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Abstract

Volatility tests are an alternative to regression tests for evaluating

the joint null hypothesis of market efficiency and risk neutrality. A

comparison of the power of the two kinds of tests depends on what the

alternative hypothesis is taken to be. By considering tests based on condi—

tional volatility bounds, we show that if the alternative is that one could

"beat the market" using a linear combination of known variables, then the

regression tests are at least as powerful as the conditional volatility tests.

If the application is to spot and forward markets, then the most powerful

conditional volatility test turns out to be equivalent to the analogous

regression test in terms of asymptotic power. In other applications, the vola-

tility test will be less powerful than regression tests against our chosen

alternative. However, these results are not inconsistent with the observation

that volatility tests may be more powerful against other alternative hypoth-

eses, such as that risk—averse investors are rationally maximizing the

present discounted utility of future consumption, with a time—varying discount

rate.
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I. Introduction

There are two ways to go about testing the joint hypothesis of efficiency

and risk neutrality in a particular financial market. First, regression

tests compute conditional first moments; they look for bias conditional on

a given information set. For example, in a forward or futures market (e.g.

commodities or foreign exchange), the deviation of the next period's realized

spot rate from the current one—period forward rate should be uncorrelated

with variablea known currently. An analogous condition holds in a longer—

term asset market (e.g. stocks or bonds): the deviation of the present dis-

counted value, assuming it is observable, of realized future returns (dividends

or coupon payments), from the current asset price should again be uncorrelated

with variables known currently. Second, the volatility tests introduced by

Shiller (1979) and LeRoy and Porter (1981) compute second moments; they compare

1
variances. In a forward market this would mean comparing the variance of

the spot rate and the variance of the forward rate. The joint null hypothesis

of market efficiency and risk neutrality implies that the forward rate is less

volatile than the spot rate. In a longer term asset market it would mean

comparing the variance of the return with the variance of the asset price.

The hypothesis implies that the asset price is less volatile than the return,

in a specific sense.

A natural question to ask is which kind of tests, the regression tests

or the volatility tests, is more powerful, is better able to reject the hypoth-

esis in the event that it is false. As is often the case with questions of

power, the answer depends on what the alternative hypothesis is. In this

paper we take the alternative to be a particular failure of rational expecta-

tions or market efficiency. The alternative hypothesis is that one could
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"beat the market" on average, using a linear combination of data in a particu-

lar information set. We show that in all cases the regression tests are at

least as powerful against this alternative as the volatility tests.

In the case of spot and forward rates a comparison of simple uncondi-

tional variances tells us very little. Empirically, the unconditional sample

variance of the spot rate differs negligibly from the unconditional sample

variance of the forward rate. We argue in Section II that such considerations

suggest comparing the variances conditional on some particular information

set, which is analogous to what we do in regression tests. The most powerful

test will compute a variance conditional on an optimal linear combination of

known variables. It is perhaps intuitive and unsurprising that the optimal

linear combination turns out to be the same as the estimates one would get

from a regression on the same set of known variables. It is perhaps more

surprising that this most powerful volatility test also turns out to be

equivalent to the analogous regression test in terms of asymptotic power.

That is, as the number of observations becomes large, the volatility test is

no more and no less likely to reject the variance inequality than the coeff 1—

cients in the regression test are to differ significantly from zero. We prove

this central result of the paper in Section III.

In the case of longer—term assets the power equivalence result does not

hold. In Section IV we apply the principle that generated the class of

volatility tests for spot and forward rates to the analogous variance rela—

tionship between the one—period interest rate and the one—period holding

yield on a long—term coupon bond. In this case, the variance test that is most

powerful against the alternative that the deviation can be predicted by
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a linear function of the information set, will not be as powerful as the

corresponding regression test.

The difference in results between the spot/forward case and the longer—

term asset case has a simple explanation. Upper bounds on the volatility of

long—term asset prices and returns take into account restrictions imposed by

the present discounted value formula. When the alternative hypothesis (that

one could use the information set to "beat the market") looks only one period

ahead, it is not surprising that a regression test designed to detect this

alternative does better than a volatility test that is burdened by the extra

baggage of the present value relation. However, the present value relation

for the forward rate involves only one future date. Thus the extra baggage

of the long—term discounted summation is absent in the case of spot and

forward rates. As a result, it makes sense that regression tests do better,

relative to the corresponding volatility tests, when applied to longer—term

asset markets than when applied to spot and forward markets.2

Do these results constitute an indictment of volatility tests as being

inferior to regression tests? Absolutely not. We stated at the outset that

we take the alternative to the null hypothesis to be a particular failure of

rational expectations, that one could beat the market given a particular

information set. All our power results refer to this alternative. But there

are other possible alternative hypotheses. One could question instead the

risk—neutrality component of the joint null hypothesis. In particular,

Grossman and Shiller (1981) and LeRoy and LaCivita (1981) consider the alterna-

tive hypothesis that risk—averse investors are rationally maximizing the

present discounted value of future consumption, subject to a time—varying
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discount rate. What is extra baggage when seeking to diagnose the pathology

of market inefficiency, is just the kit the doctor ordered when seeking to

diagnose risk—aversion.3

Thus our results are consistent with Shiller's (1981) view of the relation—

ship between volatility tests and regression tests: "My initial motivation

for considering volatility measures in the efficient markets models was to

clarify the basic smoothing properties of the models... . [T]he procedures

ought not to be regarded as just 'another test' of market efficiency" (p. 291).

The volatility tests are optimally designed to test the degree to which asset

markets are able to smooth out the path of consumption. When the null

hypothesis has no intrinsic smoothing property (i.e. unbiasedness in the

forward rate), volatility tests will detect nothing more than will regression

tests (our Section III result). When the null hypothesis does embody the

smoothing property (i.e. asset prices as the present discounted value of

future returns), but the alternative hypothesis bears no relationship to

smoothing, then volatility tests are able to detect less than regression tests

(our Section IV result).

II. Volatility Bounds for Spot and Forward Rates

The rational expectations/efficient markets hypothesis is commonly

taken to imply that

(1) Sf1 = F + ' = 0

where E(.) E(.JI) is the expectation conditional on the information

set . This implies a simple variance inequality:
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var S1 = var Ft + var + coy FtCt+i

(2)
� var Ft , since coy Fe+1 = 0 under the hypothesis.

One might be tempted to test this bound. However, a casual glance at the

sample variances for selected exchange rates (Table 1) indicates that the

sample variances corresponding to (2) are almost equal; although no formal

test is performed, it seems very unlikely that the inequality (2) would be

rejected.4 This finding will not be surprising to anyone who has ever seen

a plot of the spot and forward rate over time. The two fluctuate enormously, but

in tandem. There may be a finite component of the one—period change in the

spot rate that is correctly foreseen by the forward rate; but if so it is

dwarfed by the magnitude of the total change in the spot rate, and the very

similar magnitude of the change in the forward rate.

This observation suggests pursuing the course discussed in the introduction,

that is, developing a more powerful volatility test of market efficiency. A

reasonable class of t-ests to consider, which generalizes that based on (2),

looks at deviations around a mean conditional on an available information set.

This is analogous to regression tests, in which we compute means conditional on

particular information sets; the larger the information set, the more powerful

the test.5 Specifically, if Z Is in l , then

var(S+1_Zt) var(F_Zt+Et÷i)

= var(F_Z) + var(c+i) + 2cov(F_Zt,Et+i)

Under the null hypothesis (1), cov(Z,E+i) = 0 . This results in the bound:



Table 1: variances around the sample mean

June 1973—April 1982

7

Currency

Canadian dollar

French franc

German imark

Japanese yen

Pound sterling

Spot Rate

.00566866

.00046331

.00402365

• 00000036

.0637202

Forward Rate

00561098

.00047980

.00431700

• 00000038

.0632473
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(2') var(F_Z) � var(S+1.-Z)

For the tests considered in the paper, we take this notion of examining

deviations about a nonconstant variable Z one step further. From the

familiar decomposition that mean square error is variance plus the square

of the bias, a reasonable generalization of (2') is to consider a mean

square error bound; that is, to consider a bound based on moments that in

general could be noncentral, rather than the simple central moments examined

so far. We now consider noncentral moments. Since

= Ft_Z+t+i and EF+i = EtZtEt+i
= 0

we have E(S+1_Z)2 = E(F_Z+E+i)2 E(F_Z)2 + EE2÷1

Thus, under the null hypothesis,

(3) E(F_Z)2 � E(S+1_Z)2

This Inequality provides a basis for developing more exacting volatility tests

of (i) sInce it explcItlv emolovs the assumption that Z. is in I.- t C

Furthermore, the inequality (2) is a special case of (3) in which

Z = E(S÷1)
= E(F) is constant.

It is interesting to note that (3) can also be arrived at by an altogether

different line of reasoning than the motivation of increasing the power of the

test. An important cause for concern related to any statistical implementation

of the bound (2) falls under the general rubric of nonstationarity. Non—

stationarity comes in many flavors; two of the most popular among econometri—

cians are the existence of a time—dependent mean and the nonstationarity
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associated with a process having unit roots, so that the variance of the

process is infinite. These two variants of nonstationarity seem particularly

applicable to the foreign exchange data at hand. In the first ease, the

strong trends exhibited by exchange rates over the 1970s could be modeled as

deterministic, although they may logically stem from nondeterministic

factors such as inflation. In the second case Meese and Rogoff (1983)

demonstrate that spot exchange rates cannot be modeled better than by a random

walk. Even if the spot rate process in reality has finite variances, this

suggests difficulty in estimating variances of the process in any finite

sample. Both of these concerns suggest deriving bounds with conditional means

and computing sample moments around means that vary over the sample period;

in other words, the bound (3) can be seen as a simple way to defend against

the perils of nonstationarity.6

As an example of a volatility bound implied by (3) which also seems

to be a reasonable correction for this possible nonstationarity, let Z

be the lagged spot rate. Thus, assuming lagged spot rates are in the informa-

tion set, (1) implies that

2
(4) E(Ft — Sri) � E(S+i_St1)

The sample variances associated with this bound are presented in Table 2.

For this data, the bound is satisfied in all cases considered, so no formal

test of significance is necessary to see that market efficiency as embodied

in (4) cannot be rejected.

Can we devise a still more difficult volatility test of market efficiency

than (4)? Indeed we can. If we define the test statistic



Table 2: Variances around the lagged spot rate

10

Currency

Spot Rate

Mean (S+i — Si)2

Forward Rate

Mean (F — Si)2

Canadian dollar

French franc

German mark

Japanese yen

Pound sterling

.00028153

.00008562

• 00046910

4.40 l0
• 00811008

.00015118

.00004632

.00039569

2.20 x 108

.00376687
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R(Z) 1 —
E(S+i_Zt)2/E(Ft_Zt)2

then (3) can be rewritten as

(3') R(Z) � 0

A value of the test statistic significantly above zero would constitute a

rejection of the null hypothesis: forward rates would be too volatile

relative to spot rates. Given the nature of the null hypothesis, a reasonable

choice for Z (which plays the role of the conditional mean of S1 ) is

that Z = Ft + , where is a mean—zero, nonconstant,univariate

series assumed to belong to . Since the bound (31) holds for all scalar

we should select the value of for which a test based on

(3') is as likely as possible to reject the null hypothesis. Letting

2 2
R(Z) 1 — (S+1_Z) /(F—Z)

this suggests testing (3') using the statistic based On the solution to

(5) max R(F+X)

Letting * be the value of which solves (4), a somewhat surprising

result obtains:

(6) R(Z) =

22 1/2 .
where = is the sample correlation coefficient

and where t+l = S1 —
Ft

The proof of (6) is easy: since (F+X) = 1 — , to
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solve (5) it is merely necessary to solve:

mm

which has the solution = . Substituting this statistic

into the definition of R(F+X) yields the result. It thus appears that the

most discerning volatility test based on a statistic of the form R(F-4-3X) is

equivalent to the correlation coefficient, which arises from considering

regression tests! Of course, this argument is not based on formal power consid—

eratibns. However, as is shown in the next section, among this class of

volatility tests the "most discerning" test is in fact asymptotically most

powerful against the (local) alternative that and are correlated.

Intuitively, the question whether the correlation coefficient is signifi—

cantly greater than zero is the same as the question whether the regression

coefficients are significantly greater than zero.7

III. Formal Statement of the Result

In this section we examine the power of the volatility tests of the

previous section against the alternative that and X are correlated.

The proof uses asymptotic statistical arguments. Specifically, it compares

asymptotic approximations to the power functions of test statistics based on

(F+X) , where is permitted to be any function of data as long as

when standardized, has a limiting distribution with all its mass on the real

line. Since the power of a test based on the statistic (6) will go to one

when the covariance between X and t+l is bounded away from zero, we

adopt the conventional asymptotic approach of considering a local alternative
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under which this covariance tends towards zero as the sample size tends

towards infinity.

The proof itself has two parts. First, the class of random variables

that need to be considered is narrowed down to those which tend to zero

in probability under the local alternative. Second, it is possible to appeal

to the results of the previous section to show that, of the variables with

this property, the solution to the maximization problem (4) does indeed

yield the asymptotically most powerful test.

For the statement of the result, it is convenient to reparaineterize the

problem. Let the local alternative be = Tl'26 , where T is the number

of observations and 6 is some nonzero, finite fixed number. Let =

Let be the set of all random variables which are functions of the

data (possibly degenerate——that is, possibly a constant) and are such that

T1"2(q—q) has a limiting distribution on the real line. Also, let q* be

that element of such that the one—sided test of the restriction (3) has

the greatest local asymptotic power of all tests of level a based on

A --—1 2 2
R(F+d, X) . Let Y = (c'C/T C'X/T X'X/T)' and let =

where ' denotes the transpose of the column vector formed from the observa-

tions of 2 .., . Also, assume that T2(Y_U) has a

limiting normal distribution with positive definite covariance matrix

We now have:

Proposition.

The level a test based on R(F+*X) is asymptotically equivalent

to the level a test based on the t—statistic of the slope coefficient in

the OLS regression of t+l ° X . Furthermore, * = X'C/C'E
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Proof

First we use the "delta method" to find the limiting distribution of
—

the standardized random variable based on R(F+ X) . Let = plim

and let a = . Also, let r() = plim(R(F+ 1X)) , which will

exist by the assumption that Y when standardized will have a limiting distri—

bution and because R() is continuous in Z . Then

(7) T2(R-r) N(O,T()2)

where = a'a and 4 = plim4 . Since a is continuous in p

T2(c) is continuous in

Since the null hypothesis is that R < 0 , we wish to find the statistic

of the form (7) that has the greatest chance of R exceeding zero under the

local alternative. One approach to this problem is to compute t()

directly for many statistics , and to compare the limiting behavior under

the local alternative. However, this would be difficult, sInce the candidates

must be specified in advance.

This problem can be sidestepped by noting that a necessary condition

for a test of the form (7) to have nonnegligible power is that r � 0

otherwise P(R > 0) —- 0 as T ÷ by definition of convergence in probability.

Thus we can restrict our attention to those which result in T1/2R having

a limit which is bounded in probability away from — .

It is easy to see that in fact TIJ2R must be bounded in probability

(be 0(1)) . By definition,

(8) Tl/'2R = T'2(l - (2€—2q'X+X'X)/X'X)
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I I-
XX/T

-
X'X/T

By assumption, 4) 4) , X'X/T , and E'c/T - a Also, under the

local alternative, c,X/T'2 has a limiting law on the line. Thus, by

1/2"
—

Slutsky's Theorem, T R is bounded above in probability for all 4)

so r � 0 . Thus we can restrict attention to 4) such that r = 0 , i.e.

such that T112R = 0(1). But, by (8), this will occur only if T1124) = 0(1)

which in turn implies that 4) 0

The result follows from this requirement, since it implies that, for all

4) yielding nonnegligible power against the local alternative,

T112R N(0,T(0)2) under the null hypothesis. Furthermore, since T(4))

Is continuous, the variance of the limiting distribution of T112R under

the local alternative will be T(0)2 for all contenders 4) . Thus the

problem reduces to finding the function 4) such that R is maximal for all

4) satisfying T1124) = 0(1) . Since 4)
= c'X/' was shown to solve this

problem among all functions of the data, and since under the local alternative

l/2 - -
T = 0 (1) , we have cp' E'X/E'E

The asymptotic equivalence to the regression test follows from noting

that, under the null hypothesis, the t—statistic for the slope coefficient

of the OLS regression satisfies Tt2 = (E'X)2/(X'X)(u'u) , where

u = — , with = e'X/X'X . However, under the local alternative,

(c—u'u)/T converges to zero in probability. Thus T1t2 Is

asymptotically equivalent to =

IV. Conditional Variance Bound Tests for Long Term Bonds

Will the "model specific" conditional variance bound tests of Section II
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be equivalent to regression tests when the tests are applied to the present

discounted valuation of longer term assets rather than to forward/spot rela-

tionships? The results of this section suggest that they will not.8

This is demonstrated by considering an upper bound on the volatility

of one—period holding yields, defined as capital gains plus interest payments,

on an infinitely—lived coupon bond. This bound, originally derived by Shiller

(1979), rests on a linearized expression for the long—term interest rate as

a weighted average of expected future short—term interest rates:

(9)
= (1 n)l(11)nl kE

where is the n—period interest rate, r is the one—period interest

rate, and y is a constant with 0 < < 1 .' Shiller presents a formula

linearly approximating the one-period holding yield on this bond (H)

(10)
=

where y = (1_1fll)/(1_1fl) . For an infinitely—lived bond, using (9) and

(*x) (co)
(10) and letting Rt R and Ht Ht , one obtains

k k
(11)

= r — [Et+l(Ekl ' rk) — Et(Ekl 'y r)]

This relates the holding period yield to the current short rate and revisions

in expectations of future short rates. Intuitively, if expectations of future

rates are revised upwards, there is a capital loss on bonds this period that

reduces the current ex post holding yield below the current interest rate.

The (approximate) market efficiency requirement (11) readily yields a

bound on the volatility of Ht . Letting E E÷1_E
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ak
var(H) = var(r) + var(E1y r+k)

2k= var(r) + y var(Sr+k)

2k� var(r) + Zy var(r+k)

2 —1= (l—y ) var(r)

where the assumption of stationarity was used In the last line. However,

(11) can also be used to derive a conditional bound. Assuming Z to

be in the Information set,

2 °°k 2
(12) E(Ht_Z) = E((r.Z) —

= E(r_Z)2 +

� E(r-Z) + y2(1_2)var(r)

which provides a bound on the volatility of Ht around time—varying variable

zt

Clearly the bound (12) is not as tight as its analog pertaining to spot

and forward rates (3) because of the last term. Thus a simple model—specific

volatility test based on (12) with, say, = r + , where X is

presumed to be in the Information set, cannot be expected to perform as well

as a regression test of the restriction cov(H_r,X) = 0 when the alterna-

tive hypothesis Is that this covariance is nonzero.

V. Conclusion

In this note we examined second moment bounds of two types: those based

on the fact that the variance of a conditional expectation (the forward rate)
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is no more than the unconditional variance of the random variable (the spot

rate), and those derived from a net present discounted valuation relation which

place an upper bound on holding yields for a long—term asset. We find that

volatility tests of the first type can be expected to do no better than conven-

tional regression tests of market efficiency. At best, when the volatility

test is modified to be conditional on available information, it does as well

as regression tests with the same set of information. However, this does not

appear to be the case for tests of the second type of bound, since these

bounds incorporate structure from the present discounted valuation relation

which is untested by simple regression tests. In this case the volatility

tests are less powerful than regression tests against the alternative that

once can beat the market using a linear combination of variables in the

Information set. However, the volatility tests may be more powerful against

other alternatives, such as the hypothesis of Grossman and Shiller (1981)

that risk—averse investors are rationally maximizing the present discounted

utility of future consumption, with a time—varying discount rate.
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FOOTNOTES

1. Other papers on volatility tests include Flavin (1982), Grossman and

Shiller (1981), LeRoy and LaCivita (1981), Michener (1982), Shiller

(1981a, b) and Singleton (1980).

2. Geweke (1980) also examines the behavior of volatility tests against an

alternative of this type. He demonstrates that there are regions of

the parameter space in which regression tests will reject but volatility

tests will not. Our results differ from his in two ways. First, we

consider an expanded class of volatility bounds (3). Second, we demon-

strate that there is a conditional volatility test with the same asymptotic

power as the corresponding regression test against this particular alter-

native. In fact, his conclusion that regression tests dominate uncondi-

tional volatility tests is implied by the Proposition in Section III.

3. This alternative is also discussed by Michener (1982). Stock (1982)

shows that volatility tests can indeed be more powerful than regression

tests when the alternative hypothesis is that risk—averse investors are

rationally maximizing the present discounted utility of future consump-

tion. As a result, the discount rate in the asset valuation relation

varies over time with the marginal utility of consumption. Yet another

alternative hypothesis raised by Shiller (1981), and further examined by

Summers (1982), is that asset prices are subject to slowly changing fads.

4. Our forward rates are 30—day forward. Both spot ana forward rates are

bid rates, 10 am., last day of the month, in dollars per national

currency, obtained originally from D.R.I. Flood (1981, p. 220) comments

on the "striking fact" that spot and forward exchange rates "have about
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the same degree of volatility." However, his computations use a measure

of the variance somewhat different from ours.

5. In the terminology of Fama (1970), the larger the information set, the

"stronger form" is the test. For one of many such regression studies of

the forward exchange market, and for references to others, see Frankel

(1980).

6. Meese and Singleton (1980) point out the perils of performing naive

comparisons of unconditional sample variances of exchange rates when the

theoretical variances may be infinite.

7. The results of this paper hold for the case that is one—dimensional.

If instead X is k—dimensional and is a k—vector, then a result

analogous to that of this section holds: letting * be the vector which

maximizes (F+X8) , it can be shown that = R2 , where is

the ratio of the explained to the total sum of squares from the ordinary

least squares regression of on . Thus our results generalize

in a straightforward way to the multi—dimensional case. However, for

simplicity we limit the discussion in the paper to the one—dimensional case.

8. The crucial difference is not that we are now thinking of the bond market

whereas in the previous sections we were thinking of spot and forward

markets in foreign exchange or commodities. The results of the previous

sections would be applicable to bond markets. To see this, simply think

of the spot price of one—period Treasury bills as a function of the one—

period Interest rate

l_r



and the one—period forward rate as a function also of the two—period

interest rate

1+r
2F = l+r —R

t

St+i=Ft+ct+1

If we have direct data on spot and futures prices of Treasury bills,

or if we compute them from one—period and two—period interest rates, we

can apply our previous results.

9. We have set to zero the maturity premium explicitly included by Shiller.
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