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ABSTRACT

This paper provides a model of investment timing by managers in a decentralized firm in the

presence of agency conflicts and information asymmetries. When investment decisions are delegated

to managers, contracts must be designed to provide incentives for managers to both extend effort and

truthfully reveal private information. Using a real options approach, we show that an underlying

option to invest can be decomposed into two components: a manager's option and an owner's option.

The implied investment behavior differs significantly from that of the first-best no-agency solution.

In particular, greater inertia occurs in investment, as the model predicts that the manager will have

a more valuable option to wait than the owner.
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1. Introduction

One of the most important topics in corporate finance is the formulation of the optimal

investment strategies of firms. The investment decision has two components: how much to

invest and when to invest. The first is the capital allocation decision, and the second is the

investment timing decision. The standard textbook prescription for the capital allocation

decision is that firms should invest in projects only if their net present values (NPVs) are

positive. Similarly, a standard framework for the investment timing decision is the real options

approach. The real options approach posits that the opportunity to invest in a project is

analogous to an American call option on the investment project, and the timing of investment

is economically equivalent to the optimal exercise decision for an option. The real options

approach is well summarized in Dixit and Pindyck (1994) and Trigeorgis (1996).1

However, both the simple NPV rule and the standard real options approach fail to ac-

count for the presence of agency conflicts and information asymmetries. In most modern

corporations, shareholders delegate the investment decision to managers, taking advantage

of managers’ special skills and expertise. In such decentralized settings, there are likely to

be both information asymmetries (e.g., managers are better informed than owners about

projected cash flows) and agency issues (e.g., unobserved managerial effort, perquisite con-

sumption, empire building). A number of papers in the corporate finance literature provide

models of capital budgeting under asymmetric information and agency. (See Stein, 2001,

for a useful summary.) The focus of this literature is on the first element of the investment

decision: the amount of capital allocated to managers for investment. Thus, this literature

provides predictions on whether firms over- or underinvest relative to the first-best no-agency

benchmark. The focus of this paper is on the second element of the investment decision: the

timing of investment. We extend the real options framework to account for the issues of

information and agency in a decentralized firm. Analogous to the notions of over- or under-

investment, our paper provides results on hurried or delayed investment.

No agency conflicts arise in the standard real options paradigm, as it is assumed that the
1The application of the real options approach to investment is broad. Brennan and Schwartz (1985) use an

option pricing approach to analyze investment in natural resources. McDonald and Siegel (1986) provide the
standard continuous-time framework for analysis of a firm’s investment in a single project. Majd and Pindyck
(1987) enrich the analysis with a time-to-build feature. Dixit (1989) uses the real option approach to examine
entry and exit from a productive activity. Triantis and Hodder (1990) analyze manufacturing flexibility as an
option. Titman (1985) and Williams (1991) use the real options approach to analyze real estate development.
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option’s owner makes the exercise decision.2 However, in this paper, an owner delegates the

option exercise decision to a manager. Thus, the timing of investment is determined by the

manager. The owner’s problem is to design an optimal contract under both hidden action

and hidden information. The true quality of the underlying project can be high or low. The

hidden action problem is that the manager can influence the likelihood that the quality of

the project is high. An optimal contract will have the property that the manager will be

induced to provide costly (but unverifiable) effort. The hidden information problem is that

the underlying project’s future value contains a component that is only privately observed

by the manager. Absent any mechanism that induces the manager to reveal his private

information voluntarily, the manager could have an incentive to lie about the true quality

of the project and divert value for his private interests. For example, the manager could

divert privately observed project value by consuming excessive perquisites, building empires,

or working less hard. An optimal contract induces the manager to deliver to the owner the

true value of the privately observed component of project value, and thus no actual value

diversion takes place in equilibrium.

We show that the underlying option can be decomposed into two components: a man-

ager’s option and an owner’s option. The manager’s option has a payout upon exercise that

is a function of the contingent compensation contract. Based on this contractual payout,

the manager determines the exercise time. The owner’s option has a payout, received at the

manager’s chosen exercise time, equal to the payoff from the underlying option minus the

manager’s compensation. The model provides the solution for the optimal contract that

comes as close as possible to the first-best no-agency solution.

The model implies investment behavior that differs substantially from that of the standard

real options approach with no agency problems. In general, managers display greater inertia

in their investment behavior, in that they invest later than implied by the first-best solution.

In essence, this is a result of the manager (even in an optimal contract) not having a full

ownership stake in the option payoff. This less than full ownership interest implies that the

manager has a more valuable option to wait than the owner.

An important aspect of the model is the interaction of hidden action and hidden infor-
2While our paper focuses on the agency issues that arise from the divergence of interests between owners

and shareholders, similar issues exist between stockholders and bondholders. Mello and Parsons (1992), Mauer
and Triantis (1994), Leland (1998), Mauer and Ott (2000), and Morellec (2001, 2003) examine the impact of
agency conflicts on firm value using the real options approach.
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mation. We find that the nature of the optimal contract depends explicitly on the relative

importance of these two forces. While we focus on the economically most interesting case

in which both forces play a role in the optimal contract, it is instructive to consider two

extremes. If the cost-benefit ratio of inducing effort (a measure of the strength of the hid-

den effort component) is very low, then the hidden action component disappears from the

optimal contract terms. Thus, if the nature of the underlying option is such that inducing

effort is sufficiently inexpensive, then a simple problem of hidden information is left and the

contract simply rewards the manager with information rents. This is similar to the setting of

Maeland (2002), which considers a real options problem with only hidden information about

the exercise cost.3 Conversely, as the cost-benefit ratio of inducing effort becomes very high,

then the hidden action component dominates the optimal contract. The cost of inducing

effort is so high as to no longer necessitate the payment of information rents. When the

cost-benefit ratio of inducing effort is in the intermediate range, both forces are in effect, and

the optimal contract must induce both effort and truthful revelation of private information.

The interplay between hidden information and hidden action could reduce the inefficiency

in investment timing, compared with the setting in which hidden information is the only

friction. This is because the manager’s additional option to exert effort makes his incentives

more closely aligned with those of the owner.

We further generalize the model to allow managers to display greater impatience than

owners. Several potential justifications exist for such an assumption. First, various models

of managerial myopia attempt to explain managers’ preferences for choosing projects with

quicker paybacks, even in the face of eschewing more valuable long-term opportunities. (See

Narayanan, 1985; Stein, 1989; and Bebchuk and Stole, 1993.) Such models are based on infor-

mation asymmetries and agency problems. Second, in our investment timing setting, greater

impatience can represent the manager’s preference for empire building or greater perquisite

consumption and reputation that comes from running a larger company sooner rather than

later. Third, managers could have shorter horizons (because of job loss, alternative job

offers, death, etc.). Phrased in real options terms, managerial impatience decreases the value

of the manager’s option to wait. While the base case model predicts that investment will
3Bjerksund and Stensland (2000) provide a similar model to Maeland (2002), in which a principal delegates

an investment decision to an agent who holds private information about the investment’s cost. Brennan (1990)
considers a setting in which managers attempt to signal the true quality of latent assets to investors through
converting them into observable assets (e.g., exercising real options).
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never occur sooner than the first-best case, in this generalized setting investment can occur

either earlier or later than the first-best case.

The setting of our paper is most similar to that of Bernardo, Cai, and Luo (2001). In a

decentralized firm under asymmetric information and moral hazard, they examine the capital

allocation decision, while we examine the investment timing decision. In their model, the

firm’s headquarters delegates the investment decision to a manager, who possesses private

information about project quality. The manager can improve project quality through the

exertion of effort, which is costly to the manager but unverifiable by headquarters. These

two assumptions mirror our framework. In addition, managers have preferences for empire

building in that they derive utility from overseeing large investment projects. This assumption

is addressed in the generalized version of our model that appears in Section . Absent any

explicit incentive mechanism, managers always claim that all projects are of high quality

and worthy of funding, and then they provide the minimal amount of effort. As in our

paper, they use an optimal contracting approach to jointly derive the optimal investment

and compensation policies. An incentive contract is derived that induces truth-telling and

minimizes agency costs. In equilibrium, they find that there will be underinvestment in all

states of the world. Our model provides an intertemporal analogy to their equilibrium: in

our base case model, we find that in equilibrium there is delayed investment as a result of

the information asymmetries and agency costs.4

While our paper derives an optimal contract that best aligns the incentives of owners

and managers, other papers in the corporate finance literature analyze the capital budgeting

problem under information asymmetry and agency using other control mechanisms. Harris,

Kriebel, and Raviv (1982) consider the case of capital allocation in a decentralized firm with

multiple division managers. Managers have private information about project values. In

addition, managers have private interests in overstating investment requirements, and then

diverting the excess cash flows to minimize effort or to consume greater perquisites. They
4In a different setting, Holmstrom and Ricart i Costa (1986) provide a model that combines an optimal

wage contract with capital rationing. In their model, the manager and the market learn about managerial
talent over time by observing investment outcomes. A conflict of interest arises because the manager wants
to choose investment to maximize the value of his human capital while the shareholders want to maximize
firm value. The optimal wage contract has the option feature that ensures the manager against the possibility
that an investment reveals his ability to be of low quality, but allows the manager to captures the gains if he
is revealed to be of high quality. This option feature of the wage contract encourages the manager to take on
excessive risks. Rationing capital mitigates the manager’s incentive to overinvest. As a result, in equilibrium
both under- and overinvestment are possible.
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focus on the role of transfer prices in allocating capital. Firms offer managers a menu of

allocation/transfer price combinations. In equilibrium, truth-telling is achieved, and there

can be both under- and overinvestment. (Antle and Eppen, 1985, provide a model that is

similar to that of Harris, Kreibel, and Raviv, 1982.) Harris and Raviv (1996) use a similar

framework, but focus on a random auditing technology. By combining probabilistic auditing

with a capital restriction, headquarters is able to learn the true project quality from the

manager. In equilibrium there will be both regions of under- and overinvestment. Stulz

(1990) considers a decentralized investment framework in which the manager has private

information about investment quality and a preference for empire building. Absent any

controls, the manager would always overstate the investment opportunities and invest all

available cash. The owners of the firm use debt as a mechanism to align the interests of

managers and shareholders. By increasing the required debt payment, managers have less

free cash flow to spend on investment projects. The optimal level of debt is chosen to trade off

the benefits of preventing managers from investing in negative NPV projects when investment

opportunities are poor with the costs of rationing managers away from taking positive NPV

projects when investment opportunities are good. Again, in equilibrium there will be both

under- and overinvestment.

The remainder of the paper is organized as follows. Section describes the setup of the

model. Section simplifies the optimization program and solves for the optimal contracts.

In Section , we analyze the implications of the model in terms of the stock price’s reaction

to investment, equilibrium investment lags, and erosion of the option value stemming from

the agency problem. Section generalizes the model to allow for managers to display greater

impatience than owners. Section concludes. The appendix contains the solution details of

the optimal contracts.

2. Model

In this section, we begin with a description of the model. We then, as a useful benchmark,

provide the solution to the first-best no-agency investment problem. Finally, we present the

full principal-agent optimization problem faced by the owner.
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2.1. Setup

The principal owns an option to invest in a single project. We assume that the principal

(owner) delegates the exercise decision to an agent (manager). Once investment takes place,

the project generates two sources of value. One portion is observable and contractible to

both the owner and the manager, while the other portion is privately observed only by the

manager. Let P (t) represent the observable component of the project’s value and θ the value

of the privately observed component. Thus, the total value of the project is P (t) + θ.5

In a standard call option setting, exercise yields the difference between the observable

value P (t) of the underlying asset and the exercise price, K. Thus, the payoff from exercise

is typically P (t) −K. However, in the present model, the payoff from exercise also includes

a privately observed random variable, θ, whose realization directly impacts the option payoff.

Thus, in this model the net payoff from exercise is P (t) + θ − K. The problem could be

equivalently formulated as one in which the total value of the project is P (t) and the effective

cost of exercising the option is K − θ.

Let the value P (t) of the observable component of the underlying project evolve as a

geometric Brownian motion:

dP (t) = αP (t) dt + σP (t) dz(t), (1)

where α is the instantaneous conditional expected percentage change in P (t) per unit time,

σ is the instantaneous conditional standard deviation per unit time, and dz is the increment

of a standard Wiener process. Let P0 equal the value of the project at time zero, in that

P0 = P (0). Both the owner and the manager are risk neutral, with the risk-free rate of

interest denoted by r. (We rule out the time-zero selling-the-firm contract between the owner

and the manager. This could be justified, for example, if the manager is liquidity constrained

and cannot obtain financing.) For convergence, we assume that r > α.

The assumption that a portion of project value is observed only by the manager and

not verifiable by the owner is common in the capital budgeting literature. This information

asymmetry invites a host of agency issues. Harris, Kreibel, and Raviv (1982) posit that
5For ease of presentation, we model the process P (t) for the present value of observable cash flows. We

could back up a step and begin with an underlying process for observable cash flows. However, if observable
cash flows follow a geometric Brownian motion, then the present value of expected future observable cash
flows will also follow a geometric Brownian motion. Similarly, instead of modeling θ as the present value of
unobservable cash flows, we could begin with an underlying process for the unobservable cash flows themselves.
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managers have incentives to understate project payoffs and to divert the free cash flow to

themselves. In their model, such value diversion takes the form of managers reducing their

level of effort. Stulz (1990), Harris and Raviv (1996), and Bernardo, Cai, and Luo (2001)

model managers as having preferences for perquisite consumption or empire building. In

these models, managers have incentives to divert free cash flows to inefficient investments or

to excessive perquisites. In all of these models, mechanisms are used by firms (i.e., incentive

contracts, auditing, required debt payments) to mitigate such value diversion.

The private component of value, θ, could take on two possible values: θ1 or θ2, with

θ1 > θ2.6 We denote ∆θ = θ1 − θ2 > 0. One could interpret a draw of θ1 as a higher

quality project and a draw of θ2 as a lower quality project. Although the owner cannot

observe the true value of θ, the owner does observe the amount handed over by the manager

upon exercise. While in theory the manager could attempt to hand over θ2 when the true

value is θ1, in equilibrium the amount transferred to the owner at exercise is always the true

value. (Off the equilibrium path, the manager could attempt to hand over θ2 when the true

value is θ1. If the transferred value is less than θ1 at the trigger P1, a nonpecuniary penalty

is imposed on the manager. This penalty will ensure that it will never be in the manager’s

interest not to hand over the true value of the project upon exercise.)

The effort of the manager plays an important role in determining the likelihood of ob-

taining a higher quality project. The manager could affect the likelihood of drawing θ1 by

exerting a one-time effort, at time zero. If the manager exerts no effort, the probability of

drawing a higher quality project θ1 equals qL. (Without loss of generality, we could normal-

ize the manager’s lower effort level to zero.) However, if the manager exerts effort, he incurs

a cost ξ > 0 at time zero, but increases the likelihood of drawing a higher quality project

θ1 from qL to qH . Immediately after his exerting effort at time zero, the manager observes

the private component of project quality. To ensure a positive net exercise price, we restrict

θ1 < K.

Although the owner cannot contract on the private component of value, θ, he can contract

on the observable component of value, P (t). Contingent on the level of P (t) at exercise, the

manager is paid a wage. (Wages here are payments contingent on the project’s quality. They

are analogous to a payment scheme in which a fixed wage is paid to the manager for exercising,
6In Section 3.3 we generalize the model to allow θ to have continuous distributions.
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plus a bonus for delivering a higher quality project.) The manager has limited liability and

is always free to walk away. (The limited-liability condition is essential in delivering the

investment inefficiency result in this context. Otherwise, with risk-neutrality assumptions for

both the owner and the manager and no limited liability, the first-best optimal investment

timing could be achieved even in the presence of hidden information and hidden action. For a

related discussion of limited liability, see Innes, 1990. An alternative mechanism of generating

investment inefficiency in an agency context is to assume managerial risk aversion.)

In summary, the owner faces a problem with both hidden information (the owner does not

observe the true realization of θ) and hidden action (the owner cannot verify the manager’s

effort level). The owner needs to provide compensation incentive both to induce the manager

exert effort at time zero and to have the manager reveal his type voluntarily and truthfully,

by choosing the equilibrium exercise strategy and supplying the corresponding unobservable

component of firm value. Before analyzing the optimal contract, we first briefly review the

first-best no-agency solution used as the benchmark.

2.2. First-best benchmark (the standard real options case)

As a benchmark, we consider the case in which there is no delegation of the exercise decision

and the owner observes the true value of θ. Equivalently, this first-best solution can be

achieved in a principal-agent setting, provided that θ is both publicly observable and con-

tractible. Let W (P ; θ) denote the value of the owner’s option, in a world where θ is a known

parameter and P is the current level of P (t). Using standard arguments (i.e., Dixit and

Pindyck, 1994), W (P ; θ) must solve the differential equation:

0 =
1
2
σ2P 2WPP + αPWP − rW. (2)

Eq. (2) must be solved subject to appropriate boundary conditions. These boundary

conditions serve to ensure that an optimal exercise strategy is chosen:

W (P ∗(θ), θ) = P ∗(θ) + θ − K, (3)

WP (P ∗(θ), θ) = 1, and (4)

W (0, θ) = 0. (5)

Here, P ∗(θ) is the value of P (t) that triggers entry. The first boundary condition is the

value-matching condition. It simply states that at the moment the option is exercised, the
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payoff is P ∗(θ)+θ−K. The second boundary condition is the smooth-pasting or high-contact

condition. (See Merton, 1973, for a discussion of the high-contact condition.) This condition

ensures that the exercise trigger is chosen so as to maximize the value of the option. The

third boundary condition reflects the fact that zero is an absorbing barrier for P (t).

The owner’s option value at time zero, W (P0; θ), and the exercise trigger P ∗(θ) are

W (P0; θ) =





(
P0

P ∗(θ)

)β
(P ∗(θ) + θ − K ) , for P0 < P ∗(θ),

P0 + θ − K, for P0 ≥ P ∗(θ),

(6)

and

P ∗(θ) =
β

β − 1
(K − θ) , (7)

where

β =
1
σ2


−

(
α − σ2

2

)
+

√(
α − σ2

2

)2

+ 2rσ2


 > 1. (8)

Because the realized value of θ can be either θ1 or θ2, we denote P ∗(θ1) = P ∗
1 and

P ∗(θ2) = P ∗
2 . We always assume that the initial value of the project is less than the lower

trigger, P0 < P ∗
1 , to ensure some positive option value inherent in the project.

The ex ante value of the owner’s option in the first-best no-agency setting is qHW (P0; θ1)+

(1 − qH)W (P0; θ2). We can therefore write this first-best option value, V ∗(P0), as:

V ∗(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

P ∗
2

)β

(P ∗
2 + θ2 − K) . (9)

It will prove useful in future calculations to define the present value of one dollar received

at the first moment that a specified trigger P̂ is reached. Denote this present value operator

by the discount function D(P0; P̂ ). This is simply the solution to Eq. (2) subject to the

boundary conditions that D(P̂ ; P̂ ) = 1 and D(0; P̂ ) = 0. The solution can be written as

D(P0; P̂ ) =
(

P0

P̂

)β

, P0 ≤ P̂ . (10)

2.3. A principal-agent setting

The owner offers the manager a contract at time zero that commits the owner to pay the

manager at the time of exercise. (Renegotiation is not allowed. While commitment leads

to inefficiency in investment timing ex post, it increases the value of the project ex ante.)
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The payment can be made contingent on the observable component of the project’s value

at the time of exercise. Thus, in principle, for any realized value of P (t) obtained at the

time of exercise, P̂ , a contracted wage w(P̂ ) can be specified, provided that w(P̂ ) > 0. The

contract will endogenously provide incentives to ensure that the manager exercises the option

in accordance with the owner’s rational expectations and delivers the true value of the project

to the owner.

The principal-agent setting leads to a decomposition of the underlying option into two

options: an owner’s option and a manager’s option. The owner’s option has a payoff function

of P̂ +θ−K −w(P̂ ), and the manager’s option has a payoff function of w(P̂ ). Upon exercise,

the owner receives the value of the underlying project (P̂ + θ), after paying the exercise price

(K) and the manager’s wage (w(P̂ )). The manager’s payoff is the value of the contingent

wage, w(P̂ ). The sum of these payoff functions equals the payoff of the underlying option.

The manager’s option is a traditional American call option, because the manager chooses

the exercise time to maximize the value of his option. However, in this optimal contracting

setting, the owner sets the contract parameters that induce the manager to follow an exercise

policy that maximizes the value of the owner’s option. In addition, the manager possesses a

compound option, because the manager has the option to exert effort at time zero to increase

the total expected surplus. The properties of the manager’s option thus are contingent upon

this initial effort choice.

Given that θ has only two possible values, for any w(P̂ ) schedule, at most two wage/exercise

trigger pairs are chosen by the manager. (We allow for the possibility of a pooling equilibrium

in which only one wage/exercise trigger pair is offered. However, this pooling equilibrium is

always dominated by a separating equilibrium with two wage/exercise trigger pairs.) Thus,

the contract need only include two wage/exercise trigger pairs from which the manager can

choose: one chosen by a manager when he observes θ1, and one chosen by a manager when he

observes θ2. Therefore, the owner offers a contract that promises a wage of w1 if the option

is exercised at P1 and a wage of w2 if the option is exercised at P2. The revelation principle

ensures that a manager who privately observes θ1 exercises at the P1 trigger, and a manager

who privately observes θ2 exercises at the P2 trigger.

The owner’s option has a payout function of P1+θ1−K−w1, if θ = θ1, and P2+θ2−K−w2,

if θ = θ2. Thus, using the discounting function D( · ; · ) derived in Eq. (10), conditional on

10



the manager exerting effort, the value of the owner’s option, πo(P0;w1, w2, P1, P2), can be

written as

πo(P0;w1, w2, P1, P2) = qHD(P0;P1)(P1 +θ1−K−w1)+(1−qH)D(P0;P2)(P2 +θ2−K−w2).

(11)

The manager’s option has a payout function of w1 if θ = θ1 and w2 if θ = θ2. Conditional

on the manager exerting effort, the value of the manager’s option, πm(P0;w1, w2, P1, P2), can

be written as

πm(P0;w1, w2, P1, P2) = qH D(P0;P1)w1 + (1 − qH)D(P0;P2)w2. (12)

For notational simplicity, we sometimes drop the parameter arguments and write the owner’s

and manager’s option values as πo(P0), and πm(P0), respectively.

The owner’s objective is to maximize its option value through its choice of the contract

terms w1, w2, P1, and P2. Thus, the owner solves the optimization problem

max
w1, w2, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 − K − w1) + (1 − qH)
(

P0

P2

)β

(P2 + θ2 − K − w2) . (13)

This optimization is subject to a variety of constraints induced by the hidden information

and hidden action of the manager. The contract must induce the manager to exert effort,

exercise at the trigger P1 and provide the owner with a project value of P1 + θ1 if θ = θ1,

and exercise at the trigger P2 and provide the owner with a project value of P2 + θ2 if θ =

θ2.

There are both ex ante and ex post constraints. The ex ante constraints ensure that the

manager exerts effort and that the contract is accepted. These are the standard constraints

as in a static moral hazard/asymmetric information setting.

The ex ante incentive constraint is

qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

w2 − ξ ≥ qL

(
P0

P1

)β

w1 + (1 − qL)
(

P0

P2

)β

w2. (14)

The left side of this inequality is the value of the manager’s option if effort is exerted minus

the cost of effort. The right side is the value of the manager’s option if no effort is exerted.

This constraint ensures that the manager will exert effort. Rearranging the ex ante incentive

constraint Eq. (14) gives (
P0

P1

)β

w1 −
(

P0

P2

)β

w2 ≥ ξ

∆q
, (15)
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where ∆q = qH − qL > 0.

The ex ante participation constraint is

qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

w2 − ξ ≥ 0. (16)

This constraint ensures that the total value to the manager of accepting the contract is

non-negative.

The ex post incentive constraints ensure that managers exercise in accordance with the

owner’s expectations. Specifically, managers exercise θ1-type projects at the P1 trigger and

exercise θ2-type projects at the P2 trigger. To provide such a timing incentive, managers

must not have any incentive to divert value. As discussed at the beginning of Section 2.1,

managers with private information have an incentive to misrepresent cash flows and divert

free cash flows to themselves. For example, the manager could have an incentive to lie and

claim that a higher quality project is a lower quality project and then divert the difference

in values. This could be done by diverting cash for private benefits such as perquisites

and empire building (as in Stulz, 1990; Harris and Raviv, 1996; and Bernardo, Cai, and

Luo, 2001). These incentive compatibility conditions ensure that this value diversion does

not occur; such deception only occurs off the equilibrium path.

The ex post incentive constraints are
(

P0

P1

)β

w1 ≥
(

P0

P2

)β

(w2 + ∆θ) and (17)

(
P0

P1

)β

(w1 − ∆θ) ≤
(

P0

P2

)β

w2 . (18)

The second constraint is shown not to bind, so only constraint Eq. (17) is relevant to our

discussion. The first inequality ensures that a manager of a higher quality project chooses to

exercise at P1. By truthfully revealing the private quality θ1 through exercising at P1, the

manager receives the wage w1. This inequality requires the payoff from truthful revelation

to be greater than or equal to the present value of the payoff from misrepresenting the private

quality by waiting until the trigger P2. The payoff from misrepresenting θ1 as θ2 is equal to

the wage w2, plus the value of diverting the private component of value ∆θ. These constraints

are common in the literature on moral hazard and asymmetric information. For example,

entirely analogous conditions appear in Bolton and Scharfstein (1990) and Harris, Kriebel,

and Raviv (1982).
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While the two ex post incentive constraints ensure that the manager exercises in accor-

dance with the owner’s rational expectations, we also need to ensure that a manager of a

θ1-type project will hand over P1 + θ1 in value and not divert the unobservable amount ∆θ

of the project’s value. (There is no need to worry about the opposite problem of a manager

of a θ2-type project exercising at P2 and handing over P2 + θ1, because that would never be

in the manager’s interest.) We assume that a nonpecuniary penalty of κ can be imposed

on a manager who fails to deliver P1 + θ1 at the trigger P1. (For nonpecuniary penalties

and optimal contracting, see the seminal contribution of Diamond, 1984.) Specifically, we

assume that the penalty, κ, is large enough to satisfy the condition κ ≥ ∆θ − w1. Thus,

when the manager with a high quality project exercises at P1, it is in their interest to deliver

a value of P1 + θ1 and receive w1 instead of delivering only P1 + θ2 and receiving the penalty

κ. (A manager could never transfer a value of θ < θ2, because it is common knowledge that

θ2 is the lower bound of the distribution of θ. See Bolton and Scharfstein, 1990, for similar

assumptions and justifications.) Such a penalty could be envisioned as a reputational penalty

(i.e., managers who fail to deliver what they promise are given poor recommendations) or a

job search cost (i.e., such managers are terminated and forced to seek new employment). (An

alternative mechanism for ensuring ex post enforceability of the manager’s claim is through

a costly state verification mechanism as in Townsend, 1979, and Gale and Hellwig, 1985.

Specifically, the owner could possess a monitoring technology that permits, at a cost, the

determination of the true value of θ after investment is undertaken. Provided that the cost

is not too high, it can be easily shown that the owner would always choose to pay the mon-

itoring cost for managers who signal high-quality projects and only hand over θ2 in value.)

Without such a penalty, any kind of contracting solution would likely break down because

the manager would not have to live up to his claims.

The ex post limited-liability constraints are

wi ≥ 0, i = 1, 2. (19)

Non-negative w1 and w2 are necessary to provide an incentive for the manager to implement

the exercise of the project. For example, if w2 < 0, then upon learning that θ = θ2,

the manager would rather walk away from the contract than sticking around and receive

a negative wage at P2.7 It is assumed that if the manager walks away, the investment
7Even if the manager decided to try to fool the owner by exercising at P1, the net payout to the manager
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opportunity is lost. Thus, the owner ensures that the manager has an incentive to invest ex

post.

Therefore, the owner’s problem can be summarized as the solution to the objective func-

tion in Eq. (13), subject to a total of six inequality constraints: the ex ante incentive and

participation constraints, and each of the two ex post incentive and limited-liability con-

straints. The problem can be substantially simplified in that we can reduce the number of

constraints to two.

3. Model solution: optimal contracts

In this section, we provide the solution to the optimal contracting problem described in

the Section 2: maximizing Eq. (13) subject to the six inequality constraints Eqs. (15) to

(19). The nature of the solution depends on the parameter values. In particular, the solution

depends explicitly on the magnitude of the cost-benefit ratio of inducing the manager’s effort.

Depending on this magnitude, the optimal contract can take on three possible types: a pure

hidden information type, a joint hidden information/hidden action type, and a pure hidden

action type.

3.1. A simplified statement of the principal-agent problem

Although the owner’s optimization problem is subject to six inequality constraints, the solu-

tion can be found through considering only two of the constraints. Appendix A proves four

propositions, Proposition 1 through Proposition 4, that provide the underpinnings for this

simplification.

Proposition 1 shows that the limited liability for the manager of a θ1-type project in

constraint Eq. (19) does not bind, while Proposition 2 shows that the ex ante participation

constraint Eq. (16) does not bind. Proposition 3 demonstrates that the limited liability for

the manager of a θ2-type project binds, and thus we can substitute w2 = 0 into the problem.

Proposition 4 implies that the ex post incentive constraint for the manager of a θ2-type

project does not bind.

These four propositions jointly simplify the owner’s optimization problem as

max
w1, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 −K) − qH

(
P0

P1

)β

w1 +(1 − qH)
(

P0

P2

)β

(P2 + θ2 −K), (20)

would be w1 − ∆θ < 0, where this inequality is displayed in Proposition 4.
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subject to

(
P0

P1

)β

w1 ≥
(

P0

P2

)β

∆θ and (21)

(
P0

P1

)β

w1 ≥ ξ

∆q
. (22)

In summary, we now have a simplified optimization problem for the owner. Eq. (20) is the

owner’s option value. Constraint Eq. (21) is the simplified ex post incentive constraint for

the manager of the θ1-type project. Constraint Eq. (22) ensures that it is in the manager’s

interest to extend his effort at time zero.

Proposition 5, proved in Appendix A, demonstrates that at least one of the two constraints

must bind. The two constraints can be written more succinctly as

(
P0

P1

)β

w1 ≥ max

[(
P0

P2

)β

∆θ,
ξ

∆q

]
. (23)

3.2. General properties of the solution

Before we provide the explicit solutions for the three contract regions, we discuss some general

properties of contracts that hold for all regions.

The first property of the solution is that the manager of the higher quality project exercises

at the first-best level. Intuitively, for any manager’s option value that satisfies constraint

Eq. (23), the owner always prefers to choose the first-best timing trigger P ∗
1 and vary wage

w1 to achieve the same level of compensation. On the margin, it is cheaper for the owner

to increase the wage for the manager of a higher quality project than to have that manager

deviate away from the first-best optimal timing strategy.

Property 1. The optimal contracts have P1 = P ∗
1 , for all admissible parameter regions.

Proof. Consider any candidate optimal contract
(
w̄1, P̄1, P̄2

)
with P̄1 6= P ∗

1 . The owner

could improve his surplus by proposing an alternative contract
(
ŵ1, P

∗
1 , P̄2

)
, in which ŵ1

is chosen such that the manager’s option has the same value as the first contract, in that

(P0/P
∗
1 )β ŵ1 =

(
P0/P̄1

)β
w̄1. The newly proposed contract is clearly feasible, as it will also

satisfy constraints Eq. (21) and Eq. (22). For all such constant levels of the manager’s

option value, the owner’s objective function (20) is maximized by choosing P1 = P ∗
1 =

arg max
x

(P0/x)β (x + θ1 − K).
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It is less costly for the owner to distort P2 away from the first-best level than to distort

P1 away from the first-best level to provide the appropriate incentives to the manager. The

next property of the solutions is that delay (beyond first-best) for the lower quality project is

needed to create enough incentives for the manager of a higher quality project not to imitate

the one of a lower quality project.

Property 2. For all admissible parameter regions, the investment trigger for a manager of

a θ2-type project is (weakly) later than the first-best, in that P2 ≥ P ∗
2 .

Proof. Suppose P2 < P ∗
2 . This contract is dominated by the contract with P2 = P ∗

2 . P2 can

always be increased without violating constraint Eq. (21). Moreover, the objective function

Eq. (20) is increasing in P2, for P2 < P ∗
2 , irrespective of which constraint binds. Thus, any

contract with P2 < P ∗
2 is dominated by one with P2 = P ∗

2 .

Intuitively, the necessity of ensuring that the manager of a higher quality project not

imitate one of a lower quality project leads the manager of a lower quality project to display

a greater option to wait than the first-best solution. To dissuade the manager of a higher

quality project from exercising at the trigger P2, the contract must sufficiently increase P2

above P ∗
2 to make such lying unprofitable.

The extent to which P2 exceeds P ∗
2 depends explicitly on the relative strengths of the

forces of hidden information and hidden action. The amount of suboptimal delay varies

across the three regions.

3.3. Optimal contracts

We first define the three regions that serve to determine the nature of the optimal contract.

As a result of Proposition 5, the solution depends on which of the two constraints Eq. (21) and

Eq. (22) bind. The key to the contract is the cost-benefit ratio of inducing the manager’s

effort, defined by ξ/∆q. The numerator is the direct cost of extending effort, and the

denominator is the change in the likelihood of drawing a higher quality project θ1 as a result

of effort. The regions are then defined by where this cost benefit ratio falls relative to the

present value of receiving a payment of ∆θ at three particular trigger values: P ∗
1 = P ∗(θ1),

P ∗
2 = P ∗(θ2), and P ∗

3 = P ∗(θ3), where

θ3 = θ2 −
qH

1 − qH
∆θ < θ2. (24)
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These present values are ordered by (P0 /P ∗
3 )β∆θ < (P0 /P ∗

2 )β∆θ < (P0 /P ∗
1 )β∆θ. Another

region exists in which ξ/∆q > (P0/P
∗
1 )β∆θ, however in this range the costs of effort are so

high as to no longer justify the exertion of effort in equilibrium. Thus, we do not consider

this region.8

Because optimal contracts specify P1 = P ∗
1 and w2 = 0 across all three regions, we may

focus on P2 and w1 when we describe the optimal contracts in each of the three regions. The

proofs detailing the solution are provided in Appendix A.

Hidden information only region: ξ/∆q < (P0/P
∗
3 )β ∆θ

In this region, we have

P2 = P ∗
3 = P ∗(θ3) > P ∗

2 and (25)

w1 =
(

P ∗
1

P ∗
3

)β

∆θ, (26)

where θ3 is given in Eq. (24).

The net costs of inducing effort are low enough so that the firm has no need to compensate

the manager for extending effort. In this range, the ex ante incentive constraint does not

bind, and therefore the cost of effort does not find its way into the optimal contract. (In

a different setting where the hidden information is the cost of exercising, Maeland, 2002,

shows a similar result.) The payments that the manager of the θ1-type project receives are

purely information rents that induce the manager to exercise at the first-best trigger P ∗
1 , in

accordance with the revelation principle. Because w1 is relatively low in this region, the P2

trigger needs to be high (relative to the first-best trigger P ∗
2 ) to dissuade the manager of the

θ1-type project from deviating from the equilibrium first-best trigger P ∗
1 .

We can use these contract terms to place a value on the owner’s and manager’s option

values. The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be

written as

πo(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

P ∗
3

)β

(P ∗
3 + θ3 − K) and (27)

πm(P0) = qH

(
P0

P ∗
3

)β

∆θ. (28)

The solution for the owner’s option value is observationally equivalent to the first-best solution

in which one substitutes θ3 for the lower project quality θ2. In such a setting, the owner
8A proof of this result is available from the authors by request.
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will choose to exercise at P ∗
1 if θ = θ1 and at P ∗

3 if θ = θ3. Thus, the impact of the costs of

hidden information is fully embodied by a reduction of project quality in the low state.

Joint hidden information/hidden action region: (P0/P
∗
3 )β ∆θ ≤ ξ/∆q ≤ (P0/P

∗
2 )β ∆θ

In this region, we have

P2 = PJ = P0

(
∆q∆θ

ξ

)1/β

> P ∗
2 and (29)

w1 =
(

P ∗
1

PJ

)β

∆θ =
ξ

∆q

(
P ∗

1

P0

)β

. (30)

Here, both the ex ante and ex post constraints bind. Given that now the manager must be

induced into providing effort, w1 must be high enough to provide enough compensation for

the ex ante incentive constraint Eq. (22) to bind. This reflects the hidden action component

of the contract. In addition, the exercise trigger P2 must be high enough to dissuade the

manager of the θ1-type project from deviating from the equilibrium first-best trigger P ∗
1 .

Thus, in this region, P2 is set so that the ex post incentive constraint Eq. (21) binds. This

requires that P2 be above the full-information trigger P ∗
2 . This deviation from the full-

information trigger reflects the hidden information component of the contract.

P2 is lower in this region than in the hidden information only region. This is because this

joint region w1 is now higher to induce effort. This higher wage makes it easier to satisfy

the ex post incentive constraint, and the deviation from P ∗
2 required to prevent managers of

the θ1-type project from pretending to have a θ2-type project becomes smaller. Surprisingly,

moral hazard serves to increase investment timing efficiency because the increased share of

the firm that must go to compensate the manager leads the manager to more fully internalize

the benefits of relatively more efficient investment timing.

The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be written

as

πo(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

PJ

)β

(PJ + θ3 − K) and (31)

πm(P0) = qH
ξ

∆q
. (32)

The owner’s option value deviates from the first-best value, V ∗(P0) in Eq. (9) in two ways.

First, the hidden information rents effectively make the manager mark down his privately

observed component of project value from θ2 to θ3, similar to that in the pure hidden infor-

mation region. Second, the exercise trigger for a manager of a θ2-type project is equal to PJ ,
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which is larger than P ∗
2 . The only difference between πo(P0) in this region and in the pure

hidden information region is the different terms for the exercise trigger: PJ versus P ∗
3 . Here,

the trigger is lower because of the hidden action component.

Hidden action only region: (P0/P
∗
2 )β ∆θ < ξ/∆q < (P0/P

∗
1 )β ∆θ

In this parameter range, we have

P2 = P ∗
2 and (33)

w1 =
ξ

∆q

(
P ∗

1

P0

)β

. (34)

The equilibrium triggers equal those of the first-best outcomes. The moral hazard costs

are so high that rents needed for motivating effort (via the ex ante incentive constraint) are

sufficiently large so that the ex post incentive constraints do not demand additional rents.

That is, the wage needed to motivate the manager to extend effort ends up being high enough

so that the manager of the θ1-type project no longer needs P2 to exceed P ∗
2 to dissuade him

from deviating from the equilibrium trigger P ∗
1 . Thus, the contract is entirely driven by

the need to motivate ex ante effort, as the ex post incentive constraint that reflects hidden

information does not bind.

The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be written

as

πo(P0) = V ∗(P0) − qH
ξ

∆q
and (35)

πm(P0) = qH
ξ

∆q
. (36)

The owner’s option value is equal to the first-best solution V ∗(P0) characterized in Eq. (9),

minus the present value of the rent paid to the manager to induce effort.

Fig. 1 summarizes the details of the optimal contracts through the three regions. The

upper and lower graphs plot the equilibrium trigger strategy P2 and wage payment w1 in

terms of effort cost ξ, respectively. The upper graph shows that the trigger strategy for the

manager of the θ2-type project is flat and equal to P ∗
3 for ξ in the pure hidden information

region; is decreasing and convex in ξ for the joint hidden action/hidden information region;

and is flat and equal to the first-best trigger level P ∗
2 for ξ in the pure hidden action. The

equilibrium trigger P2 is closer to the first-best level, for higher level of ξ, ceteris paribus. The

lower graph plots corresponding wage contracts for a manager of the θ1-type project. For
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low levels of ξ (pure hidden information region), he needs to be compensated only with pure

information rents. As a result, wage is insensitive to effort cost ξ and is flat in this region. In

both the joint hidden information/hidden action region and the pure hidden action region,

w1 increases linearly in ξ.

3.4. An extension to cases with continuous distributions of θ

For ease of presentation, our basic model uses a simple two-point distribution for θ. To check

the robustness of our results, we generalize our model to allow for admissible continuous

distributions of θ on
[
θ, θ̄
]

in Appendix . In this setting, the principal designs the contract

such that the manager finds it optimal to exert effort at time zero and then reveal his θ

truthfully by choosing the recommended equilibrium strategy P (θ) and w(θ). As in the

basic setting, we also suppose that the owner could impose a nonpecuniary penalty κ on the

manager if the manager fails to live up to his signaled (and true) value of the unobservable

component θ.9 The manager is protected by ex post limited liability in that w(θ) ≥ 0 for

all θ. Also, the manager’s participation is voluntary at time zero. We show two key results

remain valid.

1. Agency problems (hidden information and hidden action) lead to a delayed investment

timing decision, compared with first-best trigger levels.

2. Introducing hidden action into the model at time zero lowers investment timing distor-

tions, because the manager has an option to align his incentives better with the owner

by exerting effort at time zero. This leads to an investment timing trigger closer to the

first-best level.

In addition, the model predicts that the manager with the lowest privately observed

project value θ receives no rents, in that w(θ) = 0 as in our basic setting (the manager with

θ2 receives no rents). The ex ante participation constraint does not bind, because the limited

liability condition for the manager and ex ante incentive constraint together provide enough

incentive for the manager with any ex post realized θ to participate, as in our basic setting.

For technical convenience, we have assumed that the distribution of θ under effort first-order
9A sufficient condition to deter the manager from diverting the unobservable incremental part of value θ−θ

is to require that the nonpecuniary cost κ is large enough to deter the manager with the highest type θ̄, in
that κ ≥ θ̄ − θ − w(θ̄).
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stochastically dominates that under no effort. Intuitively, the manager is more likely to draw

a better distribution of θ after exerting effort than not exerting effort. Under those conditions,

managers of higher quality projects exercise at lower equilibrium trigger strategies and receive

higher equilibrium wages. (See Appendix for other technical conditions.)

We may further generalize our model by allowing for multiple discrete choices of effort

levels. One can solve this problem by following a similar two-step procedure. First, solve

for the optimal contract for each given level of effort; and second, choose the optimal level

of effort for the owner by searching for the maximum among owner’s option value across all

effort levels. Subtle technical issues arise when we allow for effort choice to be continuous.10

However, the basic approach and intuition remain valid.

4. Model implications

In this section, we analyze several of the more important implications of the model. Section

examines the stock price reaction to investment (or failure to invest). The stock price

moves by a discrete jump because the information released at the trigger P ∗
1 . Investment

at P ∗
1 signals good news about project quality and the stock price jumps upward; failure

to invest at P ∗
1 signals bad news about project quality and the stock price falls downward.

A clear prediction of our model is that the principal-agent problem introduces inertia into

a firm’s investment behavior, in that investment on average is delayed beyond first-best.

Section considers the factors that influence the expected lag in investment. Specifically

because the timing of investment differs from that of the first-best outcome, the principal-

agent problem results in a social loss and reduction in the owner’s option value. Section

analyzes the comparative statics of the social loss and owner’s option value with respect to

the key parameters of the model.

We focus our analysis on the contract that prevails in the joint hidden information/hidden

action region. The incentive problems are the richest and most meaningful in this region.

Therefore, when we refer to contracting variables such as w1 and PJ , we are referring to

the values of those variables that hold in this joint hidden information/hidden action region.
10We need to verify the validity of first-order approach, which refers to the practice of replacing an infinite

number of global incentive constraints imposed by ex ante incentive to exert effort, with simple local incentive
constraints as captured by first-order condition associated with the global incentive constraints. See Rogerson
(1985) and Jewitt (1988) for more on the first-order approach.
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The terms of the contract and resulting option values in this region are displayed in Eqs.

(29)–(32).

4.1. Stock price reaction to investment

In this section, we analyze the stock price reaction to the information released via the man-

ager’s investment decision.11 The manager’s investment decision signals to the market the

true value of θ, and the stock price reflects this information revelation. This allows for the

manager’s compensation contract to be contingent on the firm’s stock price. That is, while

in the model we have made the wages in the incentive contract contingent on the manager’s

investment decision, the wages can also be made contingent on the stock price.

The equity value of the firm is equal to the value of the owner’s option value given in Eq.

(31). Prior to the point at which P (t) reaches the threshold P ∗
1 , the market does not know

the true value of θ. The market believes that θ = θ1 with probability qH and θ = θ2 with

probability 1 − qH .

Once the process P (t) hits the threshold P ∗
1 , the manager’s unobserved component of

project value is fully revealed. The manager’s investment behavior signals to the market the

true value of θ. If the manager exercises the option at P ∗
1 , then the manager reveals to the

market that the privately observed component of project value is high. Therefore, the firm’s

value instantly jumps to Su, given by

Su = P ∗
1 + θ1 − K − w1 = P ∗

1 + θ1 − K −
(

P ∗
1

PJ

)β

∆θ . (37)

If the manager does not exercise his option at P ∗
2 , then the market infers that the manager’s

privately observed component of project value is low. Then, the firm’s value instantly drops

to Sd, given by

Sd =
(

P ∗
1

PJ

)β

(PJ + θ2 − K) . (38)

Fig. 2 plots the stock price S as a function of P , the current value of the process P (t).

For all P < P ∗
1 , S (P ) = πo (P ), where πo is given in Eq. (31). For P = P ∗

1 , S(P ) = Su

if investment is undertaken, and S(P ) = Sd if investment is not undertaken. The jump in

the stock price at P ∗
1 is a result of the information revealed by the manager’s investment

decisions.
11We thank the referee for suggesting this discussion.
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This result is consistent with the empirical findings in McConnell and Muscarella (1985).

They find that announcements of unexpected increases in investment spending lead to in-

creases in stock prices, and vice versa for unexpected decreases.

Given that the stock price movement at the trigger P ∗
1 reveals the true value of θ, the

manager’s incentive contract can be made contingent on the stock price. For example, the

manager could be paid a bonus w1 if the stock price jumps upward to Su. Because w2 = 0,

no bonus is paid if the stock price falls to Sd. Similarly, such a contingent payoff could be

implemented through a properly parameterized stock option grant.

4.2. Agency problems and investment lags

In the standard real options setting, investment is triggered at the value maximizing triggers,

P ∗
1 and P ∗

2 , for the higher and lower project quality outcomes, respectively. However,

in our setting, while the trigger for investment in the higher quality state remains at P ∗
1 ,

investment in the lower quality state could be triggered at PJ , which is higher than the

first-best benchmark level P ∗
2 .

Let T and T ∗ be the stopping times at which the option is exercised, in our model and the

first-best setting, respectively. We denote Γ = E (T − T ∗) as the expected time lag stemming

from the principal-agent problem. A solution for such an expectation can be derived using

Harrison (1985, Chapter 3). The expected lag is given by

Γ =
(

1 − qH

α − σ2/2

)
ln
(

PJ

P ∗
2

)
(39)

=
(

1 − qH

α − σ2/2

)[
ln
(

P0

K − θ2

)
+

1
β

ln
(

∆q∆θ

ξ

)
− lnβ + ln (β − 1)

]
, (40)

where we assume that α > σ2/2 for this expectation to exist.

An important insight from Section is that increases in the cost benefit ratio of inducing

effort lead to less distortion in investment timing. That is, as the ratio ξ/∆q increases, the

equilibrium trigger PJ becomes closer to the first-best trigger P ∗
2 . This is confirmed by the

comparative static
∂Γ

∂ (ξ/∆q)
= −

(
1 − qH

α − σ2/2

)
∆q

βξ
< 0. (41)

An increase in the volatility of the underlying project, σ, has an ambiguous effect on the

expected time lag Γ. This can be seen from the comparative static

∂Γ
∂σ

= −
(

1 − qH

α − σ2/2

)
1
β2

[
ln
(

∆q∆θ

ξ

)
− β

β − 1

]
∂β

∂σ
+

(1 − qH) σ

(α − σ2/2)2
ln
(

PJ

P ∗
2

)
, (42)
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where ∂β/∂σ < 0. An increase in σ raises the option value and makes waiting more worth-

while, implying that both P ∗
2 and PJ are larger, ceteris paribus. However, if the cost-benefit

ratio for exerting effort is relatively high, in that

ln
(

ξ

∆q

)
>

β − 1
β

+ ln(∆θ), (43)

then the change of PJ relative to the change in P ∗
2 is larger. Therefore, under such conditions

the expected time lag increases in volatility σ.

An increase in the expected growth rate of the project, α, also has an ambiguous effect

on the expected time lag Γ. This can be seen from the comparative static

∂Γ
∂α

= − 1 − qH

(α − σ2/2)2


ln

(
PJ

P ∗
2

)
− 1

β

(
ln
(

∆q∆θ

ξ

)
− β

β − 1

)
α − σ2/2√

(α − σ2/2)2 + 2rσ2


 . (44)

However, if Eq. (43) holds, then expected time lag decreases with drift α.

4.3. Social loss and option values

Although the owner chooses the value-maximizing contract to provide an incentive for the

manager to extend effort, the agency problem ultimately still proves costly. In an owner-

managed firm, the manager extends effort and exercises the option at the first-best stopping

time. However, in firms with delegated management, a social loss results from the firm’s

suboptimal exercise strategy.

By a social loss, we are referring to the difference between the values of the first-best

option value, V ∗(P0) in Eq. (9), and the sum of the owner and manager options, πo(P0) and

πm(P0) in Eq. (31) and Eq. (32). Thus, define the social loss stemming from agency issues

as L, where L = V ∗(P0) − [πo(P0) + πm(P0)]. Simplifying, we have

L = (1 − qH)

[(
P0

P ∗
2

)β

(P ∗
2 − K + θ2) −

(
P0

PJ

)β

(PJ − K + θ2)

]
. (45)

This social loss is likely to have economic ramifications on the structure of firms. For firms

in industries with potentially large social losses stemming from agency costs, powerful forces

push them to be privately held, or to be organized in a manner that provides the closest

alignment between owners and managers.

There are two effects of a later-than-first-best exercising trigger (PJ > P ∗
2 ) on the social

loss L: a larger payout (PJ +θ2−K) reduces social loss, ceteris paribus, and a lower discount
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factor [(P0/PJ )β < (P0/P
∗
2 )β] increases the social loss. The latter dominates the former,

because PJ > P ∗
2 and P ∗

2 = arg max (P0/x)β (P0 + θ2 − K). Eq. (45) suggests that social

loss is driven by the distance of the equilibrium trigger PJ from P ∗
2 . The firm’s exercise

timing becomes less distorted as the net cost benefit ratio of inducing effort increases. That

is, as the ratio ξ/∆q increases, the equilibrium trigger PJ gets closer to the first-best trigger

P ∗
2 , and thus

∂L

∂ (ξ/∆q)
< 0. (46)

With or without an agency problem, the owner’s value decreases as the cost of effort ξ

increases, in that dπo(P0)/dξ < 0. Without an agency problem (e.g., the firm’s owner also

manages the investment decisions), the owner’s value falls one for one with an increase in effort

cost; the owner simply must increase his effort outlay. In the case of delegated management

with agency costs, the owner’s value πo(P0 ) also falls as the cost of effort increases. A

question that we ask below is whether or not πo(P0 ) falls by more or less than the first-best

value does when the cost of effort increases.

In terms of the owner’s option value, the incentive problem represents a trade-off between

timing efficiency and the surplus that must be paid to the manager to extend effort. One can

obtain better intuition on the forces at work in the agency problem through the following

decomposition. In the first-best solution, the owner pays the cost of effort ξ and obtains the

first-best option value V ∗(P0). In the agency equilibrium, the owner delegates the cost of

effort to the manager, but then holds the suboptimal option value πo(P0). The loss in the

owner’s option value resulting from the incentive problem is therefore given by

∆πo(P0) ≡ V ∗(P0) − ξ − πo(P0 ) = L + V m, (47)

where L is the total social loss given in Eq. (45), and V m is the ex ante expected surplus

paid to the manager to exert effort and is given by

V m = πm(P0) − ξ = qH
ξ

∆q
− ξ =

qL

∆q
ξ. (48)

Decomposing the loss in the owner’s option value given in Eq. (47) into the sum of

the timing component (L) and the compensation component (V m) is useful for providing

intuition. When the owner delegates the option exercise decision to the manager, the owner’s

option value is lowered for two reasons: the exercising inefficiency induced by agency and
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information asymmetry; and the surplus needed to pay the manager to induce him to extend

effort and reveal his private information. The impact of a higher effort cost ξ represents

a trade-off in terms of the timing and compensation components. As shown in Eq. (46),

a higher effort cost results in more efficient investment timing. This must be traded off

against the increased compensation that must be paid to provide appropriate incentives to

the manager, as seen in Eq. (48). Therefore, the total effect on the loss of owner’s option

value stemming from an increase in ξ depends on whether the timing effect or compensation

effect is larger, in that

∂

∂ξ
∆πo(P0) = − (1 − qH) (β − 1)

(
P0

PJ

)β (
1 − P ∗

2

PJ

)
PJ

βξ
+

qL

∆q
(49)

=
β − 1

β

1
∆q∆θ

[− (1 − qH) (PJ − P ∗
2 ) + qL (P ∗

2 − P ∗
1 )] . (50)

If the investment trigger PJ is significantly larger than P ∗
2 , in that

(1 − qH) (PJ − P ∗
2 ) > qL (P ∗

2 − P ∗
1 ) , (51)

then an increase in ξ leads to a smaller loss in the owner’s option value, as the gain in timing

efficiency overshadows the loss resulting from the manager’s increased compensation.12 That

is, while the owner’s option value under agency falls as ξ increases, it could fall by less than

the full amount of the increase in ξ as a result of the gain in timing efficiency.

5. Impatient managers and early investment

So far, we have assumed that both owners and managers value payoffs identically. However,

managers could be more impatient than owners. Several potential justifications exist for such

an assumption. First, various models of managerial myopia attempt to explain a manager’s

preference for choosing projects with quicker paybacks, even in the face of eschewing more

valuable long-term opportunities. For example, Narayanan (1985) and Stein (1989) argue

that concerns about either the firm’s short-term performance or labor market reputation

could give the manager an incentive to take actions that pay off in the near term at the
12The condition is nonempty. This can be seen as follows. Condition Eq. (51) is equivalent to

PJ >
1

1 − qH
[(1 − qH)P ∗

2 + qL(P ∗
2 − P ∗

1 )] = P ∗
3 − ∆q

1 − qH
(P ∗

2 − P ∗
1 ) .

The joint hidden action/hidden information region is characterized by P ∗
2 ≤ PJ ≤ P ∗

3 . Therefore, the condition
is met for some PJ .
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expense of the long term. Second, in our investment timing setting, greater impatience can

represent the manager’s preference for empire building or greater perquisite consumption and

reputation that comes from running a larger company sooner rather than later. Third, man-

agerial short-termism could be the result of the manager facing stochastic termination. (We

assume that the owner can costlessly replace the manager in the event of separation.) This

termination, for example, could be the result of the manager leaving for a better job elsewhere

or being fired. We can model such stochastic termination by supposing that the manager

faces an exogenous termination driven by a Poisson process with intensity ζ. The addition

of stochastic termination transforms the manager’s option to one in which his discount rate

r is elevated to r + ζ to reflect the stochastic termination. (We suppose that the manager

receives his reservation value (normalized to zero), when the termination occurs. See Yaari,

1965; Merton, 1971; and Richard, 1975, for analogous results on stochastic horizon.)

Phrased in real options terms, managerial impatience decreases the value of the manager’s

option to wait. Thus, this generalization leads to very different predictions about investment

timing. While the basic model predicts that investment never occurs earlier than the first-

best case, in this generalized setting investment can occur earlier or later than the first-

best case. This is similar to the result found in Stulz (1990) when there is both over- and

underinvestment in the capital allocation decision, as shareholders use debt to constrain

managerial empire-building preferences.

The owner discounts future cash flows by the discount function D(P0; P̂ ) =
(
P0/P̂

)β
for

P0 < P̂ . We can therefore represent greater managerial impatience by defining a managerial

discount function Dm(P0; P̂ ) =
(
P0/P̂

)γ
, where γ > β ensures that Dm(P0; P̂ ) < D(P0; P̂ ).

That is, a dollar received at the stopping time described by the trigger strategy P̂ is worth

less to the manager than to the owner.13

This generalized problem is similar to that of Section , with the exception that the con-

straints all use γ instead of β. Much of the solution methodology is the same. For example,

Propositions 1 and 2 apply as before, using the same proof. In addition, Propositions 3 and

4 remain valid and are demonstrated in Appendix . Thus, the optimal contracting problem

in the generalized setting can be written as
13This is also consistent with the interpretation that the manager has a higher discount rate than the owner.

Because ∂β/∂r > 0, the manager’s higher discount rate is embodied by the condition γ > β.
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max
w1, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 −K)− qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

(P2 + θ2 −K), (52)

subject to
(

P0

P1

)γ

w1 ≥
(

P0

P2

)γ

∆θ and (53)
(

P0

P1

)γ

w1 ≥ ξ

∆q
. (54)

Similar to Proposition 5, at least one of Eq. (53) and Eq. (54) binds. Otherwise, the owner

could strictly increases his payoff by lowering the wage payment w1 without violating any

constraints.

Just as in Section , there are three contracting regions: a hidden information region,

a joint hidden information/hidden action region, and a hidden action region, depending on

the level of cost-benefit ratio ξ/∆q. In this section, we focus on the joint hidden informa-

tion/hidden action region. (The derivations for the optimal contracts in the other regions are

shown in Appendix .)

The joint hidden information/hidden action region is defined by (P0/P̂
∗
3 )γ∆θ < ξ/∆q <

(P0/P
∗
2 )γ∆θ, where P̂ ∗

3 is defined in Eq. (107) and shown to be greater than the trigger P ∗
2 .

In this region the optimal contract can be written as

P1 = P̂1, (55)

P2 = P̂J = P0

(
∆q∆θ

ξ

)1/γ

, (56)

w1 =

(
P̂1

P̂J

)γ

∆θ < ∆θ, and (57)

w2 = 0, (58)

where P̂1 is the root of H(x) = 0, defined by

H(x) =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
x

P0

)γ ξ

∆q

]
− x. (59)

Unlike the results of the basic model, we now have the possibility of investment occurring

before the first-best trigger is reached, in that P1 = P̂1 < P ∗
1 . To see this, note that

H(0) = P ∗
1 and

H(P ∗
1 ) =

β

β − 1

(
1 − γ

β

)(
P ∗

1

P0

)γ ξ

∆q
< 0. (60)
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The derivative of H( · ) is

H ′(x) =
β

β − 1
γ

(
1 − γ

β

)(
x

P0

)γ−1 1
P0

ξ

∆q
− 1 < 0. (61)

Therefore, there exists a unique solution P1 = P̂1 < P ∗
1 .

As in the basic model, the trigger strategy for the manager of a θ2-type project is greater

than the first-best trigger, P ∗
2 . P̂J > P ∗

2 in the region (P0/P̂
∗
3 )γ∆θ < ξ/∆q < (P0/P

∗
2 )γ∆θ,

where P ∗
3 is given in Eq. (107). However, for γ > β, the trigger is closer to the first-best

trigger than for the standard case in which γ = β. This is true, because for γ > β,

P̂J = P0

(
∆q∆θ

ξ

)1/γ

< P0

(
∆q∆θ

ξ

)1/β

= PJ . (62)

Thus, when the manager is more impatient than the owner, equilibrium investment occurs

sooner than it does in the standard principal-agent model. In particular, investment occurs

prior to when the first-best trigger is reached for the θ1-type project. The greater impatience

on the part of the manager implies that it is in the owner’s interest to offer a contract

that motivates earlier exercise. This results in both costs and benefits to the owner. By

motivating investment for the θ2-type project earlier than the standard principal-agent model,

investment timing trigger moves closer to the first-best one. Because the manager receives

no surplus for the θ2-type project, the owner is the sole beneficiary of this timing efficiency.

However, investment for the θ1-type project occurs earlier than that in the model of Section ,

which is the first-best outcome. Therefore, the owner is worse off with respect to the θ1-type

projects for two reasons: investment occurs too early, and the wage paid to the manager

in this state must be higher (than in the standard model) to motivate earlier investment.

The net effect on ex ante owner’s option value is ambiguous and is driven by the relative

parameter values.

6. Conclusion

This paper extends the real options framework to account for the agency and information

issues that are prevalent in many real-world applications. When investment decisions are

delegated to managers, contracts must be designed to provide incentives for managers both

to extend effort and to truthfully reveal their private information. This paper provides a

model of optimal contracting in a continuous-time principal-agent setting with both moral
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hazard and adverse selection. The implied investment behavior differs significantly from that

of the first-best no-agency solution. In particular, there is greater inertia in investment, as

the model predicts that the manager has a more valuable option to wait than the owner. The

interplay between the twin forces of hidden information and hidden action leads to markedly

different investment outcomes than when only one of the two forces is at work. Allowing the

manager to have an effort choice that affects the likelihood of getting a high quality project

mitigates the investment inefficiency resulting from information asymmetry. When the model

is generalized to include differing degrees of impatience between owners and managers, we

find that investment could occur either earlier or later than optimal.

Some extensions of the model would prove interesting. First, the model could allow for

repeated investment decisions. This richer setting would permit owners to update their beliefs

over time, and managers to establish reputations. Second, the model could be generalized

to include competition in both the labor and product markets. As shown by Grenadier

(2002), the forces of competition greatly alter the investment behavior implied by standard

real options models.
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Appendix A Solution to the Optimal Contracting Problem

This appendix provides a derivation of the optimal contracts detailed in Section .

First, we simplify the optimal contracting problem by presenting and proving the following

four propositions. Proposition 1 shows that the limited liability for the manager of a θ1-type

project in constraint Eq. (19) does not bind, while Proposition 2 shows that the ex ante

participation constraint Eq. (16) does not bind.

Proposition 1. The limited-liability condition for a manager of a θ1-type project does not

bind. That is, w1 > 0.

Proof.

w1 ≥
(

P1

P2

)β

(w2 + ∆θ) ≥
(

P1

P2

)β

∆θ > 0.

The first and second inequalities follow from Eq. (17) and Eq. (19), respectively.

To motivate the manager to exert effort, we need to reward the manager with an option

value larger than zero, which is the manager’s reservation value. This leads to the following

result.

Proposition 2. The ex ante participation constraint Eq. (16) does not bind.

Proof. (
P0

P1

)β

w1 +
1 − qH

qH

(
P0

P2

)β

w2 −
ξ

qH
≥ ξ

∆q
− ξ

qH
> 0,

where the first inequality follows from the ex ante incentive constraint Eq. (15) and the

limited liability condition for the type-θ2 project.

Propositions 1 and 2 allow us to express the owner’s objective as maximizing the value

of his option, given in Eq. (13), subject to Eq. (15), Eq. (17), Eq. (18) and w2 ≥ 0. Using
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the method of Kuhn-Tucker, we form the Lagrangian

L =
(

P0

P1

)β

(P1 + θ1 − K − w1) +
1 − qH

qH

(
P0

P2

)β

(P2 + θ2 − K − w2)

+ λ1

[(
P0

P1

)β

w1 −
(

P0

P2

)β

(w2 + ∆θ)

]
+ λ2

[(
P0

P2

)β

w2 −
(

P0

P1

)β

(w1 − ∆θ)

]

+ λ3

[(
P0

P1

)β

w1 −
(

P0

P2

)β

w2 −
ξ

∆q

]
+ λ4 w2, (63)

with corresponding complementary slackness conditions for the four constraints.

The first-order condition with respect to w1 gives

λ1 − λ2 + λ3 = 1 . (64)

The first-order condition with respect to w2 implies

(
−λ1 + λ2 − λ3 −

1 − qH

qH

)(
P0

P2

)β

+ λ4 = 0. (65)

Simplifying Eq. (65) gives λ4 = (P0/P2)
β /qH > 0. Therefore, the complementary slackness

condition λ4 w2 = 0 implies that w2 = 0. This is summarized in Proposition 3.

Proposition 3. The limited liability for a manager of a θ2-type project binds, in that w2 = 0.

The intuition is straightforward. Giving the manager of a θ2-type project any positive

rents implies higher rents for managers of θ1-type projects to meet the ex post incentive

constraint of the manager of a θ1-type project. To minimize the rents subject to the manager’s

participation and incentive constraints, the owner gives the manager of a θ2-type project no

ex post rents.

The first-order conditions with respect to P1 and P2 imply

P1 =
β

β − 1
(K − θ1 − λ2∆θ) and (66)

P2 =
β

β − 1

(
K − θ2 +

qH

1 − qH
λ1 ∆θ

)
. (67)

The following proposition states that the ex post incentive constraint for the manager

of a θ2-type project, Eq. (18), does not bind, in that λ2 = 0. We verify this conjecture,

formalized in Proposition 4 for each region. Proposition 4 allows us to ignore Eq. (18) in

the optimization problem.
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Proposition 4. Optimal contracts imply w1 ≤ ∆θ.

Intuitively, if w1 > ∆θ, then the manager of a θ2-type project would never accept the

equilibrium contract with w2 = 0. This would clearly be inconsistent with Proposition 3.

Propositions 1–4 jointly simplify the owner’s optimization problem as the solution to the

objective function Eq. (20), subject to constraints Eq. (21) and Eq. (22).

The following proposition demonstrates that at least one of the two constraints binds.

Proposition 5. At least one of Eq. (21) and Eq. (22) binds.

The argument is immediate. If Proposition 5 did not hold, then reducing w1 increases

the owner’s value strictly without violating any of the constraints. With λ2 = 0, then Eq.

(64) could be written as λ1 + λ3 = 1. Therefore, it must be the case that at least one of Eq.

(21) and Eq. (22) binds.

The problem summarized in Eqs. (20)-(22) is solved below.

A.1. The hidden information only region

Suppose that the ex ante incentive constraint Eq. (22) does not bind. Because Eq. (21)

must hold as an equality and λ1 = 1, Eq. (67) implies P2 = P ∗
3 where P ∗

3 is given in Eq.

(25) and w1 is given in Eq. (26). The inequality P ∗
1 < P ∗

3 implies Eq. (18) does not bind,

consistent with Proposition 4. Finally, to be consistent with the assumption that Eq. (22)

does not bind, we require that ξ/∆q < (P0/P
∗
3 )β ∆θ, the parameter range defining this hidden

information only region.

A.2. The joint hidden information/hidden action region

We derive the optimal contract in this region by conjecturing that both Eq. (21) and Eq.

(22) bind. Solving these two equality constraints gives Eq. (29) and Eq. (30). The inequality

PJ > P ∗
1 confirms that Eq. (18) does not bind, consistent with Proposition 4. The solution

for P2 implies that λ1 can be written as

λ1 =
β − 1

β
(PJ − P ∗

2 )
1 − qH

qH∆θ
. (68)

The only possible region under which both constraints could bind is characterized by
(

P0

P ∗
3

)β

∆θ <
ξ

∆q
<

(
P0

P ∗
2

)β

∆θ .14 (69)

14If (P0/P ∗
1 )β∆θ > ξ/∆q > (P0/P ∗

2 )β∆θ, then only the third constraint binds. If (P0/P ∗
3 )β∆θ > ξ/∆q,

then only the first constraint binds. If ξ/∆q > (P0/P ∗
1 )β∆θ, then supporting high effort is no longer in the
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We now show that both Eq. (21) and Eq. (22) bind throughout this entire region. The region

characterized by Eq. (69) can be equivalently expressed as P ∗
2 < PJ < P ∗

3 . Because Eq. (68)

implies that λ1 is monotonically increasing in PJ , therefore, 0 < λ1 < 1 in this region.

Because λ3 = 1 − λ1, we also have 0 < λ3 < 1. By complementary slackness conditions,

both Eq. (21) and Eq. (22) bind in this joint region, confirming the result that Eq. (69) is

the whole region, with both constraints binding. (We need additional technical conditions to

ensure that inducing the manager to extend high effort is in the interest of the owner.)

A.3. The hidden action only region

Suppose that Eq. (21) does not bind and Eq. (22) binds, then λ1 = 0 by complementary

slackness, and λ3 = 1. Therefore, P2 = P ∗
2 given in Eq. (33) and w1 is given in Eq. (34).

We need to verify that Eq. (21) and Eq. (18) do not bind. The constraint Eq. (18) is

non-binding (consistent with Proposition 4) if and only if P ∗
1 < PJ . The constraint Eq. (21)

is non-binding if and only if PJ < P ∗
2 . Thus, together these imply that P ∗

1 < PJ < P ∗
2 , which

is identical to the condition (P0/P
∗
2 )β∆θ < ξ/∆q < (P0/P

∗
1 )β∆θ that defines this region.

If the parameters do not fall in any of the three regions, namely, ξ/∆q > (P0/P
∗
1 )β∆θ,

then it can be shown that the owner does not choose to motivate the manager to exert effort.

The cost of effort is so high as to overwhelm any potential benefits of motivating effort. A

proof of this result is available from the authors upon request.

Appendix B Optimal contracting with a continuous distribu-
tion of θ

This appendix contains the derivation of the optimal contracts when the distribution of the

project’s unobserved component θ of value is continuous.

Denote the manager’s time-zero expected utility as u(θ̂, θ), if he reports that his privately

observed component of project value is θ̂, and the true level of his privately observed value

is θ. His time-zero expected utility is then given by

u(θ̂, θ) =

(
P0

P (θ̂)

)β (
w(θ̂) + θ − θ̂

)
. (70)

owner’s interest.
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We denote U(θ) as the value function of the manager whose privately observed component

of project value is θ. That is,

U(θ) = u(θ, θ) =
(

P0

P (θ)

)β

w(θ). (71)

As in Section , we denote ξ as the cost of extending effort at time zero. Let FH(θ) and

FL(θ) be the cumulative distribution functions of θ drawn if the manager extends effort and

if he does not extend effort, respectively. Using the revelation principle, we can write the

principal’s optimization problem as

max
P ( · ), w( · )

∫ θ̄

θ

(
P0

P (θ)

)β

(P (θ) + θ − K − w(θ)) dFH(θ) , (72)

subject to an

ex post incentive-compatibility condition:

U(θ) ≥ u(θ̂, θ) , for any θ̂ and θ ; (73)

limited-liability condition:

w(θ) ≥ 0 , for any θ ; (74)

ex ante incentive compatibility condition:

∫ θ̄

θ
U(θ) dFH (θ) − ξ ≥

∫ θ̄

θ
U(θ) dFL(θ) ; and (75)

ex ante participation constraint:

∫ θ̄

θ
U(θ) dFH (θ) − ξ ≥ 0. (76)

Proposition 6. The ex ante participation constraint Eq. (76) does not bind.

Proof. The ex ante incentive constraint (75) and the limited-liability condition (74) together

imply that the ex ante participation constraint (76) does not bind.

First, we simplify the ex ante incentive constraint Eq. (75) using integration by parts.

This gives ∫ θ̄

θ
M(θ) dU(θ) ≥ ξ , (77)

where M(θ) = − (FH(θ) − FL(θ)) .
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Next, we simplify the ex post incentive-compatibility condition Eq. (73) by totally differ-

entiating U(θ), the value function for a manager of a type-θ project, with respect to θ. This

gives
dU(θ)

dθ
= u1

dθ̂

dθ
+ u2 , (78)

where

u1 =
∂u(θ̂, θ)

∂θ̂

∣∣∣∣
θ̂=θ

and u2 =
∂u(θ̂, θ)

∂θ

∣∣∣∣
θ̂=θ

. (79)

Because the manager optimally reveals his project quality by choosing recommended equi-

librium strategy, we have u1(θ, θ) = 0. Therefore, we have U ′(θ) = u2. Integration gives

U(θ) = U(θ) +
∫ θ

θ
u2(s, s) ds = U(θ) +

∫ θ

θ

(
P0

P (s)

)β

ds. (80)

We note that the Spence-Mirrlees condition is satisfied.15

A standard result in the contracting literature with asymmetric information states that the

limited-liability condition for a manager of a θ-type project binds, in that U(θ) = w(θ) = 0.

Therefore, the information rents U(θ) that accrues to the manager of a θ-type project is given

by

U(θ) =
∫ θ

θ

(
P0

P (s)

)β

ds . (81)

The relationship between U(θ) and the equilibrium wage implies that

w(θ) =
(

P (θ)
P0

)β

U(θ) =
∫ θ

θ

(
P (θ)
P (s)

)β

ds. (82)

Using Eq. (82), we simplify the present value of expected wage payment as

∫ θ̄

θ

(
P0

P (θ)

)β

w(θ) dFH (θ) =
∫ θ̄

θ

[∫ θ

θ

(
P0

P (s)

)β

ds

]
dFH(θ) ,

=

[∫ θ

θ

(
P0

P (s

)β

ds

]
FH(θ)

∣∣∣∣
θ̄

θ

−
∫ θ̄

θ
FH(θ)

(
P0

P (θ)

)β

dθ ,

=
∫ θ̄

θ
λH(θ)

(
P0

P (θ)

)β

dFH(θ), (83)

where

λH(θ) =
1 − FH(θ)

fH(θ)
(84)

is the inverse of the hazard rate under FH( · ).
15Details are available upon request.
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Using Eq. (83) allows us to simplify the principal’s optimization problem as

max
P ( · )

∫ θ̄

θ

(
P0

P (θ)

)β

(P (θ) + θ − K − λH(θ)) dFH(θ) , (85)

subject to the ex ante incentive constraint Eq. (77) and ex post limited-liability condition

Eq. (74). The equilibrium wage is then obtained by using Eq. (82).

Similar to the model with discrete values for θ, optimal contracts, characterized by the

pair of trigger strategy and wage payment functions, depend on the region in which effort

cost ξ lies. Subsection solves for the optimal contracts in the region under which the ex ante

incentive constraint does not bind. Subsection solves for the optimal contracts in the region

under which both the ex ante incentive constraint and the ex post incentive constraint bind.

B.1. The hidden information only region

If effort cost ξ is low enough, then no additional rent is needed to induce the manager to

extend effort. The following condition ensures that the ex ante incentive constraint Eq. (77)

does not bind.

Condition 1. ∫ θ̄

θ
M(θ)

(
P0

P ∗
3 (θ)

)β

dθ ≥ ξ, (86)

where

P ∗
3 (θ) =

β

β − 1
[K − θ + λH(θ)] . (87)

Maximizing Eq. (85) could be done point by point. This gives the candidate optimal

trigger level P (θ) = P ∗
3 (θ), where P ∗

3 (θ) is given in Eq. (87). Because λH(θ) > 0, the exercise

trigger is larger than the first-best level, confirming the intuition delivered in Section using

the two-point distribution of θ. A verification easily confirms that Eq. (77) does not bind

under Condition 1.

The following condition ensures that the candidate trigger strategy is positive for any θ.

Condition 2. For all θ on the support, θ − λH(θ) < K .

Finally, we ensure that the candidate trigger strategy decreases in θ by requiring Condition

3:

Condition 3. dλH(θ)/dθ < 1.
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Conditions 2 and 3 also imply that wage is positive and increases in the project quality

θ, as seen from Eq. (82).

B.2. The joint hidden information/hidden action region

When the effort cost is higher, both the ex ante incentive constraint Eq. (75) and the ex post

incentive constraint Eq. (73) bind. The condition governing the parameters for this region

when θ is drawn from a continuous distribution is given as follows.

Condition 4.
∫ θ̄

θ
M(θ)

(
P0

P ∗
3 (θ)

)β

dθ ≤ ξ ≤
∫ θ̄

θ
M(θ)

(
P0

P ∗
2 (θ)

)β

dθ , (88)

where P ∗
3 (θ) is given in Eq. (87) and

P ∗
2 (θ) =

β

β − 1

(
K − θ +

1 − FL(θ)
fH(θ)

)
. (89)

Denote l as the Lagrangian multiplier for Eq. (77). Then, the candidate equilibrium

trigger strategy is given by

P (θ) = PJ(θ) =
β

β − 1

(
K − θ + λH(θ) − l

M(θ)
fH(θ)

)
. (90)

The Lagrangian multiplier l is positive under Condition 4. Therefore, the optimal trigger

with the exception of the one for the manager of the lowest quality project θ is larger than

the first-best P ∗(θ) = β(K − θ)/(β − 1). Because Eq. (77) holds with strict equality, we

could combine Eqs. (77), (81) and (90) to obtain

ξ =
∫ θ̄

θ
M(θ)

(
P0

PJ(θ)

)β

dθ . (91)

Solving the equation gives the Lagrangian multiplier l. The Lagrangian multiplier l increases

in effort cost ξ, in that

dl

dξ
=

P0

β − 1

[∫ θ̄

θ

M2(θ)
fH(θ)

(
β

β − 1

)2 ( P0

PJ(θ)

)β+1

dθ

]−1

. (92)

Therefore, as effort cost ξ increases, the optimal trigger PJ(θ) decreases, as shown by

dPJ(θ)
dξ

= − β

β − 1
M(θ)
fH(θ)

dl

dξ
< 0. (93)
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This is consistent with our intuition and results in Section that a higher effort cost mitigates

investment inefficiency by pushing the exercise trigger toward the first-best level.

The following two conditions ensure that the conjectured candidate solutions PJ(θ) is

positive and decreasing in θ.

Condition 5.
d

dθ

(
θ − λH(θ) + l

M(θ)
fH(θ)

)
> 0 , (94)

for 0 ≤ l ≤ 1.

Condition 6. The distribution FH( · ) first-order stochastically dominates FL( · ), in that

FH(θ) ≤ FL(θ), for all θ . (95)

This implies M(θ) ≥ 0, for all θ.

Under Conditions 5 and 6, wage is positive and increasing in θ, in that

w(θ2) =
∫ θ

θ2

(
P (θ2)
P (s)

)β

ds >

∫ θ2

θ

(
P (θ1)
P (s)

)β

ds >

∫ θ1

θ

(
P (θ1)
P (s)

)β

ds = w(θ1) , (96)

for θ2 > θ1. The first inequality follows from the monotonicity of P (θ).

Appendix C Derivations of optimal contracts in Section 5

This appendix provides a derivation of the optimal contracts for the generalized model of

Section . Propositions 1 and 2 apply as in Appendix A. Using the method of Kuhn-Tucker,

we form the Lagrangian

L =
(

P0

P1

)β

(P1 + θ1 − K − w1) +
1 − qH

qH

(
P0

P2

)β

(P2 + θ2 − K − w2)

+ λ1

[(
P0

P1

)γ

w1 −
(

P0

P2

)γ

(w2 + ∆θ)
]

+ λ2

[(
P0

P2

)γ

w2 −
(

P0

P1

)γ

(w1 − ∆θ)
]

+ λ3

[(
P0

P1

)γ

w1 −
(

P0

P2

)γ

w2 −
ξ

∆q

]
+ λ4 w2 , (97)

with corresponding complementary slackness conditions for the four constraints. As in Ap-

pendix , we also conjecture that the ex post incentive constraint does not bind, in that the

Lagrangian multiplier λ2 associated with the constraint below is zero:
(

P0

P2

)γ

w2 ≥
(

P0

P1

)γ

(w1 − ∆θ) . (98)
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We will verify this conjecture for each region.

The first-order conditions with respect to w1 and w2 imply

0 = (λ1 + λ3)
(

P0

P1

)γ

−
(

P0

P1

)β

and (99)

0 = − (λ1 + λ3)
(

P0

P2

)γ

− 1 − qH

qH

(
P0

P2

)β

+ λ4 . (100)

Using Eq. (99) to simplify Eq. (100) gives λ4 > 0. The complementary slackness condition

implies that w2 = 0. The first-order conditions with respect to P1 and P2 are given by

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)
w1

]
and (101)

P2 =
β

β − 1

[
K − θ2 + λ1

qH

1 − qH

γ

β

(
P0

P2

)γ−β

∆θ

]
. (102)

Therefore, it must be the case that at least one of Eq. (53) and Eq. (54) binds (similar

to Proposition 5 of Appendix A). Depending on the cost-benefit ratio ξ/∆q, we have three

disjoint regions to be analyzed.

C.1. The hidden information only region

Suppose that the constraint Eq. (54) does not bind and thus λ3 = 0. Then, λ1 =

(P0/P1)
β−γ > 1. A binding ex ante incentive constraint Eq. (53) implies that the wage

payment is w1 = (P1/P2)
γ ∆θ . The first-order conditions Eq. (101) and Eq. (102) give the

coupled equations

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
P1

P2

)γ

∆θ

]
and (103)

P2 =
β

β − 1

[
K − θ2 +

qH

1 − qH

γ

β

(
P1

P2

)γ−β

∆θ

]
. (104)

With γ > β, we immediately have P1 < P ∗
1 and P2 > P ∗

2 . Therefore, w1 < ∆θ, as conjectured,

confirming that Eq. (98) does not bind and λ2 = 0.

Define the ratio x = P1/P2. The coupled equations Eqs. (103) and (104) allow us to first

solve for ratio x∗, in that

G(x∗) = 0, (105)

where

G(x) = x

[
K − θ2 +

γ

β

(
qH

1 − qH

)
xγ−β∆θ

]
−
[
K − θ1 +

(
1 − γ

β

)
xγ∆θ

]
= 0. (106)
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First, G(0) = −(K − θ1) < 0 and G(1) = γ∆θ/(β(1 − qH)) > 0. Second,

G′(x) = K − θ2 +
γ + γ(γ − β)

β

qH

1 − qH
xγ−β∆θ + γxγ−1

(
γ

β
− 1
)

∆θ > 0 ,

for γ > β. Therefore, there exists a unique x∗ ∈ (0, 1) solving Eq. (105).

Therefore, for the region defined by ξ/∆q < (P/P̂ ∗
3 )γ∆θ, where

P̂ ∗
3 =

β

β − 1

[
K − θ2 +

qH

1 − qH

γ

β
(x∗)γ−β∆θ

]
, (107)

the optimal contract can be written as

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)
(x∗)γ ∆θ

]
, (108)

P2 = P̂ ∗
3 , (109)

w1 =
(

P1

P2

)γ

∆θ, and (110)

w2 = 0. (111)

Finally, if ξ/∆q < (P0/P̂
∗
3 )γ∆θ, constraint Eq. (54) is not binding, consistent with our

conjecture.

C.2. The joint hidden information/hidden action region

We derive the optimal contract in this region by conjecturing that both Eq. (53) and Eq.

(54) bind. Solving these two equality constraints gives Eq. (56) and Eq. (57). Plugging Eq.

(56) and Eq. (57) into the first-order condition Eq. (101) gives

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
P1

P̂J

)γ

∆θ

]
. (112)

The solution for P1 is P̂1, the same solution for P1 as in the hidden action region. In

Section 5 we proved that a unique P̂1 exists, where P̂1 ∈ (0, P ∗
1 ). Naturally, we have

w1 =
(
P1/P̂J

)γ
∆θ. As before, we have verified that Eq. (98) does not bind in this region,

because P̂1 < P̂J implies that w1 < ∆θ.

We know that the only possible regions in which both Eq. (53) and Eq. (54) bind

is (P0/P̂
∗
3 )γ∆θ ≤ ξ/∆q ≤ (P0/P

∗
2 )γ∆θ, because we have already shown that in the other

regions only one of these constraints binds.16 Equivalently stated in terms of P̂J , this region

16In the region ξ/∆q > (P0/P̂1)
γ∆θ, it can be shown that effort cannot be induced. This result is available

upon request.
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is characterized by P ∗
2 < P̂J < P̂ ∗

3 . We now verify that the above solutions are optimal for

this entire region. Recall that λ1 + λ3 =
(
P0/P̂1

)β−γ
. Therefore, if we show that λ1 lies

within the range defined by

0 < λ1 <

(
P0

P̂1

)β−γ

, (113)

then we have shown both Eq. (53) and Eq. (54) bind (λ1, λ3 6= 0).

The first-order condition with respect to P2 implies that

λ1 =

[
β

β − 1
qH

1 − qH

γ

β

(
P0

P̂J

)γ−β

∆θ

]−1 (
P̂J − P ∗

2

)
. (114)

Because P̂J > P ∗
2 , we have confirmed that λ1 > 0. We next prove that λ1 <

(
P0/P̂1

)β−γ
.

Expressing λ1 as a function of P̂J , we can rewrite Eq. (114) as

λ1(P̂J) =

(
P0

P̂1(P̂J)

)β−γ (
P̂1(P̂J)

P̂J

)β−γ [
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 )
]−1 (

P̂J − P ∗
2

)
. (115)

Note that from Eq. (112), P̂1 is a function of P̂J ; we make this functional dependence

explicit in the above equation. Proving that λ1 <
(
P0/P̂1

)β−γ
over the region P̂J ∈ (P ∗

2 , P̂ ∗
3 )

is equivalent to showing that

N(x) > 0, for x ∈ (P ∗
2 , P̂ ∗

3 ),

where N(x) is defined by

N(x) = P ∗
2 +

(
P̂1(x)

x

)γ−β
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 ) − x. (116)

Using implicit differentiation in Eq. (112), we can write

dP̂1(x)
dx

=
P̂1(x)

x

γ(P̂1(x) − P ∗
1 )

γ(P̂1(x) − P ∗
1 ) − P̂1(x)

> 0, (117)

because P̂1(x) < P ∗
1 in this region. Therefore,

dL(x)
dx

= (γ − β)
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 )

(
P̂1(x)

x

)γ−β−1
1
x2

(
x

dP̂1(x)
dx

− P̂1(x)

)
− 1 . (118)

From Eq. (117),

x
dP̂1(x)

dx
− P̂1(x) =

(
P̂1(x)

)2

γ(P̂1(x) − P ∗
1 ) − P̂1(x)

< 0, (119)

because P̂1(x) < P ∗
1 in this region. Therefore, N ′(x) < 0, for x ∈ (P ∗

2 , P̂ ∗
3 ). Because

N(P̂ ∗
3 ) = 0, we thus have N(x) > 0 for x ∈ (P ∗

2 , P̂ ∗
3 ). This confirms that λ1, λ3 > 0 in this

entire region, and therefore both Eq. (53) and Eq. (54) bind.
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C.3. The hidden action only region

Suppose that Eq. (54) binds, while Eq. (53) does not. Thus, λ1 = 0 and λ3 = (P0/P1)
β−γ >

1. With λ1 = 0, Eq. (102) implies that P2 = P ∗
2 .

A binding Eq. (54) implies that the wage payment is

w1 =
(

P1

P0

)γ ξ

∆q
=
(

P1

P̂J

)γ

∆θ, (120)

where P̂J is given in Eq. (56). Substituting Eq. (120) into Eq. (101) gives P1 = P̂1, the

root of the expression given in Eq. (59). Section proves that a unique P̂1 exists, where

P̂1 ∈ (0, P ∗
1 ).

To ensure that our conjecture that Eq. (98) is not binding, Eq. (120) implies that we

need to check if P̂1 < P̂J holds. This inequality can be written as ξ/∆q < (P0/P̂1)γ∆θ,

which is assured to hold in this region. To be consistent with the fact that Eq. (53) does not

bind, we need (P0/P
∗
2 )γ∆θ > ξ/∆q, which again holds in this region.
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Figure 1: Optimal incentive contracts across the three parameter regions. The upper and lower graphs
plot the equilibrium trigger strategy P2 and wage payment w1 in terms of effort cost ξ, respectively.
As the cost of effort increases, the hidden action problem becomes more pronounced. The upper
graph demonstrates that, as the cost of effort increases, the equilibrium trigger strategy P2 decreases,
as it approaches the first best trigger P ∗

2 . The lower graph demonstrates that, as the cost of effort
increases, the wage payment must increase to induce effort from the manager. In summary, as the
cost of inducing hidden effort increases, the timing of investment becomes more efficient while the
value of the compensation package increases.
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Figure 2: Stock price reaction to investment. This graph plots the stock price as a function of P ,
the present value of the observed component of cash flows. Whenever the level of P is below the
lower investment trigger P ∗

1 , the market does not know the true value of θ, the present value of the
unobserved component of cash flows. Thus, for all P below P ∗

1 , the stock price equals the value of the
owner’s option given in Eq. (31). At the moment the process P hits the trigger P ∗

1 , the true value of
θ is revealed through the manager’s action: if the manager invests, then the value of θ is the higher
value θ1; if the manager does not invest, then the value of θ is the lower value θ2. Thus, the stock
price is discontinuous at P ∗

1 . Investment signals good news and the stock price jumps to Su, while
failure to invest signals bad news and the stock price drops to Sd, where Su and Sd are given in Eq.
(37) and Eq. (38), respectively.
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