annual log stock return on the Schwert (1881-1925) or CRSP 
value-weight index (1926-present), LPE is the log price-earnings ratio, and LTERM is the spread of the 
ten-year constant maturity bond log yield over the three-month commercial paper log yield.  All relevant 
variables are deflated by the commercial paper/T-bill wealth index.  Sample period is 1881-1998.  The 
VAR specification has the structure 

)(,1 ttttt uuEuzz ′=Σ+Γ+Α= −  
In each cell, the first number is an OLS point estimate.  The second number (in brackets) is a 
bootstrapped standard error. 

 
 

Coefficient estimates for the first order VAR 
 Α Γ   Σ   
LRET 0.4842 0.0641 -0.1575 2.4005 0.0323 0.0302 0.0003
 [0.1573] [0.0909] [0.0561] [1.0560] [0.0050] [0.0047] [0.0002]
LPE 0.4253 0.1185 0.8483 1.7012 0.0302 0.0314 0.0003
 [0.1562] [0.0894] [0.0557] [1.0464] [0.0047] [0.0048] [0.0002]
LTERM 0.0105 -0.0139 -0.0039 0.5073 0.0003 0.0003 0.0002

 [0.0132] [0.0078] [0.0047] [0.0815] [0.0002] [0.0002] [0.0001]
 
Covariances and  
correlations (shaded) 

One-period 
expected return  

Cash-flow  
news 

Expected-return 
news 

One-period 0.0042 0.0000 0.0000
expected return [0.0022] [0.0000] [0.0000]
Cash-flow 0.0000 0.0041 -0.0027
news [0.0000] [0.0012] [0.0019]
Expected-return  0.0000 -0.2875 0.0219
news [0.0000] [0.2028] [0.0051]

 



 

Table III: Decomposing aggregate regressions of returns on cash-flow and expected-return 
proxies 

This table decomposes aggregate regressions of returns (r) on cash-flow and expected return 
proxies into three components: (1) the regression coefficient of one-period expected return (Er) on cash-
flow and expected return proxies, (2) the regression coefficient of cash-flow news (Ncf) on cash-flow and 
expected return proxies, and (3) the regression coefficient of minus expected-return news (-Nr) on cash-
flow and expected return proxies.  The table shows estimated regression coefficients and R2s. 

One-period expected returns, cash-flow news, and expected-return news are computed from the 
VAR model in Table II.  In each cell, the first number is an OLS point estimate.  The second number (in 
brackets) is a bootstrapped standard error.  The standard errors account for the fact the dependent 
variables are computed from an estimated VAR model. 

The explanatory variables in Panel A are motivated by Fama (1990) and Schwert’s (1990) cash-
flow and expected return proxies.  Expected return proxies are the spread of Moody’s Baa corporate bond 
log yield over the Aaa corporate bond log yield (LDEF) and the spread of the ten-year constant maturity 
bond log yield over the three-month commercial paper log yield (LTERM).  From 1881-1918, LDEF is 
the spread of the average top five Macaulay railroad bond log yields (excluding the maximum) over the 
average bottom five Macaulay railroad bond log yields (excluding the minimum).  Cash-flow proxies are 
the current, 1-year, 2-year, and 3-year leads of the annual log dividend growth rate (LGD, LGDF1, 
LGDF2, and LGDF3).  Expected-return news proxies are shocks to the term (LTERMS) and default 
(LDEFS) spread.  The shocks are the estimated residuals from a first-order autoregressive process.  All 
relevant variables are deflated by the commercial paper/T-bill wealth index.  Sample period for the 
dependent variable is 1882-1998. 

The explanatory variables in Panels B1 and B2 are motivated by Kothari and Shanken’s (1992) 
cash-flow proxies.  LDP is the log dividend-price ratio.  LGD, LGDF1, LGDF2, and LGDF3 are the 
current, 1-year, 2-year, and 3-year leads of the annual log dividend growth rate.  LRETF1, LRETF2, and 
LRETF3 are the 1-year, 2-year, and 3-year leads of LRET (return).  All relevant variables are deflated by 
the commercial paper/T-bill wealth index.  Sample period for the dependent variable is 1882-1998. 
 
Panel A: Fama (1990) and Schwert’s (1990) variables 

 const. LDEF LTERM LDEFS LTERMS LGD LGDF1 LGDF2 LGDF3 % R2

r 0.0462 0.6954 1.1748 -20.7046 0.5613 0.5138 -0.0957 -0.0025 0.0732 53.18
 [0.0285] [2.4631] [0.7295] [4.4417] [0.7983] [0.0886] [0.0833] [0.0776] [0.0771] [7.49]
Er 0.0064 4.5169 1.9816 -0.7997 -0.4822 0.0425 0.0299 0.0358 0.0279 66.64
 [0.0261] [1.7855] [1.0443] [2.2219] [0.4901] [0.0417] [0.0355] [0.0327] [0.0301] [17.01]
Ncf 0.0238 -2.2281 -0.2359 -2.7035 1.9213 0.1608 0.0289 0.0339 0.0286 46.07
 [0.0098] [0.8680] [0.2667] [2.6044] [0.8347] [0.0497] [0.0334] [0.0297] [0.0286] [15.73]
-Nr 0.0160 -1.5934 -0.5709 -17.2014 -0.8777 0.3105 -0.1546 -0.0722 0.0167 41.08
 [0.0205] [1.9572] [0.5738] [4.0903] [1.0739] [0.0728] [0.0831] [0.0704] [0.0670] [8.14]
 
Panel B1: Kothari and Shanken’s (1992) variables 

 const. LGD LGDF1 LGDF2 LGDF3     % R2     

r 0.0548 0.7278 -0.0119 0.0945 0.1367 39.21  
 [0.0083] [0.1156] [0.0935] [0.0911] [0.0892] [6.82]  
Er 0.0502 0.0828 0.0632 0.0932 0.0948 12.19  
 [0.0084] [0.0551] [0.0449] [0.0440] [0.0408] [5.27]  
Ncf 0.0025 0.1963 0.0574 0.0403 0.0272 23.81  
 [0.0018] [0.0693] [0.0374] [0.0346] [0.0338] [9.96]  
-Nr 0.0021 0.4488 -0.1325 -0.0390 0.0146 25.76  
 [0.0026] [0.0915] [0.0870] [0.0768] [0.0744] [6.43]  



 

 

Panel B2: Kothari and Shanken’s (1992) variables 
 const. LDP LGD LGDF1 LGDF2 LGDF3 LRETF1 LRETF2 LRETF3 % R2

r 0.4664 0.1238 0.7387 0.0544 0.2901 0.2214 -0.0528 -0.2535 -0.1535 45.25
 [0.2217] [0.0670] [0.1116] [0.1272] [0.1142] [0.1120] [0.1097] [0.0906] [0.0923] [7.04]
Er 0.4049 0.1143 0.0978 0.0882 0.0755 0.0546 -0.0065 0.0089 0.0286 36.25
 [0.1314] [0.0402] [0.0493] [0.0497] [0.0474] [0.0442] [0.0438] [0.0384] [0.0384] [13.93]
Ncf 0.0802 0.0256 0.1963 0.0094 0.0441 0.0381 0.0651 -0.0000 -0.0285 26.34
 [0.0570] [0.0168] [0.0709] [0.0471] [0.0477] [0.0462] [0.0425] [0.0406] [0.0398] [10.25]
-Nr -0.0188 -0.0161 0.4447 -0.0431 0.1705 0.1287 -0.1114 -0.2624 -0.1537 33.88
 [0.1120] [0.0326] [0.0918] [0.1093] [0.0966] [0.0956] [0.0989] [0.0811] [0.0817] [7.24]
 
 

 



 

 Table IV: Descriptive statistics of the firm-level data  

This table presents the time-series averages of selected cross-sectional descriptive statistics.  First, 
the descriptive statistics are computed for each cross-section, and then the time-series of descriptive 
statistics are averaged.  Sample period is 1954-1999.   

The variables are defined as follows.  Panel A shows descriptives of the VAR state variables.  
LRET is the log stock return, LBM log book-to-market equity, and LROE log accounting return on 
equity.  Variables in Panel A have been transformed by unlevering the firm 10 percent (see text for 
details).   

Panels B, C, and D show descriptives of the explanatory variables in firm-level regressions of 
returns on cash-flow proxies.  The variable in Panel B is motivated by Beaver, Clarke, and Wright’s 
(1980) cash-flow proxy.  GEPS is the gross earnings per share (EPS) growth rate, EPS(t)/EPS(t-1).  
Observations with EPS(t) or EPS(t-1) missing are excluded, as well as observations with EPS(t-1)<1.  
EPS(t)/EPS(t-1) greater than exp(1) are set to exp(1) and EPS(t)/EPS(t-1) less than exp(-1) to exp(-1).   

Panel C shows descriptives for variables similar to Easton and Harris’s (1991) cash-flow proxies.  
EPL is EPS(t) normalized by P(t-1).  DEPL is the change in earnings, EPS(t)-EPS(t-1), normalized by 
price, P(t-1).  Observations with either EPS(t) or EPS(t-1) missing are excluded.  Observations with 
EPS(t)/P(t-1), EPS(t-1)/P(t-1), or (EPS(t)-EPS(t-1))/P(t-1) outside the range [-1.5,1.5] are excluded.       

Panel D uses variables similar to those of Kothari, Collins, Shanken, and Sloan (1994).  LGEPS is 
the log EPS growth rate, ln(EPS(t)/EPS(t-1)).  LGEPSF1, LGEPSF2, and LGEPSF3 are 1-year, 2-year, 
and 3-year leads of LGEPS. LRET is the log return.  LRETF1, LRETF2, and LRETF3 are 1-year, 2-year, 
and 3-year leads of LRET.  ELPL is EPS(t-1)/P(t-1).  Observations of LGEPS, LGEPSF1, LGEPSF2, 
LGEPSF3, LRET, LRETF1, LRETF2, and LRETF3 greater than 1 are set to 1, and observations less than 
-1 are set to -1. Observations with t-1, t, t+1, t+2, or t+3 return missing or EPS negative or missing are 
excluded. 

  
Panel A: VAR state variables, 42075 firm years 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
LRET 0.0848 0.2651 -1.0775 -0.0590  0.0873  0.2307  1.2356  
LBM -0.2627 0.5553 -2.3873 -0.5757 -0.2184  0.0841  2.1378  
LROE 0.0751 0.1952 -1.5908  0.0628  0.1024  0.1391  0.9249  

 
Panel B: Beaver, Clarke, and Wright’s (1980) variable, 36237 firm years 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
GEPS: 1.0631  0.4670  0.3678  0.7870  1.0342  1.2147  2.6782  

 
Panel C: Easton and Harris’s (1991) variables, 41279 firm years 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
EPL  0.0649  0.0969 -0.8256  0.0469  0.0784  0.1063  0.5156 
DEPL -0.0019  0.0984 -0.8149 -0.0194  0.0032  0.0195  0.8429  

 
Panel D: Collins, Kothari, Shanken, and Sloan’s (1994) variables, 23225 firm years 
VARIABLE: mean std.dev. min 25%-tile   median 75%-tile      max 
LGEPS 0.0134  0.3744 -0.9945 -0.1426  0.0538  0.1905  0.9791  
LGEPSF1 0.0078  0.3740 -0.9952 -0.1488  0.0538  0.1870  0.9660  
LGEPSF2 -0.0025  0.3769 -1.0000 -0.1631  0.0469  0.1793  0.9676  
LGEPSF3 -0.0113  0.3848 -1.0000 -0.1813  0.0420  0.1781  0.9702  
LRETF1 0.1193  0.2260 -0.6687 -0.0159  0.1134  0.2489  0.8740  
LRETF2 0.1094  0.2267 -0.6738 -0.0248  0.1058  0.2410  0.8625  
LRETF3 0.1011  0.2356 -0.7665 -0.0368  0.0996  0.2380  0.8681  
ELPL 0.0879 0.0414  0.0064  0.0634  0.0851  0.1068  0.4487  



 

Table V: Firm-level VAR  

This table shows a firm-level VAR specification parameter estimates and some implied properties 
of the model.  The state vector includes log stock return (LRET), log book-to-market ratio (LBM), and 
log ROE (LROE) as state variables.  All variables are market-adjusted (i.e., cross-sectionally demeaned.)  
The VAR has the structure 

)(, ,,,1,, tititititi uuEuzz ′=Σ+Γ= −  
In each cell, the first number is a pooled-OLS point estimate.  The second number (in brackets) is a cross-
correlation-consistent robust jackknife standard error computed using the jackknife method of Shao and 
Rao (1993). 

 
Coefficient estimates for the first order VAR, market-adjusted data 
 Γ   Σ   

LRET 0.1376 
[0.0202] 

0.0507 
[0.0141] 

0.0891 
[0.0314] 

0.0917 
[0.0062] 

-0.0711 
[0.0049] 

0.0212 
[0.0021] 

LBM 0.1470 
[0.0297] 

0.8691 
[0.0178] 

0.1016 
[0.0471] 

-0.0711 
[0.0049] 

0.1126 
[0.0152] 

0.0172 
[0.0021] 

LROE 0.1858 
[0.0114] 

-0.0055 
[0.0060] 

0.6042 
[0.0533] 

0.0212 
[0.0021] 

0.0172 
[0.0021] 

0.0594 
[0.0059] 

 
Covariances and  
correlations (shaded) 

One-period 
expected return  

Cash-flow  
news 

Expected-return 
news 

One-period 
expected return 

0.0044 
[0.0011] 

0 
[0] 

0 
[0] 

Cash-flow  
news  

0 
[0] 

0.1315 
[0.0121] 

0.0330 
[0.0068] 

Expected-return  
news 

0 
[0] 

0.5620 
[0.1075] 

0.0262 
[0.0074] 

 



 

Table VI: Decomposing firm-level regressions of returns on cash-flow proxies 

This table decomposes firm-level regressions of returns (r) on cash-flow proxies into three 
components: (1) the regression coefficient of one-period expected return (Er) on cash-flow proxies, (2) 
the regression coefficient of cash-flow news (Ncf) on cash-flow proxies, and (3) the regression coefficient 
of minus expected-return news (-Nr) on cash-flow proxies.  The table shows estimated regression 
coefficients and R2s. 

One-period expected returns, cash-flow news, and expected-return news are computed from the 
VAR model in Table V.  Regressions are estimated by pooling the sample. In each cell, the first number is 
a pooled-OLS point estimate.  The second number (in brackets) is a cross-correlation-consistent robust 
jackknife standard error computed using the jackknife method of Shao and Rao (1993).  The standard 
errors account for the fact the dependent variables are computed from an estimated VAR model. 

The cash-flow proxies are defined as follows.  The variable in Panel A, GEPS, is the gross earnings 
per share (EPS) growth rate, EPS(t)/EPS(t-1).  Observations with EPS(t) or EPS(t-1) missing are 
excluded, as well as observations with EPS(t-1)<1.  EPS(t)/EPS(t-1) greater than exp(1) are set to exp(1) 
and EPS(t)/EPS(t-1) less than exp(-1) to exp(-1).   

The variables in Panels B1 and B2 are the normalized level and change of earnings.  EPL is EPS(t) 
normalized by P(t-1).  DEPL is the change in earnings, EPS(t)-EPS(t-1), normalized by price, P(t-1).  
Observations with either EPS(t) or EPS(t-1) missing are excluded.  Observations with EPS(t)/P(t-1), 
EPS(t-1)/P(t-1), or (EPS(t)-EPS(t-1))/P(t-1) outside the range [-1.5,1.5] are excluded.       

Panels C1-3 use variables similar to those of Kothari, Collins, Shanken, and Sloan (1994).  LGEPS 
is the log EPS growth rate, ln(EPS(t)/EPS(t-1)).  LGEPSF1, LGEPSF2, and LGEPSF3 are 1-year, 2-year, 
and 3-year leads of LGEPS. LRET is the log return.  LRETF1, LRETF2, and LRETF3 are 1-year, 2-year, 
and 3-year leads of LRET.  ELPL is EPS(t-1)/P(t-1).  Observations of LGEPS, LGEPSF1, LGEPSF2, 
LGEPSF3, LRET, LRETF1, LRETF2, and LRETF3 greater than 1 are set to 1, and observations less than 
-1 are set to -1. Observations with t-1, t, t+1, t+2, or t+3 return missing or EPS negative or missing are 
excluded. 

  
Panel A: Beaver, Clarke, and Wright’s (1980) variable, 36237 firm years 

 const. GEPS % R2        

r 0.0773 
[0.0258] 

0.0302 
[0.0036] 

1.03 
[0.26] 

 

Er 0.1096 
[0.0333] 

0.0009 
[0.0014] 

0.03 
[0.12] 

 

Ncf -0.0049 
[0.0225] 

0.0341 
[0.0041] 

1.79 
[0.37] 

 

-Nr -0.0275 
[0.0161] 

-0.0048 
[0.0029] 

0.10 
[0.11] 

 

 
Panel B1: Easton and Harris’s (1991) variables, 41279 firm years 

 const. EPL % R2        

r 0.0375 
[0.0261] 

0.7521 
[0.0784] 

9.61 
[1.88] 

 

Er 0.0959 
[0.0312] 

0.1466 
[0.0475] 

8.74 
[3.61] 

 

Ncf -0.0927 
[0.0308] 

1.3015 
[0.1720] 

27.28 
[4.10] 

 

-Nr 0.0343 
[0.0118] 

-0.6960 
[0.1690] 

19.48 
[3.18] 

 

 



 

 
Panel B2: Easton and Harris’s (1991) variables, 41279 firm years 

 const. EPL DEPL % R2       

r 0.0417 
[0.0263] 

0.6850 
[0.1101] 

0.1233 
[0.0775] 

9.78
[1.74]

 

Er 0.0862 
[0.0297] 

0.2987 
[0.0852] 

-0.2797 
[0.0821] 

29.27
[4.22]

 

Ncf -0.0714 
[0.0284] 

0.9659 
[0.1259] 

0.6170 
[0.1357] 

31.24
[4.61]

 

-Nr 0.0270 
[0.0114] 

-0.5796 
[0.1386] 

-0.2140 
[0.1041] 

20.67
[3.81]

 

 
Panel C1: Collins, Kothari, Shanken, and Sloan’s (1994) variables, 23225 firm years 

 const. LGEPS % R2        

r 0.1240 
[0.0231] 

0.0742 
[0.0115] 

2.11 
[0.79] 

 

Er 0.1168 
[0.0344] 

-0.0050 
[0.0048] 

0.41 
[0.72] 

 

Ncf 0.0314 
[0.0222] 

0.1018 
[0.0120] 

6.36 
[1.74] 

 

-Nr -0.0242 
[0.0150] 

-0.0226 
[0.0098] 

0.89 
[0.75] 

 

 
Panel C2: Collins, Kothari, Shanken, and Sloan’s (1994) variables, 23225 firm years 

 const. LGEPS LGEPSF1 LGEPSF2 LGEPSF3 % R2     

r 0.1228 
[0.0232] 

0.0761 
[0.0138] 

0.0379 
[0.0171] 

-0.0482
[0.0117]

-0.0408
[0.0123]

4.35
[1.34]

 

Er 0.1168 
[0.0344] 

-0.0051 
[0.0040] 

-0.0003 
[0.0042] 

-0.0003
[0.0040]

-0.0008
[0.0029]

0.42
[0.65]

 

Ncf 0.0307 
[0.0222] 

0.1005 
[0.0125] 

0.0178 
[0.0126] 

-0.0393
[0.0084]

-0.0303
[0.0080]

8.06
[1.94]

 

-Nr -0.0247 
[0.0152] 

-0.0193 
[0.0102] 

0.0204 
[0.0079] 

-0.0086
[0.0058]

-0.0097
[0.0063]

2.04
[0.63]

 

 
Panel C3: Collins, Kothari, Shanken, and Sloan’s (1994) variables, 23225 firm years 

 const. LGEPS LGEPSF1 LGEPSF2 LGEPSF3 LRETF1 LRETF2 LRETF3 ELPL % R2

r 0.0205 
[0.0326] 

0.1273 
[0.0124] 

0.0719 
[0.0191] 

-0.0243
[0.0125]

-0.0288
[0.0155]

-0.0898
[0.0622]

-0.0029
[0.0475]

-0.0442 
[0.0543] 

1.2425
[0.2341]

11.16
[2.61]

Er 0.0666 
[0.0270] 

0.0140 
[0.0062] 

0.0091 
[0.0062] 

0.0063
[0.0053]

0.0033
[0.0034]

0.0034
[0.0051]

0.0023
[0.0034]

0.0034 
[0.0033] 

0.5092
[0.1642]

51.03
[9.40]

Ncf -0.0341 
[0.0209] 

0.1323 
[0.0123] 

0.0389 
[0.0152] 

-0.0252
[0.0098]

-0.0236
[0.0104]

-0.0597
[0.0418]

0.0077
[0.0353]

-0.0272 
[0.0354] 

0.7773
[0.1923]

12.51
[2.07]

-Nr -0.0120 
[0.0127] 

-0.0191 
[0.0115] 

0.0238 
[0.0099] 

-0.0054
[0.0054]

-0.0085
[0.0070]

-0.0334
[0.0258]

-0.0129
[0.0161]

-0.0204 
[0.0206] 

-0.0440
[0.1122]

3.04
[1.06]

 
 

 
 
 



 

 
                                                      
1 This approach is similar in spirit to Campbell and Mei (1993). 

2 We do not consider the effects of model uncertainty. 

3 We thank the referee for motivating this example. 

4 Since some of our specifications have three year leads of LGD and LRET as explanatory variables, in order 

to be consistent with our reinterpretation regressions, we estimate the VAR only through 1998.  For this 

reason, the dependent variable series for each of our future regressions ends in 1998. 

5 The methodology of time-series means of cross-sectional descriptives implicitly adds time dummies.  Thus, 

the statistics should be compared to pooled estimates computed from market-adjusted data. 




