
NBER WORKING PAPER SERIES

DO MARKETS REDUCE COSTS? ASSESSING THE IMPACT OF REGULATORY
RESTRUCTURING ON U.S. ELECTRIC GENERATION EFFICIENCY

Kira Markiewicz
Nancy L. Rose

Catherine Wolfram

Working Paper 11001
http://www.nber.org/papers/w11001

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2004

Rose gratefully acknowledges support from the MIT Center for Energy and Environmental Policy
Research (CEEPR), the Hoover Institution, the Guggenheim Foundation, and the National Bureau
of Economic Research. We thank participants at NBER Productivity and Industrial Organization program
meetings, the University of California Energy Institute POWER conference, and the MIT CEEPR
conference, as well as seminar participants at Chicago, Harvard, MIT, UC Berkeley, UC Davis and
Yale for their suggestions. Our work has benefited greatly from detailed comments by Mitali Das,
Al Klevorick, Mark Roberts, Charles Rossman and Johannes Van Biesebroeck, and two anonymous
referees. We thank Tom Wilkening for assistance in coding restructuring policies across states and
Jen-Jen L'ao for assistance coding plant identities. The views expressed herein are those of the author(s)
and do not necessarily reflect the views of the National Bureau of Economic Research.

© 2004 by Kira Markiewicz, Nancy L. Rose, and Catherine Wolfram. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric
Generation Efficiency
Kira Markiewicz, Nancy L. Rose, and Catherine Wolfram
NBER Working Paper No. 11001
December 2004, Revised June 2007
JEL No. L11,L43,L51,L94,D24

ABSTRACT

While neoclassical models assume static cost-minimization by firms, agency models suggest that firms
may not minimize costs in less-competitive or regulated environments. We test this using a transition
from cost-of-service regulation to market-oriented environments for many U.S. electric generating
plants. Our estimates of input demand suggest that publicly-owned plants, whose owners were largely
insulated from these reforms, experienced the smallest efficiency gains, while investor-owned plants
in states that restructured their wholesale electricity markets improved the most. The results suggest
modest medium-term efficiency benefits from replacing regulated monopoly with a market-based
industry structure.

Kira Markiewicz
1300 Clifton Road
Goizueta School of Business
Atlanta, GA
30322
Kira_Fabrizio@bus.emory.edu

Nancy L. Rose
Department of Economics
MIT, E52-280B
50 Memorial Drive
Cambridge, MA  02142-1347
and NBER
nrose@mit.edu

Catherine Wolfram
Haas School of Business
University of California, Berkeley
Berkeley, CA  94720-1900
and NBER
wolfram@haas.berkeley.edu



 1

 

Economists have long maintained that markets generate important efficiency 

benefits for an economy.  These arguments usually focus on allocative efficiency; the 

implications of competition for technical efficiency are less clear.  Neoclassical models of 

profit-maximization assume static cost-minimizing behavior by all firms, regardless of 

market competitiveness.1  Agency models, however, in recognizing the interplay of 

asymmetric information with the separation of management and control, suggest possible 

deviations from cost-minimization by effort-averse managers.  These distortions may be 

amplified when a firm’s prices are set by asymmetrically-informed regulators (e.g., Jean-

Jacques Laffont and Jean Tirole, 1993).  Replacing regulated price determination with 

markets makes firms residual claimants to cost-savings, potentially increasing incentives 

for efficiency-enhancing effort. 2  Theory suggests several possible roles for markets:  

constraining managerial behavior by rewarding efficiency gains, confronting less-efficient 

firms with the choice of cost reduction to the level of their lower-cost counterparts or exit, 

and perhaps reducing agency costs.3   The actual relevance of markets for technical 

efficiency ultimately is an empirical question. 

This paper uses data on the U.S. electric generation sector to assess the effect on 

technical efficiency of shifting regulated monopolies to more market-based environments.  

The past decade has witnessed a dramatic transformation of this industry.  Until the mid-

1990s, over ninety percent of the electricity in the US was sold by vertically-integrated 

                                                 
1 The implication of competition for dynamic efficiency through innovation is the subject of an extensive 
theoretical and empirical literature in economics, dating at least from Joseph Schumpeter’s 1942 classic 
Capitalism, Socialism, and Democracy. 
2 In contrast, Xavier Vives (2006) develops a model in which deregulation may lead to increased 
competitive pressure and reduced R&D investment, leading to a negative effect on cost-reducing 
innovation. 
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investor-owned utilities (IOUs), most operating as regulated monopolists within their 

service areas.  Many utilities faced some form of incentive-based regulation, adopted by 

states during the 1980s and early 1990s to improve upon the efficiency incentives of 

traditional cost-of-service regulation.  More radical reform was initiated in the mid-1990s, 

as many states began to restructure their electric utility markets.   Today, nonutility 

generators own roughly a quarter of generation capacity nationwide, and IOUs in many 

states own only a small fraction of total generating capacity and operate in a structure that 

relies heavily on market-based incentives.  While studies of state-level electricity 

restructuring suggest that politicians may have been motivated in large part by rent-

seeking (e.g., Matthew W. White, 1996, and Paul L. Joskow, 1997), many proponents of 

restructuring argued that exposing utilities to competitive, market-based outcomes would 

yield efficiency gains that could ultimately reduce electricity costs and retail prices.   

The considerable body of empirical research on electricity restructuring within the 

U.S. and abroad has thus far focused on assessing the performance of competitive 

wholesale markets, with particular attention to the exercise of market power (e.g., Severin 

Borenstein, James Bushnell and Frank A. Wolak, 2002 and Joskow and Edward Kahn, 

2002, and Wolak, forthcoming).   While many of the costs of electricity restructuring have 

been intensively studied, relatively little effort has been devoted to quantifying any ex 

post operating efficiency gains of restructuring.  Christopher R. Knittel (2002) reports 

evidence of some electric generating plant efficiency increases associated with the 

diffusion of incentive regulation.4  The question of whether further reform—moving from 

                                                                                                                                                   
3 Stephen J. Nickell (1996) provides a discussion of many of these theoretical arguments.  Jen Baggs and 
Jean-Etienne de Bettignies (forthcoming) develop a model in which competition may reduce costs through 
both direct effects, such as those described in Nickell (1996), and reductions in agency costs. 
4 Incentive regulations have been more extensively studied in the telecommunications sector; e.g., Chunrong 
Ai and David Sappington (2002), or Donald Kridel, Sappington, and Dennis Weisman (1996) for a survey 
of many such studies. 
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incentive-based regulation to deregulated markets for generation—yields additional 

improvements in plant efficiency remains open.   

Research on other industries suggests productivity gains associated with 

deregulation (e.g., G. Steven Olley and Ariel Pakes, 1996, on telecommunications and 

Charles K. Ng and Paul Seabright, 2001, on airlines) and with increased competitive 

pressure caused by factors other than regulatory change (e.g., José E. Galdón-Sánchez and 

James A. Schmitz, Jr., 2002, on iron ore mines).5  This study provides the first substantial 

analysis of early generation efficiency gains from electricity restructuring. 6  As such, it is 

of direct policy relevance to states contemplating the future of their electricity 

restructuring programs, and contributes to the broad economic debate on the role of 

competition in the economy.   

The results of our work indicate that the plant operators most affected by 

restructuring reduced labor and nonfuel expenses, holding output constant, by three to five 

percent relative to other investor-owned utility plants, and by six to twelve percent relative 

to government- and cooperatively-owned plants that were largely insulated from 

restructuring incentives.  These may be interpreted as the medium-run efficiency gains 

that Joskow (1997, p. 214) posits “may be associated with improving the operating 

                                                 
5 Some hint of this possibility in electricity is provided by Walter J. Primeaux (1977), who compared a 
sample of municipally owned firms facing competition to a matched sample of municipally owned firms in 
monopoly situations and found a significant decrease in costs per kWh for firms facing competition. 
6 Joskow (1997) describes the significant labor force reductions that accompanied restructuring in the UK, 
as the industry moved from state-owned monopoly to a privatized, competitive generation market, although 
these mix restructuring and privatization effects.  The only econometric evidence on restructuring of which 
we are aware is from L. Dean Hiebert (2002), who uses stochastic frontier production functions to estimate 
generation plant efficiency over 1988-1997, treating all inputs as orthogonal to productivity shocks.  Hiebert 
models plant inefficiency as a function of several variables, including indicators for state regulatory or 
legislative enactment of utility restructuring in 1996 and in 1997.  He reports a huge reduction in estimated 
mean inefficiency for coal plants in states deemed to have restructured in 1996 but none for gas plants in 
those states, and no effect on plants of either fuel type for policies enacted in 1997.  Our work uses a longer 
time period, richer characterization of the restructuring environment and dating of reforms consistent with 
the U.S. Energy Information Administration, and an alternative technology specification that both allows for 
more complex productivity shocks and treats possible input endogeneity biases.     
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performance of the existing stock of generating facilities and increasing the productivity 

of labor operating these facilities.”  Our work also highlights the importance of treating 

the simultaneity of input and output choice.   Failing to recognize that shocks to input 

productivity may induce firms to adjust targeted output leads to overstatement of 

estimated efficiency effects, by nearly a factor of two in some cases.  While endogeneity 

concerns have been long recognized in the productivity literature, ours is one of the first 

studies of electric generation to control for this.  Finally, we explore the sensitivity of the 

estimated efficiency impact to the choice of control group to which restructured plants are 

compared, and discuss the issues involved in determining the appropriate counterfactual. 

  The remainder of the paper is organized as follows: Section I describes existing 

evidence on the competitive effects of efficiency and discusses how restructuring might 

alter electric generation efficiency.  Section II details our empirical methodology for 

testing these predictions and describes our strategy for identifying restructuring effects.  

The data are described in Section III.  Section IV reports the results of the empirical 

analysis, and Section V concludes. 

I. Why Might Restructuring Affect Generator Efficiency? 

Through the early 1990s, the U.S. electricity industry was dominated by vertically 

integrated investor-owned utilities.  Most operated as regulated monopolists over 

generation, transmission, and distribution of electricity within their localized geographic 

market, though there was some wholesale power traded among utilities or purchased from 

a small but growing number of nonutility generators.  Prices generally were determined by 

state regulators based on accounting costs of service at the firm level.  It has long been 

argued that traditional cost-of-service regulation does relatively well in limiting rents but 

less well in providing incentives for cost-minimizing production (e.g., Laffont and Tirole, 
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1993).  Under pure cost-of-service regulation, regulator-approved costs are passed directly 

through to customers, and reductions in the cost of service yield at most short-term profits 

until rates are revised to reflect the new lower costs at the next rate case.7  Given 

asymmetric information between regulators and firms, inefficient behavior by managers 

that raises operating costs above minimum cost levels generally would be reflected in 

increased rates and passed through to customers.  Joskow (1974) and Wallace E. 

Hendricks (1975) demonstrate that frictions in cost-of-service regulation, particularly 

those arising from regulatory lag (time between price-resetting hearings), may provide 

some incentives at the margin for cost-reducing effort.  Their impact generally is limited, 

however, apart from periods of rapid nominal cost inflation (Joskow, 1974).    

This system led economists to argue that replacing cost-of-service regulation with 

higher-powered regulatory incentive schemes or increased competition could enhance 

efficiency.8  Over the 1980s and early 1990s, many state utility commissions accordingly 

adopted some form of incentive regulation.  The little empirical evidence available on 

these reforms, which modify price setting within the regulated monopoly structure, 

suggests limited effects.  Knittel (2002) studies a variety of incentive regulations in use 

through 1996, and finds that those targeted at plant performance or fuel cost were 

associated with gains in plant-level generation efficiency.9  More general reforms, such as 

price caps, rate freezes, and revenue-decoupling programs, typically were associated with 

insignificant or negative efficiency estimates, all else equal.   

                                                 
7 Rates are constant between rate cases, apart from specific automatic adjustments (such as fuel adjustment 
clauses), so changes in cost would not be reflected in rates until the next rate case.  
8 See, for example, Laffont and Tirole (1993), for a theoretical justification, or Joskow and Richard 
Schmalensee (1987), for an applied argument. 
9 Knittel uses OLS and stochastic production frontier techniques to estimate Cobb-Douglas generating plant 
production functions in capital, labor, and fuel for a panel of large IOU plants over 1981-1996.  His results 
from first-differenced models, which implicitly allow for fixed plant-level efficiency effects, suggest gains 
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During the second half of the 1990s, states began to shift their focus from 

incentive regulation to restructuring.  By 1998, every jurisdiction (50 states and the 

District of Columbia) had initiated formal hearings to consider restructuring their 

electricity sector, and by 2000, almost half had approved legislation introducing some 

form of competition that included competitive retail access, whereby companies competed 

to sell power to retail customers.10    Restructuring initiatives, in contrast to incentive 

regulations, fundamentally changed the way plant owners earn revenue.  At the wholesale 

level, plants sell either through newly created spot markets or through long-term contracts 

that are presumably based on expected spot prices.  In the spot markets, plant owners 

submit bids indicating the prices at which they are willing to supply power from their 

plants.  Dispatch order is set by the bids, and, in most markets, the bid of the marginal 

plant is paid to all plants that are dispatched.  High-cost plants will be forced down in the 

dispatch order, reducing expected revenue.11  Plant operators that reduce costs can move 

higher in the dispatch order to increase dispatch probability, and increase the profit margin 

between own costs and the expected market price.  Most restructuring programs also 

changed the way retail rates are determined and the way in which retail customers are 

allocated.12   Retail access programs in combination with the creation of the new 

wholesale spot markets may increase the intensity of cost-cutting incentives, leading to 

even greater effort to improve efficiency.   

                                                                                                                                                   
on the order of 1-2 percent associated with these reforms. Equations that do not allow for plant fixed effects 
suggest much larger magnitudes. 
10 In the aftermath of California’s electricity crisis in 2000-2001, restructuring has become less popular and 
many states have delayed or suspended restructuring activity, including six that had previously approved 
retail access legislation.  See US Energy Information Administration (EIA), 2003. 
11 This could induce closure.  We address potential selection-induced biases from exit below. 
12 States have used a variety of approaches to link retail rates under restructuring to wholesale prices in the 
market.  Over the short term, most states decoupled utility revenue from costs by mandating retail rate 
freezes, often at levels discounted from pre-restructuring prices.  Some states, such as Pennsylvania, are 
aggressively trying to encourage entry by competitive energy suppliers, who may contract directly with 
retail customers. 



 7

 Exit by less-efficient firms is a well-understood efficiency benefit of competition:  

as output shifts from (innately) higher-cost firms to lower-cost competitors the total 

production cost for a given output level declines.  Olley and Pakes (1996) provide 

empirical evidence of this phenomenon in their plant-level analysis of the magnitude and 

source of productivity gains in the U.S. telecommunications equipment industry over 

1974-1987.  They find substantial increases in productivity associated with the increased 

competition that followed the 1984 divestiture and deregulation in this sector, and identify 

the primary source of these gains as the re-allocation of output from less productive to 

more productive plants across firms.  In a similar vein, Chad Syverson (2004) finds that 

more competitive local markets in the concrete industry are associated with higher mean, 

less dispersion, and higher lower-bounds in plant productivity, effects he attributes to the 

exit of less-efficient plants in more competitive environments.  

 The existing evidence on whether competition also leads to cost reductions 

through technical efficiency gains by continuing producers and plants is relatively sparse.  

Nickell (1996) uses a panel of 670 U.K. manufacturing firms to estimate production 

functions that include controls for the competitive environments in which firms operate.  

He finds some evidence of reduced productivity levels associated with market power and 

strong support for higher productivity growth rates in more competitive environments.  

Concerns about the ability of cross-industry analysis to control adequately for 

unobservable heterogeneity across sectors may make sector-specific evidence tighter and 

more convincing.13  A notable example is the Galdón-Sánchez and Schmitz (2002) study 

of labor productivity gains at iron ore mines that faced increased competitive pressure 

                                                 
13 A number of studies have analyzed efficiency gains following regulatory reform in various industries; see, 
for example, Elizabeth E. Bailey (1986) and B.U. Park et al. (1998) on airlines.  Unfortunately, in many 
cases it is difficult to disentangle direct regulatory effects on efficiency (e.g., operating restrictions imposed 
on trucking firms or airlines by regulators in those sectors) from the indirect effects of reduced competition.   
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following the collapse of world steel production in the early 1980s.  They find 

unprecedented rates of labor productivity gains associated with this increase in 

competitive pressure, “driven by continuing mines, producing the same products and 

using the same technology as they had before the 1980s” (at 1233).14 

 Several features of the electric generation sector make it an attractive subject for 

testing these potential competitive effects on technical efficiency.15  First, generation 

technology is reasonably stable and well-understood and data on production inputs and 

outputs at the plant-level are readily available to researchers.  This has made electric 

generation a common application for new production and cost function estimation 

techniques, dating at least from Marc Nerlove (1963).  Second, policy shifts over a 

relatively short period have resulted in a dramatic transformation of the market for electric 

power.  This provides both time series and geographic variation in competitive 

environments.  Finally, static and dynamic efficiency claims bolstered much of the policy 

reform; measuring these benefits is a vital prerequisite to assessing the wisdom of these 

policies. 

 While the most significant savings from restructuring are likely to be associated 

with efficient long-run investments in new capacity, there may be opportunities for 

modest reductions in operating costs of existing plants (Joskow, 1997).  This paper 

attempts to measure the extent of that possible improvement for the existing stock of 

electricity generating plants in the U.S.  The implicit null hypothesis is that before 

restructuring, operators were minimizing their costs given the capital stock available in the 

                                                 
14 Ng and Seabright (2001) estimate cost functions for a panel of U.S. and European airlines over 1982-
1995, and conclude that potential gains from further privatization and increased competition among 
European carriers are substantial, though they point out that the best-measured component of these gains 
relates to ownership rather than market structure differences. 
15 Understanding possible reallocation of output across plants is hampered by the exit of plants from most 
publicly available databases when they are sold to nonutility owners. 
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industry.  Under the null, there should be no change in plant-level efficiency measures 

associated with restructuring activity.  We discuss below our method for estimating plant 

efficiency and identifying deviations from this hypothesis.  To assess the effects of 

restructuring, we need to specify how generating plants would have operated absent the 

policy change.  Constructing this counterfactual is crucial, but difficult.  

II. Empirical Model 

 For a single-output production process, productive efficiency can be assessed by 

estimating whether a plant is maximizing output given its inputs and whether it is using 

the best mix of inputs given their relative prices.  Production functions describe the 

technological process of transforming inputs to outputs and ignore the costs of the inputs; 

a plant is efficient if it is on the production frontier.  Cost minimization assumes that, 

given the input costs, firms choose the mix of inputs that minimizes the costs of producing 

a given level of output.  A plant could be producing the most output possible from a given 

input combination but not minimizing costs if, for instance, labor were cheap relative to 

materials, yet the plant used a lot of materials relative to labor.  Even if the plant were 

producing the maximum output possible from its workers and materials, it would not be 

efficient if it could produce the same level of output less expensively by substituting labor 

for materials.  We explore the impact of restructuring on efficiency by specifying a 

production function and then deriving the relevant input demand equations implied by cost 

minimization. 

 We adopt the convention of representing electric generating plant output (Q) by 

the net energy the generating units produce over some period.  This is measured by annual 

megawatt-hours, MWh, in our data, as discussed in further detail in the data section 

below.  While many studies of generating plant productivity model this output as a 
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function of current inputs using a Cobb-Douglas production function, the characteristics of 

electricity production argue strongly for an alternative specification.  We derive a model 

of production and cost minimization that is sensitive to important institutional 

characteristics of electricity production that have been ignored in much of the earlier 

literature. 

 First, observed output in general will be the lesser of the output the plant is 

prepared to produce given its available inputs (we call this probable output), and the 

output called for by the system dispatcher (we call this actual output).  Because the system 

dispatcher must balance total production with demand at each moment, the gap between 

probable (QP) and actual (QA) output for a given plant i will be a function of demand 

realizations, the set of other plants available for dispatch, and plant i’s position in the 

dispatch order.16  

 Second, while fuel inputs are varied in response to real-time dispatching and 

operational changes, other inputs to a plant’s production are determined in advance of 

output realizations.  Capital typically is chosen at the time of a unit’s construction (or 

retirement), and at the plant level large capital changes are relatively infrequent.  From the 

manager’s perspective, it may be considered a fixed input.  Utilities hire labor and set 

operating and materials expenditures in advance, based on expected demand.  While these 

can be adjusted over the medium-run, staffing decisions as well as most maintenance 

expenditures are not tied to short-run fluctuations in output.17  We therefore treat these as 

set in advance of actual production, and determining a target level of probable output, QP.   

                                                 
16 Random shocks to a plant’s operations, such as unexpected equipment failures or equipment that lasts 
longer than expected, will cause it to produce less or more than its probable output from a set of available 
inputs. 
17 In fact, over a short time period, maintenance and repair expenditures will be inversely related to output 
since the boiler needs to be cool and the plant offline for most major work.  We deal with this potential 
simultaneity bias below. 
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 Finally, while labor, materials, and capital may be to some extent substitutable to 

produce probable output, the generation process generally does not allow these inputs to 

substitute for fuel in the short-run.  Given this description of the technology, we posit a 

Leontief production process for plant i in year t of the following form: 

(1)  Qit
A = min[ g(Eit, Γ E, εit

E ),  Qit
P(Ki, Lit, Mit, Γ P, εit

P)·exp(εit
A)]  

where QA is actual output and QP is probable output; inputs are denoted by E for energy 

(fuel) input, K for capital, L for labor, and M for materials; Γ denotes parameter vectors, 

and ε denotes unobserved (to the econometrician) mean zero shocks.  See Johannes Van 

Biesebroeck (2003) for the derivation of a similar production function he uses to model 

automobile assembly plant production.  

 As noted above, fuel input decisions are made in real time, after the manager has 

observed any shocks associated with the plant’s probable output productivity, εit
P, the 

actual operation of the plant, εit
A, and the plant’s energy-specific productivity in the 

current period, εit
E .  Probable output, QP, is in contrast determined by input decisions 

made in advance of actual production.  We assume that capital, measured by the 

nameplate generating capacity of the plant, is fixed.18  Labor and materials decisions are 

made in advance of production, but after the level and productivity of the plant’s capital is 

observed.  This reflects the quasi-fixity of these inputs over time:  staffing decisions and 

maintenance plans are designed to ensure that the plant is available when it is dispatched, 

based on the targeted output QP.  The error term εit
P incorporates productivity shocks that 

we assume are known to the plant manager in advance of scheduling labor and materials 

inputs, but are not observable to the econometrician.   We allow actual output to differ 

from probable output by a multiplicative shock exp(εit
A), assumed to be observed at the 
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time fuel input choices are made but not known at the time probable output is determined.  

This shock would be, for example, negative if a generating unit were unexpectedly shut 

down due to a mechanical failure, or positive if the plant were run more intensively than 

anticipated, as might be the case if a number of plants ahead of it in the usual dispatch 

order were unavailable or demand realizations were unexpectedly high.   

 We model probable output (QP) as a Cobb-Douglas function of labor and 

materials, embedding capital effects in a constant (Q0(K)) term.  This yields the 

specification: 

(2)  Qit
P ≤ Q0(Ki)·(Lit)γL·(Mit)γM· exp(εit

P)  

In preliminary analysis, we estimated the parameters of the production function, including 

terms that allowed for differential productivity under restructuring.  Those results 

suggested productivity gains associated with restructuring.  The work reported here 

imposes an additional constraint, based on cost-minimization, to estimate input demand 

functions, and isolate possible restructuring effects on each measured input.  A cost-

minimizing plant manager, facing wages Wit and material prices Sit, would solve for the 

optimal inputs to produce probable output Qit
P by: 

(3) min  Wit·Lit + Sit·Mit                 s.t.  Qit
P ≤ Q0(Ki)·(Lit)γL·(Mit)γM·exp(εit

P) 

            Lit, Mit 

yielding the following factor demand equations: 

(4)  Lit = (λγL Qit
P)/Wit 

(5)   Mit = (λγM Qit
P)/Sit 

where λ is  the Lagrangian on the production constraint.   

                                                                                                                                                   
18 The empirical analysis defines a new plant-epoch, i, whenever there are significant changes in capacity, so 
that within each plant-epoch, capacity is approximately constant. 
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 We observe actual output, Qit
A = Qit

P exp(εit
A), rather than probable output, Qit

P.  

Making this substitution and taking logs of both sides, equation (2) becomes:  

(6) ln(Lit) = α0 + ln(Qit
A) – εit

A – ln(Wit  )  

where α0 = ln(λγL).    If there are differences across plants, over time, or across regulatory 

regimes in the coefficients of the production function (γL) or in the shadow value of the 

probable output constraint (λ), or if there is measurement error in labor used at the plant, 

this equation will hold with error.  As we are particularly interested in changes in input 

demand associated with restructuring, we expand the subscript it to irt to include plant i in 

year t, and regulatory restructuring regime r, and re-write equation (6) as: 19  

(7) ln(Lirt) = ln(Qirt
 A) – ln(Wirt ) + αi

L + δt
L  + φ r

 L  – ε irt
 A + εirt

L 

where αi
L

 measures a plant-specific component of labor demand, δt
L captures year-specific 

differences in labor demand, φ r
 L captures restructuring-specific shifts in labor demand, 

and εirt
L measures the remaining error in the labor input equation. α0 is now subsumed in 

the plant-specific demand, αi
L.  Note that φ r

 L picks up mean residual changes in labor 

input for a plant in a restructured regime relative to that plant overall and to all other 

plants at the same point in time.  It could reflect systematic changes in the marginal 

productivity of labor (γL), in the shadow value of the availability constraint (λ) or in 

optimization errors. 20
 

 Similarly, equation (5) becomes: 

(8)   ln(Mirt) = ln(Qrt
A) – ln(Srt ) + αi

M + δt
M  + φ r

 M  – ε irt
 A + ε irtM 

which is directly analogous to equation (7).  

                                                 
19 Note that many plant-level differences, such as capital stock, and many time-varying shocks, such as 
technology-neutral productivity shocks, drop out of this equation when we condition on output choice. 
20 If there are systematic differences in the relation of probable and actual output across restructuring, γ r

 L 
may also reflect the change in mean εirt

 A.   Since εirt
 A reflects shocks unobservable by the firm when setting 

planned output, it seems plausible that these could be mean zero in expectation, but their realizations could 
be nonzero in the restructuring sample we observe. 



 14

 We model the energy component of the Leontief production function, which will 

in general hold with equality, as: 

(9)   Qirt
A = g(Eirt, γE

, εE)   

Assuming that g(•) is monotonically increasing in E, we can simply invert it to get an 

expression for E in terms of Q.  Note that the price of fuel does not enter into the demand 

for fuel except through the level of output the plant is dispatched to produce.  For 

consistency with the other input specifications, we specify a log-log relationship: 

(10)  ln(Eirt) = γQ
E ·ln(Qirt) + φ r

 E   + αi
E  +  δt

E + εirt
E 

where as before, the plant-specific error, αi
E

,  the year-specific error,  δt
E , and the 

restructuring-specific  term, φ r
 E , capture systematic changes in the efficiency with which 

plants convert energy to electricity—that is, changes in plant heat rates—across plants, 

over time, or correlated with restructuring activity, respectively. 

 We confront two important endogeneity concerns in estimating the basic input 

demand equations, (7), (8) and (10).  The first is the possibility that shocks (ε irtL, ε irtM, 

εirt
E) in the input demand equations may be correlated with output.  If output decisions are 

made after a plant’s manager observes the plant’s efficiency, managers may increase 

planned output in response to positive shocks to an input’s productivity, or reduce planned 

output in response to negative shocks.  This behavior would induce a correlation between 

the error in the input demand equation and observed output.  Though one can control 

directly for plant-specific efficiency differences and for secular productivity shocks in a 

given year, idiosyncratic shocks remain a source of possible bias.   Second, the estimates 

may be subject to selection bias if exit decisions are driven by unobserved productivity 

shocks.  In this case, negative shocks could lead to plant shutdown, implying that the 

errors for observations we observe will be drawn from a truncated distribution.  Neither of 
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these problems is unique to our setting, and they have been raised in many earlier 

papers.21  

 Consider first the simultaneity issue.  We face a potential simultaneity problem if, 

for instance, a malfunctioning piece of equipment reduces the plant’s fuel efficiency, 

leading the utility to reduce its operation of that plant and consequently to use less fuel.  

There may be deviations from predetermined employment and materials budgets caused 

by unanticipated breakdowns that require increased use of labor and repair expenditures 

and result in lower output.  A variety of methods have been used to address concerns 

about simultaneity.22  We choose to use an instrumental variables approach, using a 

measure of state-level electricity demand as an instrument for plant output.  Geographic 

electric generation markets are likely to be at least as broad as the state-level at the annual 

frequency of our data.  This demand is likely to be highly correlated with the amount of 

output a plant will be called to provide, but uncorrelated, for instance, with how efficiently 

an individual plant’s feedwater pumps are working.  This approach is likely to be 

particularly effective for the energy equation, given the responsiveness of energy input 

choices to demand fluctuations in real time, and for identifying exogenous output 

fluctuations at nonbaseload plants, which are more strongly influenced by marginal 

swings in demand.  It may be less powerful in identifying variation in ex ante labor and 

maintenance choices, depending in part on the extent to which plant managers anticipate 

state demand.   We have explored the sensitivity of our results to a broad set of alternative 

                                                 
21 Nerlove (1963) provides an early discussion of simultaneity bias in production functions.  Olley and 
Pakes (1996) propose a structural approach to addressing simultaneity, which is compared to alternatives in 
Zvi Griliches and Jacques Mairesse (1998).  Daniel A. Ackerberg et al. (2005) discuss this issue and 
compare treatments proposed by Olley and Pakes (1996) and James Levinsohn and Amil Petrin (2003).  
While many papers have estimated production or cost functions for electric generating plants, from the 
classic analyses in Nerlove (1963) and Laurits R. Christensen and William H. Greene (1976) to very recent 
work such as Andrew N. Kleit and Dek Terrell (2001) and Knittel (2002),  electricity industry studies 
typically have not treated either simultaneity or selection problems.  
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instruments, including interactions of state demand with relative plant efficiency 

(heatrates), fuel type, and load profile that allow for plant-level variation in the instrument 

set, weather-related demand drivers (cooling and heating degree days), and lags in plant-

level output (similar to Richard Blundell and Stephen Bond, 1998 and 2000).23  The 

results reported below are qualitatively robust to these alternatives. 

 The potential selection issue is more difficult to address.  The plants in our sample 

are more stable than those studied in many other contexts (especially see Olley and Pakes, 

1996), suggesting that the selection problem may be somewhat less severe for electric 

generation.  Exit in our sample is relatively rare, apart from exit induced when 

restructuring-related divestitures remove the plant from the reporting database.   Adverse 

productivity shocks are much more likely to result in reduced run time than in plant 

retirements for the large generating plants analyzed in this work.  To the extent that the 

divestitures were mandated by restructuring policies, these also should not create selection 

problems.  In all states where plant divestitures were part of the restructuring process 

except New York, virtually all of the utility-owned fossil-fuel fired plants were divested, 

suggesting that the extent and incidence of divestitures following restructuring are largely 

nondiscretionary.24   To further gauge the significance of potential  selection effects, we 

have  compared results for the unbalanced panel we use in the analysis to those for a panel 

of plants that continue to operate through the end of our sample period, for which potential 

selection effects are likely to be most severe.  With one exception, the results from the 

                                                                                                                                                   
22 See the references cited in note 21, supra. 
23 This is discussed in detail in a Technical Appendix to this paper, available on the American Economic 
Review website and as an appendix to Kira Fabrizio, et al. (hereafter FRW ), 2007.  The Technical 
Appendix discusses these and other robustness checks.  
24 See the analysis in James B. Bushnell and Catherine D. Wolfram (2005) and the discussion in FRW 
(2007) Technical Appendix. 
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balanced panel are similar to the main results reported in this paper, suggesting there is 

little to be gained from a more detailed treatment of potential selection biases.25 

Identification strategy 

 There is substantial spatial and temporal heterogeneity in the economic 

environment in which electric utilities have operated.  There are thousands of generating 

plants operated by hundreds of utilities subject to regulation by dozens of political 

jurisdictions each setting their own legal and institutional environment.  Restructuring, 

however, is not randomly assigned across political jurisdictions—earlier work suggests 

that it is strongly correlated with higher than average electricity prices in the cross-

section.26  Fortunately, we have panel data on the costs and operations of most electric 

generating plants from well before any restructuring until the present.  This allows us to 

construct benchmarks that we believe control for most of the potentially confounding 

variation. 

 The plant-specific effects, {αi
N}, measure the mean use of input N at plant i 

relative to other plants in the sample.  These effects may be associated with differences in 

plant technology type and vintage, ownership (government v. private utilities), and time-

invariant state effects.  The year-specific shock, {δt
N}, measures the efficiency impact of 

sector-level shifts over time, such as secular technology trends, macroeconomic 

fluctuations or energy price shocks.  Restructuring effects on plant productivity 

                                                 
25 The exception is the coefficient on an indicator for transition to RETAIL ACCESS competition.  This 
coefficient is smaller and statistically indistinguishable from zero in the balanced panel estimation of the 
NONFUEL EXPENSE regression.  This could be due to the fact that several of the states that implemented 
retail access competition within our sample required generating plant divestitures.  Divested plants generally 
are exempt from publicly disclosing the data that we rely on in our analysis, eliminating them from the 
balanced sample.  The negative coefficient on RETAIL ACCESS in the full sample could reflect reduced 
spending on NONFUEL EXPENSES by plants that are eventually divested, though there are too few 
observations on divested plants to conclude this with any certainty. 
26 The significant role of sunk capital costs in regulatory ratemaking means that high prices do not 
necessarily imply high operating costs for generation facilities within a state, however.  See Joskow (1997) 
for a discussion of the contributors to price variation across states. 
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correspond to a nonzero {φr
N}.  Heterogeneity in the timing and outcomes of state-level 

restructuring activity allow the data to distinguish between temporal shocks and 

restructuring effects.  While all states held hearings on possible restructuring, the earliest 

was initiated in 1993 and the latest in 1998.  There is considerable variation in the 

outcome of those hearings, as well, with just under half the jurisdictions (23 states and the 

District of Columbia) enacting restructuring legislation between 1996 and 2000.27  The 

remainder considered and rejected, or considered and simply did not act on, such 

legislation.  This variation allows us to use changes in efficiency at plants in states that did 

not pass restructuring legislation to identify restructuring separately from secular changes 

in efficiency of generation plants over time. 

 It is possible that plants in this control group also altered their behavior over the 

post-1992 period.  This could be due to the introduction or intensification of incentive 

regulation within states that did not enact restructuring, to the expectation of potential 

restructuring that did not occur, or to spillovers from restructuring movements in other 

states (e.g. if regulators updated their information about the costs necessary to run plants 

of a certain type, or multi-state utilities operating under differing regimes improved 

efficiency of all their plants, not just those in restructuring states).  To the extent this 

occurs, our comparison will understate the magnitude of any efficiency effect of 

restructuring.    

 We therefore consider a second control group, consisting of cooperatively-owned 

and publicly-owned municipal and federal plants, which for convenience we will refer to 

collectively as municipal or “MUNI” plants, although the group is broader than strictly 

                                                 
27 We collected information on state restructuring legislation from various Energy Information 
Administration and National Association of Regulatory Utility Commissioners publications and state public 
utility commission websites.  Since 2000, no additional states have enacted restructuring legislation, and 
several have delayed or suspended restructuring activity in response to the California crisis. 
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implied by this label.   An extensive literature has debated the relative efficiencies of 

private and public ownership in this sector under traditional regulation, with quite mixed 

results.  We abstract from this by allowing for plant-specific effects that absorb any levels 

differences in input use across ownership type.  Restructuring generally altered the 

competitive environment only for private investor-owned utilities within a state, leaving 

those for publicly- and cooperatively-owned utilities unchanged.28  This suggests that 

MUNIs may provide a second benchmark against which to measure changes in efficiency 

associated with restructuring.  To control for the possible divergence of publicly-owned 

plant input use in the years preceding the restructuring period, we allow a separate 

intercept shift for publicly-owned plants after 1987:  MUNI*POST 1987.29  We then adopt 

a parameterization that measures {φr
N} relative to incremental differences at publicly-

owned plants during the period that investor-owned utilities are at risk of restructuring, 

defined as 1993 forward, through inclusion of an indicator for MUNI*POST 1992.    

 Using N to denote input (labor, nonfuel expenses, or fuel), and PRICEN to denote 

the relevant input price (none for the fuel equation), we have input use equation (11): 

(11)  ln(Nirt) = ln(Qirt
A) - ln(PRICEN

irt ) + γ87 MUNI*POST1987it +  

 γ92 MUNI*POST1992it +  αi
N + δt

N  + φr
 N  – ε irt

 A + ε irtN 

  Base differences in input use across each investor-,  publicly-, or cooperatively-

owned plant are embedded in the plant fixed effects, {αi
N}.   All plants experience 

common annual changes in input use measured by the time effects, {δt
N};  publicly-owned 

plants may experience a differential mean shift from these effects following 1987.   

                                                 
28 Arizona and Arkansas, which included government-owned utilities in restructuring programs, are the two 
exceptions. 
29 In Figures 1 and 2, we report nonparametric time paths for IOU and MUNI plant efficiency that suggest 
some divergence between the groups prior to the beginning of state restructuring.  While the designation of 
1988-1992 as a transition period before restructuring is somewhat arbitrary, it serves as a conservative 
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Restructuring effects are measured by the difference-in-differences in two implicit 

“nontreatment groups” to which investor-owned plants in restructuring regimes may be 

compared:  investor-owned plants in non-restructuring regimes over 1993-1999 (with the 

IOU restructuring effect measured by φ rN), and MUNI plants over 1993-1999 (with the 

IOU restructuring effect measured by φ r
 N – γ92).  

III. Data & Summary Statistics 

 The analysis in this paper is based on annual plant-level data for large fossil-fueled 

generating plants owned by U.S. electric utilities.  Plants are comprised of at least one, but 

typically several, generating units, which may be added to or retired from service over the 

several-decade life of a generating plant.  While an ideal dataset would allow us to explore 

efficiency at the generating unit level, inputs other than fuel are not available at the 

generating unit level.  Some inputs, such as employees, are not assignable to a unit as they 

are shared across units at the plant.30  We therefore use a plant-year as an observation. 

 The Federal Energy Regulatory Commission (FERC) collects data for investor-

owned utility plants annually in the FERC Form 1, and the EIA and Rural Utilities Service 

(RUS) collect similar data for municipally-owned plants and rural electric cooperatives, 

respectively.  These data include operating statistics such as size of the plant, fuel usage, 

percentage ownership held by the operator and other owners, number of employees, 

capacity factor, operating expense, year built, and many other plant-level statistics.  Our 

base dataset includes all large fossil-fuel steam and combined cycle gas turbine generating 

                                                                                                                                                   
control for pre-period relative changes and is broadly reflective of policy transitions during the mid-1980s 
and early 1990s (Joskow, 1997). 
30 Some labor may be shared across multiple plants, though assigned to one particular plant in our data.  
This will induce measurement error, particularly in our plant employment variable. 
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plants for which data were reported to FERC, EIA or RUS over the 1981 through 1999 

period.31  Further details on data construction are provided in the data appendix. 

 We follow the literature in characterizing output by the total energy output of the 

plant over the year, measured by annual net megawatt-hours of electricity generation, NET 

MWH.  This is an imperfect choice.  Output is, in reality, multidimensional, although most 

dimensions are not recorded in the plant data.  For example, generating plants may also 

provide reliability services (such as spinning reserves, when the plant stands ready to 

increase output at short notice), voltage support and frequency control.  While the 

production process varies considerably across these different outputs, only net generation 

is well-measured in the data.32   

More importantly, electricity output is not a homogenous product.  The availability 

of the plant may be an important modifier of output quality.  Because electricity is not 

storable, firms must decide how to balance the costs associated with taking their plant 

down to do maintenance against the probability that a poorly maintained plant will fail 

during peak demand hours.  Changes in incentives associated with restructuring may have 

altered firms’ assessments of these tradeoffs, although the expected direction of the effects 

is theoretically ambiguous.33  Hourly output prices and output from individual plants 

might allow us to better assess this.  Lacking such data, we rely on a single output 

dimension, while acknowledging its limitations. 

                                                 
31 One unfortunate consequence of restructuring is that available data on plants sold by utilities to nonutility 
generators are extremely limited after the sale, due to changed reporting requirements.  This means that 
plants will be excluded from our dataset after such sales. 
32 The inputs required to produce a given level of energy (MWh) from a specific plant also will depend on 
whether the plant runs continuously or intermittently and on its average capacity utilization.  Starting a plant 
frequently and running it at low capacity utilization rates typically use more inputs (particularly fuel) per 
MWh generated than does running a plant continuously at its rated capacity. 
33 For instance, under traditional regulation, utilities may have faced strong political incentives to avoid 
blackouts or brownouts, leading to investment in greater capacity to increase reserve margins and in greater 
maintenance resources to increase plant reliability.  On the other hand, competitive firms producing in 
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 We have information on three variable inputs.  The first, EMPLOYEES, is a count 

of full-time equivalent employees at the plant.   The second, NONFUEL EXPENSE, 

includes all nonfuel operations and maintenance expenses, such as those for coolants, 

repairs, maintenance supervision and engineering.  This variable is less than ideal as a 

measure of materials, both because it reflects expenditures rather than quantities, and 

because it includes the wage bill for the employees counted in EMPLOYEES, although 

that expense is not separately delineated in our data.   As NONFUEL EXPENSES includes 

payroll costs, both this and EMPLOYEES will reflect changes in staffing.34  The third 

input is the quantity of fuel consumed by type of fuel (tons of coal, barrels of oil, and mcf 

of natural gas).  We convert fuel into BTUs using the reported annual plant-specific Btu 

content of each fuel to obtain total BTU input at the plant for each year.   

 Input prices pose a challenge.   We do not observe firm- or plant-level wages.    

Our basic specifications use the variable WAGE, reflecting the Bureau of Labor Statistics 

state-level average utility wage by ownership type:  investor-owned or publicly-owned.  

For MUNI plants in states without a publicly-owned utility wage series, we impute wage 

to be the product of investor-owned utility wages for that state and the average ratio of 

publicly- to investor-owned utility wages overall.   This variable is problematic:  not only 

does it measure firm-specific wages with error, but it is susceptible to the potential 

endogeneity of wages to the regulatory environment.35  We have experimented with 

                                                                                                                                                   
restructured wholesale markets may face even stronger incentives to be available when demand peaks 
because this is when prices are highest.   
34 The elasticity of NONFUEL EXPENSES with respect to EMPLOYEES is about .5 in our data, broadly 
consistent with our back of the envelope calculations suggesting that labor costs are roughly half of the total 
nonfuel operating budget. 
35 Hendricks (1975) suggests that utilities may bargain less aggressively over input prices such as wages 
during periods in which higher costs can be readily passed on to customers through higher regulated prices, 
and more aggressively when the firm is likely to be the residual claimant to cost savings.  In other industries, 
regulatory reform has sometimes been associated with substantial reductions in wages, suggesting rent-
sharing under regulation (see Nancy L. Rose, 1987, on the trucking industry).  Moreover, electricity workers 
tend to be highly unionized, and unions may bargain over employment terms as well as wages.  These 
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specifications that instrument for utility wages with the state average wages of workers in 

comparable labor markets, including natural gas distribution, petroleum refining and 

hazardous waste treatment facilities.  While this instrument may in theory better reflect an 

exogenous opportunity wage for workers at power plants, the results using this are much 

noisier (though the non-WAGE coefficients are not materially affected).  We therefore use 

WAGE in our basic specifications.  We do not have reasonable indices for the materials 

prices that comprise NONFUEL EXPENSES, even at the state-industry level.  Our 

empirical model of NONFUEL EXPENSES therefore corresponds to an input demand 

equation with constant real relative prices and a price coefficient of one.    

 The final input is the capital stock of the plant, which we measure by plant 

capacity and vintage.  Our data record the plant capacity in megawatts.  We combine this 

with information on unit retirements to define plant-epochs.  Each plant is assigned a 

unique identifier.  Any time the capacity of the plant is significantly changed, we create a 

new identifier and associated new plant-epoch specific effect.  This allows capital changes 

to alter the underlying input efficiency of the plant.  There may be variation within plant-

epoch when “scrubbers” (flue-gas desulfurization systems, or FGDs), are installed to 

reduce sulfur-dioxide emissions by some coal plants.  SCRUBBERs affect the 

environmental output, unmeasured by ln(NET MWH), which may suggest less efficient 

operation conditional only on observed output.  We therefore include a direct control for 

the presence of a SCRUBBER. 

 Operational plant data are supplemented with information on state-level 

restructuring activity.  For each state, we have identified (i) the date at which formal 

hearings on restructuring began, (ii) the enactment date for legislation restructuring the 

                                                                                                                                                   
considerations suggest that observed wages may not be exogenous to the firm, and may not reflect the 
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state’s utility sector, if any, (iii) the implementation date for retail access under that 

legislation, and (iv) associated aspects of restructuring such as rate freezes and mandatory 

divestiture of generation.  Testing for restructuring-specific shocks requires a 

determination of how to match this information with firm decisions:  when were plant 

operators in a given state likely to have begun responding to a policy change?  

Consultations with industry participants and readings of these events suggest that utilities 

often acted in advance of final legislative or regulatory outcomes.  The process leading to 

state restructuring typically lasted a number of years, allowing utilities to anticipate the 

coming change, and alter their behavior in advance.  For example, Boston Edison’s 10-K 

filed in March 1994 discussed Massachusetts’ consideration of restructuring, stating  “The 

Company is responding to the current and anticipated competitive pressure with a 

commitment to cost control and increased operating efficiency without sacrificing quality 

of service or profitability” (Boston Edison, 1994, p. 6).36  Massachusetts had just begun 

holding formal hearings on restructuring the industry in 1994.  Utilities may have phased 

input changes, especially those involving labor and particularly unionized workers.  

Moreover, as policy changes were discussed, rates were frozen in many states, either 

explicitly by policy makers or in effect by implicit PUC decisions not to hear new rate 

cases, enabling utilities to capture the savings from incremental cost reductions.37   

                                                                                                                                                   
opportunity cost to managers of the marginal unit of labor. 
36 A similar theme was echoed by many other utility executives.  For example, in a 1993 news story on 
PECO’s early retirement plan, Chairman and CEO Joseph Paquette described “trying to improve the 
company's competitive position by emphasizing a more productive work force. Employees are receiving 
extensive training for quality, and the company is looking at modifying its salary structures to promote pay 
for performance. Paquette said such programs are needed to help the company conduct business in an 
evolving, less-regulated power generation environment. ‘We have to be prepared for this more competitive 
world,’ he said” (“Philadelphia Electric: Cites Effect of Cost-Cutting Plan,” Dow Jones News Service, May 
27, 1993).  
37 As noted earlier, some of these changes may have also affected utilities in non-restructuring states.  For 
example, the number of utility rate cases dropped dramatically in the 1990s, implying that many utilities 
may have been short- or medium-run residual claimants to cost reductions.  Knittel (2002) identifies a 
number of incentive regulations adopted in various jurisdictions during the 1990s.  Many of the fuel-related 
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 In this work, we allow restructuring effects to begin with the opening of formal 

hearings on restructuring.  The primary variable of interest, RESTRUCTURED, is an 

indicator variable that turns on for investor-owned plants with the start of formal 

proceedings in a state that eventually passed restructuring legislation.38  If utilities did not 

respond until restructuring legislation or regulation was enacted and the policy uncertainty 

resolved, RESTRUCTURED will underestimate the true effect by averaging in 

nonresponse years.  To evaluate this possibility we introduce a second variable, LAW 

PASSED, an indicator equal to one beginning in the year the state passes restructuring 

legislation.39  A third variable, RETAIL ACCESS, indicates the start of retail access for 

plants in the states that implemented retail competition within our sample.40 If actual 

implementation of retail access and the associated wholesale market reforms is important 

to efficiency gains, it will be reflected in an incremental effect of RETAIL ACCESS.  

 To compare differences in the path of municipally-owned plants over the 

restructuring time period, we define the indicator variables MUNI*POST 1987 and 

MUNI*POST 1992.  The first is equal to one for all non-investor-owned plants after 1987, 

                                                                                                                                                   
regulations (modified pass-through clauses, heat rate and equivalent availability factor incentive programs) 
were strongly correlated with ultimate restructuring.  Some of the broader regulations (e.g., price caps and 
revenue decoupling programs) were almost orthogonal to eventual restructuring. 
38 The RESTRUCTURED variable is based on whether a state had passed legislation as of mid-2001.  To 
date, there has been no additional restructuring and some states have delayed or suspended planned 
restructuring activity in the aftermath of the California electricity crisis.  Plants are assigned to the state in 
which they are regulated.  A plant located in one state may be owned by a company with exclusive service 
territory in a different state.  In this case, the ownership state is the one for which the regulatory policy is 
measured.  Some plants are owned by a company with service territory in more than one state and some 
plants are owned by several companies that are regulated by different states. In the regression analysis, we 
found that separately characterizing “mixed” regulation and “shared” plants had very little impact on our 
results. 
39 There is on average about a 2.6-year lag between the initiation of hearings and the passage of the law.  
We have experimented with a number of alternative measures of restructuring activity, including variables 
that begin with hearings regardless of restructuring outcomes, those that measure years since hearings were 
initiated for states that eventually restructured, and the presence of restructuring-associated rate freezes.  
None of these materially changes the conclusions we draw below. 
40 While RESTRUCTURED indicates approval of retail access competition, the specified phase-in of retail 
access was often slow.  Only seven states implemented retail access during our sample period, four in 1998 
and three in 1999. 
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the second for all non- IOU plants after 1992.  MUNI*POST 1987 allows for the 

possibility that relative input demand growth for IOU and publicly-owned plants diverged 

in the late 1980s and early 1990s, when many states began to experiment with incentive 

regulation and during which time the earliest discussion of increased competition took 

place.  MUNI*POST 1992 captures the incremental change in relative input demand 

growth across IOUs and publicly-owned plants during the restructuring period.  Because 

the designation of the pre-reform period is inherently imperfect, we also report the 

unrestricted annual time path of input demand growth (see Figures 1 and 2). 

 Details on the data sources and summary statistics are provided in the data 

appendix.  Table 1 reports summary statistics for plant-level data in 1985 across three 

categories:  investor-owned plants in states that eventually restructured, investor-owned 

plants in states that did not restructure, and non-IOU (MUNI) plants.  We use 1985 to 

ensure that comparisons are made prior to any significant changes across states in the 

competitive or regulatory environment, even well before restructuring initiatives.   

This table suggests that the plants in these groups are not random draws from the 

same population.  The first three variables measure employees and nonfuel operating 

expenses, scaled by the plant’s capacity, and fuel use in millions of British thermal units 

(mmBtus), scaled by the plant’s output.  In 1985, before state-level restructuring 

initiatives were considered, IOU plants in states that eventually restructured used more 

employees and nonfuel operating expenses per MW of capacity than did IOU plants in 

non-restructuring states (see the difference in means test in column 4).  Employment by 

municipally-owned plants is not statistically distinguishable from employment at 

restructuring IOU plants, but MUNI plants appear to have lower levels of nonfuel 

expenses.  Differences in heat rates and capacity factors are not significant for any cross-
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sample comparison.  The last four rows suggest notable differences in the stock of plants 

across these three groups.  Although IOU plants are very similar in size across regimes, 

MUNI plants tend to be substantially smaller.  IOU plants in restructuring states tend to be 

older, more likely to use gas, and less likely to use coal, than their counterparts in non-

restructuring states.  IOU plants in restructuring states also tend to be older and less likely 

to use coal than their MUNI counterparts.  The regression analysis will control for these 

differences directly or with the use of plant-epoch effects.    

 If investor-owned utilities achieved efficiency improvements when facing 

impending restructuring of the generation sector, one would expect to see a relative 

decrease in the cost of generation for affected companies, and little difference in the 

change in transmission and distribution costs between the affected and not affected states 

since restructuring programs leave transmission and distribution comparatively untouched.  

If restructuring did not affect operating efficiency in the generation sector, we might 

expect similar changes in generation expenses across restructuring and non-restructuring 

companies, and perhaps similar patterns of cost changes across the transmission, 

distribution, and generation sectors.  

Table 2 displays the mean changes in cost per MWh for investor-owned utilities in 

restructuring and non-restructuring states between 1990 and 1996. 41  Unlike distribution 

and transmission costs, generation costs per MWh decrease considerably over this period, 

and by considerably more at companies in restructuring states, significant at the 6 percent 

level.  Moreover, the difference in cost changes across regimes is not significant for either 

the transmission or distribution costs.  These aggregate statistics may suggest that the 

                                                 
41 For this analysis, we rely on data reported annually by utility companies to the FERC in the Form 1, page 
320, 321, and 322 respectively.  We use a balanced sample composed of all companies with data reported 
for all three sectors in both 1990 and 1996.  This amounts to 48 companies in states that did not restructure 
and 72 in states that did restructure.  
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division of the utility company faced with competition (the generating sector) responded 

with a decrease in costs, while other sectors and companies not faced with competition did 

not share this response. 

IV. Estimating the Effects of Restructuring on Input Use 

 Following equation (11), we estimate the influence of restructuring on the use of 

input N (EMPLOYEES, NONFUEL EXPENSE, and BTUs) with the following basic 

regression model: 

(12) ln(Nirt) = β1
Nln(NET MWHirt) + β2

Nln(PRICEN
irt ) + β3

NSCRUBBERirt + 

 φ r
 NIOU*RESTRUCTUREDirt  + γ87

NMUNI*POST 1987irt +  

 γ92
NMUNI*POST 1992irt  +  αi

N + δt
N  + eirt 

where we allow for nonunity coefficients on the output term (β1
N ) for all equations and on 

the input price term (β2
N on WAGE) in the EMPLOYEES  equation,42 and measure the 

impact of having a scrubber on plant input use with the variable SCRUBBER.  αi
N is a 

time-invariant fixed effect for input N at plant-epoch i, which may contain a state-specific 

and ownership-specific error that will not be separately identified.  These plant-specific 

effects control for much of the expected variation in input use across plants arising from 

heterogeneous technologies, state or regional fixed factors, and basic efficiency 

differences.  They also control for differences in the plant mix between restructuring and 

non-restructuring states by comparing each plant to itself over time, removing any time-

invariant plant effects.  As a Hausman test (Jerry Hausman, 1978) rejects the exogeneity 

of the plant-epoch effects, all reported results include plant-epoch fixed-effects.  δt
N is an 

                                                 
42 Recall that we do not have a price associated with nonfuel expenses, and that according to equation (10), 
fuel prices should not enter into the fuel input function.  We experimented with using a variable measuring 
the price of a given plant’s fuel relative to the prices of other fuels in the same region as an instrument for 
output but the variable had no power in the first stage. 
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industry-level effect in year t, which controls for systematic changes in input demand 

common to all plants in that year.    

 The error term, eirt, combines the deviation of actual from probable output, β1
Nε irt

A, 

and the input N-specific productivity shock to plant i in regime r at time t, εirt
N.  This error 

is unlikely to be independent over time for a given plant; the data suggest considerable 

persistence in input shocks, particularly for labor, from year to year.  The estimated rho 

assuming a first-order serial correlation process ranges from roughly 0.33 for nonfuel 

expenses to 0.75 for labor.  As discussed earlier, the estimation must also account for 

endogeneity of output, measured in these specifications as the net generation by the plant 

in megawatt-hours (NET MWH).  We therefore implement a GLS-IV estimation strategy, 

using a Prais-Winsten GLS correction for first-order serial correlation at the plant level,43  

and instrumenting for plant output with a nonlinear function of state demand (the log of 

total state electricity sales, which is a consumption rather than production measure). 44 

 We consider specifications that include interactions of IOU ownership with the 

three primary restructuring indicator variables described in section III:  

RESTRUCTURED, LAW PASSED, and RETAIL ACCESS.   In the input regressions, a 

negative coefficient on the restructuring variables would imply increased input efficiency 

associated with the regulatory reform.  The core results for the input analysis are presented 

in table 3 for EMPLOYEES, table 4 for NONFUEL EXPENSES and table 5 for BTU.  We 

first discuss the results for employment and nonfuel expenses, and then discuss the results 

for fuel use. 

                                                 
43 Reported standard errors also correct for possible correlation across observations at the state-year level. 
44 State demand is an important determinant of plant-level output, but should be unaffected by plant 
productivity shocks.  The F-statistic on the instrument from the first stage estimates for the NONFUEL 
EXPENSE and BTU specifications (i.e. excluding the WAGE variable) is 11.9.  We have explored the 
sensitivity of our results to alternative instrument choices; these are reported in the FRW (2007) Technical 
Appendix. 
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 Column 1 of tables 3 and 4 reports results from generalized least squares (GLS) 

estimation of our basic specification, treating plant output as exogenous.  The primary 

coefficient of interest, IOU*RESTRUCTURED, captures the mean differential in input use 

for investor-owned plants in states that eventually pass restructuring legislation.  This is , 

measured over the period following the first restructuring hearings, relative to the 

untreated IOU plants in non-restructuring states.  The results suggest statistically and 

economically significant declines in input use associated with regulatory restructuring.  

Employment declines by roughly 3 percent (1 percent standard error) and nonfuel 

expenses decline by roughly 9 percent (2 percent standard error),45 relative to IOU plants 

in regimes that have not restructured.46  

 The second notable result is the dependence of the implied restructuring effect on 

the control group.   While IOU plants in restructuring states exhibit modest reductions in 

employment and nonfuel expenses relative to IOUs in non-restructuring states, the implied 

reductions are substantially larger when compared to public and cooperative plants. The 

positive MUNI*POST 1987 coefficients suggest that all IOU plants improved their 

efficiency relative to MUNI plants during the late 1980s and early 1990s.  This gap 

widened further after 1992 (see MUNI*POST 1992).  This suggests that even IOU plants 

in non-restructuring regimes improved their relative input use to a significant extent, 

perhaps in response to latent threats of increased competition and restructuring.  

Employment use was 6 percent lower for IOU plants in restructuring states relative to 

                                                 
45 We use [exp(φ r

 N )-1]*100 to approximate the implied percentage effect of  IOU* RESTRUCTURED on 
input use. 
46 Note that the Cobb-Douglas functional form assumption for labor and nonfuel expenses suggests that the 
coefficient on output should be one, substantially larger than the coefficients estimated in these regressions.  
We have estimated production functions in EMPLOYEES and NONFUEL EXPENSES using more flexible 
functional forms than Cobb-Douglas, and the results also suggest efficiency gains associated with 
restructuring.  We have also estimated instrumental variables versions of equations (7) and (8) that include 
the other input instead of output and obtained very similar results to those reported here.  
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MUNI plants after 1992, and nonfuel expenses declined by 11 percent relative to the 

MUNI  benchmark (computed as the  IOU*RESTRUCTURED minus MUNI*POST 1992 

coefficients in tables 3 and 4).    We return to this issue in greater detail below.   

 The remaining columns in each table report instrumental variables (GLS-IV) 

estimates of the input equations that treat potential measurement error and simultaneity 

bias with respect to output, as well as serial correlation of shocks.  For EMPLOYEES, 

estimates of the output coefficient almost double relative to the GLS estimates, although 

the imprecision of the GLS-IV estimates make it impossible to reject equivalence, and in 

absolute magnitude, both estimates of the labor demand elasticity with respect to output 

are quite small, at 4 percent (0.5 percent standard error) for GLS and 7 percent (7 percent 

standard error) for GLS-IV.    Consistent with this, the estimated effect of restructuring on 

labor demand is essentially unaffected by the treatment of output exogeneity.  For 

NONFUEL EXPENSES, however, instrumenting for output increases its estimated 

elasticity more than fourfold, to over 50 percent (9 percent standard error).  This is 

consistent with a negative correlation of input shocks and output, as for example, if large 

maintenance expenditures are associated with outages at the plant.  With the strong link 

between output and nonfuel expenses implied by these results, correcting for output 

endogeneity also has a substantial effect on the estimated effect of restructuring.  The 

estimated coefficient on the IOU*RESTRUCTURED coefficient drops by almost half, to    

-5 percent (2.6 percent standard error), bringing it into the range of the estimated labor 

input effect.   

 Columns 3 and 4 of the tables explore robustness to alternative measures of 

restructuring, maintaining the use of GLS-IV estimates.  Measuring restructuring by LAW 

PASSED  in column 3 yields smaller (and statistically indistinguishable from zero) 
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coefficients in both the employment and the nonfuel expense regressions, perhaps because 

the baseline period now includes efficiency improvements made between the initiation 

and passage of legislation.  Column 4 adds the RETAIL ACCESS variable.  We note that 

its coefficient is identified by no more than two years of data in the seven states that 

implement retail access as of 1999, and it is not particularly stable across alternative 

instrument sets or to changes in the sample.  In these basic specifications, the coefficient 

on RETAIL ACCESS in labor demand is quite imprecisely estimated, though the point 

estimate suggests an additional –3 percent (5 percent standard error) change in 

employment when states implement retail access.  The estimated impact of retail access on 

nonfuel expenses is substantially larger, at -17 percent (6.5 percent), though its sensitivity 

to balancing the sample precludes confidence in the estimate (see footnote 25). 

 Finally, in column 5 of each table, we report results that use an alternative measure 

of competitive pressure.  Policy changes in the late 1980s and early 1990s set the stage for 

increased nonutility generation, but the impact of that change varied substantially across 

states.  We construct an indicator, HIGH NONUTILITY GENERATION, which turns on in 

1993 if the plant is in a state that has above median penetration of nonutility generation as 

of 1993.  This measure should capture any utility responses to higher intensity of actual 

generation competition from unregulated market participants.47  The estimated impact of 

high levels of nonutility generation on employment at IOU plants is slightly smaller and 

noisier than RESTRUCTURED estimates (at -2.2 percent, standard error, 1.9 percent).  For 

nonfuel expenses, high penetration by non utility generation appears to have no detectable 

direct effect on IOU plant input use (-1 percent, standard error, 3 percent).   

                                                 
47We include this in column 5 as a replacement for restructuring policy variables, but have also estimated 
models that include direct effects of RESTRUCTURED and HIGH NONUTILITY GENERATION as well as 
their interaction.   
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 In the instrumental variables results, as in the GLS results, the implied magnitude 

of the restructuring effect depends upon the chosen benchmark or control group.  The gap 

in IOU input demand between restructuring and non-restructuring states, conditional on 

output, is generally statistically and economically significant, though relatively modest.  

The performance gain of an IOU plant in a restructured regime relative to MUNI plants 

over the same period is larger, on the order of 6 percent reductions in employment and 12 

percent reductions in nonfuel expenses.48   

 To provide further insight into the question of benchmark group, we re-estimate 

the basic model of column (4) without the IOU*RESTRUCTURED and MUNI*POST 

1992 variables, but allowing for separate year effects for each of three categories of 

plants:  IOU plants in states that eventually restructure, IOU plants in states that do not 

restructure, and MUNI plants.  Figures 1 (employees) and 2 (nonfuel expenses) plot the 

estimated year effects for each plant group.  The figures suggest greater divergence 

between MUNI and IOU plants in both input measures as the 1990s progress.  As this is a 

period of increasing competitive pressures and substantial movement toward restructuring, 

these patterns suggest to us that there is considerable information in the MUNI benchmark 

comparisons. 

 Table 5 reports results from variants of our basic specification for fuel inputs.  In 

column 1, GLS results suggest an output elasticity well below unity (0.912, standard error 

0.004), and an implied reduction in fuel use associated with IOU plants in restructuring 

regimes (-1.4 percent, standard error 0.4 percent).   Columns 2 through 5 report results for 

specifications that instrument for output.  The estimated output elasticity is quite close to, 

and statistically indistinguishable from, unity.  The estimated effects of restructuring or 

                                                 
48 The results are robust to a variety of more flexible specifications of the MUNI controls over time and to 



 34

NON UTILITY GENERATION competition are all small and statistically indistinguishable 

from zero (negative in columns 2 and 4, positive in columns 3 and 5).  There is no 

measurable effect of restructuring on fuel efficiency relative to IOU plants in non-

restructuring states.  Nor is there evidence of significant differences between IOU plants 

and MUNI plants.  The MUNI *POST 1992 coefficient point estimates appear virtually 

identical to the IOU restructuring coefficients, and are similarly indistinguishable from 

zero.49 

 While the data do not suggest gains in fuel efficiency from restructuring within our 

sample, a caveat is in order.  Although variations on the order of even 0.5 - 1.0 percent in 

fuel productivity are economically significant, it may be difficult to measure these 

sufficiently precisely with our aggregated data.  Fuel efficiency at a plant is heavily 

influenced by factors such as the allocation of output across units at a plant, the number of 

times its units are stopped and started, and for how long the units were running below 

their capacity.  Our inability to measure or control for possible changes in these 

operational characteristics may make it particularly difficult to capture any changes in fuel 

efficiency.  Improving our understanding of fuel efficiency effects seems an important 

direction for future research. 

Testing robustness of the RESTRUCTURED effect 

We have analyzed the robustness of these results to a variety of alternative 

specifications of the input demand equations.   We report selected results below; 

additional robustness tests are available in our Technical Appendix.  Given the null results 

                                                                                                                                                   
allowing differential MUNI output elasticity coefficients.   
49 We obtained similar null results when we estimated specifications using the log of plant heat rate 
(BTUs/MWhs) as the dependent variable, controlling for output. 



 35

in our basic fuel use regressions, we focus on labor and nonfuel expense input choices in 

this analysis.   

 Our first tests divide the sample along size and age lines; recall that these are the 

dimensions on which MUNI plants appear to differ from IOU plants.  In tables 6 

(employees) and 7 (nonfuel expenses), we report results for “larger” versus “smaller” 

plants (columns 1 and 2), and “old” versus “new” plants (columns 3 and 4).  These are 

relative cuts that divide the sample at roughly the median of size (575 MW) and the 

median of age (oldest unit is built after 1960).  For all specifications, IOU plants in 

restructured regimes exhibit lower input use than do IOU plants in nonrestructured 

regimes (see the coefficients on IOU*RESTRUCTURED), though the magnitude of the 

estimated effect varies with the subsample.  Estimated IOU restructuring effects suggest 

very similar employment reductions at LARGER and SMALLER plants and slightly greater 

employment reductions at NEW plants than at OLD plants, though the point estimates are 

not significantly different across the subsamples.  Nonfuel expense reductions appear to 

be greatest for LARGER and NEW plants—about twice the estimated magnitude for those 

at SMALLER and OLD plants. More interesting, perhaps, is the comparison to MUNI 

plants.   They appear indistinguishable from IOUs in input use at OLD plants (see column 

3 of both tables) and in employment at LARGER plants.  For newer and SMALLER plants 

(where the MUNI density is greatest), the post-1992 performance gap is at least as large as 

in the previous tables.  It is difficult to tell whether the patterns in these subsamples reflect 

real differences or a greater ability of the data to pin down performance effects for the 

denser part of the sample.  Moreover, it does not appear that the overall conclusions of the 

earlier tables with respect to the MUNI benchmark are substantially affected by these 

sample differences. 
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 In table 8, we consider whether the results are explained by a regression to the 

mean phenomenon among IOU plants:  is the gain in efficiency among plants in 

restructuring regimes because they had on average low productivity draws prior to 

restructuring, and simply return to mean efficiency over time?   To examine this, we 

identify high- and low-input use plants and investigate the extent to which efficiency gains 

at the higher input use plants are offset by efficiency losses at low input use plants.  To 

separate plants into “low input” and “high input” categories, we predict input use from a 

regression on data for the pre-restructuring period, 1981 – 1992.  We calculate the mean 

residual for each plant and classify plants with mean residuals above zero as “HIGH 

INPUT” and those below zero as “LOW INPUT.”  We then interact these indicators with 

the restructuring variables, which are post-1992, and re-run the basic regression 

specification allowing input responsiveness to restructuring to differ across plant type.50  

 The results in table 8 suggest that most of the restructuring-related input declines 

relative to IOU plants in nonrestructured regimes are associated with high input-use IOU 

plants, with reductions in the neighborhood of 10 percent to 12 percent (standard errors, 

about 3 percent) for both labor and nonfuel expenses for these plants.  The coefficients on 

the IOU*RESTRUCTURED*LOW INPUT interactions are economically and statistically 

indistinguishable from zero, contrary to mean reversion predictions.  This may suggest 

that the form of efficiency improvement was to bring less efficient plants into line with 

more efficient plants.  This is consistent with discussions we have had with several utility 

managers, who claimed that restructuring led their firms to identify high-cost plants as 

those disadvantaged in the dispatch order, and to focus attention on bringing the costs of 

those plants closer to an efficient benchmark plant.  Interestingly, the MUNI benchmark 

                                                 
50 The direct effects of LOW INPUT and HIGH INPUT categories are absorbed in the plant fixed effects. 
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suggests that LOW INPUT  MUNI plants became more expensive, with little relative 

change at the HIGH INPUT  MUNI plants after 1992.   

 We have implemented a number of additional robustness checks, including 

alternative instruments and instrument strategies and more flexible dynamics in input 

choice.  A more complete discussion and example results are available in our Technical 

Appendix. Of particular note were specifications that allow for the possibility of fixed 

costs of input adjustments.  We find that the restructuring estimates are robust to allowing 

inputs to respond to future as well as current output levels.   Lagged values of output 

(following Blundell and Bond, 1998, 2000) proved to be weak instruments in our GLS-IV 

model. 

V. Conclusion 

 This research provides some of the first estimates of the impact of electricity 

generation sector restructuring in the United States on plant-level efficiency.  The results 

suggest restructuring may yield substantive medium-run efficiency gains.  The estimates 

suggests that IOU plants in restructuring regimes reduced their labor and nonfuel 

operating expenses by three to five percent in anticipation of increased competition in 

electricity generation, relative to IOU plants in states that did not restructure their markets.  

The estimated efficiency gains are even larger when compared to a benchmark based on 

municipal, federal, and cooperative plants:  on the order of six percent reductions in labor 

use and twelve percent reductions in nonfuel operating expenses relative to non-IOU 

plants over the same time period.   There is little evidence of increases in fuel efficiency 

relative to plants in non-restructuring regimes, although the power of these tests is limited 

given the plausible range of possible fuel use improvements.   
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 These same-plant reductions in input use suggest an important role for market-

based incentives and competition in promoting technical efficiency, buttressing the 

findings of Nickell (1996), Ng and Seabright (2001), and Galdón-Sánchez and Schmitz 

(2002), among others.  This finding is particularly interesting given the industry context.  

Generating plant technology is reasonably well understood by engineers, and the pre-

restructuring industry was remarkably open in sharing detailed information on plant 

operations and input use across plants and firms.51  Presumably, external benchmarks also 

were more accessible in this setting than in most industries.  This could suggest that 

competition induced greater effort on cost reduction by increasing the sensitivity of 

returns to managerial and worker effort, rather than by reducing informational 

asymmetries over managerial effort (Nickell, 1996). 

 Additional work remains to be done to fill out the picture of the overall effects of 

restructuring on electricity industry efficiency.52  We began by looking at operating 

efficiency within existing utility plants both because this is one of the few places where 

gains are likely to show up before restructured wholesale markets open up and because 

rich data are available on utility-owned plants.  As our results suggest, even these data are 

inadequate for the fine-level analysis required to estimate within and across-plant changes 

in fuel efficiency.  This analysis will require datasets with both cleaner measures of fuel 

efficiency and richer information on independent factors that affect fuel use.  Finally, 

assessing whether investment decisions are made more efficiently after restructuring 

requires more time, and access to better nonutility data.  Since power plants are so long-

                                                 
51 Our access to detailed, publicly-available, plant-identifiable data corroborates this. 
52 See Wolfram (2005) for a discussion of the general issues involved in assessing different types of 
efficiency changes accompany electricity restructuring. 
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lived, very few new additions are made each year, and currently we have no more than a 

handful of anecdotes about investment after restructuring.   

 It is important to recognize that these efficiency estimates are, however, only one 

input to judging the ultimate benefit of restructuring policies.  The overall assessment 

depends as well on the realized magnitude of potential dynamic efficiencies, and 

offsetting effects from higher investment expenditures, restructuring costs, the loss of 

coordination and network economies within vertically integrated systems, and the exercise 

of market power in unregulated generation markets.  Dynamic costs could be higher if 

restructuring reduces knowledge sharing that affects productivity growth over time.  It is 

possible, however, that longer run benefits will be greater if firms respond to the new 

incentives created by restructuring with investments in both human and physical capital 

that further enhance efficiency.  If California’s crisis does not induce reversals of the 

restructuring movement, and regulators do not shut down data reporting and researcher 

access to detailed plant-level data, time may enable us to distinguish among these 

possibilities. 
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Table 1: Summary of Plant Characteristics in 1985, By Ownership and Restructuring Regime as of 2001 
Difference in Means 

(t-statistic) 
  
 
Variable 

 
RESTRUCTURED 

 IOU Plants 
(N=249) 

 
NON-

RESTRUCTURED 
IOU Plants 

(N=192) 

 
MUNI 
Plants 

(N=105) 
RESTRUCTURED - 

NONRESTRUCTURED 
IOUs 

RESTRUCTURED 
IOUs - 
MUNI 

EMPLOYEES / MW 
 

0.29 
(0.22) 

0.26 
(0.14) 

0.27 
(0.13) 

0.04** 
(2.07) 

0.02 
(1.12) 

NONFUEL EXPENSE/ MW 
($/MW) 

19909 
(14180) 

16742 
(9976) 

15369 
(9334) 

3167** 
(2.75) 

4539** 
(3.54) 

HEAT RATE 
(Million Btu/MWh) 

11 
(2.0) 

11 
(3.3) 

12 
(5.9) 

-0.2 
(-0.90) 

-0.6 
(-0.97) 

CAPACITY FACTOR 
 (0.0-1.0) 

0.40 
(0.21) 

0.40 
(.20) 

0.39 
(0.22) 

-0.006 
(-.30) 

0.005 
(0.18) 

MegaWatt Capacity 
(MW) 

805 
(658) 

801 
(645) 

679 
(601) 

3.6 
(0.06) 

126* 
(1.75) 

Age of Oldest Unit 
(years) 

28 
(11) 

24 
(13) 

19 
(11) 

3.5** 
(2.96) 

8.4** 
(6.40) 

Percent COAL 51 
 

79 
 

68 
 

-28** 
(6.42) 

-16** 
(2.91) 

Percent  GAS 37 
 

16 
 

29 
 

20** 
(5.03) 

8 
(1.48) 

In the first three columns, standard deviations are in parentheses. 
* denotes differences significant at 0.10 level    ** denotes differences significant at 0.05 level or better. 
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Table 2: Percentage Change in Costs per MWh from 1990 to 1996 
Difference of Means Tests 

Investor Owned Utilities in Non-restructuring versus Restructuring States 
 N Distribution Transmission Generation 

Restructuring Mean 72 1.5  13.1  -13.5  
Non-restructuring 
Mean 

48 -1.6  12.6  -5.1  

Difference of means  3.1  0.4  -8.3  
t-statistic  0.70 0.06 -1.87 

All measures are in nominal dollars.   
Transmission and distribution costs are per MWh sales to ultimate customers,  

while generation costs are per MWhs generated at company plants. 



Table 3:  Labor Input Demand Estimates with Alternative Specifications of Restructuring 
Dependent variable: ln(EMPLOYEES) 

 (1) (2) (3) (4) (5) 
 
Independent Variables 

GLS 
Basic 

GLS-IV 
Basic 

GLS-IV 
Law Date 

GLS-IV 
Retail 
Access 

GLS-IV 
Non Utility 
Generation 

-0.032** -0.031**  -0.031**  IOU*RESTRUCTURED 
(0.014) (0.015)  (0.014)  

  -0.013   IOU*LAW PASSED 
  (0.016)   
   -0.031  IOU*RETAIL ACCESS 
   (0.051)  
    -0.022 IOU*HIGH NON 

UTILITY GENERATION     (0.019) 
0.029** 0.032*** 0.036*** 0.031*** 0.029** MUNI*POST 1992 
(0.012) (0.012) (0.012) (0.012) (0.014) 

0.056*** 0.060*** 0.061*** 0.059*** 0.062*** MUNI*POST 1987 
(0.012) (0.013) (0.013) (0.013) (0.013) 
-0.010 -0.012 -0.013 -0.011 -0.013 ln(WAGE) 
(0.013) (0.013) (0.013) (0.013) (0.013) 

0.036*** 0.067 0.076 0.060 0.078 ln(NET MWH) 
(0.005) (0.064) (0.065) (0.065) (0.064) 
0.033 0.037 0.039 0.035 0.041 SCRUBBER 

(0.026) (0.025) (0.025) (0.026) (0.025) 
ρ .75 .72 .71 .72 .71 

N =10079; 769 plant-epoch and 19 year effects included.   
Estimates corrected for the presence of serial correlation using a Prais-Winsten transformation.  

IV estimates use ln(STATE SALES) as an instrument for ln(NET MWH). 
Standard errors in parentheses, clustered for correlation within a state-year.  

* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent 



 

Table 4:  Nonfuel Expense Input Demand Estimates with Alternative Specifications of Restructuring 
 Dependent variable: ln(NONFUEL EXPENSES) 

 (1) (2) (3) (4) (5) 
 
Independent Variables 

GLS 
Basic 

GLS-IV 
Basic 

GLS-IV 
Law Date 

GLS-IV 
Retail 
Access 

GLS-IV 
Non Utility 
Generation 

-0.095*** -0.051**  -0.052**  IOU*RESTRUCTURED 
(0.022) (0.026)  (0.025)  

  -0.022   IOU*LAW PASSED 
  (0.027)   
   -0.189***  IOU*RETAIL ACCESS 
   (0.063)  
    -0.013 IOU*HIGH NON 

UTILITY GENERATION     (0.029) 
0.057*** 0.069*** 0.082*** 0.068*** 0.079*** MUNI*POST 1992 
(0.019) (0.021) (0.022) (0.020) (0.023) 

0.121*** 0.109*** 0.108*** 0.110*** 0.108*** MUNI*POST 1987 
(0.020) (0.022) (0.022) (0.021) (0.023) 

0.077*** 0.417*** 0.445*** 0.379*** 0.454*** ln(NET MWH) 
(0.011) (0.090) (0.091) (0.091) (0.091) 
0.025 0.051 0.055 0.040 0.059 SCRUBBER 

(0.038) (0.050) (0.053) (0.048) (0.053) 
ρ .38 .33 .34 .33 .34 

N = 10079; 769 plant-epoch and 19 year effects included.   
Estimates corrected for the presence of serial correlation using a Prais-Winsten transformation. 

IV estimates use ln(STATE SALES) as an instrument for ln(NET MWH). 
Standard errors in parentheses, clustered for correlation within a state-year.  

* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent 



 

Table 5:  Fuel Input Demand Estimates with Alternative Specifications of Restructuring 
Dependent variable: ln(BTUs) 

 (1) (2) (3) (4) (5) 
 
Independent Variables 

GLS 
Basic 

GLS-IV 
Basic 

GLS-IV 
Law Date 

GLS-IV 
Retail 
Access 

GLS-IV 
Non Utility 
Generation 

-0.014*** -0.009  -0.009  IOU*RESTRUCTURED 
(0.004) (0.006)  (0.006)  

  0.005   IOU*LAW PASSED 
  (0.007)   
   0.007  IOU*RETAIL ACCESS 
   (0.017)  
    0.005 IOU*HIGH NON 

UTILITY GENERATION     (0.008) 
-0.004 -0.005 -0.003 -0.005 -0.001 MUNI*POST 1992 
(0.005) (0.007) (0.007) (0.007) (0.007) 
0.004 0.000 0.000 0.000 0.000 MUNI*POST 1987 

(0.006) (0.009) (0.009) (0.009) (0.009) 
0.912*** 0.969*** 0.979*** 0.970*** 0.978*** ln(NET MWH) 
(0.004) (0.034) (0.035) (0.036) (0.034) 
-0.008 -0.003 -0.001 -0.003 -0.002 SCRUBBER 
(0.009) (0.010) (0.010) (0.010) (0.009) 

ρ -.08 .44 .44 .44 .44 
N = 10002; 768 plant-epoch and 19 year effects included.   

Estimates corrected for the presence of serial correlation using a Prais-Winsten transformation. 
IV estimates use ln(STATE SALES) as an instrument for ln(NET MWH).  

Standard errors in parentheses, clustered for correlation within a state-year.  
* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent 



 

Table 6:  Labor Input Demand Estimates by Plant Type 
Dependent variable: ln(EMPLOYEES) 

 (1) (2) (3) (4) 
 
Independent Variables 

Larger Plants 
575MW+ 

Smaller Plants 
< 575 MW 

Old Plants 
 < 1960 

New Plants 
1960+ 

-0.030** -0.031 -0.025 -0.033*** IOU*RESTRUCTURED 
(0.015) (0.020) (0.020) (0.012) 
0.018 0.039** -0.001 0.036*** MUNI*POST 1992 

(0.016) (0.015) (0.023) (0.012) 
0.016 0.086*** 0.092*** 0.039*** MUNI*POST 1987 

(0.021) (0.016) (0.028) (0.013) 
0.004 -0.021** -0.034 -0.005 ln(WAGE) 

(0.027) (0.010) (0.038) (0.020) 
0.054 0.047 0.085 0.013 ln(NET MWH ) 

(0.118) (0.054) (0.059) (0.100) 
0.068 -0.027 -0.001 0.055* SCRUBBER 

(0.043) (0.019) (0.031) (0.032) 
ρ .71 .74 .70 .73 
Observations 5016 5063 5113 4966 

Plant-epoch and year effects included. 
All estimates are GLS-IV using a Prais-Winsten transformation for serial correlation 

 and ln(STATE SALES) as an instrument for ln(NET MWH). 
Standard errors in parentheses, clustered for correlation within a state-year.  

* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent



 

Table 7:  Nonfuel Expense Demand Estimates by Plant Type 
Dependent variable: ln(NONFUEL EXPENSES) 

 (1) (2) (3) (4) 
 
Independent Variables 

Larger  Plants 
575MW+ 

Smaller Plants 
< 575 MW 

Old Plants 
 < 1960 

New Plants 
1960+ 

-0.072** -0.034 -0.034 -0.068*** IOU*RESTRUCTURED 
(0.029) (0.032) (0.036) (0.025) 

0.078*** 0.061** 0.019 0.080*** MUNI*POST 1992 
(0.030) (0.027) (0.043) (0.024) 
0.052* 0.149*** 0.144*** 0.102*** MUNI*POST 1987 
(0.031) (0.026) (0.037) (0.027) 

0.464*** 0.342*** 0.430*** 0.369*** ln(NET MWH ) 
(0.146) (0.092) (0.110) (0.121) 
-0.032 0.178*** 0.101 -0.057 SCRUBBER 
(0.057) (0.066) (0.063) (0.058) 

ρ .35 .30 .33 .31 
Observations 5016 5063 5113 4966 

Plant-epoch and year effects included. 
All estimates are GLS-IV using a Prais-Winsten transformation for serial correlation 

 and ln(STATE SALES) as an instrument for ln(NET MWH). 
Standard errors in parentheses, clustered for correlation within a state-year.     

* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent 



 

Table 8: Tests for Mean Reversion in Restructuring Effects on Input Demand 
 Dependent Variable 
  
Independent Variable 

 
ln(EMPLOYEES) 

 
ln(NONFUEL EXPENSES) 

 *LOW INPUT 
PLANT 

*HIGH INPUT 
PLANT 

*LOW INPUT 
PLANT 

*HIGH INPUT 
PLANT 

0.017 -0.100*** 0.009 -0.118*** IOU*RESTRUCTURED 
Interaction (0.012) (0.027) (0.028) (0.030) 

0.086*** -0.010 0.122*** 0.006 MUNI*POST 1992 
 Interaction (0.019) (0.014) (0.027) (0.023) 

0.063*** 0.109*** MUNI*POST 1987 
(0.013) (0.021) 
-0.012  ln(WAGE) 
(0.013)  
0.080 0.405*** ln(NET MWH) 

(0.064) (0.091) 
0.024 0.042 SCRUBBER 

(0.022) (0.046) 
ρ .70 .33 

N = 9784; 702 plant-epoch and 19 year effects included. 
All estimates are GLS-IV using a Prais-Winsten transformation for serial correlation 

 and ln(STATE SALES) as an instrument for ln(NET MWH). 
Standard errors in parentheses, clustered for correlation within a state-year. 

* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent 



 

Figure 1: Labor Input Demand Year-Effects by Regulatory Status (Basic GLS-IV Specification) 
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Figure 2: Nonfuel Expense Input Demand Year-Effects by Regulatory Status (Basic GLS-IV Specification) 
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Data Appendix 

Sample Construction: 

 This study analyzes productivity for large fossil-fueled steam turbine or combined cycle 

plants.  The core data source is the Utility Data Institute (UDI) O&M Production Cost Database.  

UDI develops this from the annual FERC Form 1 (filed by investor-owned utilities), EIA Form 412 

(filed by municipal and other government utilities), and RUS Form 7 & 12 (filed by electric 

cooperatives) filings.  We construct the sample used in the empirical analysis as follows: 

Plant type:  We exclude alternative fuel plants (wood, geothermal, waste; 14 plants, 196 plant-

years).  We restrict the sample to steam turbine (ST) and combined cycle (CC) plants, based on the 

variable OMPTYPE in the UDI database.  This excludes 564 combustion (gas) turbine only (GT) 

plants, 6487 plant-year observations. 53  

Plant-epoch: Plant-epochs consist of plant-years over which plant capacity is relatively constant, i.e.  

reported capacity changes are less than 40 MW and 15 percent. 

Plant size:  We retain plant-year observations as long as they are part of a plant-epoch with mean 

capacity (gross megawatts) above 100 MW and at least 3 years of operations at a scale above 100 

MW.  The mean capacity test excludes 229 plant-epochs (186 plants, 2142 plant-years); the 3-year 

operations test excludes an additional 117 plant-epochs (171 plant-years).  The latter test also 

excludes plant-epochs for which we only have one or two years of data, typically plants that add or 

retire capacity near the beginning or end of our sample period.  Excluding these seemed appropriate 

                                                 
53 Most of these are small; the majority report incomplete data.  In many cases, these appear (based on plant names and 
locations) to report information for auxiliary gas turbines located on the same site as units with large steam turbines:  
e.g., Alamitos, a 1900 MW plant with 6 steam units and Alamitos GT, a 140 MW jet engine unit are separate 
observations in our dataset.  The basic restructuring results are robust to including all large GT plant observations with 
nonmissing data as additional plants, and to aggregating GT plant data with their identifiable associated base plants 
(using plant name and location).  See column (2) in tables T5 and T6 in the FRW (2007) Technical Appendix. 
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given plant-epoch fixed effects and the Prais-Winsten-differenced GLS estimation techniques we 

use.   

Incomplete plant data:  We drop 274 plant-years with missing or nonpositive output data; 80 plant-

years with missing or nonpositive nonfuel expenses; 204 plant-years with missing employment and 

289 plant-years with zero reported employees.   Observations excluded for missing data do not 

seem to be directly related to restructuring, and in some cases are less frequent in restructuring 

states, conditional on year.54  

Outlier analysis:  Stata’s dfbeta regression diagnostics were used to ensure that the results are 

robust to outliers. The dfbeta statistic measures how much a coefficient estimate changes (relative 

to its standard error) when an observation is omitted.  For the basic employment and nonfuel 

expense model, we calculated dfbeta statistics for all observations for the variables ln(NET MWH ), 

SCRUBBER,  ln(WAGE) for the employment input model,  IOU*RESTRUCTURED, MUNI*POST 

1992, and  MUNI*POST 1987.  We excluded 148 observations that moved coefficient estimates in 

either or both of the employment or the nonfuel regressions by more than 0.1 standard errors.  We  

found little evidence of a pattern in the observations that are dropped this way.  For instance, we 

drop at least 4 observations from every year, and the most observations dropped from any year are 

21 from 1998.  These deletions change the coefficient point estimates relatively little and serve 

mainly to clean the data of extreme outliers that inflate the standard errors, as reported in columns 

(3) and (4) of our Technical Appendix tables T5 and T6.  We note that the coefficient on 

IOU*RESTRUCTURED in the labor input equation changes only slightly (from 0.31 in our basic 

                                                 
54 For example, regression of the percent of plants in a state-year observation with missing or zero employee data on 
time since restructuring indicator (min (0, the number of years since the start of formal hearings in the state), year 
dummy variables, and state fixed effects suggests that the percentage of such missing values actually decreases 
following restructuring.  
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specification on the trimmed sample to 0.26 in the untrimmed sample) though it is significantly 

distinguishable from zero only at the 11 percent level for the untrimmed sample. 

 The resulting basic dataset consists of 10,079 observations on 647 plants, allocated to 779 

plant-epochs. 

Fuel Input Dataset:  The fuel input dataset begins with the basic dataset described above.  We 

eliminate observations with missing fuel data and apply Stata’s dfbeta regression diagnostics to an 

estimate of the fuel input equation, using a process and thresholds similar to that described for 

employment and nonfuel expenses.  This resulted in deletion of an additional 77 observations.  

Since most of the analysis that we report in the paper is based on the employment and nonfuel 

specifications and since the fuel data appear considerably noisier, this smaller dataset is used only 

for the fuel input analysis.  It consists of 10,002 observations on 646 plants, 778 plant-epochs. 
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Table A1: Summary of Variables (N=10079 unless otherwise noted) 
Variable Definition Mean 

(Standard Deviation) 
Output and Input Variables  
ln(NONFUEL EXPENSE) ln (Annual non fuel production 

expenses ($)), calculated as the total 
production expense less fuel 
expense. 

16.036 
(0.940) 

ln (EMPLOYEES) ln (Annual mean number of 
employees) 

4.739 
(0.815) 

ln(BTU) ln(Total of the total btus of fuel 
consumption). Calculated as (tons of 
coal * 2000 lbs/ton* btu/lb) + 
(barrels of oil*42 gal/barrel*btu/gal) 
+ (Mcf gas*1000 cf /mcf*btu/cf). 
These use reported annual plant-
specific btu content of each fuel. 
(N = 10002) 

30.547 
(1.291) 

ln(NET MWH) ln (Annual net MWh generation ) 14.329 
(1.396) 

Utility and Restructuring Variables 
IOU 1 for plants classified as IOU, 

holding, or private companies; 0 
otherwise. 

0.802 

MUNI 1 for plants owned by utilities 
classified as government or 
cooperative utilities; 0 otherwise. 

0.197 

IOU*RESTRUCTURED 1 for IOU plants in states that 
restructured,  beginning in the year 
of the first formal hearing; 0 
otherwise. 

0.108 

IOU*LAW PASSED 1 for IOU plants in states that 
restructured, beginning in the year 
that legislation was enacted; 0 
otherwise. 

0.041 

IOU*RETAIL ACCESS 1 for IOU plants in states that 
restructured, beginning in the first 
year of  retail access; 0 otherwise. 

0.006 

MUNI*POST 1987 1 for MUNI plants in years 1988-
1999; 0 otherwise. 

0.133 

MUNI*POST 1992 1 for MUNI plants in years 1993-
1999; 0 otherwise. 

0.074 

IOU*HIGH NON 
UTILITY GENERATION 

1 beginning in 1993 for IOU plants 
in states with above median 
penetration of nonutility generating 
plants in 1993; 0 otherwise. 

0.103 
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LOW INPUT 1 if plant mean residual from the 
relevant input use regression for 
1981-1992 period is below zero; 0 
otherwise (N=9784). 

0.500 
(0.500) 

HIGH INPUT 1 if plant mean residual from the 
relevant input use regression for 
1981-1992 period is above zero; 0 
otherwise (N=9784). 

0.500 
(0.500) 

Other Variables 
SCRUBBER 1 if there is an FGD scrubber at the 

plant; 0 otherwise. 
0.132 

ln(WAGE) Bureau of Labor Statistics annual 
wage bill divided by total 
employment calculated at the state-
year level separately for IOU and 
MUNI plants.  Numbers are imputed 
for MUNI plants in 18 states over 
various years and for IOU plants in 6 
states from 1997-1999. 

10.532 
(.335) 

Plant Characteristic Variables 
LARGER 1 if the plant capacity (Gross MW) is 

at least 575MW. 
0.498 

(0.500) 
SMALLER 1 if the plant capacity (Gross MW) is 

less than 575 MW. 
0.502 

(0.500) 
OLD 1 if the youngest unit at the plant 

entered service before 1960. 
.507 

(.500) 
NEW 1 if the youngest unit at the plant 

entered service in 1960 or later. 
.493 

 (.500) 
Economic and Weather Variables 
ln(STATE SALES) ln (Total state electricity 

consumption by year in 
gigawatthours) 

11.184 
(0.851) 

ANNUAL_HDDAYS Population-weighted heating degree 
days for each state-year (use MD for 
DC); N = 10069. 

4399.468 
(2138.744) 

ANNUAL_CDDAYS Population-weighted cooling degree 
days for each state-year (use MD for 
DC); N = 10069. 

1432.163 
(1.396) 
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Data Sources: 

Plant characteristics and operating data:  UDI O&M Production Cost Database 

Wages:  U.S. Department of Labor, Bureau of Labor Statistics.  Industry state-level annual wage 

bill divided by industry total employment.   

Electric utility wages:  SIC Industries 4911.    

Comparable sector wages:  Average over SIC industries 4923-4925 (natural gas 

distribution), 4953 (hazardous waste treatment), and 2911 (petroleum refining). 

Utility ownership:  UDI Utility Datapak Book, 1997. 

Restructuring variables:    Restructuring status and timing is compiled from a review of   

(1) U.S. Department of Energy, Energy Information Administration (EIA), "The Changing 

Structure of the Electric Power Industry: An Update, 12/96" 

(2) EIA, "The Changing Structure of the Electric Power Industry: 2000 An Update" 

(3) EIA,  "Status of State Electric Industry Restructuring Activity," Timeline as of July 2002 

(4) Edison Electric Institute "Electric Competition in the States" February, 2001 

(5) National Association of Regulatory Utility Commissioners (NARUC),  "Utility Regulatory 

Policy in the United States and Canada, Compilation," 1994 – 1995, and 1995 – 96 

(6) The Council of State Governments, "Restructuring the Electricity Industry," 1999 

(7) State Public Utility Commission websites, relevant legislation and reports. 

State demand data and instruments: 

State electricity sales by year:  Sales to Ultimate Customers from EIA's "Electric Sales and 

Revenue," Table 6, and EIA's "Electric Power Annual," Tables 117 and 90, various years. 

Heating and cooling degree days:  Population-weighted heating and cooling degree days by state-

year (using Maryland for Washington, D.C.) are from U.S. Dept. of Commerce, National Oceanic 
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and Atmospheric Administration, Historical Climatology Series, “Monthly State, Regional, and 

National Heating Degree Days Weighted By Population,” various years. 

 




