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ABSTRACT

This paper presents a downtown parking model that integrates traffic congestion and saturated on-

street parking. We assume that the stock of cars cruising for parking adds to traffic congestion. Two

major results come out from the model, one of which is robust. The robust one is that, whether or

not the amount of on-street parking is optimal, it is efficient to raise the on-street parking fee to the

point where cruising for parking is eliminated without parking becoming unsaturated. The other is

that, if the parking fee is fixed at a sub-optimal level, it is second-best optimal to increase the amount

of curbside allocated to parking until cruising for parking is eliminated without parking becoming

unsaturated.

Richard Arnott
Department of Economics
Boston College
Chestnut Hill, MA 02467-3806
and NBER
arnottr@bc.edu

Eren Inci
Department of Economics
Boston College
Chestnut Hill, MA 02467-3806
inci@bc.edu



1 Introduction

Some newspaper articles have asserted that during business hours half the cars on downtown

streets in large cities are cruising for parking. If the claim is true, substantially reducing

cruising for parking in downtown areas could result in huge travel savings. In fact, tra¢ c

experts simply do not know what proportion of cars on downtown city streets are cruising

for parking. Shoup (2005) presents a table summarizing the results of thirteen studies on

cruising for parking. Across the studies, the average share of tra¢ c cruising for parking

was 30% and the average cruising time 7.8 minutes. While the methods employed and the

generality of the results are open to question1, it is fair to say that current expert opinion is

that cruising for parking adds substantially to the severity of downtown tra¢ c congestion.

It is therefore remarkable that the phenomenon has not been more widely studied by urban

transportation researchers.

This paper is the �rst to look at cruising for parking from an economic perspective. It

provides a thorough analysis of just about the simplest possible model that can be employed

to analyze the phenomenon. The central features of the model are that the demand for

downtown parking is sensitive to both the money and time costs of a downtown trip, parking

is available only on-street and may be saturated (as soon as a parking space is vacated, it

is taken by a car that is cruising for parking), and travel speed depends on the density of

cars cruising for parking and the amount of on-street parking, as well as the density of cars

in transit. It is assumed that the level of demand is su¢ ciently high that providing parking

free results in saturated parking and cruising for parking. Cruising for parking raises the

full price of a downtown trip, and the level of cruising for parking adjusts to clear �the

market�for parking. The principal simplifying assumptions are that downtown is spatially

homogeneous, downtown tra¢ c is in a steady state, drivers are identical, and all travel is

by car. Subsequent papers will enrich the model to allow for driver heterogeneity, mass

transit, and o¤-street parking, which will permit signi�cantly richer policy analysis. The

primary goal of this paper is to lay the groundwork by developing terminology, concepts,

and an analytical framework.

Despite its simplicity, the model generates some interesting results. The �rst is that cruising

for parking is pure deadweight loss. Consider an initial situation in which on-street parking

is provided free and cruising for parking occurs. The equilibrium full price of a trip is

determined by parking availability relative to the level of demand. Imposing a parking fee

1Almost all were one-o¤ studies of cruising for parking in a localized area of a major city. The areas
were probably chosen because cruising for parking was perceived to be a problem there. Furthermore, the
methods employed have varied across studies. In most studies, randomly-selected cars are followed by car
or bicycle, though in a couple of recent studies the information is extracted from aerial video photography.
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at a level such that parking remains saturated does not alter the equilibrium full price of

a trip and therefore has no e¤ect on consumer surplus, but generates parking fee revenue.

Thus, the parking fee raises revenue with no burden at all. The second is that the parking fee

should be raised to the point where cruising for parking is eliminated but parking remains

saturated. The third is that, when the level of the parking fee is �xed, the amount of

curbside allocated to parking should be increased to the point where cruising for parking is

eliminated but parking remains saturated.

The paper is organized as follows. Section 2 provides a brief review of the literature on the

economics of parking. Section 3 presents the model. Section 4 analyzes the model in detail,

and section 5 calibrates it to investigate the e¤ects of the limited range of policies the model

permits. Section 6 discusses some possible extensions, while still retaining the assumptions

that all travel is by car and all parking is on street. Section 7 concludes the paper.

2 Literature Review

The literature on the economics of parking is small. Until a decade ago, the economics

literature looked at parking almost exclusively (but see Douglas (1975)) as a �xed fee added

on at the end of an auto trip. By increasing the full price of an auto trip, parking fees

a¤ect travel demand and modal choice. One early example is Gillen and Westin (1978) that

incorporated parking charges into an empirical model of modal choice in Toronto. Calthrop,

Proost, and van Dender (2000) is a more recent study that examined the second-best level

of the parking fee when congestion tolls cannot be imposed on city streets.

Some other papers have looked at other aspects of parking and parking policy. Arnott,

dePalma, and Lindsey (1992) and Anderson and dePalma (2004) examined the spatial

pattern of parking over time, and how this is a¤ected by various parking policies, when

all drivers have the same desired arrival time at a common destination. Calthrop (2001a)

presented a spatially homogeneous model characterizing the steady-state equilibrium of on-

and o¤-street parking, in which the time searching for on-street parking balances the higher

fee associated with o¤-street parking. Calthrop (2001b) analyzed the optimal enforcement

levels and parking meter fees for on-street parking. Arnott and Rowse (1999) focused on

optimal on-street parking search strategy on an isotropic circular road with unsaturated

parking, taking into account walking time. And Glazer and Niskanen (1992) considered a

sequence of partial models to illustrate possible perverse results from the naïve application

of parking policy. No papers in the literature, however, considers the congestion interaction

on city streets between cars in transit and cars cruising for parking, which is the principal
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focus of this paper and its sequels.

3 The Model

We start with a thumbnail sketch of the model, and follow it with a formal description.

3.1 Thumbnail description

The model describes a city�s downtown area as a spatially symmetric Manhattan network

of identical, congested city streets. Tra¢ c conditions remain unchanged over the period of

the study. All travel is by car and all parking is on street. All trips are the same, and entail

driving a �xed distance over downtown streets directly to a downtown destination, parking

there immediately if a vacant parking spot is available and otherwise cruising round the

destination block until a spot opens up, visiting the destination for a �xed period of time,

and then exiting the system. The demand for trips is inversely related to the full trip price,

which includes time and money costs.

Parking in the downtown area may be completely saturated. Travel speed on the roads

depends on the street width and the proportion of curbside allocated to parking, as well as

on the density of the two types of tra¢ c � cars in transit and cars cruising for parking.

The model has its central characteristics that, under saturated parking conditions, the stock

of cars cruising for parking adjusts to clear the market for parking, and that cars cruising for

parking slow down tra¢ c, and will be employed to explore how equilibrium tra¢ c conditions

are a¤ected by exogenous parameters as well as policy, which includes parking pricing and

the allocation of curbside to parking.

3.2 Formal description

Spatial symmetry is assumed to simplify the analysis. Blocks are square with sides of length

b, streets are of width W , and Pmax is the maximum possible number of on-street parking

spaces per unit area. Throughout the paper, we shall ignore the complications that arise

from the indivisibility of lanes of tra¢ c2. Figure 1 portrays the geometry of the Manhattan

street network.
2For concreteness, one may imagine that all streets are one way. This reduces the practical importance

of the indivisibility problem but does not a¤ect the analysis.
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b : length and width of a block
W : road width
! : direction of tra¢ c �ow (one-way streets)

Figure 1: Manhattan geometry

Individuals are identical and risk neutral, basing their decisions on expected values. All

travel is by car. Each trip originates from outside the downtown area and entails travel

for a distance m through the downtown area to a destination. Destinations are uniformly

distributed over the downtown area, and parking may be saturated. An individual drives

directly to the destination3, parks there immediately if a parking spot is available and

otherwise circles the block cruising for parking until he �nds a vacant parking spot4, stays

at the destination for a period of time l and then exits the downtown area. The time required

to walk from the parking location to the destination is ignored. These assumptions permit a

simple representation of tra¢ c at the aggregate level in a saturated steady-state equilibrium.

Let T be the pool or stock of individuals per unit area in transit to their destinations, C be

the pool of individuals per unit area cruising for parking, and P be the stock of on-street

3Arnott and Rowse (1999) consider a model in which the city is located on the outside of a circle and in
which parking is unsaturated. The individual decides, on the basis of the mean density of vacant parking
spaces, how far from his destination to start cruising for parking, then takes the �rst vacant parking space,
and then walks from there to his destination. With this parking strategy, there is no scope for learning.

In the model of this paper, taken literally, a driver could adopt a more sophisticated strategy than
just circling the block since he knows that no parking spot can be occupied for a period greater than l. With
a simple adaptation of the model, however �assuming that visit lengths are Poisson distributed with mean
l �circling the block is the optimal strategy. Since this adaptation does not alter the model�s steady-state
properties, the reader may choose this alternative speci�cation and interpretation of the model. Later, to
simplify analysis of the stability properties of the model, we assume that not only l but also m are Poisson
distributed.

4For the analysis, it does not matter whether, as they are vacated, parking spots are allocated to cruisers
for parking on a FIFO or on a random basis, but it is natural to assume random allocation, in which case
from the perspective of a cruiser for parking obtaining a parking spot is generated by a Poisson process with
arrival rate P=(Cl).
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parking spaces per unit area, which equals the pool of individuals parked per unit area when

parking is saturated.

The rate of entry into the network per unit time-area, or equivalently the trip demand per

unit time-area is D. Trip demand depends on the full price of a trip, which equals the cost

of in-transit travel time plus the cost of time spent cruising for parking plus the expenditure

for on-street parking. Let t denote the in-transit travel time per unit distance, which the

individual treats as exogenous but is determined by how the congested roads are, as part

of the overall equilibrium.

Consider each of the pools in turn. The rate of change of the size of the in-transit pool

equals the entry rate, D, minus the exit rate, E. Thus,

_T (u) = D(u)� E(u) ; (1)

where u denotes time. With saturated parking the rate of change of the size of the cruising-

for-parking pool equals the entry rate into cruising-for-parking pool, which equals the exit

rate from the in-transit pool, minus the exit rate from the cruising-for-parking pool, Z.

_C(u) = E(u)� Z(u) : (2)

In steady state5, the exit rate from the in-transit pool equals the pool size divided by an

individual�s time in the pool, so that (1) becomes

D =
T

mt
; (3)

and with saturated parking the exit rate from the cruising-for-parking pool equals the exit

rate from parking so that (2) becomes

T

mt
=
P

l
: (4)

These steady-state relationships with saturated parking are displayed in Figure 2.

We refer to (3) as the in-transit pool steady-state condition and to (4) as the cruising-for-

parking pool steady-state condition.

5Later, when we investigate stability, we modify the model slightly so that m is Poisson distributed in
the population, in which case T=(mt) is the exit rate from the in-transit pool away from the steady-state
equilibrium as well as at the equilibrium.
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T Stock of cars in transit (per unit area)
C Stock of cars cruising for parking
P (On-street) parking spaces = stock of cars parked
D Demand in�ow
T
mt Exit rate from in-transit pool

= entry rate into cruising-for-parking pool
P
l Exit rate from cruising-for-parking pool

= entry rate into parking pool
= exit rate from parking pool

Figure 2: Steady-state stocks and �ows with saturated parking

The steady-state full trip price, F , is

F = �(mt+
Cl

P
) + fl ; (5)

where � is the value of time and f the on-street parking fee per unit time; the full trip price

is the sum of the in-transit travel time cost, the expected cruising-for-parking time cost,

and the money cost of on-street parking at the destination.

Two more equations are needed to complete the characterization of a saturated steady-state

equilibrium. The �rst is the steady-state �ow demand function, which is sensitive to the

full price and is smooth:

D = D(F ); D(0) =1; D(1) = 0; D0 < 0 : (6)

The second equation describes the smooth6 congestion technology7:

t = t(T;C;W;P ) ; (7)

where tT > 0; tC > 0; tW < 0; tP > 0 , t(0; 0;W; P ) > 0, lim
P!Pmax

t(T;C;W;P ) =1, and t

6We should keep in mind, however, that there may be a jam density (as in the Greenshield�s relation
(1935)) and that the function t may not be well de�ned if the density exceeds this level.

7 In the numerical examples, we shall particularize this function, assuming, as is standard, that travel
time is a convex function of the volume-capacity ratio: t̂ = t̂(V

!
) where t̂0 > 0; t̂00 > 0 ; V = V (T;C) with

VT > 0 and VC > 0 is the e¤ective volume or density of tra¢ c, and !(W;P ) is the e¤ective capacity, with
!W > 0 and !P < 0.
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is convex in T , C, and P .

4 Analysis of Saturated Steady-state Equilibrium

Substituting (5), (6) and (7) into (3) and (4) gives the following two equations in two

unknowns, T and C:

D(�((T + C)
l

P
) + fl) =

P

l
(8)

T

mt(T;C;W;P )
=

P

l
: (9)

De�nition 1 A saturated, steady-state equilibrium is a pair (T;C) with T > 0; C � 0,

that solve (8) and (9) .

D0 : Even with no cruising for parking, demand
is insu¢ cient to keep parking saturated.

D1 : Congested equilibrium occurs at E1.
D2 : Hypercongested equilibrium occurs at E2.
D3 : With any (T;C) that clears the market,

the network is too congested to
generate tra¢ c �ow P=l.

Figure 3: Saturated, steady-state equilibrium in T-C space for di¤erent levels of demand

Figure 3 plots these two loci in the positive orthant of T � C space. We refer to (8) as the
demand locus, (9) as the cruising-for-parking-pool locus, and P=l as steady-state throughput
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or �ow. It is evident that (8) has a slope of �1. Since the partial derivatives of t with
respect to T and C are continuous, (9) is continuous. Its slope is

@C

@T

����
(9)

=
t
T � tT
tC

: (10)

4.1 Uniqueness

(A.1) A car cruising for parking contributes more to congestion than a car in transit

(tC > tT )8.

Lemma 1 (Uniqueness) Assume (A.1) holds. Then, if equilibrium exists it is unique.

Proof. In the positive orthant, the slope of the cruising-for-parking pool locus is greater
than that of the demand locus. If, therefore, the two loci intersect in the positive orthant,

they do so only once there.

4.2 Existence

We now consider the conditions for the existence of a saturated, steady-state equilibrium.

Consider (9) with C = 0. The equation is solved for those densities of in-transit tra¢ c

corresponding to tra¢ c �ow levels of P=l. One circumstance under which a saturated equi-

librium does not exist occurs when the road�s �ow capacity � de�ned as max
T

T
mt(T;0;W;P ) �

falls short of P=l. In this case, if an equilibrium exists it entails parking being unsaturated9.

In terms of Figure 3, this low �ow capacity situation occurs when the cruising-for-parking

pool locus disappears. Another occurs when, even with no cars on the road, the quantity of

trips demanded falls short of P=l. In terms of Figure 3, this low demand situation occurs

when the demand locus lies everywhere to the left of cruising-for-parking locus. Yet another

occurs when demand is so high that all (T;C) on the demand locus would generate so much

congestion that a steady-state throughput of P=l cannot be achieved. We refer to this as

the high demand situation.

8Rouwendal, Rietveld and Verhoef (1999) analyzes the congestion interaction between slow- and fast-
moving cars on a single-lane road. As one would expect, one slow-moving car when all other cars are moving
fast adds considerably to congestion. But also, one fast-moving car when all other cars are moving slowly
adds considerably to congestion. The situation here is analogous. One car cruising for parking when all
other cars are in transit creates considerable congestion, but so too does one car in transit when all other
cars are cruising for parking. Thus, the congestion technology is in fact more complicated than is assumed.

9We shall investigate this when we discuss stability.
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(A.2) Road �ow capacity is higher than the steady-state throughput
(max
T

T
mt(T;0;W;P ) >

P
l ).

(A.3) T
mt(T;0;W;P ) =

P
l has two roots

10, T 0 and T 00, T 0 < T 00.

(A.4) T 0 � (D�1(Pl )� fl))
P
l� � T

00.

Theorem 1 (Existence) I¤ (A.2), (A.3) and (A.4) holds, a saturated steady-state equi-
librium exists.

Proof. From (A.2) and (A.3) and the continuity of T
mt(T;C;W;P ) in T and C, the cruising-

for-parking pool locus is in the positive orthant for T 2 [T 0; T 00]. From (A.4), the continuous
demand locus intersects the C = 0 line below the cruising-for-parking locus and the T = 0

line above it.

Corollary 1 If (A.1)-(A.4) hold, then there exists a unique saturated steady-state equilib-
rium.

4.3 Comparative statics

The comparative static properties of the saturated steady-state equilibrium are given in

Table 1. The comparative static properties with respect to �, m, W , and parameters which

shift either the demand function or the congestion function but not both can be simply

derived from Figure 3 since each of these parameter changes a¤ects only one of the loci.

The only remaining parameters, which a¤ect both of the loci, are P and l.

Let us �rst examine the e¤ect of a small increase in demand � an upward shift in the demand

locus. If equilibrium occurs on an upward-sloping portion of the cruising-for-parking-pool

locus, the increase in demand causes an increase in both C and T ; if equilibrium occurs on

a downward-sloping portion of the locus, the increase in demand causes an increase in T

and C + T , but a decrease in C. From (10), it follows that the cruising-for-parking-pool

locus is upward sloping if the elasticity of travel time with respect to T is less than one, and

downward sloping if this elasticity is greater than one. With some abuse of terminology11,

10This assumption is implied by (A.2) and the convexity of t in T and C.
11Simple tra¢ c �ow models are constructed using two equations. The �rst relates velocity to density:

v = �(V ). The second is the fundamental identity of tra¢ c �ow, that �ow equals velocity times density,
q = V v. Combining these two equations gives q = ��1(v)v, the graph of which is referred to as the �ow-
velocity curve. One particularly simple speci�cation � Greenshield�s Relation (1935) � is that velocity is
a negative, linear function of density, with �v being free-�ow velocity and Vj being jam density; with this
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� W P m l f �1 2

T � � ?5 + ?5 � + �
T l
P � � ?5 + ?5 � + �
C ?3 + ?5 � ?5 ?3 ?4 +
Cl
P ?3 + ?5 � ?5 ?3 ?4 +
T + C � 0 ?5 0 ?5 � + 0
(T+C)l
P � 0 � 0 ?5 � + 0

Notes:
1. An increase in � corresponds to an increase in demand
at all levels of the full trip price.
2. An increase in  corresponds to a decrease in t for every (T;C;W;P ).
3. Has sign of 1� Et:T .
4. Has sign opposite to that for corresponding derivative with respect to �.
5. Sign depends on, inter alia, the demand elasticity.

Table 1: Comparative static properties of the model

we say that travel is congested in the former situation and hypercongested in the latter.

Consider congested travel. Increase demand, holding �xed the stock of cars cruising for

parking. From (8), the full price of travel must increase to restore equilibrium. With C

and f �xed, this requires that T increase. Since travel is congested, an increase in T results

in a less-than-proportional increase in t. To continue to satisfy (9), C must increase. The

other comparative static results, except those for P and l, can be obtained by analogous

argument.

An increase in l causes the cruising-for-parking-pool locus to shift up; the increase in l

causes the throughput to fall, which requires that C increase for any level of T . The e¤ect

of the increase in l on the demand locus is ambiguous. The fall in throughput requires

that the quantity of trips demanded fall, but the increase in l causes the quantity of trips

demanded to fall directly. Which e¤ect dominates depends on the demand elasticity; if, as

is realistic, the demand elasticity is less than one, C + T must rise to restore equilibrium,

which entails an upward shift in the demand locus. An increase in P causes the cruising-for-

parking pool locus to shift down; for a given level of T; with increased road space devoted

to parking, the increase in throughput requires that C fall. The e¤ect of the increase in P

on the demand locus is ambiguous. The increase in throughout requires that the quantity

speci�cation, the �ow-velocity curve is a parabola. If the equilibrium occurs on a negatively-sloped portion
of the �ow-velocity curve, so that an increase in �ow corresponds to a decrease in speed, travel is said to
be congested, while if the equilibrium occurs on a positively-sloped portion of the curve, so that an increase
in �ow corresponds to an increase in speed, travel is said to be hypercongested (this terminology is due to
Vickrey). Congested equilibria correspond to freely-�owing tra¢ c, and hypercongested equilibria to tra¢ c
jam situations.
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of trips demanded increase, but the increase in P causes the quantity of trips demanded to

increase directly, and which e¤ect dominates depends on the demand elasticity.

Since raising the parking fee when parking is saturated, and when therefore there is cruising

for parking, has no e¤ect on the equilibrium trip price, it is perhaps intuitive that an increase

in parking fee revenue reduces cruising-for-parking costs dollar for dollar. The incorrectness

of this intuition can be seen from Figure 3. Raising the parking fee shifts the demand locus

to the left. If the initial equilibrium is congested, the equilibrium T and C both fall; if it

is hypercongested, the equilibrium T and T + C fall but the equilibrium C rises. Thus,

an increase in the parking fee can increase cruising for parking. The correct intuition is

that parking fee revenue replaces the sum of in-transit travel costs and cruising-for-parking

costs dollar for dollar.

4.4 Steady-state social optimum

The social bene�t from travel per unit area-time is an increasing function of the steady-state

throughput, and its derivative gives the marginal bene�t. The social cost per unit area-time

is the aggregate cost of travel time per unit area-time, which equals the value of time times

the number of cars in transit and cruising for parking per unit area at that point in time.

Social surplus (per unit area-time) equals social bene�t minus social cost.

De�nition 2 The short-run saturated steady-state social optimum is the pair (T �; C�) sat-

isfying (9) such that social surplus, given by B(Pl )� �(C + T ), is maximized.

Thus, this social optimum is the solution to

max
C;T

B(
P

l
)� �(C + T ) s:t:

T

mt(T;C;W;P )
=
P

l
: (11)

The maximization problem reduces to the minimization of travel time cost, which is achieved

with C� = 0 and T equal to the lower value of T which solves T=(mt(T; 0;W; P )) = P=l.

From an initial situation with saturated parking and no cruising for parking, this social

optimum can be decentralized by setting f at such a level that D(�T � + fl) = P=l. The

corresponding parking fee is

f� =
D�1(Pl )� �T

�

l
: (12)

The above reasoning identi�es the short-run, saturated steady-state social optimum and

indicates how it can be decentralized. But is the short-run, saturated, steady-state social

optimum necessarily the overall short-run, steady state social optimum? Suppose it were
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otherwise. Since a given throughput can be achieved at lowest cost with no cruising for

parking, the short-run steady-state social optimum would solve

max
S;T

B(
S

l
)� �T s:t:

T

mt(T; 0;W; P )
� S
l
= 0 ; (13)

where S=l is the steady-state throughput and S the stock of occupied parking spaces at

the social optimum. If demand is su¢ ciently high that the S that solves this maximization

problem exceeds P , then the parking availability constraint binds and the steady-state

optimum is saturated (the proof of this uses tTT < 0.). Thus:

Proposition 1 If demand is �su¢ ciently high� (as de�ned just above), the short-run,
steady-state social optimum entails saturated parking and no cruising for parking. This

allocation can be decentralized by setting the parking fee according to (12).

Some remarks are in order. First, the above analysis assumes that the marginal cost of

public funds equals one and that there are no administrative costs in the collection of

parking fee revenue. The analysis can be straightforwardly modi�ed to account for these

complications, which may be practically important. Second, when there is cruising for

parking in steady-state equilibrium, the aggregate e¢ ciency gains from raising the parking

fee to the optimal level are at least as high as the aggregate cruising-for-parking costs in

the initial equilibrium. This can be seen from Figure 3. Raising the parking fee to the

optimal level from an initial saturated equilibrium shifts the demand locus to the left, to

the point where it just continues to intersect the cruising-for-parking locus, with C = 0.

The aggregate e¢ ciency gains from this increase in the parking fee equal the reduction

in the value of �(C + T ) from the initial equilibrium to the optimum. Third, we claim

that Proposition 1 is essentially an e¢ ciency result, and so extends to the situation where

individuals di¤er in terms of the value of time, visit duration, and trip length, as long

as lump-sum transfers are feasible. When they are not, some loss in e¢ ciency might in

principle be justi�ed for an improvement in equity. Since, however, few of the truly needy

drive cars, equity considerations in this context are likely of secondary importance.

4.5 Diagrammatic characterization of the equilibrium and optimum

It will aid intuition to recast the model in terms of the standard tra¢ c congestion diagram

in �ow-price space, which is based on a model of �ow congestion with no parking capacity

constraint. In that diagram, short-run (with road capacity �xed) equilibrium in the absence

of a congestion toll occurs where the user cost curve intersects the demand curve, while the
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short-run social optimum (which can be decentralized with the optimal toll) occurs where

the short-run marginal social cost curve intersects the demand curve. In the saturated

parking model presented here, the demand curve is well de�ned. On the supply side,

however, the parking model di¤ers from the standard model in two respects. First, user

cost and marginal social cost depend not only on the throughput but also on the amount of

cruising for parking, which is endogenous. Second, there is a parking capacity constraint,

that the equilibrium �ow cannot exceed that permitted by the parking available, and with

saturated parking must equal it. When the parking constraint binds, the causality is also

di¤erent. The equilibrium full price, F e, and �ow are determined by the intersection of the

demand curve and the parking capacity constraint. The equilibrium stocks of cars cruising

for parking and in-transit are consistent with these equilibrium values. This subsection

presents the results derived in the previous subsection for the short-run equilibrium and

optimum, using this diagrammatic apparatus, on the assumption that demand is su¢ ciently

high that in the absence of a parking fee, there exists an equilibrium with saturated parking.

Recall that, under our assumptions on the form of the travel time function, if there is an

equilibrium with saturated parking it is the unique equilibrium with saturated parking.

Turn to Figure 4, which is in price (full price) �quantity (steady-state �ow) space. Draw

in the demand curve and the parking capacity constraint. By assumption, in the absence

of a parking fee, the saturated parking equilibrium occurs at the point of intersection of the

demand curve and the parking constraint, point E in the diagram. It will prove useful to

de�ne short-run user cost and short-run marginal social cost in the absence of cruising for

parking.

De�nition 3 The short-run user cost function (ucsr) is the (congested) steady-state in-
transit user cost in the absence of cruising for parking, �mt, as a function of the steady-state

�ow, q, and with W and P held �xed:

ucsr(q;P ) = �mt(T̂ (q;P ); 0;W; P ) ; (14)

where T̂ (q;P ) is de�ned implicitly by

T̂ (q;P ) = min[solution wrt T of q =
T

mt(T; 0;W; P )
] : (15)

Thus, T̂ (q;P ) is the stock of cars in-transit consistent with congested �ow q when parking

availability is P , and ucsr(q;P ) is the corresponding (in-transit) user cost.
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jEJ j : parking scarcity component
jJGj : congestion externality component

jEGj= jEJ j+ jJGj : optimal parking fee charge
Note : The dashed portions of the short-run marginal social cost

and user-cost curves indicate that these portions of the
curves are not relevant for levels of �ow in excess of P=l.

Figure 4: Steady-state equilibrium with saturated parking and the parking fee set at the
optimal level

De�nition 4 The short-run marginal social cost function (mscsr) is the increase in the
aggregate, steady-state (congested) in-transit �ow social cost, in the absence of cruising for

parking, resulting from a unit increase in steady-state �ow, as a function of steady-state

�ow, with W and P held �xed:

mscsr(q;P ) =
@�T̂

@q
=

@�T̂

@T̂

@q

@T̂

���
(15)

=
�mt

1� tT̂ T̂

t

: (16)

Several comments are in order. First, T̂ (q;P ) is so de�ned in order to impose the condition

that the social optimum entails congested rather than hypercongested �ow. Second, while
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the ucsr and mscsr functions are well de�ned for levels of steady-state �ow exceeding P=l,

the analysis will use only those portions of the functions with q � P=l. Third, the ratio of
ucsr to mscsr at a particular level of steady-state �ow equals one minus the elasticity of t

with respect to T̂ (q;P ).

The short-run, steady-state social optimum occurs at point E in the diagram, and entails

no cruising for parking and congested rather than hypercongested travel. This optimum

is decentralized12 with a parking fee f� such that f�l equals the vertical distance between

E and the point of intersection of the short-run user cost curve and the parking capacity

constraint, G. With this fee, there is saturated parking, no cruising for parking, a full

price of F e, and a �ow rate of P=l. The e¢ cient parking charge has two components. The

�rst, jJGj in the diagram, is the �ow congestion externality cost, the di¤erence between the
short-run marginal social cost and short-run user cost. The second, jEJ j in the diagram,
is the parking externality cost or parking scarcity rent. Social surplus with this level of

parking capacity is given by the area under the demand curve up to the parking capacity

constraint, P=l, minus the area under jBGj; this is also equal to the area under the demand
curve minus the area under the short-run marginal social cost curve up to P=l. Thus, the

parking scarcity rent is the increase in social surplus from relaxing (9) by one unit without

altering the amount of curbside allocated to parking.

Suppose that the parking fee is set below f�, at say f 0. Then there is cruising for parking

in the saturated equilibrium. Since we de�ned the short-run user cost and marginal social

cost curves in the absence of cruising for parking, they no longer apply. The equilibrium full

price and �ow are the same as with f set at f�. Since the full price equals the private cost,

�l(C +T )=P , plus the parking charge, f 0l; social surplus is now the area under the demand

curve up to the parking capacity constraint minus the area under jIHj Compared to the
equilibrium with the optimal parking fee, social surplus has fallen by the same amount as

has revenue. Suppose, alternatively, that the parking fee is set above f�, at say f 00. The

parking capacity constraint no longer binds �parking becomes unsaturated and cruising for

parking disappears. An equilibrium13 occurs at the point of intersection of the short-run

user cost curve (which is now applicable since there is no cruising for parking), shifted up

by the amount of the parking charge, f 00l, and the demand curve, and social surplus is lower

than with the parking fee, f�.

The above discussion applies to the situation portrayed in Figure 4, in which the point E

12But there may also be unsaturated, hypercongested equilibria associated with the parking fee f�. This
possibility can be displayed using a diagram similar to panel B of Figure 6.
13We say �an� equilibrium since there may be multiple points of intersection of the short-run user cost

curve, generalized to admit hypercongestion, and the demand curve. This possibility can be displayed using
a diagram similar to panel B of Figure 6.

16



lies to the left of the intersection of the short-run marginal social cost curve and demand

curve. Suppose instead that the point E lies between the intersection points of the short-

run marginal social cost and short-run user cost curves, and the demand curve. The social

optimum then entails unsaturated parking, while in the absence of a parking fee there is

a saturated parking equilibrium. If the point E lies to the right of the intersection point

of the short-run user cost curve and the demand curve, both the social optimum and the

equilibrium in the absence of a parking fee entail unsaturated parking.

4.6 Optimal parking capacity

In this subsection we investigate social optima and equilibria when the government chooses

parking capacity to maximize social surplus.

De�nition 5 The long-run, steady-state social optimum is the triple (T �; C�; P �) satisfying
T=(mt) � P=l such that social surplus is maximized.

Suppose that this optimum entails unsaturated parking, so that the inequality constraint

does not bind and there is no cruising for parking. Since this supposed optimum entails

congested rather than hypercongested travel, the same steady-state �ow can be achieved at

lower social cost by lowering the amount of curbside allocated to parking. Thus, the long-

run, steady-state social optimum entails the inequality constraint binding, implying that

parking is saturated. Suppose that this optimum entails cruising for parking. The same

steady-state �ow can be achieved at lower social cost by lowering the stock of cars cruising

for parking. Using these two results, we may adopt a less primitive but more operational

de�nition of the social optimum.

De�nition 50 The long-run, steady-state social optimum is the pair (T �; P �), along with

C� = 0, satisfying (9) such that social surplus, given by B(P=l)� �T , is maximized.

De�nition 6 Long-run marginal social cost (msclr) is the increase in aggregate in-transit
cost per unit time, �T , with a unit increase in steady-state congested �ow, varying P so

that parking remains saturated (P = ql) without cruising for parking:

msclr(q) =
@� ~T

@q

�����
(9)

= �l
@ ~T

@P

�����
(9)

: (17)

where ~T (q) is the lower value of T which solves q = ~T=(mt( ~T ; 0;W; ql)) (or equivalently

P=l = ~T=(mt( ~T ; 0;W; P ))).
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There are three components to this cost. The �rst derives from the increase in steady-state

�ow, holding travel speed �xed; the second, from the decrease in travel speed due to the

increased �ow; and the third, from the decrease in travel speed due to the increased amount

of curbside allocated to parking. The increase in the stock of cars in transit due to these

three e¤ects is obtained by total di¤erentiation of (9), holding C �xed at 0, which yields

@ ~T

@P

�����
(9)

=
~T

P
(
1 + PtP

t

1�
~Tt ~T
t

) : (18)

Let ~P=l be the maximum technologically feasible level of �ow. We have already assumed

that D�1(0) =1. The additional assumption thatmsclr(0) is �nite rules out the possibility
that P � = 0. Also, since msclr( ~P ) =1, the �niteness of demand at this level of �ow rules
out the possibility that P � = ~P . Thus, P � is an element of (0; ~P ). Since, furthermore,

the demand and msclr functions are continuous over this interval, the steady-state social

optimum occurs at a point of intersection of these functions. Finally, since we have assumed

that the demand function is decreasing in q and since our assumptions on t(�) imply that
msclr is increasing in q, the point of intersection of these functions is unique. Thus, the

socially optimal level of parking capacity, P �, occurs at the unique point of intersection of

the demand and msclr functions, and satis�es

max
T;P

B(
T

mt
)� �T s:t: (9) : (19)

De�nition 7 The long-run user cost is

uclr(q) = �mt( ~T (q); 0;W; ql) : (20)

Figure 5 displays the long- and short-run marginal social cost functions, and the short-run

user cost function as well as the demand function, in full price-�ow space. The long-run

social optimum occurs at �, the point of intersection of the demand and msclr functions.

As in the short run, long-run marginal social cost may be decomposed into long-run user

cost (which equals the short-run user cost at P = P �), the congestion externality cost, and

the parking externality cost. At the long-run social optimum, the congestion externality

cost equals the vertical distance jJGj and the parking externality cost the distance j�J j.

The �rst-best optimum can be decentralized by setting P = P � and a parking fee
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j�J j : parking congestion component
jJGj : tra¢ c congestion externality component

j�Gj= j�J j+ jJGj : optimal parking fee charge

Figure 5: First-best optimum

f�1 = msclr(
P �

l
)� uclr(P

�

l
)

= msclr(
P �

l
)� ucsr(P

�

l
;P �) : (21)

Thus, we have:

Proposition 2 The �rst-best level of parking capacity solves (19). This corresponds to the
level of steady-state �ow at which the demand curve intersects the long-run marginal social

cost curve. In the �rst-best allocation, parking is saturated and there is no cruising for

parking. The �rst-best allocation is achieved by setting parking capacity at its �rst-best level

and the parking fee according to (21).

The observant reader will have noticed that the relationship between short-run and long-

run cost curves, according to our de�nitions, do not accord with those in conventional cost

theory. The conventional long-run average cost curve is de�ned as the lower envelope of the
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corresponding short-run average cost curves, each de�ned for a particular level of capacity.

Here, in contrast, long-run costs are de�ned as the costs which obtain when capacity is varied

as �ow is varied so as to satisfy the saturated parking constraint, that q = P=l. According

to the conventional de�nition, short-run and long-run marginal social cost coincide at the

optimal allocation. According to our de�nitions, the area under the short-run marginal

social curve up to the optimal level of �ow and with optimal parking capacity equals the

area under the long-run marginal social curve up to the optimal level of �ow. This equality

corresponds to two di¤erent ways of calculating total social cost at the social optimum. The

�rst is to hold constant parking capacity at P � and then to add up the increments to social

cost from increasing �ow unit by unit. The second is to add up the increments to social

cost from increasing �ow unit by unit, continually adjusting the level of parking so that it

remains saturated.

Now consider the second best.

De�nition 8 The second-best optimum conditional on a non-optimal level of the parking

fee is de�ned as the triple (T ��(f 0); C��(f 0); P ��(f 0)) satisfying (8) and (9) that maximizes

social surplus.

There may be multiple equilibria corresponding to a particular f 0 and P . The de�nition

implies that determination of the second-best optimum entails comparing the lowest cost

(and hence entailing congested rather than hypercongested �ow) equilibrium for each (f 0; P )

as P is varied. Determination of second-best optimal parking capacity is surprisingly easy,

at least conceptually.

Proposition 3 Second-best optimal parking capacity (when the parking fee is set at a non-
optimal level, f 0) is such that cruising for parking is eliminated but parking remains satu-

rated.

Proof. Start o¤ with a level of parking capacity for which equilibrium is saturated and

there is cruising for parking. Increase parking capacity incrementally. This causes the

equilibrium to move down the demand curve. Social surplus equals consumer surplus plus

parking revenue, both of which are increased by the movement down the demand curve.

This argument establishes the desirability of increasing parking capacity incrementally when

the equilibrium entails cruising for parking. Now start o¤ with a level of parking capac-

ity for which the equilibrium is unsaturated (and hence involves no cruising for parking)

and so occurs at the point of intersection of the short-run user cost curve for this level of
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parking capacity, shifted up by f 0l, and the demand curve. Now decrease parking capacity.

This causes the short-run user cost curve to shift down, increasing equilibrium �ow, and

hence increasing both parking revenue and consumer surplus. This argument establishes

the desirability of decreasing parking capacity incrementally when the equilibrium is unsat-

urated. The second-best optimal parking capacity is therefore that where equilibrium is on

the borderline between saturated and unsaturated parking �saturated but with no cruising

for parking.

Corollary 2 The second-best optimum with parking fee f 0 occurs at the point of intersection
of the long-run user cost curve, shifted up by f 0l, and the demand curve.

Proof. The long-run user cost function gives the locus of user cost as a function of �ow for
which there is saturated parking and no cruising for parking. Thus, the point of intersection

of the long-run user cost function, shifted up by f 0l, and the demand curve, gives the only

allocation at which equilibrium is achieved and the necessary conditions for the second-best

optimum given in Proposition 3 are satis�ed.

We now investigate the relationship between �rst- and second-best optimal parking capac-

ities.

Proposition 4 Second-best optimal parking capacity is less than/equal to/greater than
�rst-best optimal parking capacity according to whether the on-street parking fee is greater

than/equal to/less than the �rst-best on-street parking fee.

Proof. From the corollary immediately above, second-best optimal parking capacity is

decreasing in the on-street parking fee. The proposition follows immediately upon noting

that �rst-best optimal parking capacity coincides with second-best parking capacity with

the �rst-best on-street parking fee.

4.7 Stability

A complete analysis of the stability of the (unique) saturated, steady-state equilibrium

would be complex. The initial conditions would have to be speci�ed in terms not only of

the stock of cars in-transit, cruising for parking, and parked, but also the corresponding

distribution functions in terms of length of stay in the corresponding pool. The number of

entrants into the system as a function of time would depend on expectations concerning

in-transit time and expected cruising-for-parking time, both as a function of entry time.
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And account would have to be taken of the possibility that the system would get stuck, due

to density exceeding jam density, or that parking might be unsaturated along part of the

adjustment path.

We shall touch on some of the issues by considering a simple variant of the basic model

in which travel distance and visit length are Poisson distributed in the population rather

than being constant. These simplifying assumptions allow the history of the system to

a¤ect the equations of motion only through the stocks of individuals in-transit, cruising for

parking, and parked. We furthermore assume that demand to enter the system at time u is

a function only of the perceived full price of a car with mean m and l at time u, and that

this perceived full trip price is F̂ = �(mt(T (u); C(u);W; P ) + C(u)l=P ) + fl when parking

is saturated, and F̂ = �mt(T (u); 0;W; P ) + fl when parking is unsaturated. Under these

assumptions, the equations of motion when parking is saturated and cars are cruising for

parking are

_T (u) = D(�(mt(T (u); C(u);W; P ) +
C(u)l

P
) + fl)� T (u)

mt(T (u); C(u);W; P )
(22)

_C(u) =
T (u)

mt(T (u); C(u);W; P )
� P
l

; (23)

wherem and l are now the means of the Poisson distributions. When parking is unsaturated,

there are no cars cruising for parking and the equations of motion depend on the stock of

occupied parking spaces, S(u):

_T (u) = D(�(mt(T (u); 0;W; P ) + fl)� T (u)

mt(T (u); 0;W; P )
(24)

_S(u) =
T (u)

mt(T (u); 0;W; P )
� S(u)

l
: (25)

Account also needs to be taken of the possibility of transition between saturated and un-

saturated parking.

We have proved14 that, with the equations of motion (22) and (23), a saturated parking

equilibrium with C > 0 is locally stable. Our investigation of global stability uncovered

two distinct reasons why the saturated parking equilibrium may not be globally stable15.

The �rst, which is intuitive, is that if there is a jam density and if the system starts o¤ in

a situation where the stock of cars in transit exceeds the jam density, the system remains

jammed. The second is that, depending on initial conditions, the system may move towards
14The proofs are available from the authors on request.
15One might argue the possibility of a limit cycle but under our speci�cations a limit cycle is ruled out by

Bendixson�s (1901) Nonexistence Criterion.
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A B

Notes:
1. Congestion function is given by t = t0

1� V
Vj

, where V = C + T is density

and Vj jam density.

2. Demand function is given by f = a� b�mt with a = 11Vj
36mt0

and b =
Vj

36�(mt0)2
.

3. The dashes along _S = 0 for S > P in panel A and for the short-run user-cost
in panel B indicate that in this region parking is saturated so that (24)
and (25) do not apply.

Figure 6: A situation with both a locally stable saturated equilibrium and a locally stable
unsaturated equilibrium with hypercongested tra¢ c

a locally stable, unsaturated parking equilibrium with hypercongested tra¢ c16, at a solution
_T = 0 and _S = 0 for (24) and (25). This situation, portrayed as point E in Figure 6, is

the same as the familiar, diagrammatic depiction of a hypercongested equilibrium, due to

Walters (1961), with the addition of the parking capacity constraint.

5 Numerical Policy Analysis

We start o¤by parameterizing/calibrating a numerical example. We then employ the exam-

ple to perform a couple of policy exercises. The model admits only two policy instruments,

the on-street parking fee and parking capacity.

16There is an unresolved debate in the literature concerning whether stable, hypercongested equilibria
can occur in practice (see Verhoef (2001)). The stable, hypercongested equilibrium in our model appears
logically sound, and the assumed adjustment mechanism seems sensible.
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5.1 Parameterization/calibration

Recall that the steady-state, saturated parking equilibrium is characterized by (3) and

(4). This pair of equations involves a demand function, a congestion function, and several

parameters. The following parameters are assumed:

m = 2:0; l = 2:0; f = 1:0; � = 20:0; P = 3712 :

Units are in miles and hours. The in-transit travel distance is 2 miles; the visit length is

2 hours; the on-street parking fee is $1.00 per hour; the value of time is $20.00 per hour;

and the number of on-street parking spaces corresponds (according to calculations made

below) to parking on one side of every street but not the other. The on-street parking fee

is that charged in downtown Boston; the value of time is somewhat on the high side, but is

chosen taking into account that driving on city streets is less pleasant than on freeways and

that downtown drivers are typically well o¤ and busy. P is calculated using the following

assumptions concerning parameters. The block spacing, b+W , is 0.125 miles; road width,

W , is 0.00625 miles (33 feet); and a parking space is 0.0040 miles (21.12 feet) long and

0.002083 (11 feet) wide. With allowance made for crosswalks (7.26 feet or 0.001375 miles)

at each end of a block, 29 cars can be parked on one side of a block. Assuming parking on

one side of the street, and hence on two sides of each block, implies 58 cars parked around

each block and, with 64 blocks per square mile, 3712 parking spaces per square mile.

We shall employ a simple speci�cation of the congestion technology. The general form

is t = t(T;C;W;P ). We particularize as follows. Assume, �rst, that the function is

weakly separable between (T;C) and (W;P ); refer to the sub-function V (T;C) as the

e¤ective density or volume function, and !(W;P ) as that e¤ective capacity function. Sec-

ond, assume the travel time depends on the volume-capacity ratio, as is standard, so that

t = t(V (T;C)=!(W;P )). Let the volume function be V = T + 1:5C, so that a car cruising

for parking contributes 1.5 times as much to congestion as a car in transit. Last, assume

that Greenshield�s relation (1935) holds, so that the velocity of cars is a negative, linear

function of tra¢ c volume, with free-�ow velocity �v (= 1=t0)and jam density or volume Vj .

With these assumptions,

t =
t0

1� V
Vj

: (26)

Finally, we assume that jam volume equals a constant, 
, times the fraction of the road not

designated for parking, implying that

Vj = 
(1�
P

11136
) : (27)
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This form of the congestion function is consistent with intersection congestion theory

(Arnott (1990)). We assume t0, free-�ow travel time, to be .05 hours per mile, which

corresponds to a free-�ow travel speed of 20 m.p.h. A standard estimate for the elasticity

of demand for peak-period tra¢ c is 0.2, and the constant is chosen so that the mean full

price of a trip in the base situation described is $15. Thus,

D(F ) = D0F
�0:2 (28)

with D0 = 3190:04. Making the additional assumption that in the base case equilibrium 30

percent of cars on the road are cruising for parking allows us to calibrate 
 = 2667:2.

5.2 Policy exercises

We shall perform a number of policy exercises. The parameters for each exercise are recorded

in Table 2, and the results are recorded in Table 3.

f = 1; P = 3712
(Base Case)

f�; P = 3712 f = 0; P �� f�; P �

m 2.0 2.0 2.0 2.0
l 2.0 2.0 2.0 2.0
� 20.0 20.0 20.0 20.0
b 0.11875 0.11875 0.11875 0.11875
W 0.00625 0.00625 0.00625 0.00625
t0 0.05 0.05 0.05 0.05
D0 3190.04 3190.04 3190.04 3190.04

 2667.2 2667.2 2667.2 2667.2
Vj 1778.2 1778.2
f 1.0 0
P 3712 3712

Notes:
1. * denotes �rst-best
2. ** denotes second-best
3. Blank cells correspond to endogenous variables

Table 2: Model Parameters: Basic Model

We start o¤ with the base case. Recall that it was calibrated so that, with half the curbside

allocated to parking and a parking meter rate of $1.00/hr., 30 percent of the cars on the

road are cruising for parking in the saturated steady-state equilibrium. The situation is

therefore one of heavy but not extraordinarily heavy congestion. Travel speed is 4.4 m.p.h.,
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f = 1; P = 3712
(Base Case)

f�; P = 3712 f = 0; P �� f�; P �

T 844.5 210.5 349.5 302.7
C 361.9 0.0 0.0 0.0
V 1387.5 210.5 349.5 302.7
P 5248 4839.0
t 0.2275 0.05671 0.06641 0.06255
1
t 4.396 17.63 15.06 15.99
�mt = �T l

P 9.100 2.268 2.656 2.502
Cl
P 0.1950 0.0 0.0 0.0
�ClP 3.900 0.0 0.0 0.0
f 6.366 0.7412
F 15.00 15.00 2.656 3.984
RC 13.00 2.268 2.656 2.502
�SS 19919 22421 22624

Notes:
1. Blank cells correspond to exogenous variables.
2. All �gures are computed on the assumption
that the marginal cost of public funds equals one.

Table 3: Numerical Solutions: Basic Model

and the average cruising-for-parking time is 0.2 hours (or 12 minutes). The full trip price is

$15.00, comprising $9.10 for in-transit travel time cost, $3.90 for cruising-for-parking time

cost, and $2.00 for parking at the destination. The user cost, which equals the resource cost

per individual, RC, is $13.00 per hour.

The �rst policy exercise we perform is to raise the parking fee to the optimal level, where

cruising for parking is just eliminated (consistent with Proposition 1), holding constant the

proportion of curbside allocated to parking. This level is $6.37/hr. Recall from the earlier

discussion that this does not alter the entry �ow, which is determined by the steady-state

condition that the entry �ow equal the exit rate from parking, since P is held constant

and since the equilibrium remains saturated. Thus, the full trip price does not change but

its composition does. Eliminating cruising for parking reduces congestion by so much that

travel speed increases to 17.6 m.p.h., so that in-transit travel cost falls to $2.27, of which

$0.27 is due to congestion. In the base case, the individual cost of congestion � the value

of time lost due to congestion was $11.00, $7.10 of which is the value of time lost in transit

due to congestion (the in-transit time cost less what it would be with free-�ow travel) with

the remainder being the value of time lost cruising for parking. Raising the parking fee

therefore eliminates 97.5% of the congestion cost. Since the full price remains unchanged,
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the per capita revenue raised from the toll exactly equals the reduction in the congestion

cost. As noted earlier, the parking fee revenue is therefore raised with no burden at all.

This policy generates a gain in social surplus (�SS) of $19919 per sq.ml.-hr. If parking

remains saturated for twelve hours a day, from say 7:30 a.m. to 7:30 p.m., on each of 200

business days a year, this translates into a gain of $47.8 million dollars per sq.ml.-yr.

We now consider the second-best amount of curbside to allocate to parking when parking is

provided free, taking into account that increasing parking capacity decreases jam density.

This is obtained as the solution to (3) and (4) with f and C set equal to zero. The optimal

amount of on-street parking is 5248 spaces per square mile, which corresponds to allocat-

ing 70.7 percent of curbside to on-street parking. With this increase in parking capacity,

congestion almost disappears, cruising for parking is eliminated but parking remains sat-

urated (consistent with Proposition 3), and in-transit travel costs fall to $2.66. Thus, in

this example, though not in general, most of the deadweight loss caused by underpricing

curbside parking is eliminated by a signi�cant increase in the amount of on-street parking

provided. Since demand is not completely inelastic, the corresponding reduction in the full

trip price from $15.00 to $2.66 causes the throughput to rise from 1856 cars per sq.ml.-hr.

to 2624. The gain in social surplus relative to the base case may be calculated as the gain

in consumer surplus plus the increase in toll revenue raised. The gain in consumer surplus

per sq.ml.-hr. is $26133 and the loss is revenue is $3712, for a total gain of $22421.

Our third policy exercise is to solve for the social optimum and the parking fee which

decentralizes it. The amount of curbside allocated to parking is increased from 50 percent

in the base case to 65.2 percent at the �rst-best optimum, and the meter rate is reduced

from $1.00/hr. to $0.74/hr. As a result of these changes, cruising for parking is eliminated

with parking remaining saturated (consistent with Proposition 2) and travel speed increases

from 4.4 m.p.h. to 16.0 m.p.h. The e¢ ciency gains in moving from the base case to the

full social optimum are $22624/sq.ml.-yr. Let us compare the �rst-best and second-best

optimum with free parking. Consistent with Proposition 4, when the parking fee is set

below its �rst-best optimal level, as is the case in this comparison, the second-best amount

of on-street parking exceeds the �rst-best level. Also, the social surplus is of course larger

in the �rst- than the second-best allocation, though in the example not by much.

6 Extensions

The basic model presented in the previous sections was useful in developing a conceptual

framework for the integrated analysis of on-street parking and tra¢ c congestion under
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saturated parking conditions, an essential element of which is cruising for parking. It is

too simple however to be used as a basis for practical downtown parking policy. Most

importantly, it omits two essential elements � o¤-street parking and alternative modes of

transportation. Ch.2 in Alleviating Urban Tra¢ c Congestion (Arnott, Rave, and Schoeb,

forthcoming) extends this paper�s model to treat these two essential elements. In this

section, we consider the e¤ects of modifying some of the model�s other elements.

Dynamics: In Section 4.7 on the stability of steady-state equilibrium, we considered dy-
namics with a stationary demand function. The simplest way to extend that analysis to a

non-stationary demand function is to assume, as is done in the bottleneck model (Vickrey

(1969)), that there are schedule delay costs as well as travel time costs, and that travel

time over the rush hour evolves so that the equilibrium utility level is constant over the

departure period.

Spatial heterogeneity: The assumption that the downtown area is spatially homogeneous
considerably simpli�ed the analysis. In fact, of course, there is considerable variation in

the number of trips by block in the downtown area. With spatial homogeneity it was

natural to assume that individuals look for parking on their destination block. But with

spatial heterogeneity, it is natural to assume instead that individuals decide which block

to search for parking on so as to minimize the sum of expected cruising-for-parking costs

and walking costs. Another complication is that with spatial heterogeneity, on some trips,

such as for shopping, individuals have a choice of destination. Practical application of any

downtown parking model requires the simultaneous treatment of both dynamics and spatial

heterogeneity. Their simultaneous treatment should introduce no new conceptual issues but

will be computationally challenging.

Individual heterogeneity: Individuals can di¤er according to their demand functions,
trip lengths, visit durations, values of time, and behavior in tra¢ c, as well as in the cars they

drive. The previous analysis can be extended straightforwardly to treat all these elements

of heterogeneity. Policy variables may be conditioned on observable but not unobservable

characteristics. In the basic model, there is no scope for sorting. But in more complicated

models, sorting may occur on the basis of both observable and unobservable characteristics.

Sorting between on- and o¤-street parking occurs in the sequel to this paper. Sorting would

occur in an extended version of the model of this paper in which di¤erent parking fees are

charged for di¤erent meters17.

Trip length and visit duration: The model allows for the possibility that individuals
will vary the number of trips they take downtown according to the full trip price. Other
17Those with higher values of time and shorter parking durations would choose the parking spots with

the higher meter rates since the expected cruising-for-parking time for them would be lower.
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behavioral margins are the trip length m and visit duration l. We know of no empirical

work investigating the responsiveness of behavior on these margins to full trip price.

Illegal parking: Rather than cruising for on-street parking, an individual may choose
instead to park on street in an undesignated parking spot, to double park or to park on

the sidewalk. We implicitly ruled these choices out but in some cities such behavior is

commonplace. Analyzing these alternatives will require modeling parking enforcement (see

Calthrop (2001b)). Double parking also arises when individuals stop and wait for a parking

spot to be vacated rather than circling the block.

Entry and exit parking congestion: This paper is the �rst to analyze the e¤ect of
cruising for parking on tra¢ c congestion. There is another channel through which on-

street parking contributes to tra¢ c congestion � entry into and exit from on-street parking

locations. This could be modeled by making the travel time function dependent on not only

the density of cars in transit and cruising for parking but also the turnover rate of on-street

parking18.

Resident parking: Most cities have on-street resident parking even in the downtown area.
The model could accommodate this by assuming that there are two groups of individuals,

residents and non-residents. Upon completion of a visit, a non-resident would simply exit

the system � as occurs in the basic model � but a resident would return home and park

on street there. The government would then have four policy instruments, the resident and

non-resident parking fees, and the curbside allocated to resident and non-resident parking.

A political economy module could be added to explain observed policy choices.

Through tra¢ c: The paper ignored through tra¢ c19. In our paper, by reducing cruising
for parking a rise in the on-street parking fee was able to reduce tra¢ c congestion consid-

erably. The corresponding bene�ts could be substantially diminished if the reduction in

tra¢ c congestion induces a substantial increase in through tra¢ c.

7 Concluding Comments

This paper has explored the properties of a simple model that integrates saturated, on-street

parking and tra¢ c congestion. Since cruising for parking for a longer time raises the full trip

price, the stock of cars cruising for parking adjusts to clear the market for on-street parking.

A central element of the model, which will play a more important role in the sequels to the

paper, is that cars cruising for parking add to tra¢ c congestion. One major result is that,
18We thank Marvin Kraus for this point.
19We thank Ken Button for this point.
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whether or not the amount of on-street parking is optimal, it is e¢ cient to raise the on-street

parking fee to the point where cruising for parking is eliminated without parking becoming

unsaturated. The full trip price and hence consumer surplus is unchanged, and revenue is

generated for the government. Another major result is that if the parking fee is �xed at a

sub-optimal level, it is second-best optimal to increase the amount of curbside allocated to

parking until cruising for parking is eliminated without parking becoming unsaturated20.

The model is a useful �rst step towards the development of an integrated model of downtown

parking and tra¢ c congestion that can be employed in practical policy analysis. But in its

current form it is too simple to provide useful policy prescription. It omits two practically

very important features of downtown transportation � o¤-street parking and alternative

modes of transportation, of which mass transit is especially important. These features will

be added to the model in a pair of sequel papers. We now discuss brie�y why it is essential

to consider these two features in deciding on downtown parking policy.

Consider �rst adding private o¤-street parking to the model of this paper, and to simplify

assume that the overall demand for downtown trips is �xed. With identical individuals,

the time spent cruising for on-street parking will adjust such that the full prices of on-

and o¤-street parking are equalized. That on- and o¤-street parking are perfect substitutes

should eliminate private o¤-street parking operators�market power. In this environment,

raising the on-street parking fee will generate a �triple dividend.�Not only will time lost

cruising for parking be converted into revenue, but also the reduction in tra¢ c congestion

will cause the full price for o¤-street parking and hence the equilibrium full price to fall.

The situation is more complicated if individuals are heterogeneous. If there is cruising for

on-street parking, individuals will sort themselves between on- and o¤-street parking on the

basis of both observable and unobservable characteristics. On- and o¤-street parking will no

longer be perfect substitutes and, since o¤-street parking facilities are typically located some

distance from one another, o¤-street parking operators will have market power, which they

will exercise through setting parking fee schedules that are non-linear in parking duration.

In such a setting, if the on-street parking meter rate cannot be set at the e¢ cient level, the

determination of optimal parking policy, which may include time restrictions for on-street

parking, becomes a complicated exercise in the theory of the second best.

Incorporating mass transit into the model would be routine were it not for the economies

of scale mass transit exhibits. To exploit these scale economies, the City of Boston has a

policy of restricting the amount of o¤-street parking. Doing so, it reasons, will raise the

relative price of o¤-street parking, which will encourage modal switching to mass transit,

lowering the full price of mass transit and hence the equilibrium full price. With identical
20This result no longer applies when there is o¤-street as well as on-street parking.
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individuals, this reasoning is sound. But with individual heterogeneity, the e¤ects of the

policy are far more complicated and its wisdom is open to question.

In the model presented in this paper, it is e¢ cient to raise the on-street parking fee so

that cruising for parking is eliminated without parking becoming unsaturated. This result

appears to be very robust, continuing to apply when o¤-street parking, mass transit and

individual heterogeneity are introduced. Why then do local governments virtually every-

where persist in setting the on-street parking fee below the e¢ cient level21? This question

points to the probable importance of introducing political economy into the policy analysis.

21 In downtown Boston, on some streets parking is restricted to residents, on others it is provided free, and
on others there are meters with a $1.00/hr. fee. A variety of time restrictions is also employed.
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