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ABSTRACT

This paper studies the ICAPM intertemporal relation between the conditional mean and the

conditional variance of the aggregate stock market return. We introduce a new estimator that

forecasts monthly variance with past daily squared returns – the Mixed Data Sampling (or MIDAS)

approach. Using MIDAS, we  find that there is a significantly positive relation between risk and

return in the stock market. This finding is robust in subsamples, to asymmetric specifications of the

variance process, and to controlling for variables associated with the business cycle. We compare

the MIDAS results with tests of the ICAPM based on alternative conditional variance specifications

and explain the conflicting results in the literature. Finally, we offer new insights about the dynamics

of conditional variance.
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1 Introduction

Merton’s (1973) ICAPM suggests that the conditional expected excess return on the stock

market should vary positively with the market’s conditional variance:

Et[Rt+1] = µ+ γVart[Rt+1], (1)

where γ is the coefficient of relative risk aversion of the representative agent and, according to

the model, µ should be equal to zero. The expectation and the variance of the market excess

return are conditional on the information available at the beginning of the return period,

time t. This risk-return tradeoff is so fundamental in financial economics that it could well

be described as the “first fundamental law of finance.”1 Unfortunately, the tradeoff has been

hard to find in the data. Previous estimates of the relation between risk and return often

have been insignificant and sometimes even negative.

Baillie and DeGennaro (1990), French, Schwert, and Stambaugh (1987), and Campbell

and Hentschel (1992) do find a positive albeit mostly insignificant relation between the

conditional variance and the conditional expected return. In contrast, Campbell (1987)

and Nelson (1991) find a significantly negative relation. Glosten, Jagannathan, and Runkle

(1993), Harvey (2001), and Turner, Startz, and Nelson (1989) find both a positive and a

negative relation depending on the method used.2 The main difficulty in testing the ICAPM

relation is that the conditional variance of the market is not observable and must be filtered

from past returns.3 The conflicting findings of the above studies are mostly due to differences

in the approach to modeling the conditional variance.

In this paper, we take a new look at the risk-return tradeoff by introducing a new

estimator of the conditional variance. Our Mixed Data Sampling, or MIDAS, estimator

forecasts the monthly variance with a weighted average of lagged daily squared returns. We

use a flexible functional form to parameterize the weight given to each lagged daily squared

1However, Abel (1988), Backus and Gregory (1993), and Gennotte and Marsh (1993) offer models where
a negative relation between return and variance is consistent with equilibrium. Campbell (1993) discusses
general conditions under which the risk-return relation holds as an approximation.

2See also Chan, Karolyi, and Stulz (1992), Lettau and Ludvigson (2002), Merton (1980), and Pindyck
(1984). Goyal and Santa-Clara (2002) find a positive tradeoff between market return and average stock
variance.

3We could think of using option implied volatilities as do Santa-Clara and Yan (2001) to make variance
“observable.” Unfortunately, option prices are only available since the early 1980’s which is insufficient to
reliably make inferences about the conditional mean of the stock market.
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return and show that a parsimonious weighting scheme with only two parameters works quite

well. We estimate the coefficients of the conditional variance process jointly with µ and γ

from the expected return equation (1) with quasi-maximum likelihood.

Using monthly and daily market return data from 1928 to 2000 and, with MIDAS as

a model of the conditional variance, we find a positive and statistically significant relation

between risk and return. The estimate of γ is 2.6, which lines up well with economic intuition

about a reasonable level of risk aversion. The MIDAS estimator explains about 40 percent

of the variation of realized variance in the subsequent month and its explanatory power

compares favorably to that of other models of conditional variance such as GARCH. The

estimated weights on the lagged daily squared returns decay slowly, thus capturing the

persistence in the conditional variance process. More impressive still is the fact that, in the

ICAPM risk-return relation, the MIDAS estimator of conditional variance explains about

two percent of the variation of next month’s stock market returns (and five percent in the

period since 1964). This is quite substantial given previous results about forecasting the

stock market return.4 Finally, the above results are qualitatively similar when we split the

sample into two subsamples of approximately equal sizes, 1928-1963 and 1964-2000.

To better understand MIDAS and its success in testing the ICAPM risk-return tradeoff,

we compare our approach to previously used models of conditional variance. French, Schwert,

and Stambaugh (1987) propose a simple and intuitive rolling window estimator of the

monthly variance. They forecast monthly variance by the sum of daily squared returns in

the previous month. Their method is similar to ours in that it uses daily returns to forecast

monthly variance. However, when French, Schwert, and Stambaugh use that method to test

the ICAPM, they find an insignificant (and sometimes negative) γ coefficient. We replicate

their results but also find something rather interesting and new. When the length of the

rolling window is increased from one month to three or four months, the magnitude of the

estimated γ increases and the coefficient becomes statistically significant. This result nicely

illustrates the point that the window length plays a crucial role in forecasting variances and

detecting the tradeoff between risk and return. By optimally choosing the weights on lagged

squared returns, MIDAS implicitly selects the optimal window size to estimate the variance,

and that in turn allows us to find a significant risk-return tradeoff.

The ICAPM risk-return relation has also been tested using several variations of

4For instance, the forecasting power of the dividend yield for the market return does not exceed 1.5
percent (see Campbell, Lo, and MacKinlay (1997) and references therein).
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GARCH-in-mean models. However, the evidence from that literature is inconclusive and

sometimes conflicting. Using simple GARCH models, we confirm the finding of French,

Schwert, and Stambaugh (1987) and Glosten, Jagannathan, and Runkle (1993), among

others, of a positive but insignificant γ coefficient in the risk-return tradeoff. The absence of

statistical significance comes both from GARCH’s use of monthly return data in estimating

the conditional variance process and the inflexibility of the parameterization. The use of

daily data and the flexibility of the MIDAS estimator provides the power needed to find

statistical significance in the risk-return tradeoff.

A comparison of the time series of conditional variance estimated according to MIDAS,

GARCH, and rolling windows reveals that while the three estimators are correlated, there

are some differences that affect their ability to forecast returns in the ICAPM relation. We

find that the MIDAS variance process is more highly correlated with both the GARCH and

the rolling windows estimates than these last two are with each other. This suggests that

MIDAS combines some of the unique information contained in the other two estimators. We

also find that MIDAS is particularly successful at forecasting realized variance both in high

and low volatility regimes. These features explain the superior performance of MIDAS in

finding a positive and significant risk-return relation.

It has long been recognized that volatility tends to react more to negative returns

than to positive returns. Nelson (1991) and Engle and Ng (1993) show that GARCH models

that incorporate this asymmetry perform better in forecasting the market variance. However,

Glosten, Jagannathan, and Runkle (1993) show that when such asymmetric GARCH models

are used in testing the risk-return tradeoff, the γ coefficient is estimated to be negative

(sometimes significantly so). This stands in sharp contrast with the positive and insignificant

γ obtained with symmetric GARCH models and remains a puzzle in empirical finance.

To investigate this issue, we extend the MIDAS approach to capture asymmetries in the

dynamics of conditional variance by allowing lagged positive and negative daily squared

returns to have different weights in the estimator. Contrary to the asymmetric GARCH

results, we still find a large positive estimate of γ that is statistically significant. This

discrepancy between the asymmetric MIDAS and asymmetric GARCH tests of the ICAPM

turns out to be quite interesting.

We find that what matters for the tests of the risk-return tradeoff is not so much the

asymmetry in the conditional variance process but rather its persistence. In this respect,

asymmetric GARCH and asymmetric MIDAS models prove to be very different. Consistent
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with the GARCH literature, negative shocks have a larger immediate impact on the MIDAS

conditional variance estimator than do positive shocks. However, we find that the impact of

negative returns on variance is only temporary and lasts no more than one month. Positive

returns, on the other hand, have an extremely persistent impact on the variance process.

In other words, while short-term fluctuations in the conditional variance are mostly due

to negative shocks, the persistence of the variance process is primarily driven by positive

shocks. This is an intriguing finding about the dynamics of the variance process. Although

asymmetric GARCH models allow for a different response of the conditional variance to

positive and negative shocks, they constrain the persistence of both types of shocks to

be the same. Since the asymmetric GARCH models “load” heavily on negative shocks

and these have little persistence, the estimated conditional variance process shows little to

no persistence.5 In contrast, by allowing positive and negative shocks to have different

persistence, the asymmetric MIDAS model still obtains high persistence for the overall

conditional variance process. Since only persistent variables can capture variation in expected

returns, the difference in persistence between the asymmetric MIDAS and the asymmetric

GARCH conditional variances explains their success and lack thereof in finding a risk-return

tradeoff.

Campbell (1987) and Scruggs (1998) point out that the difficulty in measuring a

positive risk-return relation may be due to misspecification of equation (1). Following

Merton (1973), they argue that if changes in the investment opportunity set are captured

by state variables in addition to the conditional variance itself, then those variables must

be included in the equation of expected returns. In parallel, an extensive literature on the

predictability of the stock market finds that variables that capture business cycle fluctuations

are also good forecasters of market returns (see Campbell (1991), Campbell and Shiller

(1988), Fama (1990), Fama and French (1988, 1989), Ferson and Harvey (1991), and Keim

and Stambaugh (1986), among many others). We include business cycle variables together

with both the symmetric and asymmetric MIDAS estimators of conditional variance in the

ICAPM equation and find that the tradeoff between risk and return is virtually unchanged.

Indeed, the explanatory power of the conditional variance for expected returns is orthogonal

to the other predictive variables.

We conclude that the ICAPM is alive and well.

5The only exception is the two-component GARCH model of Engle and Lee (1999) who report findings
similar to our asymmetric MIDAS model. They obtain persistent estimates of conditional variance while
still capturing an asymmetric reaction of the conditional variance to positive and negative shocks.

4



The rest of the paper is structured as follows. Section 2 explains the MIDAS model and

details the main results. Section 3 offers a comparison of MIDAS with rolling window and

GARCH models of conditional variance. In Section 4, we discuss the asymmetric MIDAS

model and use it to test the ICAPM. In Section 5, we include several often-used predictive

variables as controls in the risk-return relation. Section 6 concludes.

2 MIDAS Tests of the Risk-Return Tradeoff

In this section, we introduce the Mixed Data Sampling, or MIDAS, estimator of conditional

variance and use it to test the ICAPM relation between risk and return of the stock market.

2.1 Methodology

The MIDAS approach mixes daily and monthly data to estimate the conditional variance

of the stock market. The returns on the left-hand side of equation (1) are measured at

monthly intervals since, as argued below, higher frequency returns may be too noisy to

use in a study of conditional means. On the right-hand side of the equation, we use daily

returns in the variance estimator to exploit the advantages of high-frequency data in the

estimation of second moments explained by the well-known continuous-record argument of

Merton (1980).6 We allow the variance estimator to load on a large number of past daily

squared returns with optimally chosen weights.

The MIDAS estimator of the conditional variance of monthly returns, Vart[Rt+1], is

based on prior daily squared return data:

V MIDAS

t = 22
∞∑

d=0

wdr
2
t−d (2)

where wd is the weight given to the squared return of day t − d. We use the lower case

r to denote daily returns, which should be distinguished from the upper case R used for

monthly returns; the corresponding subscript t− d stands for the date t minus d days. Rt+1

6Recently, several authors, including Andersen, Bollerslev, Diebold, and Ebens (2001), Andreou and
Ghysels (2002), Barndorff-Nielsen and Shephard (2002), and Taylor and Xu (1997) suggest various methods
using high-frequency data to estimate variances. Alizadeh, Brandt, and Diebold (2002) propose an alternative
measure of realized variance using the daily range of the stock index.
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is the monthly return from date t to date t + 1 and rt−d is the daily return d days before

date t. Although this notation is slightly ambiguous, it has the virtue of not being overly

cumbersome. With weights that sum up to one, the factor 22 ensures that the variance is

expressed in monthly units since there are typically 22 trading days in a month.

We postulate a flexible form for the weight given to the squared return on day t− d:

wd(κ1, κ2) =
exp{κ1d+ κ2d

2}∑∞
i=0 exp{κ1i+ κ2i2}

. (3)

This scheme has several advantages. First, it guarantees that the weights are positive which

in turn ensures that the conditional variance in (2) is also positive. Second, the weights

add up to one. Third, the functional form in (3) can produce a wide variety of shapes for

different values of the two parameters. Fourth, the specification is parsimonious, with only

two parameters to estimate. Fifth, as long as the coefficient κ2 is negative, the weights go

to zero as the lag length increases. The speed with which the weights decay controls the

effective number of observations used to estimate the conditional variance. Finally, we can

increase the order of the polynomial in (3) or consider other functional forms. For instance,

all the results shown below are robust to parameterizing the weights as a Beta function

instead of the exponential form in (3).7 As a practical matter, the infinite sum in (2) and (3)

needs to be truncated at a finite lag. In all the results that follow, we use 252 days (which

corresponds to roughly one year of trading days) as the maximum lag length. The results

are not sensitive to increasing the maximum lag length beyond one year.

The weights of the MIDAS estimator implicitly capture the dynamics of the conditional

variance. A larger weight on distant past returns induces more persistence on the variance

process. The weighting function also determines the statistical precision of the estimator

by controlling the amount of data used to estimate the conditional variance. When the

function decays slowly, a large number of observations effectively enter in the forecast of the

variance and the measurement error is low. Conversely, a fast decay corresponds to using a

small number of daily returns to forecast the variance with potentially large measurement

error. To some extent, there is a tension between capturing the dynamics of variance and

minimizing measurement error. Since variance changes through time, we would like to use

more recent observations to forecast the level of variance in the next month. However, to

7See Ghysels, Santa-Clara, and Valkanov (2003) for a general discussion of the functional form of the
weights.
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the extent that measuring variance precisely requires a large number of daily observations,

the estimator may still place significant weight on more distant observations. The Appendix

offers a more formal treatment of the MIDAS estimator.

To estimate the parameters in the weight function, we maximize the likelihood of

monthly returns. We use the variance estimator (2) with the weight function (3) in the

ICAPM relation (1) and estimate the parameters κ1 and κ2 jointly with µ and γ by

maximizing the likelihood function, assuming that the conditional distribution of returns

is normal:8

Rt+1 ∼ N (µ+ γV MIDAS

t , V MIDAS

t ) . (4)

In this way, the conditional mean and the conditional variance of the monthly return in April

(from the close of the last day of March to the close of the last day of April) depends on

daily returns up to the last day of March. Since the true conditional distribution of returns

may depart from normality, our estimator really is only quasi-maximum likelihood. The

parameter estimators are nevertheless consistent and asymptotically normally distributed.

Their covariance matrix is estimated using the Bollerslev and Wooldridge (1992) approach

to account for heteroscedasticity.9

We have thus far used monthly returns as a proxy for expected returns in equation (1)

and daily returns in the construction of the conditional variance estimator. However, using

higher frequency returns at, say, weekly or daily intervals may improve the estimate of γ

because of the availability of additional data points. Alternatively, it may be argued that

quarterly returns increase the efficiency of the estimator of γ because they are less volatile. A

general analytical argument is difficult to formulate without making additional assumptions

about the data generating process. Similarly, the returns used to forecast volatility can be

sampled at different frequencies from intra-daily to weekly or even monthly observations.

Fortunately, the MIDAS approach can easily be implemented at different frequencies on

the left-hand and on the right-hand side. This can be achieved with the same parametric

specification and with the same number of parameters. Hence, we can directly compare the

estimates of γ and their statistical significance across different frequencies.

8Alternatively, we could use GMM for more flexibility in the relative weighting of the conditional moments
in the objective function.

9More specifically, using Theorem 2.1 in Bollerslev and Wooldridge (1992), we compute the covariance
matrix of the parameter estimates as A−1

T BT A−1
T /T , where A−1

T is an estimate of the Hessian matrix of the
likelihood function and BT is an estimate of the outer product of the gradient vector with itself.
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2.2 Empirical Analysis

We estimate the ICAPM with the MIDAS approach using excess returns on the stock market

from January of 1928 to December of 2000. We use the CRSP value-weighted portfolio as

a proxy for the stock market and the yield of the three-month Treasury bill as the risk-free

interest rate. Daily market returns are obtained from CRSP for the period July of 1962 to

December of 2000, and from William G. Schwert’s website for the period January of 1928 to

June of 1962 (see Schwert (1990a) for a description of those data). The daily risk-free rate,

obtained from Ibbotson Associates, is constructed by assuming that the Treasury bill rates

stay constant within the month and suitably compounding them. Monthly excess returns

are obtained by compounding the daily excess returns. In what follows, we refer to excess

returns simply as returns.

Table 1 displays summary statistics for the monthly returns and the monthly realized

variance of returns computed from within-month daily data (as explained in equation (5)

below). We show the summary statistics for the full 1928-2000 sample and, for robustness,

we also analyze two subsamples of approximately equal length, 1928 to 1963 and 1964 to

2000.

The monthly market return has a mean of 0.649 percent and a standard deviation

of 5.667 percent (variance of 0.321 × 102).10 Returns are negatively skewed and slightly

leptokurtic. The first order autoregressive coefficient of monthly returns is 0.068. The

average market return during 1928-1963 is considerably higher than that observed during

1964-2000. The variance of monthly returns is also higher in the first subsample. Both

subsamples exhibit negative skewness and high kurtosis. The realized variance has a mean

of 0.262 in the overall sample, which closely matches the variance of monthly returns (the

small difference between the two numbers is due to Jensen’s inequality). The mean of the

variance in the first subsample is much higher than in the second, mostly due to the period of

the Great Depression. The realized variance process displays considerable persistence, with

an autoregressive coefficient of 0.608 in the entire sample. Again, the first subsample shows

more persistence in the variance process. As expected, realized variance is highly skewed

and leptokurtic. The results from these summary statistics are well-known in the empirical

finance literature.

10This and later tables report variances rather than more customary standard deviations because the risk-
return tradeoff postulates a relation between returns and the their variance, not their standard deviation.
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Table 2 contains the main result of the paper, the estimation of the risk-return tradeoff

equation with the MIDAS conditional variance. The estimated ICAPM coefficient γ is 2.606

in the full sample, with a highly significant t-statistic (corrected for heteroscedasticity with

the Bollerslev and Wooldridge method) of 6.710. Most importantly, the magnitude of γ

lines up well with the theory. According to the ICAPM, γ is the coefficient of relative

risk aversion of the representative investor and a risk aversion coefficient of 2.606 matches

a variety of empirical studies (see Hall (1988) and references therein). The significance of

γ is robust in the subsamples, with estimated values of 1.547 and 3.748, and t-statistics

of 3.382 and 8.612. These results are consistent with Mayfield (2003) who uses a regime-

switching model for conditional volatility and finds that the risk-return tradeoff holds within

volatility regimes. The estimated magnitude and significance of the γ coefficient in the

ICAPM relation are remarkable in light of the ambiguity of previous results. The intercept

µ is always significant, which, in the framework of the ICAPM, may capture compensation

for covariance of the market return with other state variables (which we address in section 5)

or compensation for jump risk (see Pan (2002) and Chernov, Gallant, Ghysels, and Tauchen

(2002)).

Table 2 also reports the estimated parameters of the MIDAS weight function (3). Both

coefficients are statistically significant in the full sample and the subsamples. Furthermore, a

likelihood ratio test of their joint significance, κ1 = κ2 = 0, has a p-value smaller than 0.001.

Since the restriction κ1 = κ2 = 0 corresponds to placing equal weights on all lagged squared

daily returns, we conclude that the estimated weight function is statistically different from a

simple equally-weighted scheme. We cannot interpret the magnitudes of the coefficients κ1

and κ2 individually but only jointly in the weighting function (3). In Figure 1, we plot the

estimated weights, wd(κ1, κ2), of the conditional variance on the lagged daily squared returns

for the full sample and the subsamples. In all cases, we observe that the weights are a slowly

declining function of the lag length. For example, only 31 percent of the weight is placed

on the first lagged month of daily data (22 days), 56 percent on the first two months, and

it takes more than three months for the cumulative weight to reach 75 percent. The weight

profiles for the subsamples are very similar. We conclude that it takes a substantial amount

of daily return data to accurately forecast the variance of the stock market. This result

stands in sharp contrast to the common view that one month of daily returns is sufficient to

reliably estimate the variance.

To assess the predictive power of the MIDAS variance for the market return we run
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a regression of the realized return in month t + 1, Rt+1, on the forecasted variance for that

month, V MIDAS
t . The coefficient of determination for the regression using the entire sample,

R2
R, is 1.9 percent, which is a reasonably high value for a predictive regression of returns at

monthly frequency. This coefficient increases to 5.0 percent in the second subsample.

We also examine the ability of the MIDAS estimator to forecast realized variance. We

estimate realized variance from within-month daily returns as:

σ2
t+1 =

22∑

d=0

r2
t+1−d. (5)

Table 2 reports the coefficient of determination, R2
σ2 , from regressing the realized variance,

σ2
t+1, on the MIDAS forecasted variance, V MIDAS

t . MIDAS explains over 40 percent of the

fluctuations of the realized variance in the entire sample. Given that σ2
t+1 in (5) is only a

noisy proxy for the true variance in the month, the R2
σ2 obtained is impressively high.11 The

value of R2
σ2 in the second subsample is only 0.082, due to the crash of 1987. If we eliminate

the 1987 crash from the second subsample, the R2
σ2 jumps to 0.283. Figure 2 displays the

realized variance together with the MIDAS forecast for the entire sample. We see that the

estimator does a remarkable job of forecasting next month’s variance.

Thus far we have estimated γ in a MIDAS regression of monthly returns on variance

estimated from daily returns. However, this is not the only possible frequency choice. With

higher frequency data on the left-hand side, we have more observations, but also more noise

in the returns. With lower frequency data, we have a better estimate of expected returns,

but fewer observations. We now investigate what return horizon in the left-hand side of

the MIDAS regression yields the most precise estimates of the risk-return tradeoff. Table

3 presents estimates of γ in the ICAPM regression of returns at daily, weekly, monthly, bi-

monthly, and quarterly horizons on the MIDAS conditional variance, estimated with daily

squared returns. We find that the estimates of γ range from 1.964 to 2.880 as we vary

the frequency of returns. The t-statistics of γ increase systematically from 1.154 at daily

frequency to 6.710 at monthly frequency. The standard error of the estimates does not

change much across horizons, so the improvement in the t-statistics is mostly due to the

higher point estimate of γ at the monthly horizon.

11Andersen and Bollerslev (1998) and Andersen, Bollerslev, and Meddahi (2002) show that the maximum
R2 obtainable in a regression of this type is much lower than 100 percent, often on the order of 40 percent.
The high standard deviation of the realized variance and the relatively low persistence of the process, shown
in Table 1, indicate a high degree of measurement error.
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A similar pattern emerges from the goodness-of-fit measures R2
R and R2

σ2 in Table 3.

The use of high-frequency data as a proxy for the conditional mean of returns decreases the

ability of the MIDAS estimator to forecast realized variance. The R2
σ2 at daily and weekly

horizons are only 0.059 and 0.119. At monthly, bi-monthly, and quarterly horizons, they

are markedly higher at 0.407, 0.309, and 0.329. Of course, the realized variances at daily

or weekly frequency are a very noisy measure of the true variance since they are estimated

with only one or five daily returns. The subsamples in Table 3 yield similar results. We

conclude that the choice of monthly frequency strikes the best balance between sample size

and signal-to-noise ratio. Hence, in the subsequent analysis, we only use monthly returns on

the left-hand side of our MIDAS models.

3 Why MIDAS Works: Comparison with Other Tests

To understand why tests based on the MIDAS approach support the ICAPM when the extant

literature offers conflicting results, we compare the MIDAS estimator with previously used

estimators of conditional variance. We focus our attention on rolling window and GARCH

estimators of conditional variance. For conciseness, we report results for the entire sample,

but the conclusions also hold in the subsamples.

3.1 Rolling Window Tests

As an example of the rolling window approach, French, Schwert, and Stambaugh (1987) use

within-month daily squared returns to forecast next month’s variance:

V RW

t = 22

D∑

d=0

1

D
r2
t−d (6)

where D is the number of days used in the estimation of variance.12 Again, daily squared

returns are multiplied by 22 to measure the variance in monthly units. French, Schwert, and

12French, Schwert, and Stambaugh (1987) include a correction for serial correlation in the returns that we
ignore for now. We follow their example and do not adjust the measure of variance by the squared mean
return as this is likely to have only a minor impact with daily data. Additionally, French, Schwert, and
Stambaugh actually use the fitted value of an ARMA process for the one-month rolling window estimator
to model the conditional variance.
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Stambaugh choose the window size to be one month, or D = 22. Besides its simplicity, this

approach has a number of advantages. First, as with the MIDAS approach, the use of daily

data increases the precision of the variance estimator. Second, the stock market variance is

very persistent (see Officer (1973) and Schwert (1989)), so the realized variance on a given

month ought to be a good forecast of next month’s variance.

However, it is not clear that we should confine ourselves to using data from the last

month only to estimate the conditional variance. We may want to use a larger window size D

in equation (6), corresponding to more than one month’s worth of daily data. Interestingly,

this choice has a large impact on the estimate of γ.

We estimate the parameters µ and γ of the risk-return tradeoff (1) with maximum

likelihood using the rolling window estimator (6) for the conditional variance. Table 4

reports the estimates of the risk-return tradeoff for different sizes D of the window used to

estimate the conditional variance. The first line corresponds to using daily data from the

previous month only so the measure of V RW
t is similar to the one reported in French, Schwert,

and Stambaugh (1987). The estimate of γ is 0.546 and statistically insignificant. In their

study, French, Schwert, and Stambaugh (1987) estimate a γ of -0.349, also insignificant. The

difference between the estimates is due to the difference in sample periods. When we use

their sample period from 1928 to 1984, we obtain the same results as French, Schwert, and

Stambaugh (1987).

As we increase the window size to two through four months, the magnitude of γ

increases and becomes significant, with a higher R2
R. When the rolling window includes

four months of data, the estimated γ coefficient is 2.149 and statistically significant.13 This

coefficient is very similar to the estimated γ with the MIDAS approach, only the level of

significance is lower. Finally, as the window size increases beyond four months, the magnitude

of the estimated γ decreases as does the likelihood value. This suggests that there is an

optimal window size to estimate the risk-return tradeoff.

These results are striking. They confirm our MIDAS finding, namely, that there is

a positive and significant tradeoff between risk and return. Indeed, the rolling window

approach can be thought of as a robust check of the MIDAS regressions since it is such a

simple estimator of conditional variance with no parameters to estimate. Moreover, Table 4

helps us reconcile the MIDAS results with the findings of French, Schwert, and Stambaugh

13These findings are consistent with Brandt and Kang (2003), and Whitelaw (1994) who report a lagged
relation between the conditional variance and the conditional mean.
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(1987). That paper missed out on the tradeoff by using too small a window size (one month)

to estimate the variance. One month’s worth of daily data simply is not enough to reliably

estimate the conditional variance and to measure its impact on expected returns.

The maximum likelihood across window sizes is obtained with a four-month window.

This window size implies a constant weight of 0.011 in the lagged daily squared returns of

the previous four months. Of the different window lengths we analyze, these weights are

closest to the optimal MIDAS weights shown in Figure 1, which puts roughly 80 percent of

the weight in those first four months of past daily squared returns.

The rolling window estimator is similar to MIDAS in its use of daily squared returns

to forecast monthly variance. But it differs from MIDAS in that it constrains the weights to

be constant and inversely proportional to the window length. This constraint on the weights

affects the performance of the rolling window estimator compared to MIDAS. For instance,

the rolling window estimator does not perform as well as the MIDAS estimator in forecasting

realized returns or realized variance. The coefficient of determination for realized returns is

1.2 percent compared to 1.9 percent for MIDAS, and for realized variance it is 38.4 percent

which is lower than the 40.7 percent obtained with MIDAS. A more detailed comparison of

the forecasts from the rolling window and the MIDAS estimators is provided below.

3.2 GARCH Tests

The most popular approach to study the ICAPM risk-return relation has been with

GARCH-in-mean models estimated with monthly return data (see Engle, Lilien, and Robins

(1987), French, Schwert, and Stambaugh (1987), Campbell and Hentschel (1992), Glosten,

Jagannathan, and Runkle (1993), among others). The simplest model in this family can be

written as:

V GARCH

t = ω + αε2t + βV GARCH

t−1 (7)

where εt = Rt − µ− γV GARCH
t−1 . The squared innovations ε2t in the variance estimator play a

role similar to the monthly squared return in the MIDAS or rolling window approaches and,

numerically, they are very similar (since the squared average return is an order of magnitude

smaller than the average of squared returns). For robustness, we also estimate an absolute

GARCH model, ABS-GARCH:

(V ABSGARCH

t )1/2 = ω + α |εt| + β(V ABSGARCH

t−1 )1/2. (8)
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Note that the GARCH model (7) can be rewritten as:

V GARCH

t =
ω

1 − β
+ α

∞∑

i=0

βiε2t−i. (9)

The GARCH conditional variance model is thus approximately a weighted average of past

monthly squared returns. Compared to MIDAS, the GARCH model uses monthly rather

than daily squared returns. Moreover, the functional form of the weights implied by the

dynamics of variance in GARCH models exhibits less flexibility than the MIDAS weighting

function. Indeed, even though the GARCH process is defined by three parameters, the shape

of the weight function depends exclusively on β. This shape is similar to MIDAS when the

parameter κ2 is set to zero.

Table 5 shows the coefficient estimates of the GARCH and the ABS-GARCH models,

estimated with quasi-maximum likelihood. Both models yield similar results, so we

concentrate on the simple GARCH case. For that model, the estimate of γ is 1.060 and

insignificant, with a t-statistic of 1.292 (obtained using Bollerslev and Wooldridge standard

errors). French, Schwert, and Stambaugh (1987) obtain a higher estimate for γ of 7.809 in

a different sample, but they also find it to be statistically insignificant. Using a symmetric

GARCH model, Glosten, Jagannathan, and Runkle (1993) estimate γ to be 5.926 and again

insignificant. In similar sample periods, we replicate the findings of these studies. As a

further robustness check, we estimate higher order GARCH(p,q) models (not shown for

brevity), with p = 1, . . . , 3 and q = 1, . . . , 3, and obtain estimates of γ that are comparable

in magnitude and still insignificant. In sum, although GARCH models find a positive

estimate of γ, they lack the power to find statistical significance for the coefficient. Also,

the coefficients of determination from predicting returns, R2
R, and realized variances, R2

σ2 ,

are 0.5 and 35.9 percent for the GARCH model, and appear low when compared with the

coefficients of 1.9 and 40.7 percent obtained with MIDAS.

The success of MIDAS relative to GARCH in finding a significant risk-return tradeoff

resides in the extra power that mixed-data frequency regressions obtain from the use of

daily data in the conditional variance estimator. Put differently, MIDAS has more power

than GARCH because it estimates two rather than three parameters and uses a lot more

observations to do it. Also, relative to GARCH, MIDAS has a more flexible functional form

for the weights on past squared returns. The interplay of mixed-frequency data and flexible

weights explain the higher estimates of γ and the higher t-statistics obtained by MIDAS. In
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section 3.4 we will come back to this comparison in more detail.

3.3 Comparison of Filtered Variance Processes

To further understand the similarities and differences between MIDAS, GARCH, and rolling

window estimators, we turn our attention to the filtered time series of conditional variance

produced by each of the three approaches. For the rolling window estimator, we use a window

length of one month which is similar to what has been used in the literature. Panel A of

Table 6 presents summary statistics of the three conditional variance processes. The GARCH

forecast is the most persistent with an AR(1) coefficient of 0.970, has the highest mean

(0.325), and the lowest variance (0.187). The rolling window forecast is the least persistent

(AR(1) of 0.608), has a much lower mean (0.262), and the highest variance (0.323). The

high variance and low persistence is partly due to this estimator’s high measurement error.

The high mean of the GARCH variance relative to the realized variance (which has the same

mean as the rolling windows) indicates that GARCH has some bias. With an AR(1) of

0.872, the persistence of MIDAS conditional variance is between that of the GARCH and

the rolling windows approaches. MIDAS variance has a mean of 0.256 which is very similar

to the rolling windows mean and is lower than the GARCH mean. Finally, the variance of

the MIDAS conditional variance is between that of GARCH and of rolling windows.

The difference between MIDAS, GARCH, and rolling windows is also apparent from a

plot of the time series of their (in-sample) forecasted variances displayed against the realized

volatility in Figure 2. In the top graph, the MIDAS forecasts (solid line) and the realized

variance (thin dotted line) are very similar. In particular, MIDAS is successful at capturing

periods of extreme volatility such as during the first twenty years of the sample and around

the crash of 1987. GARCH forecasts, shown in the middle graph (again in solid line),

are smoother than realized variance. This is not surprising since GARCH uses only data

at monthly frequency. More importantly, in periods of relatively low volatility, GARCH

forecasts are higher than the realized variance. This translates into higher unconditional

means of filtered GARCH variances, as observed in Table 6. Finally, the variances filtered

with rolling windows, shown in the bottom graph, are the shifted values of the realized

variance. From visual inspection of the time series of the conditional variance processes,

MIDAS produces the best forecasts of realized volatility.

As a more systematic way of analyzing the differences between realized variance and
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the filtered series, we show in Figure 3 scatterplots of realized variance against forecasted

variances. The scatterplots are displayed in log-log scale to facilitate comparison of the

series during periods of low and high volatility periods. If a model fits the realized variances

well, we expect a tight clustering of points around the 45 degree line. In the top graph,

the MIDAS forecasts do plot closely to the realized variance observations. While there are

some outliers on both sides of the 45 degree line, there are no discernible asymmetries.

In contrast, GARCH forecasts, shown in the middle graph, are systematically higher than

realized variance at the low end of the variance scale (between 10−4 and 10−3), while the fit

at the high end of the scale is no better than MIDAS. This is yet another manifestation of

the finding that GARCH forecasts have higher mean and are too smooth when compared to

the realizations of the variance process. Finally, the bottom scatterplot displays the realized

variance plotted against the rolling window forecasts. There are no systematic biases, but

the scatterplot is much more dispersed when compared to the MIDAS and GARCH plots.

This is true for all variances, but is especially evident at the high end of the variance scale

(between 10−2 and 10−1).

We now examine in more detail the dynamics of the three estimators of conditional

variance. Previously, we argued that the MIDAS weights implicitly determine the dynamic

behavior of the monthly filtered variance. The MIDAS weights in Figure 1 suggest that the

estimated volatility process is persistent and the time series plotted in Figure 2 confirms

that intuition. It is instructive to analyze the dynamics of V MIDAS
t in the framework

of ARMA(p,q) models. A theoretical correspondence between the weight function and

the ARMA(p,q) parameters is difficult to derive largely because of the mixed-frequency

nature of the problem. Instead, we pursue a data-driven approach. Using the filtered

time series of MIDAS conditional variance, we estimate Φ(L)V MIDAS
t = Ψ(L)et, where

Φ(L) = 1 − φ1L − φ2L
2 . . . − φpL

p and Ψ(L) = 1 − ψ1L − ψ2L
2 . . . − ψqL

q. We study

all combinations of p = 1, . . . , 12 and q = 0, 1, . . . , 12.

In the AR(1) case, we obtain an estimate of φ1 = 0.872. In general, for the purely

autoregressive ARMA(p,0) models, the persistence of the process is captured by the highest

autoregressive root of the corresponding polynomial. In the AR(2), AR(3), and AR(4)

cases, the highest autoregressive roots are 0.853, 0.859, and 0.864, respectively, which are

comparable to the estimate of φ1 in the AR(1) case. We choose the best-fitting ARMA(p,q)

model using the Akaike Information Criterion (AIC) and the Schwartz Criterion (SC) which

not only maximize fit but also penalize for the number of estimated parameters. The
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AIC and SC select an ARMA(7,5) and an ARMA(7,3), respectively, as the models that

best fit V MIDAS
t .14 It is remarkable that MIDAS can generate such rich dynamics for the

conditional variance process from a very parsimonious representation of the weight function.

For comparison, the realized variance process is best approximated by an ARMA (5,6)

(selected by both the AIC and the SC). The ARMA process that best captures the dynamics

of the conditional variance filtered with GARCH is a simple AR(1). We conclude that MIDAS

approximates the dynamic structure of realized variance better than GARCH. The rolling

window estimator trivially inherits the dynamics of the realized variance process.

In Panel B of Table 6, we investigate whether the filtered conditional variances

can adequately capture fluctuations in the realized variances. If a forecasted variance

approximates closely the true conditional variance, then the standardized residuals from the

risk-return tradeoff should be approximately standard normally distributed (with a mean of

zero and variance of unity). We take the demeaned monthly returns and divide them by

the square root of the forecasted variance according to each of the methods. We find that

the standardized residuals using the MIDAS approach are the closest to standard normality.

Their variance, skewness and kurtosis are closer to one, zero, and three, respectively, than

with the other two methods. They are still skewed and leptokurtic but much less so than

using rolling windows and GARCH.

The above statistics give us a good idea of the statistical properties of the filtered

variances. However, since the time series properties of the filtered series are different, it is

not clear which one of the three methods provides the most accurate forecasts (in a MSE

sense). To judge the forecasting power of the three methods, we compute a goodness-of-fit

measure which is defined as one minus the sum of squared forecasting errors (i.e., the sum of

squared differences between forecasted variance and realized variance) divided by the total

sum of squared realized variance. This goodness-of-fit statistic measures the forecasting

power of each method for the realized variance.15 The goodness-of-fit statistics are shown

14The estimated autoregressive parameters are 1.007, -0.050, -0.711, 0.918, -0.220, -0.030, 0.014 and the
moving average parameters are 0.089, 0.255, -0.577, 0.360, 0.257 in the ARMA(7,5) case. For the ARMA(7,3),
the autoregressive parameters are 1.002, -0.045, -0.710, 0.904, -0.221, -0.032, 0.017 and the moving average
parameters are 0.112, 0.313, -0.409.

15This measure is similar to the previously used R2
σ2 of a regression of realized variance on the forecasted

variance. The only difference is that now the intercept of the regression is constrained to be zero and the
slope equal to one. It measures the total forecasting error, rather than the correlation between realized
variance and forecasted variance. It is not enough for a forecast to be highly correlated with the realized
variance; its level must also be on target. For instance, a forecast that always predicts twice the realized
variance would have an R2 of one in a regression but would have a modest goodness-of-fit value.
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in the last column of Table 6, Panel B. MIDAS produces the most accurate forecasts with

a goodness-of-fit measure of 0.494. For comparison, the goodness-of-fit of GARCH is 0.440,

while that of rolling windows is 0.354.

Panel C of Table 6 presents the correlation matrix of the MIDAS, GARCH, rolling

window, and realized variance series. MIDAS correlates highly with GARCH and rolling

windows, 0.802 and 0.798, respectively. In contrast, the correlation between GARCH and

rolling windows is only 0.660. The correlation of the three forecasts with the realized

volatility is shown as a reference point. Not surprisingly, realized variance has the highest

correlation of 0.638 with the MIDAS forecasts, as the squared correlation is identical to the

R2
σ2 in Tables 2, 4, and 5. This evidence, in conjunction with the statistics in Panels A and

B, suggests that MIDAS combines the information of GARCH and rolling windows and that

each of these individually has less information than MIDAS.

The high volatility of rolling windows compared to the other methods suggests that it is

a noisy measure of conditional variance. Similarly, rolling windows displays little persistence,

which is also likely due to measurement error. These two related problems hinder the

performance of this estimator in the risk-return tradeoff. Indeed, the errors-in-variables

problem will bias downward the slope coefficient and lower the corresponding t-statistic in

the regression of monthly returns on the rolling windows conditional variance. The GARCH

estimator does not suffer from either of these problems. However, it does show a bias as a

forecaster of realized variance, especially in periods of low volatility. Additionally, the filtered

variance process from GARCH is too smooth when compared to the other estimators and

the realized variance. These problems undoubtedly affect the ability of GARCH to explain

the conditional mean of returns. The MIDAS estimator has better properties than GARCH

and rolling windows: it is unbiased both in high and low volatility regimes, displays little

estimation noise, and is highly persistent. These properties make it a good explanatory

variable for expected returns.

3.4 Mixed Frequencies and Flexible Weights

Thus far, we have found a positive and significant risk-return tradeoff with the MIDAS

estimator that cannot be obtained with either rolling windows or GARCH. The MIDAS tests

have two important features: they use mixed-frequency data and the weights of forecasted

variance on past squared returns are parameterized with a flexible functional form. This
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raises the question of whether one of the two features is predominantly responsible for the

power of the MIDAS tests or whether they interact in a particularly favorable fashion. To

answer this question, we run two comparisons. First, to isolate the effect of the weight

function, we compare MIDAS with GARCH estimated with mixed-frequency data. Second,

we study the impact of using mixed-frequency data by comparing monthly GARCH with

MIDAS estimated from monthly data alone.

To assess the importance of flexibility in the functional form of the weights, we compare

the MIDAS results with GARCH estimated with mixed-frequency data. To estimate the

mixed-frequency GARCH, we assume that daily variance follows a GARCH(1,1) process as

in equation (7). At any point in time, this process implies forecasts for the daily variance

multiple days into the future. Summing the forecasted variances over the following 22 days

yields a forecast of next month’s variance.16 We can then jointly estimate the coefficients of

the daily GARCH and the parameter γ by quasi-maximum likelihood using monthly returns

and the forecast of monthly variance together in the density (4).17

The first row of Table 7 displays the tests of the risk-return tradeoff using this mixed-

frequency GARCH process. For comparison, we reproduce the results of the MIDAS test

from Table 2 which is estimated with the same mixed-frequency data. The estimate of γ

using the mixed-frequency GARCH estimator is still low at 0.431 and insignificant, with a

t-statistic of 0.592, which compare poorly with the MIDAS estimate of 2.606 and t-statistic

of 6.710. The estimator has low explanatory power for monthly returns, with an R2
R of 0.3

percent (1.9 percent for MIDAS), and low explanatory power for future realized variance,

with an R2
σ2 of 29.1 percent (40.7 percent for MIDAS). These results point to the importance

of having a flexible functional form for the weights on past daily squared returns. Indeed,

the only difference between the MIDAS and the mixed-frequency GARCH estimator is the

shape of the weight function. Figure 4 plots the weights of the two estimators (plotted as a

solid line and labeled “daily MIDAS” and “daily GARCH”) on past daily squared returns.

16The one-month ahead forecast of the variance in GARCH(1,1) is:

22∑

d=1

(α + β)dV GARCH
t +

(1 − (α + β)d)ω
1 − α − β

.

17We also tried a two-step procedure whereby we first estimate a daily GARCH model (not GARCH in
mean) and then run a regression of monthly returns on the forecasted monthly variance from the daily
GARCH. The results are similar, albeit slightly less significant, to those from the procedure described above
and are not reported.
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The decay of the daily GARCH weights is much faster than in the corresponding MIDAS

model. In other words, the persistence of the estimated GARCH variance process is lower

than that of MIDAS. The first-order serial correlation of the monthly variance estimated

from daily GARCH is 0.781, which is considerably less than the 0.872 serial correlation of

the MIDAS variance. It is also interesting to note that the daily GARCH estimator performs

worse than the previously studied monthly GARCH, with statistics also reported in the table

for comparison (reproduced from Table 5).

To analyze the gains from mixing frequencies, we compare the daily MIDAS and daily

GARCH results with the same models estimated with monthly (not mixed-frequency) data.

We define a MIDAS variance estimator using only monthly data by:

V MIDAS

t =

∞∑

m=1

wmR
2
t−m (10)

where the functional form of the weights on lagged monthly squared returns is still given by

(3).18 Although this estimator no longer uses mixed frequency data, we still refer to it as a

MIDAS estimator. The second row of Table 7 shows the tests of the risk-return tradeoff with

the monthly GARCH and monthly MIDAS estimators. We see that the monthly MIDAS

estimator performs rather well, with an estimate of γ of 2.553 and a t-statistic of 2.668. The

major difference relative to the daily MIDAS model is the significance of the γ coefficient

(the t-statistic drops from 6.710 to 2.668) and the lower explanatory power for monthly

returns (R2
R drops from 1.9 to 1.1 percent) and future realized variance (R2

σ2 drops from 40.7

to 38.2 percent). We conclude that using mixed-frequency data increases the power of the

risk-return tradeoff tests. The first panel of Figure 4 compares the weights placed by monthly

MIDAS on lagged returns (shown as a step function with the weights constant within each

month) with the daily MIDAS weights. There is little difference between the two weight

functions which translates into similar persistence of the corresponding variance processes

(AR(1) coefficients of 0.893 and 0.872 respectively). Finally, we see that the tests using

monthly MIDAS dominate the monthly GARCH tests. The estimate of γ and its t-statistic

are more than twice as large. The forecasting power of the monthly MIDAS variance for

returns and realized variance is also higher.

We conclude that the power of the MIDAS tests to uncover a tradeoff between risk

and return in the stock market comes both from the flexible shape of the weight function

18Again, for practical purposes we truncate the infinite sum at one year lag.
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and the use of mixed-frequency returns in the test.

4 Asymmetries in the Conditional Variance

In this section, we present a simple extension of the MIDAS specification that allows positive

and negative returns to have not only an asymmetric impact on the conditional variance,

but also to exhibit different persistence. We compare the asymmetric MIDAS model to

previously used asymmetric GARCH models in tests of the ICAPM. Our results clarify the

puzzling findings in the literature.

4.1 Asymmetric MIDAS Tests

It has long been recognized that volatility is persistent and increases more following negative

shocks than positive shocks.19 Using asymmetric GARCH models, Nelson (1991) and Engle

and Ng (1993) confirm that volatility reacts asymmetrically to positive and negative return

shocks. Glosten, Jagannathan, and Runkle (1993) use an asymmetric GARCH-in-mean

formulation to capture the differential impact of negative and positive lagged returns on

the conditional variance and use it to test the relation between the conditional mean and

the conditional variance of returns.20 They find that the sign of the tradeoff changes from

insignificantly positive to significantly negative when asymmetries are included in GARCH

models of the conditional variance. This result is quite puzzling and below we explain its

provenance.

To examine whether the risk-return tradeoff is robust to the inclusion of asymmetric

effects in the conditional variance, we introduce the asymmetric MIDAS estimator:

V ASYMIDAS

t = 22

[
φ

∞∑

d=0

wd(κ
−
1 , κ

−
2 )1−

t−dr
2
t−d + (2 − φ)

∞∑

d=0

wd(κ
+
1 , κ

+
2 )1+

t−dr
2
t−d

]
(11)

19This is the so-called “feedback effect,” based on the time-variability of the risk-premium induced by
changes in variance. See French, Schwert, and Stambaugh (1987), Pindyck (1984) and Campbell and
Hentschel (1992). Alternatively, Black (1976) and Christie (1982) justify the negative correlation between
returns and innovations to the variance by the “leverage” effect. Bekaert and Wu (2000) conclude that the
feedback effect dominates the leverage effect.

20See also Campbell and Hentschel (1992) for an examination of the risk-return tradeoff with asymmetric
variance effects.
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where 1+
t−d denotes the indicator function for {rt−d ≥ 0}, 1−

t−d denotes the indicator function

for {rt−d < 0}, and φ is in the interval (0, 2). This formulation allows for a differential impact

of positive and negative shocks on the conditional variance. The coefficient φ controls the

total weight of negative shocks on the conditional variance. A coefficient φ between zero and

two ensures that the total weights sum up to one since the indicator functions are mutually

exclusive and each of the positive and negative weight functions add up to one. A value of φ

equal to one places equal weight on positive and negative shocks. The two sets of parameters

{κ−1 , κ−2 } and {κ+
1 , κ+

2 } characterize the time profile of the weights from negative and positive

shocks, respectively.

Table 8 reports the estimates of the risk-return tradeoff (1) with the conditional

variance estimator in equation (11). The estimated coefficient γ is 2.482 and highly significant

in the entire sample. In contrast to the findings of Glosten, Jagannathan, and Runkle

(1993) with asymmetric GARCH models, in the MIDAS framework, allowing the conditional

variance to respond asymmetrically to positive and negative shocks does not change the sign

of the risk-return tradeoff. Hence, asymmetries in the conditional variance are consistent

with a positive coefficient γ in the ICAPM relation.

In agreement with previous studies, we find that asymmetries play an important role

in driving the conditional variance. The statistical significance of the asymmetries can easily

be tested using a likelihood ratio test. The restricted likelihood function under the null

hypothesis of no asymmetries is presented in Table 2, whereas the unrestricted likelihood

with asymmetries appears in Table 8. The null of no asymmetries, which is a joint test of

κ+
1 =κ−1 , κ+

2 =κ−2 , and φ = 1, is easily rejected with a p-value of less than 0.001.

The κ coefficients are of interest because they parameterize the weight functions

wd(κ
−
1 , κ

−
2 ) and wd(κ

+
1 , κ

+
2 ). We plot these weight functions in Figure 5. Interestingly, the

weight profiles of negative and positive shocks are markedly different. All the weight of

negative shocks (dash-dot line) on the conditional variance is concentrated in the first 30

daily lags. In other words, negative shocks have a strong impact on the conditional variance,

but that impact is transitory. It disappears after only one month. In contrast, positive

returns (dash-dash line) have a much smaller immediate impact, but their effect persists up

to a year after the shock. Their decay is much slower than the usual exponential rate of

decay obtained in the case of GARCH models.

We find that the estimated value of φ is less than one. Since φ measures the total impact
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of negative shocks on the conditional variance, our finding implies that positive shocks have

overall a greater weight on the conditional variance than do negative shocks. This asymmetry

is statistically significant. A t-test of the null hypothesis of φ = 1 is rejected with a p-value

of 0.009. The combined effect of positive and negative shocks, weighted by φ, is plotted as a

thick solid line in Figure 5 (the symmetric weight is also plotted for reference as a thin solid

line). In the short run, negative returns actually have a higher impact on the conditional

variance since their estimated weight in the first month is so much larger than the weight

on positive shocks in the same period. For longer lag lengths, the coefficient φ determines

that positive shocks actually become more important.

We thus find that the asymmetry in the response of the conditional variance to positive

and negative returns is more complex than previously documented. Negative shocks have

a higher immediate impact but are ultimately dominated by positive shocks. Also, there is

a clear asymmetry in the persistence of positive and negative shocks, with positive shocks

being responsible for the persistence of the conditional variance process beyond one month.

Our results are consistent with the recent literature on multi-factor variance models

(Alizadeh, Brandt, and Diebold (2002), Chacko and Viceira (2003), Chernov, Gallant,

Ghysels, and Tauchen (2002), and Engle and Lee (1999), among others) which finds reliable

support for the existence of two factors driving the conditional variance. The first factor

is found to have high persistence and low volatility, whereas the second factor is transitory

and highly volatile. The evidence from estimating jump-diffusions with stochastic volatility

points in a similar direction. For example, Chernov, Gallant, Ghysels, and Tauchen (2002)

show that the diffusive component is highly persistent and has low variance, whereas the

jump component is by definition not persistent and is highly variable.

Using the asymmetric MIDAS specification, we are able to identify the first factor with

lagged positive returns and the second factor with lagged negative returns.21 Indeed, if we

decompose the conditional variance estimated with equation (11) into its two components,

φ
∑∞

d=0 wd(κ
−
1 , κ

−
2 )1−

t−dr
2
t−d and (2 − φ)

∑∞
d=0 wd(κ

+
1 , κ

+
2 )1+

t−dr
2
t−d, we verify that their time

series properties match the results in the literature on two-factor models of variance. More

precisely, the positive shock component is very persistent, with an AR(1) coefficient of 0.989,

whereas the negative shock component is temporary, with an AR(1) coefficient of only 0.107.

Also, the standard deviation of the negative component is twice the standard deviation of

the positive component. These findings are robust in the subsamples.

21Engle and Lee (1999) have a similar finding using a two-component asymmetric GARCH model.
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4.2 Asymmetric GARCH Tests

For comparison with the asymmetric MIDAS results, we estimate three different asymmetric

GARCH-in-mean models: an asymmetric GARCH (ASYGARCH), an exponential GARCH

(EGARCH), and a quadratic GARCH (QGARCH). The ASYGARCH and EGARCH

formulations are widely used to model asymmetries in the conditional variance and have

been used in the risk-return tradeoff literature by Glosten, Jagannathan, and Runkle (1993).

The QGARCH model was introduced by Engle (1990) and is used in the risk-return tradeoff

context by Campbell and Hentschel (1992). We also estimate a more general GARCH-in-

mean class of models, proposed by Hentschel (1995), that nests not only the previous three

GARCH specifications, but also the simple GARCH and the ABS-GARCH from the previous

section, and several other GARCH models. Following Hentschel (1995), a general class of

GARCH models can be written as

V λ
t − 1

λ
= ω + αV λ

t−1 (|ut + b| + c(ut + b))ν + β
V λ

t−1 − 1

λ
(12)

where ut is the residual normalized to have a mean of zero and unit variance. This Box

and Cox (1964) transformation of the conditional variance is useful because it nests all the

previously discussed models. The simple GARCH model obtains when λ = 1, ν = 2, and

b = c = 0 and the ABS-GARCH obtains when λ = 1/2, ν = 1, and b = c = 0.

The asymmetric GARCH models are nested when we allow the parameters b or c to be

different from zero. The ASYGARCH model corresponds to the restrictions λ = 1, ν = 2,

and b = 0, with the value of c unrestricted. The coefficient c captures the asymmetric

reaction of the conditional variance to positive and negative returns. A negative c indicates

that negative returns have a stronger impact on the conditional variance. When c = 0, the

ASYGARCH model reduces to simple GARCH. The EGARCH model obtains when λ → 0,

ν = 1, b = 0, and c is left unrestricted, because limλ→0
V λ−1

λ
= lnV . This model is similar in

spirit to ASYGARCH, but imposes an exponential form on the dynamics of the conditional

variance as a more convenient way of ensuring positiveness. Again, when c is negative, the

variance reacts more to negative return shocks. The QGARCH model corresponds to the

restrictions λ = 1, ν = 2, and c = 0, with b left unrestricted.22 When b is negative, the

variance reacts more to negative returns and for b = 0, the QGARCH model collapses into

22The formulation of Campbell and Hentschel (1992) has a negative sign in front of the b term. We write
the QGARCH model differently to maintain the interpretation of a negative b corresponding to a higher
impact of negative shocks on the conditional variance.
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the simple GARCH specification. For more details on these models, see Hentschel (1995).

In Table 9, we first estimate (12) by imposing the coefficient restrictions of

ASYGARCH, EGARCH, and QGARCH in order to facilitate comparison of the results

with the previous literature. We also estimate the unrestricted version of (12) to show that

none of the results are driven by the restrictions. The estimated coefficients of the restricted

and unrestricted asymmetric GARCH models are shown in Table 9. We confirm the finding

in Glosten, Jagannathan, and Runkle (1993) that asymmetries in the ASYGARCH and

EGARCH produce a negative, albeit statistically insignificant, estimate of the risk-return

tradeoff parameter γ. Our estimates of the model are similar to theirs. The QGARCH model

also produces a negative and statistically insignificant estimate of γ, which is comparable

(although lower in absolute terms) to the negative and statistically insignificant estimates

obtained in Campbell and Hentschel (1992).23 In all three restricted models, the estimates of

b or c are negative and statistically different from zero, indicating that the asymmetries are

important and that, in asymmetric GARCH models, negative shocks tend to have a higher

impact on the conditional variance than positive shocks. The same observations hold true for

the unrestricted GARCH model, where the estimate of γ is slightly lower in absolute value,

but still negative and insignificant. Our results are in general agreement with Hentschel

(1995), who uses daily data and a slightly shorter time period. Finally, comparing the R2
σ2

from Tables 5 and 9, we notice that the asymmetric GARCH models produce forecasts of

the realized variance that are better than those from the symmetric GARCH models.

The persistence of the conditional variance in the above asymmetric GARCH models

is driven by the β parameter. It is important to note that the asymmetric GARCH

specifications do not allow for differences in the persistence of positive and negative shocks.

In other words, positive and negative shocks decay at the same rate, determined by β.

Furthermore, the estimated conditional variance in such asymmetric GARCH processes

loads heavily on negative shocks, which we know from the MIDAS results (Figure 5) have

a strong immediate impact on volatility. However, we have also seen that the impact of

negative shocks on variance is transitory. Hence, it is not surprising that the estimates of

the persistence parameter β in the asymmetric GARCH models shown in Table 9 (similar to

Glosten, Jagannathan, and Runkle (1993)) are much lower than in the symmetric GARCH

models.24 This implicit restriction leads Glosten, Jagannathan, and Runkle to conclude that

23In addition to this result, Campbell and Hentschel (1992) estimate the risk-return tradeoff imposing a
constraint from a dividend-discount model. In that case, they estimate a positive and significant γ.

24This constraint can be relaxed in the GARCH framework. Using a two-component GARCH model,
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“the conditional volatility of the monthly excess return is not highly persistent.” In contrast,

the asymmetric MIDAS model allows the persistence of positive and negative shocks to be

different, resulting in overall higher persistence of the variance process.

To demonstrate the implications of the asymmetric GARCH restriction on the

persistence of positive and negative shocks, we compute the AR(1) coefficient of the filtered

variance processes. The AR(1) coefficients of the ASYGARCH, EGARCH, QGARCH,

and generalized asymmetric GARCH conditional variance processes are only 0.457, 0.414,

0.284, and 0.409, respectively.25 These coefficients are surprisingly low given what we know

about the persistence of conditional variance (Officer (1973) and Schwert (1989)). The

constraint that asymmetric GARCH models place, that positive and negative shocks be

equally persistent, thus imposes a heavy toll on the overall persistence of the forecasted

variance process. In contrast, the AR(1) coefficient of the symmetric GARCH and the

symmetric MIDAS estimators (reported in Table 6) are 0.970 and 0.872, respectively. It

is worth noting that the lack of persistence is not due to the asymmetry in the variance

process as specification (12) allows for a very flexible form of asymmetries. Contrary to the

asymmetric GARCH models, the AR(1) coefficient of the asymmetric MIDAS estimate is

still high at 0.844, showing that the conditional variance process can have both asymmetries

and high persistence.

It is thus not surprising that asymmetric GARCH models are incapable of explaining

expected returns in the ICAPM relation.26 This explains the puzzling findings of Glosten,

Jagannathan, and Runkle (1993) that the risk-return tradeoff turns negative when we take

into account asymmetries in the conditional variance. Their results are not driven by

asymmetries. Instead, they depend on the lack of persistence in the conditional variance

induced by the restriction in the asymmetric GARCH processes. To adequately capture

the dynamics of variance, we need both asymmetry in the reaction to negative and positive

shocks and a different degree of persistence of those shocks. When we model the conditional

variance with the asymmetric MIDAS specification, the ICAPM continues to hold.

Engle and Lee (1999) show that only the persistent component of variance has explanatory power for stock
market returns. Also, Hentschel (1995) finds higher estimates of β using daily data.

25In the subsamples, we have observed AR(1) coefficients close to zero or even negative.
26Indeed, Poterba and Summers (1986) show that persistence in the variance process is crucial for it to

have any economically meaningful impact on stock prices.
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5 The Risk-Return Tradeoff with Additional

Predictive Variables

In this section, we extend the ICAPM relation between risk and return to include other

predictive variables. Specifically, we modify the ICAPM equation (1) as:

Et[Rt+1] = µ+ γVart[Rt+1] + θ>Zt (13)

where Zt is a vector of variables known to predict the return on the market and θ is a

conforming vector of coefficients. The variables in Zt are known at the beginning of the

return period.

Campbell (1991), Campbell and Shiller (1988), Chen, Roll, and Ross (1986), Fama

(1990), Fama and French (1988, 1989), Ferson and Harvey (1991), and Keim and Stambaugh

(1986), among many others, find evidence that the stock market can be predicted by variables

related to the business cycle. At the same time, Schwert (1989, 1990b) shows that the

variance of the market is highly counter-cyclical. Therefore, our findings about the risk-

return tradeoff could simply be due to the market variance proxying for business cycle

fluctuations. To test this “proxy” hypothesis, we examine the relation between the expected

return on the stock market and the conditional variance using macro variables as controls

for business cycle fluctuations.

Alternatively, specification (13) can be understood as a version of the ICAPM with

additional state variables. When the investment opportunity set changes through time,

Merton shows that:

Et[Rt+1] = µ+ γVart[Rt+1] + π>Covt[Rt+1, St+1], (14)

where the term Covt[Rt+1, St+1] denotes a vector of covariances of the market return with

innovations to the state variables, S, conditional on information known at date t. If the

relevant information to compute these conditional covariances consists of the variables in

the vector Zt, we can interprete the term θ>Zt in (13) as an estimate of the conditional

covariance term, π>Covt[Rt+1, St+1] in (14). Campbell (1987) and Scruggs (1998) emphasize

this version of the ICAPM, which predicts only a partial relation between the conditional
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mean and the conditional variance after controlling for the other covariance terms.27

The predictive variables that we study are the dividend-price ratio, the relative

Treasury bill rate, the default spread, and the lagged monthly return (all available at monthly

frequency). These variables have been widely used in the predictability literature (Campbell

and Shiller (1988), Campbell (1991), Fama and French (1989), Torous, Valkanov, and Yan

(2003) and, for a good review, Campbell, Lo, and MacKinlay (1997)). The dividend-price

ratio is calculated as the difference between the log of the last twelve month dividends and the

log of the current level of the CRSP value-weighted index. The three-month Treasury bill rate

is obtained from Ibbotson Associates. The relative Treasury bill stochastically detrends the

raw series by taking the difference between the interest rate and its twelve-month moving

average. The default spread is calculated as the difference between the yield on BAA-

and AAA-rated corporate bonds, obtained from the FRED database. We standardize the

control variables (subtracting the mean and dividing by the standard deviation) to ensure

comparability of the µ coefficients in equations (1) and (13).

There is an additional reason to include the lagged squared return as a control

variable.28 Note that the MIDAS estimator uses lagged squared returns as a measure of

conditional variance. This is not strictly speaking a measure of variance but rather a

measure of the second (uncentered) moment of returns. In particular, it includes the squared

conditional mean of returns. Omitting serial correlation from the return model and including

the mean return in the variance filter may induce a spurious relation between conditional

mean and conditional variance. To illustrate this point, consider the lagged monthly squared

return as a simple estimator of variance. Assume further that returns follow an AR(1)

process:

Rt+1 = φRt + εt+1

σ2
t = R2

t . (15)

In this system, the autocorrelation of returns and the inclusion of the mean in the variance

27Scruggs uses the covariance between stock market returns and returns on long bonds as a control and
finds a significantly positive risk-return tradeoff.

28We thank the referee for this insight and the following example.
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filter imply that:

Cov(Rt+1, σ
2
t ) = φCov(Rt, R

2
t )

= φ
(
ER3

t + ER2
t ERt

)
. (16)

Hence, there is a mechanical correlation between returns and conditional variance unless

returns are not autocorrelated (φ = 0), or returns have zero skewness and zero mean, or

there is some fortuitous cancelation between skewness and mean. Adding lagged returns as

a control variable in the risk-return relation addresses this problem.

Once the effect of the control variables in the conditional expected return is removed,

γ captures the magnitude of the risk-return tradeoff, while the MIDAS weight coefficients

still determine the lag structure of conditional variance. Table 10 presents the results from

estimating equation (13) with both the simple MIDAS weights (3) (in Panel A) and the

asymmetric MIDAS weights (11) (in Panel B). The results strongly suggest that neither

business cycle fluctuations nor serial correlation in returns account for our findings. Indeed,

the coefficients of the risk-return relation with controls are remarkably similar to those

estimated without controls (shown in Tables 2 and 8). The estimates of µ and γ are almost

identical in the two tables across all sample periods. This indicates that the explanatory

power of the forecasted variance for returns is largely orthogonal to the additional macro

variables. Although lagged market returns are significant in the first subsample, in which

returns exhibit stronger serial correlation, as we noted in Table 1, controlling for their effect

has no significant effect on the estimates of γ. Moreover, the estimates of κ1, and κ2 are

also very similar to the estimates without controls, implying that the weights placed on past

squared returns are not changed.

The macro variables and lagged market returns enter significantly in the ICAPM

conditional mean either in the sample or in the subsamples. A likelihood ratio test of

their joint significance in the entire sample has a p-value of less than 0.001. The coefficient

of determination of the regression of realized returns on the conditional variance and the

control variables, R2
R, is 2.8 percent in the full sample. This is significantly higher than

the corresponding coefficient without the control variables, which is only 1.9 percent. The

adjusted R2
σ2 is unchanged by the inclusion of the predetermined monthly variables.

We conclude that the risk-return tradeoff is largely unaffected by including extra

predictive variables in the ICAPM equation and the forecasting power of the conditional
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variance is not merely proxying for the business cycle. Also, the estimated positive risk-

return tradeoff is unlikely to be due to serial correlation in the conditional mean of returns.

6 Conclusion

This paper takes a new look at Merton’s ICAPM, focusing on the tradeoff between

conditional variance and conditional mean of the stock market return. In support of the

ICAPM, we find a positive and significant relation between risk and return. This relation

is robust in subsamples, does not change when the conditional variance is allowed to react

asymmetrically to positive and negative returns, and is not affected by the inclusion of other

predictive variables.

Our results are more conclusive than those from previous studies due to the added

power obtained from the new MIDAS estimator of conditional variance. This estimator is

a weighted average of past daily squared returns and the weights are parameterized with

a flexible functional form. We find that the MIDAS estimator is a better forecaster of the

stock market variance than rolling window or GARCH estimators, which is the reason why

our tests can robustly find the ICAPM’s risk-return tradeoff.

We obtain new results about the asymmetric reaction of volatility to positive and

negative return shocks. We find that, compared to negative shocks, positive shocks: have a

bigger impact overall on the conditional mean of returns; are slower to be incorporated into

the conditional variance; and are much more persistent and indeed account for the persistent

nature of the conditional variance process. Surprisingly, negative shocks have a large initial,

but very temporary effect on the variance of returns.

The MIDAS estimator offers a powerful and flexible way of estimating economic models

by taking advantage of data sampled at various frequencies. While the advantages of the

MIDAS approach have been demonstrated in the estimation of the ICAPM and conditional

volatility, the method itself is quite general in nature and can be used to tackle several other

important questions.
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Appendix

To better understand the MIDAS estimator, consider a continuous-time model of the

instantaneous return dpt (where pt is the log price) with stochastic volatility:

dpt = µ(σt)dt+ σtdW1t

dσ2
t = ζ(σt)dt+ δ(σt)dW2t (17)

where W1 and W2 are standard Brownian motions (possibly correlated) and the functions

µ(·), ζ(·) are continuous and δ(·) is strictly positive. Merton (1980) considered models

where σt is constant over non-overlapping time intervals and µ(σt) is a linear function of

variance. Appendix A of Merton’s paper shows that sampling data at very high frequency

yields arbitrarily accurate volatility estimates. This insight prompted Merton to consider

estimating volatility with equally weighted block-sampled data, which is a simple rolling

window estimator. This approach has been used extensively by Merton (1980), French,

Schwert, and Stambaugh (1987), and Schwert (1989), who typically used a month’s worth

of equally-weighted daily data in the rolling window estimator.

Foster and Nelson (1996) extended this line of work to processes with stochastic

volatility, i.e., where the diffusion governing volatility dynamics in (17) is genuinely taken

into account. Foster and Nelson use continuous-record asymptotic theory (which assumes

that a fixed span of data is sampled at ever finer intervals) and propose volatility estimators

based on sampling returns at a frequency 1/m that can generically be written as:

∑

τ

ωt−τ (r
(m)
t−τ )

2 (18)

where ωt−τ is some weighting scheme and r
(m)
t denotes returns sampled at frequency 1/m.29

Given the temporal dependence of volatility, one would expect that recent squared returns

get more weight than distant ones. This intuition is indeed correct. Theorem 5 of Foster

and Nelson (1996, p. 154) shows that the optimal weights for a class of stochastic volatility

diffusions are of the form ωt−τ = α expατ . Hence, the weights are exponentially declining

29This estimator assumes that the drift over short intervals is negligible, which is justified by the analysis
in Merton (1980).
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at rate α.30 Unfortunately, estimating α is rather involved. Indeed, to the best of our

knowledge, apart from the small empirical application in Foster and Nelson (1996), there are

no implementations of this estimator in the literature.

The MIDAS regression approach allows us to bypass the estimation of α in the Foster

and Nelson (1996) optimal weighting scheme. Instead, the weighting function is chosen

to maximize the likelihood of the data. The Foster and Nelson scheme is “optimal” in a

minimum MSE sense, yet this optimality is only established for a restricted class of diffusions.

In particular, optimal weighting schemes have not been explicitly derived for more general

data generating processes such as diffusions involving asymmetric volatility. The MIDAS

approach relies on a different optimality principle, namely that of maximum likelihood. It

is not directly comparable with the optimality criterion of Foster and Nelson, but has the

advantage of being easy to implement and widely applicable.

30Foster and Nelson show that α =
√

Λ/θ, where, intuitively, θ is closely related to the local martingale
component of the Doob-Meyer decomposition associated with (17), and Λ is the variance of the conditional
variance process (in the example above that would be δ2). Formal expressions for θ and Λ require definitions
and concepts that are not of direct interest here. Details can be found in Foster and Nelson (1996, p 142-143).
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Table 1: Summary Statistics of Returns and Realized Variance

The table shows summary statistics of monthly excess returns, Rt, of the stock market, and realized monthly
variance computed from within-month daily data, σ2

t . The proxy for the stock market is the CRSP value-
weighted portfolio and the risk-free rate is the yield on the three-month Treasury bill. The table shows the
mean, variance, skewness, kurtosis, first-order serial correlation, and the sum of the first 12 auto-correlations,
for each of the variables. The statistics are shown for the full sample and for two subsamples of approximately
equal length.

Panel A: Monthly Excess Returns (Rt)

Sample Mean Variance Skewness Kurtosis AR(1) AR(1-12) T
(×102) (×102)

1928:01-2000:12 0.649 0.321 -0.189 10.989 0.068 0.126 876
1928:01-1963:12 0.782 0.461 -0.095 10.105 0.077 0.199 432
1964:01-2000:12 0.499 0.198 -0.566 5.261 0.045 -0.031 444

Panel B: Monthly Realized Variance (σ2
t )

Sample Mean Variance Skewness Kurtosis AR(1) AR(1-12) T
(×102) (×104)

1928:01-2000:12 0.262 0.323 7.046 71.651 0.608 0.840 876
1928:01-1963:12 0.372 0.551 5.275 42.006 0.648 0.860 432
1964:01-2000:12 0.162 0.087 13.210 226.977 0.265 0.482 444



Table 2: MIDAS Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff (1) with the MIDAS estimator of conditional variance
in equations (2) and (3). Daily returns are used in the construction of the conditional variance estimator.
Monthly returns are used in the estimation of the risk-return tradeoff parameter γ. The coefficients and
corresponding t-statistics (in brackets) are shown for the full sample and the two subsamples. The t-statistics
are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2 quantify the explanatory power of

the MIDAS variance estimator in predictive regressions for realized returns and variances, respectively. LLF
is the log-likelihood value.

Sample µ γ κ1 κ2 R2
R R2

σ2 LLF
(×103) (×103) (×105)

1928:01-2000:12 6.430 2.606 -5.141 -10.580 0.019 0.407 1421.989
[11.709] [6.710] [-4.528] [-5.241]

1928:01-1963:12 11.676 1.547 -0.909 -10.807 0.011 0.444 681.237
[5.887] [3.382] [-3.770] [-2.106]

1964:01-2000:12 3.793 3.748 -6.336 -18.586 0.050 0.082 807.193
[5.673] [8.612] [-7.862] [-7.710]



Table 3: MIDAS Tests of the Risk-Return Tradeoff at Different Frequencies

The table shows estimates of the risk-return tradeoff (1) with the MIDAS estimator of conditional variance
in equations (2) and (3) at different horizons. Daily returns are used in the construction of the conditional
variance estimator. Daily, weekly, monthly, bi-monthly, and quarterly returns are used in the estimation of
the risk-return tradeoff parameter γ. The coefficients and corresponding t-statistics (in brackets) are shown
for the full sample and the two subsamples. The t-statistics are computed using Bollerslev-Wooldridge
standard errors. R2

R and R2
σ2 quantify the explanatory power of the MIDAS variance estimator in predictive

regressions for realized returns and variances, respectively. LLF is the log-likelihood value.

Horizon µ γ R2
R R2

σ2 LLF
(×103)

Sample: 1928:01-2000:12

Daily 0.275 2.684 0.004 0.059 57098.422
[13.422] [1.154]

Weekly 1.320 2.880 0.009 0.119 8441.573
[13.156] [3.127]

Monthly 6.430 2.606 0.019 0.407 1421.989
[11.709] [6.710]

Bi-Monthly 14.218 1.964 0.018 0.309 583.383
[12.007] [4.158]

Quarterly 24.992 2.199 0.016 0.329 377.901
[12.029] [4.544]

Sample: 1928:01-1963:12

Daily 0.319 2.120 0.002 0.096 24627.123
[2.762] [1.167]

Weekly 2.463 1.870 0.008 0.181 3529.511
[3.441] [0.054]

Monthly 11.676 1.547 0.011 0.444 681.237
[5.887] [3.382]

Bi-Monthly 23.547 1.627 0.012 0.468 305.823
[6.087] [3.123]

Quarterly 36.741 1.682 0.010 0.421 217.287
[6.565] [3.270]

Sample: 1964:01-2000:12

Daily 0.214 3.377 0.004 0.043 31437.438
[2.210] [1.906]

Weekly 0.846 3.804 0.009 0.080 4851.063
[3.303] [3.060]

Monthly 3.793 3.748 0.050 0.082 807.193
[5.673] [8.612]

Bi-Monthly 7.223 3.660 0.040 0.079 369.865
[6.917] [6.246]

Quarterly 7.812 3.476 0.021 0.081 264.068
[8.395] [5.028]



Table 4: Rolling Window Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff (1) with the rolling window estimators of conditional
variance (6). The coefficients and corresponding t-statistics (in brackets) are shown for the entire sample,
1928:01–2000:12. The t-statistics are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2

quantify the explanatory power of the MIDAS variance estimator in predictive regressions for realized returns
and variances, respectively. LLF is the log-likelihood value.

Horizon µ γ R2
R R2

σ2 LLF
(Months) (×103)

1 9.523 0.546 0.007 0.370 1292.454
[4.155] [0.441]

2 7.958 1.494 0.009 0.379 1325.528
[4.071] [1.532]

3 6.823 2.171 0.011 0.382 1308.923
[3.240] [1.945]

4 6.830 2.149 0.012 0.384 1346.685
[3.344] [2.212]

5 7.972 1.458 0.011 0.383 1335.114
[3.506] [1.325]

6 7.924 1.483 0.011 0.382 1334.067
[3.409] [1.316]



Table 5: GARCH Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff (1) with the GARCH estimators of conditional variance
(7) and (8). The coefficients and corresponding t-statistics (in brackets) are shown for the entire sample,
1928:01–2000:12. The t-statistics are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2

quantify the explanatory power of the MIDAS variance estimator in predictive regressions for realized returns
and variances, respectively. LLF is the log-likelihood value.

Model µ γ ω α β R2
R R2

σ2 LLF
(×103) (×103)

GARCH-M 8.310 1.060 0.069 0.116 0.864 0.005 0.359 1400.086
[3.899] [1.292] [0.675] [7.550] [31.840]

ABSGARCH-M 7.439 1.480 0.174 0.091 0.900 0.004 0.332 1399.280
[3.082] [1.415] [0.218] [5.005] [75.410]



Table 6: Comparison of Conditional Variance Models

Panel A of the table displays means, variances, first-order serial correlations, and sums of the first 12 auto-
correlations of the MIDAS, GARCH, and rolling window (RW) filtered conditional variances. Panel B shows
the variance, skewness, and kurtosis of the standardized residuals, defined as the demeaned monthly returns
divided by square root of the respective forecasted variance. The goodness-of-fit measure in the last column
of Panel B is computed as one minus the sum of squared forecasting errors divided by the total sum of
squared realized variance. The goodness-of-fit measures the forecasting power of each approach for the
realized variance. Panel C displays the correlation matrix between the MIDAS, GARCH, rolling window,
and realized conditional variances. The statistics are shown for the entire sample, 1928:01–2000:12.

Panel A: Summary Statistics
Estimator Mean Variance AR(1) AR(1-12)

(×102) (×104)

MIDAS 0.256 0.198 0.872 0.914
GARCH 0.325 0.187 0.970 0.964
RW 0.262 0.323 0.608 0.840

Panel B: Performance of Conditional Variance Models
Estimator Variance Skewness Kurtosis Goodness

Std. Resids Std. Resids Std. Resids of Fit

MIDAS 0.994 2.176 17.193 0.494
GARCH 0.992 8.562 91.101 0.440
RW 1.103 9.423 23.424 0.354

Panel C: Correlations
MIDAS GARCH RW Realized

MIDAS 1.000 — — —
GARCH 0.802 1.000 — —
RW 0.798 0.660 1.000 —
Realized 0.638 0.599 0.609 1.000



Table 7: Comparison of MIDAS and GARCH using Daily and Monthly Returns

The table shows estimates of the risk-return tradeoff (1). We use MIDAS and GARCH estimators of conditional variance with daily and
monthly data in forecasting future variance. The daily MIDAS estimator is reproduced from Table (2) (entire sample). The monthly MIDAS
estimator is defined in equations (10) and (3), where we use 12 lagged monthly returns instead of 252 lagged daily returns. The daily GARCH
parameters are estimated with daily market returns and forecasts of monthly variances obtained by summing 22 daily variance forecasts. The
monthly GARCH estimator is reproduced from Table (5). The coefficients and corresponding t-statistics (in brackets) are shown for the full
sample in all specifications. The t-statistics are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2 quantify the explanatory

power of the variance estimators in predictive regressions for realized returns and variances, respectively. Panel B displays the correlation
matrix of the forecasted variance using the four models and the realized variance.

Panel A: Estimates and Model Fit
MIDAS GARCH-M

Frequency of µ γ κ1 κ2 R2
R R2

σ2 µ γ ω α β R2
R R2

σ2

RHS Variable (×103) (×103) (×105) (×103) (×106)

Daily 6.430 2.606 -5.141 -10.580 0.019 0.407 9.038 0.431 1.395 0.032 0.957 0.003 0.291
[11.709] [6.710] [-4.528] [-5.241] [3.843] [0.592] [2.062] [9.943] [41.037]

(×101) (×102) (×103)
Monthly 5.815 2.553 -3.672 -2.821 0.011 0.382 8.310 1.060 0.069 0.116 0.864 0.005 0.359

[8.213] [2.668] [-4.822] [-3.084] [3.899] [1.292] [0.675] [7.550] [31.840]

Panel B: Correlations

MIDAS MIDAS GARCH-M GARCH-M Realized
Daily Monthly Daily Monthly

MIDAS Daily 1
MIDAS Monthly 0.885 1
GARCH-M Daily 0.561 0.557 1
GARCH-M Monthly 0.802 0.752 0.516 1
Realized Monthly 0.638 0.618 0.539 0.599 1



Table 8: Asymmetric MIDAS Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff (1) with the Asymmetric MIDAS estimator of conditional variance (11). Daily returns
are used in the construction of the conditional variance estimator. Monthly returns are used in the estimation of the risk-return tradeoff
parameter γ. The coefficients and corresponding t-statistics (in brackets) are shown for the full sample and the two subsamples. The t-
statistics are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2 quantify the explanatory power of the MIDAS variance

estimator in predictive regressions for realized returns and variances, respectively. LLF is the log-likelihood value.

Sample µ γ κ−
1 κ−

2 κ+
1 κ+

2 φ R2
R R2

σ2 LLF
(×103) (×102) (×103) (×102) (×105)

1928:01-2000:12 7.912 2.482 18.838 -12.694 0.188 -2.230 0.572 0.041 0.429 1482.667
[12.133] [3.449] [3.655] [-4.407] [7.352] [-1.252] [7.817]

1928:01-1963:12 10.114 2.168 13.866 -10.924 0.176 -3.241 0.537 0.023 0.461 698.835
[14.242] [2.493] [5.242] [-3.743] [5.496] [-1.435] [7.054]

1964:01-2000:12 5.521 2.603 27.616 -15.767 -0.392 -0.050 0.697 0.092 0.088 819.237
[6.470] [4.544] [3.790] [-3.920] [-3.259] [-0.052] [13.948]



Table 9: Asymmetric GARCH Tests of the Risk-Return Tradeoff

The table shows estimates of the risk-return tradeoff in equation (1) where the conditional variance follows Hentschel (1995)’s generalized
GARCH model (12). The process (12) is estimated under the ASYGARCH restrictions (λ = 1, ν = 2, and b = 0), EGARCH restrictions
(λ = 0, ν = 1, and b = 0), and QGARCH restrictions (λ = 1, ν = 2, and c = 0). It is also estimated with no restrictions on the λ, ν, b, and
c parameters. The coefficients and corresponding t-statistics (in brackets) are shown for the entire sample, 1928:01-2000:12. The t-statistics
are computed using Bollerslev-Wooldridge standard errors. R2

R and R2
σ2 quantify the explanatory power of the filtered variance estimator in

predictive regressions for realized returns and variances, respectively. LLF is the log-likelihood value.

Model µ γ ω α β λ ν b c R2
R R2

σ2 LLF
(×103) (×102) (×102) (×102)

ASYGARCH(1,1)-M 3.419 -1.354 0.045 0.043 0.623 1 2 0 -29.596 0.007 0.369 1409.803
[4.008] [-0.995] [0.854] [3.245] [14.823] [-6.682]

EGARCH(1,1)-M 11.645 -1.668 -484.622 -0.112 0.593 0 1 0 -3.985 0.007 0.371 1409.954
[9.354] [-1.345] [-2.867] [-2.847] [12.847] [-3.294]

QGARCH(1,1)-M 16.936 -1.098 0.051 0.094 0.327 1 2 -15.235 0 0.007 0.372 1410.635
[11.056] [-0.747] [0.921] [4.662] [7.328] [-5.095]

Generalized 5.678 -0.713 0.039 0.069 0.589 0.862 1.764 -11.947 -9.967 0.009 0.389 1417.966
GARCH(1,1)-M [7.112] [-0.496] [0.746] [3.905] [11.654] [8.934] [11.056] [-4.132] [-3.881]



Table 10: MIDAS Tests of the Risk-Return Tradeoff Controlling for Other Predictive Variables

The table shows estimates of the risk-return tradeoff in equation (13) with the MIDAS estimator of conditional variance (2) and other
predictive variables: the default spread (θ1), the stochastically detrended risk-free interest rate (θ2), the market’s dividend yield (θ3), and
lagged market return (θ4). To facilitate comparison of the MIDAS coefficients with previous tables, the four control variables are normalized
to have mean zero and unit variance. Panels A and B present the results without and with asymmetries, respectively. The coefficients
and corresponding t-statistics (in brackets) are shown for the full sample and the two subsamples. The t-statistics are computed using the
Bollerslev-Wooldridge standard errors. R2

R and R2
σ2 quantify the explanatory power of the MIDAS variance estimator in predictive regressions

for realized returns and variances, respectively. LLF is the log-likelihood value.

Panel A: No Asymmetries

Sample µ γ κ1 κ2 θ1 θ2 θ3 θ4 R2
R R2

σ2 LLF
(×103) (×103) (×105) (×103) (×103) (×103) (×103)

1928:01-2000:12 8.557 2.473 -5.985 -10.531 6.494 -5.077 5.349 9.733 0.028 0.406 1429.630
[0.414] [7.866] [-10.905] [-5.518] [2.542] [-2.619] [3.319] [2.964]

1928:01-1963:12 2.417 1.694 -0.767 -7.436 15.883 -10.410 7.760 11.012 0.015 0.418 710.239
[0.035] [3.157] [-3.299] [-2.417] [2.998] [-4.469] [2.397] [3.852]

1964:01-2000:12 9.050 3.459 -6.144 -8.904 8.597 -3.050 10.123 0.112 0.059 0.082 828.476
[0.882] [5.014] [-6.899] [-5.501] [2.124] [-2.954] [3.642] [0.208]

Table continued on next page ...



Panel B: With Asymmetries

Sample µ γ κ−
1 κ−

2 κ+
1 κ+

2 φ θ1 θ2 θ3 θ4 R2
R R2

σ2 LLF
(×103) (×102) (×103) (×102) (×105) (×103) (×103) (×103) (×103)

1928:01-2000:12 11.512 2.511 15.941 -12.926 0.170 -1.950 0.559 7.181 -5.871 6.021 9.843 0.047 0.436 1489.057
[3.684] [3.579] [3.800] [-5.031] [6.307] [-1.512] [7.381] [3.109] [-2.546] [3.804] [2.107]

1928:01-1963:12 11.973 2.186 14.857 -11.036 0.181 -2.935 0.534 9.548 -11.455 8.016 -0.291 0.026 0.471 732.067
[5.106] [3.014] [5.746] [-3.882] [5.107] [-1.907] [6.869] [2.453] [-5.673] [2.400] [-0.238]

1964:01-2000:12 11.546 2.791 21.397 -16.001 -0.377 -0.081 0.670 9.567 -3.499 10.991 0.123 0.101 0.096 829.927
[7.405] [4.289] [5.392] [-4.207] [-3.450] [-0.336] [9.304] [8.862] [-0.601] [11.519] [0.229]

Table continued from previous page.



Figure 1: MIDAS Weights

The figure plots the weights that the MIDAS estimator (2) and (3) places on lagged daily squared returns.
The weights are calculated by substituting the estimated values of κ1, and κ2 into the weight function (3).
The estimates of κ1, and κ2 are shown in Table 2. The figure displays the weights for the entire sample and
for the two subsamples.
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Figure 2: Filtered Conditional Variances and Realized Variance

The figure plots the filtered MIDAS, GARCH, and rolling window conditional variances, plotted in thick
solid lines, and compares them with the realized variance (5), which is displayed in thin dotted line. The
parameter values used to compute the filtered MIDAS, GARCH, and rolling window variances are in Tables
2, 5, and 4, respectively. For clarity of presentation, the conditional variances have been truncated to 0.04.
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Figure 3: Scatterplot of Forecasted Variances versus Realized Variance

The figure displays scatterplots of the realized variance against the conditional MIDAS, GARCH, and rolling
window conditional variances for each month in the 1928:01-2000:12 sample. The plots are shown in a log-log
scale to facilitate comparison of the series during periods of low and extremely high volatility. A 45 degree
solid line offers a reference point (indicating perfect fit) between realized variance and the filtered series.
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Figure 4: MIDAS and GARCH Weights using Daily and Monthly Data

The first panel plots the weights that the daily and monthly MIDAS estimators place on lagged squared
returns. The weights are calculated by substituting the estimated values of κ1 and κ2 from daily and monthly
MIDAS into the weight function (3). The estimates of κ1 and κ2 are shown in Table 7. The second figure
displays the weights that the daily and monthly GARCH estimators place on lagged squared returns. The
weights are calculated by substituting the estimated values of α and β from daily and monthly GARCH into
the weight function (9). The estimates of α and β are shown in Table 7. The figure displays the weights
estimated from the entire sample.
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Figure 5: Asymmetric MIDAS Weights

The figure plots the weights that the asymmetric MIDAS estimator (11) and (3) places on lagged daily
squared returns, conditional on the sign of the returns. The data sample is 1928:01-2000:12. The weights
on the negative shocks (r < 0) are calculated by substituting the estimated values of κ−

1 , and κ−
2 into (3).

Similarly, the weights on the positive shocks (r ≥ 0) are calculated by substituting the estimated values
of κ+

1 , and κ+
2 into (3). The total asymmetric weights, plotted using equation (11), take into account the

overall impact of asymmetries on the conditional variance through the parameter φ. The estimates of all
parameters are shown in Table 8. The symmetric weights from Figure 1 are also plotted for comparison.
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