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ABSTRACT

Estimating market power is often complicated by the lack of reliable measures of marginal cost.

Instead, policy-makers often rely on other summary statistics of the market, thought to be correlated

with price cost margins---such as concentration ratios or the HHI. In many industries, these summary

statistics may be only weakly correlated with deviations from perfectly competitive pricing.

Beginning with Gollop and Roberts (1979), a number of empirical studies have allowed the data to

identify industry competition and marginal cost levels by estimating the firms' first order condition

within a conjectural variations framework. Despite the prevalence of such "New Empirical Industrial

Organization" (NEIO) studies, Corts (1999) illustrates the estimated mark-up levels may be biased,

since the estimated conjectural variations model forces the supply relationship to be a ray through

the marginal cost intercept, whereas this need not be true in dynamic games. In this paper, we use

direct measures of marginal cost for the California electricity market to measure the extent to which

estimated mark-ups and marginal costs are biased. Our results suggest that the NEIO technique

poorly estimates the level of mark-ups and the sensitivity of marginal cost to cost shifters.
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1 Introduction

Estimating market power is often complicated by the lack of reliable measures of marginal

cost. Instead, policy-makers often rely on summary statistics of the market, thought to

be correlated with price cost margins�such as concentration ratios or the HHI. In many

industries, these summary statistics may be only weakly correlated with deviations from

perfectly competitive pricing. Borenstein, Bushnell and Knittel (1999) show that these

measures may actually be negatively correlated with market power levels in restructured

electricity markets.

Beginning with Gollop and Roberts (1979), �New Empirical Industrial Organization�

(NEIO) studies have estimated price-cost margins by estimating the Þrms� Þrst order con-

dition within a conjectural variations framework. Marginal costs are treated as a function

of observable cost shifters and a set of unknown parameters. By observing ßuctuations in

demand over time (or cross-sectionally), marginal costs are identiÞed through the Þrms� Þrst

order conditions, which relate prices to marginal costs, the �conduct parameter� and the

elasticity of demand. The use of these models has been extensive.1 Despite the prevalence

of such studies, Corts (1999) illustrates the estimated conduct parameter may be biased,

since the estimated conduct parameter forces the supply relationship to be a ray through

the marginal cost intercept, whereas this need not be true in dynamic games. Because pol-

icy can often hinge on these estimates, it is important to understand the extent of this bias,

and, if possible, its direction. For example, perceived market power in California�s electricity

industry prompted a number of policy changes and lawsuits; many antitrust actions are also

based on the level of market power in an industry.

In this paper, we take advantage of unique data that allow us to quantify the degree of

error inherent in the NEIO estimates. We analyze the NEIO methods using a number of

metrics. First, we use direct measures of marginal cost to calculate price-cost margins and

compare these to the estimates derived from the NEIO technique. Second, we calculate the

hourly estimates of marginal cost and compare them to actual marginal cost levels. Third,

we compare the sensitivity of the estimated marginal cost to cost shifters with the sensitivity

of actual marginal cost to the same set of cost shifters. To test the robustness of these results,

1See, for example, Brander and Zhang (1990), Applebaum (1983), Porter (1983), Roberts (1984), Spiller

and Favaro (1984), Gelfand and Spiller (1987), Brander and Zhang (1993), Ellison (1994), Berg and Kim

(1994) and Graddy (1995), Nebesky, McMullen, Lee (1995), Kadiyali (1996), Kadiyali (1999), Kadiyali,

Vilcassim, Chintagunta (1999), Raper, Love and Shumway (2000).
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we estimate a number of functional forms of both demand and marginal costs. In addition,

we extend Corts� analytical results to show the conditions in which the NEIO estimate is

unbiased in a dynamic setting.

Our empirical setting is the restructured California electricity market. Concerns regard-

ing market power levels in restructured electricity markets are especially high, as many

industry observers argue prices have far exceeded marginal costs. Fortunately, as a result

of the long history of regulation and the relative transparency of the production technology,

detailed cost data for electricity markets are currently available. These data have been used

to calculate the level of market power, measured as Lerner and elasticity-adjusted Lerner in-

dexes, in the UK and California markets. Wolfram (1999) compares UK wholesale electricity

prices with marginal costs. Her results suggest the average elasticity-adjusted Lerner index

is small. Borenstein, Bushnell and Wolak (2002) and Joskow and Kahn (2001) estimate

hourly marginal cost for the California market and compare these estimates to wholesale

prices. They Þnd that in certain time periods prices substantially exceeded marginal cost.

While reliable marginal cost data for the electricity industry are currently available, this

is unlikely to continue for a number of reasons. Entrants into these markets�independent

power producers�do not face the same data regulations as the traditional investor owned

utilities. In addition, there is evidence that existing Þrms are lobbying policy-makers to make

cost data unavailable to the public. The absence of reliable data in the future increases the

importance of evaluating methods that infer price-cost margins without cost data while

the data are currently available. We estimate market power and marginal costs under the

assumption that Þrm-level data are unavailable; we employ only data that are likely to be

available in the future: market level prices, quantities and demand and cost shifters. As

such our focus is not on individual Þrm conduct, but instead on the ability to estimate

the efficiency of the market as a whole without detailed cost data. Our results suggest

that the NEIO technique does a poor job of estimating market power levels, although this

is functional form dependent. Furthermore the NEIO estimates of marginal cost do not

measure the sensitivity of marginal cost to cost shifters well.

Absent the �Corts� critique,� the interpretation of the conduct parameter has also been

controversial. Taking the conjectural variation model literally, the parameter represents a

Þrm�s beliefs regarding how its competitors will react if the Þrm changes its quantity. Un-

fortunately, the theoretical literature has shown that the behavioral parameter represents a

consistent equilibrium only under very speciÞc information assumptions. (Lindh [1992]) If
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one eschews the CV model as a model of conduct and instead views the �conduct parame-

ter� as simply a summary of the market�s competitiveness, the estimated conduct parameter

measures the elasticity-adjusted Lerner index�this is referred to as the �as-if� conduct pa-

rameter. The focus of this paper is not whether the estimated conduct parameter accurately

reßects the Þrms� beliefs, but whether the estimated conduct parameter accurately reßects

the elasticity-adjusted Lerner index of the industry.

Our work adds to a small body of recent work examining the accuracy of NEIO techniques.

Genesove and Mullin (1998) use data from the sugar industry during the late 19th and early

20th centuries; the transparency of sugar�s cost technology and its heavy reliance on the

price of sugar cane allow them to accurately estimate marginal costs. Their results are

listed in Table 1. They Þnd that the direct measure of the elasticity-adjusted Lerner index

falls outside the 95 percent conÞdence interval of the NEIO estimate, and that the NEIO

estimate understates margins; however, in economic terms, the difference is not large. The

NEIO technique estimates the elasticity-adjusted Lerner index to be .038, when its actual

value is .107. In a recent paper, Clay and Troesken (2003) replicate Genesove and Mullin

for the whiskey industry during the late nineteenth century. They also Þnd that the actual

elasticity-adjusted Lerner index falls outside of the 95 percent conÞdence interval of the

NEIO estimate. Unlike Genesove and Mullin, they Þnd that the NEIO technique over-states

mark-ups for each of the estimated function forms. Another related paper is Wolfram (1999)

which studies the deregulated UK electricity market. Wolfram Þnds that the NEIO technique

provides a noisy estimate of market power; neither perfect competition nor equality to the

actual level of mark-ups can be rejected.

The paper proceeds as follows: Section 2 discusses the empirical framework. The em-

pirical setting and data are discussed in Section 3. Section 4 discusses the results, while

section 5 investigates the robustness of the results. Section 6 concludes the paper and offers

directions for future research.

2 Empirical Framework

We begin by characterizing market i�s equilibrium price within a conjectural variations model:

P (Qi, Xi; β1) + θQiP
0 (Qi, Xi; β1) = C

0 (Qi, Zi;β2) (1)
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where P (Qi,Xi;β1) is the market inverse demand function, C
0 (Qi, Zi; β2) is the market

marginal cost function, Qi is the market level quantity, Xi is a vector of variables that affect

demand, Zi is a vector of variables that affect costs and β1 and β2 are vectors of unknown

parameters associated with demand and costs, respectively.

The parameter θ is an estimate of the elasticity-adjusted Lerner index. To see this, we

can solve for θ:

θ =
Pi −MCi

Pi
η (2)

IdentiÞcation of θ relies on variation in demand across time or across markets. The

model nests joint proÞt maximization (θ = 1), perfect competition (θ = 0) and the Cournot

equilibrium (θ = 1/N).

The typical empirical implementation of the NEIO technique uses data on industry level

prices, quantities and demand and cost determinants. Depending on the functional form,

equation (1) can be isolated for P as a function of some measure of the responsiveness of

demand and marginal cost shifters. For example, if demand is linear, then equation (1)

becomes:

Pi =
MCi
1 + θ

+
θ

1 + θ

ai
bi

(3)

where ai is the demand intercept and bi is the slope. Demand can either be estimated jointly

with the supply equation or estimated separately, yielding observations on a
b
. Marginal costs

are often expressed as a function of cost determinants and an error term is assumed to

account for unobservables, yielding:

Pi = Zi
γ

1 + θ
+

θ

1 + θ

ai
bi
+ εi. (4)

2.1 Corts� Critique

The relevance of equation (1) has been questioned on two fronts. For one, because the pricing

rule is the result of a conjectural variations model, it need not represent a Nash equilibrium.

A number of authors have defended the method on this front, however. The basis of the

defense is that the conjectural variations model is only proxying for a dynamic model, and

the Folk theorem tells us that a range of conducts are Nash equilibria in a dynamic game.

Therefore, the parameter estimate from the NEIO technique should be viewed as only a
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measure of the elasticity-adjusted Lerner index and can be thought of as the static-equivalent

measure of an industry�s competitiveness�an �as-if� estimate of market power.

More damning to the supporters of NEIO technique is Corts (1999). Corts illustrates that

the conduct parameter estimated from equation (1) can be biased even if the econometrician

views θ as an �as-if� estimate of behavior. The intuition is simple. The pricing rule in

equation (1) is the solution to the Þrms� static Þrst order conditions. If Þrms are competing

in a dynamic setting, then the Þrms� Þrst order conditions may also depend on the incentive

compatibility constraints associated with collusion�that no one Þrm has an incentive to

deviate. If the incentive compatibility constraints are a function of demand shocks, then the

estimated θ may be biased.

More formally, consider a static model, the as-if conduct parameter is deÞned as the

elasticity-adjusted Lerner index:

θ =
P − C 0
P

η (5)

= −P − C
0

Q
/
∂P (Q,X;β1)

∂Q

= − 1
∂P (Q,X;β1)

∂Q

(P − C 0)
X

/
Q

X

Corts illustrates that the NEIO technique identiÞes θ by �observing� variation in P,Q and

X. In particular, Corts illustrates that the fundamental variation is ∂(P−C
0)

∂X
/ ∂Q
∂X
. SpeciÞcally,

Corts shows that:

�θ = − 1
∂P (Q,X;β1)

∂Q

∂ (P − C 0i)
∂X

/
∂Q

∂X
(6)

where �θ, is the NEIO estimate of θ and ∂P (Q,X;β1)
∂Q

is treated as �data� obtained from a

Þrst-stage regression. The conduct parameter is identiÞed since the econometrician observes

how prices change
³
∂P (Q,X;β1)

∂X

´
and quantities change

¡
∂Q
∂X

¢
when X changes; the additional

parameters (∂C
0

∂X
and �θ) are identiÞed through the equality restriction.

The econometrician observes how the price cost margin varies with changes inX; whereas

she is interested in the level of the price cost margin. It is possible, for example in a dynamic

game, that two industries exhibit the same variation in P − C 0 from a change in X despite

having vastly different levels of P−C 0. Comparing equations (5) and (6), for �θ to be unbiased,
we require:
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∂ (P − C 0)
∂X

/
∂Q

∂X
=
(P − C 0)
X

/
Q

X
(7)

Nevertheless, we have the following proposition:

Proposition 1: In a static setting, the NEIO estimator, �θ, is an unbiased estimator of

the as-if parameter, �θ.(Corts [1999])

Proof. Solving the as-if parameter for (P − C 0i) and differentiating with respect to X
(treating ∂P (Q,Xi;β1)

∂q
as Þxed), the as-if parameter is given as:

∂ (P − C 0)
∂X

= −�θ∂P (Q,X; β1)
∂Q

∂Q

∂X
(8)

⇒ �θ = − 1
∂P (Q,X;β1)

∂Q

∂ (P − C 0)
∂X

/
∂Q

∂X

Comparing this to equation (6), we see that this is the NEIO estimator. QED.

If Þrms are competing in a dynamic game, this condition may not hold. The static Þrst

order condition will differ from the dynamic Þrst order condition because in a dynamic game

the Þrms� Þrst order conditions have an additional term reßecting the incentive compatibility

constraint associated with collusion; furthermore, this incentive compatibility constraint

may be a function of demand shocks. Denoting this term as I (·) , the Þrst order condition
becomes:

P + θ
∂P (Q,X;β1)

∂Q
Q− C 0 (Q,Z; β2)− I (·) = 0 (9)

Proposition 2: In a dynamic setting, the NEIO estimator, �θ, is an unbiased estimator

of �θ provided if ∂I(·)
∂X
/ ∂q
∂X
= I(·)

X
/ q
X
= 0.

Proof. The NEIO estimator continues to be − 1
∂P (Q,X;β1)

∂q

∂(P−C0)
∂X

/ ∂Q
∂X
; however from the

dynamic Þrst order condition, we have:

�θ = − 1
∂P (Q,X;β1)

∂Q

∂ (P − C 0)
∂X

/
∂Q

∂X
= θ +

1
∂P (Q,X;β1)

∂Q

∂I (·)
∂X

/
∂Q

∂X
(10)

In contrast, the as-if estimator is actually an estimate of:

�θ = θ +
1

∂P (Q,X;β1)
∂Q

I (·)
X
/
Q

X
(11)

These are equal if:
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∂I (·)
∂X

/
∂Q

∂X
=
I (·)
X
/
Q

X
(12)

QED.

This proposition implies that the NEIO estimator will be unbiased if the marginal change

in the incentive compatibility constraint equals the average. This is similar to the condition

for the static case where the marginal change in the price cost margin must equal the average

in the price cost margin. Corts discusses one such case�if the discount factor is small enough

such that Þrms are colluding at the monopoly price. To see this is true, if Þrms are colluding

at the monopoly price then we have:

P +
∂P (Q,X; β1)

∂Q
Q− C 0 (Q,Z; β2) = 0 (13)

If we equate this to the dynamic Þrst order condition in the conjectural variations frame-

work, we have

θ
∂P (Q,X;β1)

∂Q
Q− I (·) =

∂P (Q,X;β1)

∂Q
Q (14)

⇒ I (·) = θ∂P (Q,X; β1)
∂Q

Q− ∂P (Q,X; β1)
∂Q

Q

From this we can see that (again treating ∂P (Q,X;β1)
∂Q

as Þxed), ∂I(·)
∂X
/ ∂Q
∂X
= I(·)

X
/Q
X
.

In contrast, if the incentive compatibility constraint is binding then an increase in X

increases the incentive to cheat. For example, consider the Rotemberg and Saloner (1986)

model of collusion. Each period the demand intercept is drawn from a distribution that is iid

across time. Firms observe the demand shock (X) and set prices so as to meet the incentive

compatibility constraint. Consider the case where the incentive compatibility constraint

binds for the expected level of X. If X is larger than E [X], prices will fall since the beneÞts

from cheating have increased, while the present value of punishment from cheating is not

affected. Therefore, the NEIO estimate of θ will be biased downward since the data suggest

that ∂(P−C
0)

∂X
/ ∂Q
∂X
is negative during some periods.

In contrast, if Þrms are sufficiently patient such that the incentive compatibility constraint

never binds, then the NEIO proposition 2 shows that the NEIO estimate will be unbiased.
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3 Empirical Setting

3.1 Institutional Detail

The restructured wholesale California electricity market began operation in April of 1998.

Prior to 2001, wholesale electricity was primarily traded in two separate markets. The now

defunct Power Exchange (PX) organized a day-ahead market and was one of many �Schedul-

ing Coordinators� (SCs). The PX had an advantage over other SCs because California�s three

IOUs; PaciÞc Gas and Electric, Southern California Edison and San Diego Gas and Electric

were initially required to trade through the PX. Electricity that was not traded through a

scheduling coordinator, was traded through the Independent System Operator (ISO), which

operated an �imbalance market� designed to instantaneously equate supply and demand.

For system reliability reasons, it was envisioned that the vast majority of energy would

be traded in the PX market; only unforeseen shocks to supply or demand would be traded

in the ISO.2 The transparency of trading the bulk of electricity in the day prior to delivery

allowed market organizers sufficient time to plan the use of the state�s transmission grid.

The PX worked as follows: At 7am each morning, suppliers and demanders submitted

hourly schedules of bids for the following day (beginning at 12am), constituting individual

supply and demand bids for each hour of the day. The PX aggregated these bids into one

hourly supply bid and one hourly demand bid. The intersection of these bids determined the

�unconstrained� PX price for each hour of the day. The PX then submitted its �preferred�

prices and quantities to the ISO. Provided the preferred schedule did not result in any

transmission congestion, the unconstrained PX price became the market clearing price. If

the preferred schedule (along with the schedules of other scheduling coordinators) resulted

in congestion, another round of bidding was used to reduce the demand (or increase the

supply) in certain areas of California. In our analysis, we follow the existing literature and

use the unconstrained PX price as the market clearing price.3

3.2 Measuring Marginal Cost

The California electricity industry is an ideal setting for analyzing NEIO techniques for a

number of reasons. The bulk of electricity that is generated in California is produced using

2During the PX�s operation, over 80% of energy was traded in the PX.
3See, for example, Borenstein, Bushnell and Wolak (2002).
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fossil fuel generation plants; furthermore fossil-fuel plants are predominantly the marginal

plant operating. Accurate estimates of the short-run marginal cost of fossil-fuel electricity

generating plants can be calculated since their thermal efficiencies at different output levels

are well known and spot market prices of natural gas are available. For each plant, a heat rate

is available which measures the efficiency in the which the plant converts fuel to electricity.

Given a fuel price the component of marginal cost attributed to fuel can be computed. The

remaining components of marginal cost are operation and maintenance costs. We make use

of the marginal cost data from Borenstein, Bushnell and Wolak (2002); we refer the reader

to their work for details of the process.

We make one adjustment to their measure of marginal cost. In 45 percent of the hours

price is below their measure of marginal cost. This likely reßects Þrms� inter-temporal con-

straints to shutting down power plants, since rational agents would not price below true

marginal cost.4 To control for this, we deÞne marginal cost as:

min(Pt,MCt,BBW ) (15)

This will tend to overestimate of marginal cost during low demand periods, when these

intertemporal constraints are binding, since during those hours we know only that marginal

cost is, at most, equal to the price.5

Figure 1 is a scatter-plot of system-wide marginal cost on quantity along with a Lowess

non-parametric regression estimate of the relationship. It is apparent that the market faces

a capacity constraint�although the regression line does not become vertical only steeper as

quantity becomes large. To capture this feature of marginal cost, below we initially assume

that marginal costs are quadratic in quantity; we also estimate an endogenous spline model.

3.3 Estimation of Demand

The demand for electricity is extremely inelastic. Compounding the inelastic nature of

demand is the fact that only a small percentage of demand actually observes wholesale

prices. During the time periods analyzed in this paper, retail consumers faced a Þxed price,

that is, at least in the short run, independent of wholesale prices. Therefore, retail consumers

4Plants face non-trivial start up costs, implying a Þrm may be willing to run a plant when the price is

below the plants static marginal costs if price is expected to rise in the coming hours. The results are robust

to excluding these observations.
5We analyze alternative assumptions below.
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show no demand response to changes in the wholesale prices. These features of the market

suggest that short run demand is best viewed as being perfectly inelastic. However, for issues

of market power, the relevant elasticity measure is the elasticity faced by �strategic� Þrms in

the market, since some Þrms may not possess unilateral market power�supplying electricity

until their marginal cost equals price. Following Borenstein, Bushnell, and Wolak (2002)

and Puller (2002), we deÞne a set of Þrms as �non-strategic� and a set of Þrms that are

�strategic.� Firms that do not act strategically act as price takers and submit bids into the

market equal to their marginal cost. Strategic Þrms, in contrast, incorporate their ability

to inßuence price into their bid functions. Following Borenstein, Bushnell and Wolak, we

assume that in-state fossil fuel generators are strategic and estimate the level of market

power possessed by these generators.

Table 2 reports the in-state Þrms� generation facilities in July of 1999 by fuel type.

Viewing fossil fuel generation as strategic and other fuel types as non-strategic, the California

electricity market is roughly characterized as 5 equally sized strategic Þrms. In contrast to

fossil fuel generation, hydroelectric and nuclear generation facilities are owned by the two

largest retailers in California�PG&E and Southern California Edison. Because during most

hours these Þrms are net buyers of electricity, they do not have an incentive to increase prices

and would therefore not act on any market power they possess.6

To estimate the hourly residual demand for fossil fuel generators, we Þrst estimate the

inverse supply equation for non-strategic Þrms. SpeciÞcally, we estimate:

Qns = f (P,Z,N, β, εns) (16)

where P is the wholesale price, Z is a vector of cost variables and N is a vector variables

that capture the native load of out-of-state Þrms, β is a vector of unknown parameters and

εns is a mean zero error term that captures unobserved components of non-strategic supply.7

Letting Qtot be the amount of electricity demanded (perfectly inelastic), the residual

demand faced by strategic Þrms can be expressed as:

6As such, we treat PG&E�s fossil fuel capacity as non-strategic. In addition, we treat the fossil fuel

capacity listed under �other� as non-strategic. This capacity is largely �qualifying facitilty� units that are

paid outside of the auction. As such, they do not have an incentive to act on any market power these might

possess.
7Out-of-state IOUs are obligated to Þrst service their own demand (�native load�). Therefore, increases

in their native load implies, at a given price, less electricity is available to export to California.
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Qs = Qtot −Qns (17)

= Qtot − f (P,X,Z, β, εns)

4 Results

4.1 Non-Strategic Functional Form, Variables and Results

In this section we discuss the assumed functional form for non-strategic supply as well as

the variables included on the right hand side. Table 3 reports the summary statistics for the

variables and their correlation with non-strategic supply.

We allow the wholesale price to affect non-strategic supply differently during peak, off-

peak and weekend periods.8 In addition, we interact these three prices with year indicator

variables for the 3 years of data to capture changes in the behavior of non-strategic Þrms.

This yields nine coefficients associated with the wholesale price. The wholesale price is likely

to be endogenous since shocks to non-strategic supply decisions will inßuence the wholesale

price. Fortunately, good demand instruments are available. SpeciÞcally, we instrument for

price using the ISO�s forecast for demand, which is independent of the error term since these

forecasts do not take price into consideration. Given the interaction terms associated with

price, we create nine instruments by interacting the forecasted load with the peak, off-peak,

weekend and year indicator variables. Although we estimate non-strategic supply within a

GMM framework, the results of the �Þrst stage� regression of the PX price on forecasted

load are presented Table 4; forecasted load is highly signiÞcant in each of the speciÞcations.

The vector X includes variables that capture the marginal cost of non-strategic supply.

The bulk of non-strategic supply is generated using natural gas and hydroelectric resources.

PNGN and PNGS are the daily city-gate price of natural gas for northern and southern Califor-

nia, respectively. While many of the non-strategic suppliers are out-of-state Þrms, regional

natural gas prices are highly correlated. We control for the availability of hydroelectric

resources using year and month indicator variables.

A key determinant of an out-of-state Þrm�s ability to export power to California is their

native load requirements. Many of the out-of-state Þrms are IOUs that are obligated to Þrst

meet their native loads; generation capacity in excess of the native load can be exported

8We deÞne the peak period as those hours between 12pm and 6pm.
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to California. To capture out-of-state native load requirements, we include the average of

the minimum and maximum temperatures in Phoenix and Tucson in AZ, Portland and

Pendleton in OR, Ely Yelland Þeld and Las Vegas in NV, Salt Lake city in UT, Seattle

and Spokane in WA.9 We also interact this variable with a summer indicator variable, since

native demand is positively correlated with temperature during the summer�because of

air conditioning�and negatively correlated with temperature during the winter�because of

heating.

Finally, we include Þve sets of indicator variables to capture temporal changes in supply.

We include a set of day of week, year, month, hour interacted with weekday and hour

interacted with weekend dummies.

Reiss and Wolak (2003) illustrate that identifying θ hinges on the econometrician�s as-

sumptions regarding the function form of demand; the estimates of θ may vary widely de-

pending on functional form assumptions. Therefore, we estimate three functional forms for

non-strategic supply : a linear model, a log-log model and a linear-log model.10 The results

from the three models of non-strategic load equation are reported in Table 5. We estimate

the equation using GMM and report Newey-West corrected standard errors that account for

the serial correlation in the residuals.11

The results are largely consistent with economic intuition. In each of the three models,

non-strategic supply is more responsive to price changes during the off-peak and weekend pe-

riods; this is likely because out-of-state Þrms have more excess capacity available throughout

the different regions of their marginal cost curves. The sensitivity to price is not statistically

different between 1998 and 1999, but decreased during 2000. This decrease is dramatic for

the linear model, when non-strategic supply was much more inelastic. The results also sug-

gest that higher natural gas prices reduce the supply of non-strategic generators; this effect

is stronger for southern California natural gas prices. This may be because the majority

of non-strategic plants that operate on natural gas are located in Arizona. Finally, higher

out-of-state temperatures during the summer months decrease non-strategic supply, while

this effect is reversed in fall, winter and spring.

The non-strategic supply curve estimates deÞne the residual demand faced by in-state

suppliers. Table 6 reports the mean, median and standard deviation of the residual demand

9The results are robust to a number of alternatives to simple averaging the maximum and minimum

temperatures.
10That is, y = log(X)β + ε.
11We include 24 lags.
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elasticity estimates. The estimated elasticities vary widely across the models. Residual

demand is estimated to be much more inelastic when non-strategic supply is linear (implying

a linear residual demand). The log-log and linear-log models largely agree.

4.2 Direct Measures of Mark-ups

Using the residual demand estimates, we calculate the hourly Lerner index and elasticity-

adjusted Lerner index for the three models; the descriptive statistics are reported in Table

7. For the entire sample, the average Lerner index is 0.13. The elasticity-adjusted Lerner

indexes widely agree across the three models. The average elasticity-adjusted Lerner index

ranges from 0.070 to 0.073, which is equivalent to a static equilibrium with 14 symmetric

Cournot Þrms, far more than the 5 strategic Þrms that operate in California.

To see if there are temporal changes in the level of mark-ups, Table 7 also reports the

Lerner index and elasticity-adjusted Lerner index during weekday peak, weekday off-peak

and weekend periods and broken up by year. The average Lerner index increased signiÞcantly

in 2000, compared to both 1998 and 1999. Interestingly, however, the average adjusted Lerner

index shows little variation across the three years. The log-log and linear-log models suggest

that market power levels increased slightly in 2000, but not nearly as much as the unadjusted

Lerner Index.

Both adjusted and non-adjusted Lerner indexes are higher during peak hours. The av-

erage Lerner index during weekday off-peak periods is higher than weekend periods; for the

linear and linear-log models, this relationship is reversed for adjusted Lerner indexes.

4.3 Strategic Supply

Given residual demand estimates, the strategic supply relationship is estimated from the

Þrst order condition in equation (4). Marginal costs are parameterized as a linear function

of natural gas prices, NOx permit prices and a quadratic function of quantity.

MC = ψ0+ψ1P
NG
PGE+ψ2P

NG
SCE+ψ2P

NG
SDG&E+ψ4P

NOx+ψ5Crisis×PNOx+ψ6qst+ψ7q2st (18)

Table 8 reports the strategic supply estimates for the three models of residual demand.

The estimates of the average elasticity-adjusted Lerner index vary considerably across the

three models. In the linear model the estimates is 0.063 (compared to the actual of 0.070),
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while in the log-log and linear-log models market power is overestimated, 0.226 and 0.162,

respectively.12 These results suggest that the NEIO does not provide robust estimates of

market power levels. Given that the true functional form of demand is rarely known, these

results suggest that the NEIO estimates are not reliable measures of market power.

Marginal costs are estimated to be convex in quantity. Given the high degree of multi-

collinearity with the natural gas prices, it is not surprising that only one of the prices is

positive and signiÞcant (the SCE price). To account for the collinearity we interpret the

natural gas variables as if each price increased by one dollar. A one dollar change in the

price of natural gas for all three utilities results in a 7.7 dollar increase in marginal costs;

this is consistent with engineering estimates. The coefficients with respect to the price of

NOx permits are puzzling. Increases in the price of permits are estimated to reduce marginal

costs. During the crisis period this effect subsided, but remains negative.

To test further the accuracy of the NEIO technique in estimating marginal costs, Table

9 reports the summary statistics of the direct measure of marginal cost minus the NEIO

estimate for the linear model, while Figure 4 is a density estimate of this difference.13 The

density estimate shows that in certain hours the NEIO estimate of MC is much greater than

actual MC, while the NEIO does not understate MC by large amounts. On average, the

NEIO technique underestimates marginal costs; however this is not symmetric. A regression

of the direct measure of marginal cost on the NEIO estimates yields:

MCNEIOt = −15.73 + 1.56MCDirectt + εt (19)

Thus, the NEIO technique tends to understate marginal cost when marginal cost is low, but

overstate marginal cost when it is high; this can be seen from Figure 5. In high demand

periods, the quadratic marginal cost estimates overstate actual marginal costs. Strangely, the

NEIO estimates suggest marginal costs initially decrease with quantity. In this region, the

NEIO under-estimates marginal costs, but over-estimates marginal costs for high quantities.

As a second metric for the marginal cost estimates, we regress the direct measure of

marginal cost on the cost shifters included in the NEIO technique. These results are reported

12We have also estimated the model assuming linear marginal costs. The estimated value of elasticity-

adjusted mark-ups (in the linear non-strategic supply case) is .103. The overestimate of mark-ups is not

surprising since marginal costs during high demand periods are underestimated with the linear functional

form.
13We chose the linear model since this yields the most accurate estimate of market power.
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in the Þrst column of Table 10. Comparing these to the NEIO technique, we Þnd that the

NEIO technique does a poor job of estimating the sensitivity of marginal cost to cost shifters.

Again, we use the linear model since this yields the most accurate estimates of marginal cost,

on average. Both regressions suggest that the SCE natural gas price is most important in

driving industry marginal cost; in addition, a one dollar increase of all three natural gas prices

results in a 8.8 dollar increase in marginal cost, roughly in-line with the NEIO estimates. In

contrast, the direct measure of marginal cost suggest that NOx permit prices have a positive

and effect on marginal costs; this is statistically signiÞcant during the crisis period. This is

not the case in the NEIO results. Finally, the direct measure of marginal cost is more convex

in quantity than the NEIO results would suggest.

The next thought experiment we conduct is the following: suppose the econometrician

knew the sensitivity of marginal cost to a speciÞc input, possibly because of an engineering

study, would the estimate of market power become more accurate? We do this for each

of the models estimated. Tables 12 through 14 report the results. For variables denoted as

�known� we replace the unknown marginal cost parameter with the marginal cost parameter

estimated using the direct measures of marginal cost listed in the Þrst column of Table 10.

In general, this does not improve the accuracy of the estimated elasticity-adjusted Lerner

index.

4.3.1 Time-Varying Mark-Ups

We next analyze whether the degree of mark-ups changes over time. We allow for two

such changes: different mark-ups across years and different mark-ups throughout the day.

Electricity prices during 2000 were certainly higher than in 1998 and 1999; however, there

are a number of possible explanations for this increase. For one, costs may have increased.

Second, the elasticity of residual demand may have fallen. Finally, market power levels

may have increased, thus increasing the elasticity-adjusted Lerner index. Rows 2 through

4 of Table 7 summarizes the actual elasticity-adjusted Lerner index by year, as well as

the standard Lerner index. The standard Lerner index illustrates that mark-ups increased

dramatically between 1998/1999 and 2000. Interestingly, the elasticity-adjusted Lerner index

suggests the change in mark-ups was the result of a decrease in the elasticity of demand; the

adjusted mark-ups are not dramatically higher during 2000 compared to 1998 and 1999.

The NEIO estimates of mark-ups for the different years are reported in Table 9; the results

contrast with the actual measures of mark-ups. The NEIO technique suggests that market

16



power was signiÞcantly higher in 2000. In the linear and linear-log models, the estimate

of θ is signiÞcant only in 2000, while the log-log model suggests that market power existed

in 1999 and 2000. The inability of the NEIO technique to accurately estimate changes in

market power is important, since it could be the case that it does not estimate market power

levels accurately, but policy makers can still learn about changes in market power levels.

Unfortunately, this does not appear to be the case.

In the second alternative speciÞcation, we estimate a different θ during the peak hours

of a weekday, the off-peak hours of a weekday and during weekends. The actual mark-levels

are reported in rows 5 through 7 of Table 7. The actual value of mark-ups suggest that after

controlling for the elasticity of demand, mark-ups are highest during peak periods, while

market power levels during off-peak hours and weekends are similar. The average adjusted

mark-up during peak periods is .092, while it is .054 during off-peak periods; the average

mark-up during weekends is .068. The estimated mark-ups are reported in Table 10. Each

of the models suggest that market power levels are highest during the weekend, at odds with

the actual measures.

5 Robustness Checks

In the above speciÞcations, marginal costs are assumed to be quadratic in the quantity.

However, Figure 4 suggests that this does a poor job representing actual marginal costs.

Our Þrst robustness check alters the functional form for marginal cost. We assume that

marginal costs are a linear spline with one knot. We endogenously determine the knot by

using the method in Andrews (1993). We estimate the endogenous spline model under the

linear non-strategic supply model since this model provided the most accurate estimates of

market power, as such we would like to know whether these accurate estimates are robust

to other functional forms for marginal cost. The results are listed in Table 15. The results

are nearly identical to the quadratic marginal cost model.

One shortcoming of our data is that in a substantial number of hours our marginal cost

measure is above the market clearing price. This most likely occurs because Borenstein,

Bushnell and Wolak do not consider the dynamic decision making of the Þrms. In the

previous analysis we adjust the hourly marginal cost numbers to be the minimum of the

Borenstein, Bushnell and Wolak measure and price. In this section, we adjust our sample

such that this is less of an issue. In particular, we look at three sub-samples of the data. The
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Þrst uses only those observations where price is observed to be greater than marginal cost.

In this case, the shadow cost of shutting down a plant in hour t and incurring a start up cost

in hour t+ k will be zero.14 In the second sub-sample, we use only data from weekday peak

hours. In this sub-sample, marginal cost exceeds price in only 21 percent of the observations.

Finally, we restrict our sample to hours 11 through 21, where price is above marginal cost

22 percent of the time.

Tables 16, 18 and 20 report the actual measures of market power from using only those

observations for which the price is above marginal cost, only weekday peak hours and only

hours 11 through 21 to estimate the strategic supply curve, respectively. Tables 17, 19 and

21 report the NEIO estimates. These sub-samples further question the NEIO technique.

Using the sample of observations for which the price is above marginal costs, the log-log and

linear-log models provide the most accurate estimates of average market power, but all of

the models continue to mis-measure intertemporal changes in market power levels. Using

the weekday peak and hours 11-21 observations suggest that the linear model performs the

best in estimating average market power levels, but does not capture inter-year variations.

6 Conclusions

In this paper we have compared actual measures of mark-ups and marginal costs to esti-

mates based on the static conjectural variations Þrst-order conditions of an industry. We

take advantage of unique data that allow us to directly measure mark-ups in the restruc-

tured California electricity market and compare these mark-ups to those estimated by NEIO

techniques. Our results suggest that, in this setting, the NEIO technique is not robust to

functional form changes to demand. We also Þnd that the NEIO estimates of marginal cost

do not measure the sensitivity of marginal cost to cost shifters well. These results support

Corts� (1999) theoretical critique of NEIO methods.

The results have clear policy implications. The Þrst is that policy makers should be

wary of relying on NEIO techniques to form policy. In our setting, it would be impossible

to reliably estimate market power even if the true functional form for demand was known,

since a priori one cannot determine which functional form is giving the correct estimates of

market power. This is despite the robustness of actual market power to these functional form

changes. Second, these results underline the importance of data collection requirements in

14One disadvantage of this is that we are truncating our residual.
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restructured electricity markets. Given that the NEIO does a poor job in this setting, future

policy based on market power concerns will require actual marginal cost data.
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A Tables

Table 1: Previous Studies

Genesove and Mullin Wolfram Clay and Troesken

Estimate Actual Estimate Actual Estimate Actual

0.038 0.107 0.012 0.052 0.173 0.086

(0.024) (0.028) (0.044) Not reported (0.046) (0.054)

Linear functional form results for Genesove and Mullin (1998),

Wolfram (1999), and Clay and Troesken (2003)

Table 2: In-state Capacity during July 1999

Firm Fossil Hydro Nuclear Renewable

AES 4,071 0 0 0

Duke 2,950 0 0 0

Dynegy 2,856 0 0 0

PG&E 580 3,878 2,160 793

Reliant 3,531 0 0 0

SCE 0 1,164 1,720 0

Mirant 3,424 0 0 0

Other 6,617 5,620 430 4,267

Table 3: Summary Statistics of Non-Strategic Supply Variables

Mean Std Dev Min Max Corr(X,Qns)

Price 45.343 58.268 0 749.996 0.208

NaturalGasN 2.993 1.093 1.810 6.840 -0.173

NaturalGasS 2.888 1.176 1.650 7.260 -0.168

Temperature 60.275 13.562 21.056 86.667 0.176

Temperature× Sum 74.918 5.128 58.722 86.667 0.144
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A.1 Results

Table 4: First Stage Regressions
Price P ×WDay × Pk P ×Wday ×OPk P ×Wend

Full Sample
Constant -104.883 -341.787 -70.107 -73.929

(10.584) (55.836) (10.133) (12.275)
Forecast 0.006

(0.000)
Forecast×WDay × Pk 0.013

(0.002)
Forecast×WDay ×OPk 0.004

(0.000)
Forecast×Wend 0.005

(0.001)
−N− 21214 4340 10540 6334
Adj R2 0.276 0.398 0.219 0.289

1999 Sample
Constant -79.308 -13.066 -21.819

(15.796) (1.787) (3.064)
Forecast×WDay × Pk 0.004

(0.001)
Forecast×WDay ×OPk 0.002

(0.000)
Forecast×WEnd 0.002

(0.000)
-N- 1792 4352 2615
Adj R2 0.429 0.359 0.369

2000 Sample
Constant -673.504 -136.659 -140.453

(76.773) (19.183) (20.642)
Forecast×WDay × Pk 0.024

(0.003)
Forecast×WDay ×OPk 0.008

(0.001)
Forecast×WeekEnd 0.008

(0.001)
-N- 1498 3638 2183
Adj R2 0.655 0.339 0.444
Notes: All estimates are signiÞcant in 1% level.
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Table 5: Estimates of the Non-Strategic Supply Relationship

Linear Log-log Linear-log

P ×Wday × Pk 67.718∗∗∗ 0.159∗∗∗ 3878.3∗∗∗

(7.849) (0.011) (261.1)

P ×Wday ×OffPk 106.053∗∗∗ 0.195∗∗∗ 4333.0∗∗∗

(13.547) (0.017) (377.1)

P ×Wend 149.387∗∗∗ 0.216∗∗∗ 4967.6∗∗∗

(15.319) (0.016) (371.0)

P ×Wday × Pk × Y r99 11.169 −0.008 −12.466
(8.614) (0.012) (267.6)

P ×Wday ×OffPk × Y r99 11.951 −0.011 −81.389
(10.867) (0.013) (286.9)

P ×Wend× Y r99 3.410 0.010 −82.448
(13.207) (0.012) (284.2)

P ×Wday × Pk × Y r0 −52.560∗∗∗ −0.014∗∗ −340.651
(7.686) (0.012) (254.9)

P ×Wday ×OffPk × Y r00 −83.027∗∗∗ −0.026∗∗∗ −534.106∗∗
(12.165) (0.012) (279.4)

P ×Wend× Y r00 −110.935∗∗∗ −0.030∗∗∗ −675.295∗∗∗
(13.695) (0.012) (279.4)

PNGN −909.188∗∗ −0.178∗∗ −3121.9∗
(473.2) (0.090) (1937.3)

PNGS −748.451∗ −0.195∗∗ −5181.0∗∗∗
(430.2) (0.085) (1846.0)

Temperature 39.335∗∗∗ 0.044∗∗ 993.695∗∗

(10.787) (0.024) (520.5)

Temperature× Sum −70.733∗∗∗ −0.295∗∗∗ −6613.4∗∗∗
(22.870) (0.085) (1960.3)

Day, year, month, hour×weekday and hour×weekend monthly indicator
variables not reported.

26



Table 6: Estimates of Residual Demand Elasticities

Linear Log-Log Linear-Log

Mean Median Mean Median Mean Median

Entire Sample 0.687 0.576 1.250 1.004 1.334 1.035

(0.485) (0.870) (1.058)

1998 0.735 0.666 1.279 1.133 1.343 1.131

(0.391) (0.693) (0.850)

1999 0.983 0.884 1.493 1.246 1.608 1.241

(0.490) (0.921) (1.125)

2000 0.300 0.266 0.938 0.633 1.001 0.653

(0.176) (0.817) (0.943)

Weekday Peak 0.385 0.392 0.713 0.621 0.702 0.607

(0.215) (0.412) (0.406)

Weekday Offpeak 0.641 0.608 1.263 1.058 1.316 1.019

(0.406) (0.798) (0.933)

Weekend 0.972 0.910 1.599 1.368 1.793 1.486

(0.578) (1.019) (1.238)

Numbers in parentheses represent standard deviations.
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Table 7: Direct Measures of Lerner and Adjusted Lerner Indexes

Linear Model Log-log Model Linear-Log Model

LI Adj LI Adj LI Adj LI N

Entire Sample 0.127 0.070 0.073 0.071 21214

(0.191) (0.138) (0.096) (0.090)

1998 0.097 0.065 0.068 0.062 5136

(0.163) (0.148) (0.101) (0.089)

1999 0.088 0.071 0.066 0.064 8759

(0.139) (0.138) (0.094) (0.089)

2000 0.196 0.071 0.085 0.085 7319

(0.237) (0.129) (0.094) (0.090)

Weekday Peak 0.228 0.096 0.103 0.097 4340

(0.243) (0.147) (0.094) (0.083)

Weekday Offpeak 0.107 0.057 0.066 0.063 10540

(0.167) (0.122) (0.092) (0.085)

Weekend 0.093 0.073 0.064 0.065 6334

(0.162) (0.152) (0.099) (0.099)

Numbers in parentheses represent standard deviations.
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Table 8: Strategic Pricing Relationship Estimates

Linear Model Log-log Model Linear-log model

Constant 23.972∗∗∗ 7.249∗∗∗ -0.086

(7.256) (2.583) (3.359)

PNatGasPG&E 1.214 7.779∗∗∗ 4.636

(5.899) (2.926) (3.294)

PNatGasSCE 14.630∗ -8.400∗∗ 0.183

(8.176) (3.674) (4.239)

PNatGasSDG&E -8.120 6.135∗∗∗ 3.909

(5.993) (2.286) (2.562)

PNOx -5.008∗∗∗ 0.157 -0.402

(1.420) (0.506) (0.475)

PNOx × Crisis 4.814∗∗∗ -0.304 0.402

(1.234) (0.454) (0.437)

Quantity -0.015∗∗∗ -0.003 -0.003∗∗∗

(0.002) (0.002) (0.001)

Quantity2 1.723×10−6∗∗∗ 3.969×10−7∗∗ 5.205×10−7∗∗∗
(2.170×10−7) (1.941×10−7) (1.638×10−7)

θ 0.063∗∗∗ 0.226∗∗∗ 0.162∗∗∗

(0.013) (0.019) (0.019)
∗ denotes signiÞcant at the .1 level, ∗∗ at the .05 level, and ∗∗∗ at the .01 level
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Table 9: Strategic Pricing Relationship Estimates�Yearly Variation in θ

Linear Model Log-log Model Linear-log Model

Constant 32.306∗∗∗ 17.261∗∗∗ 21.642∗∗∗

(8.158) (4.435) (6.409)

PNatGasPG&E 5.680 12.007∗∗∗ 11.425∗∗∗

(6.263) (4.380) (4.542)

PNatGasSCE 19.783∗∗ -15.632∗∗∗ -12.617∗∗

(8.542) (4.905) (5.921)

PNatGasSDG&E �19.729∗∗∗ 6.796∗∗∗ 5.867∗∗

(6.894) (2.304) (3.003)

PNOx -4.628∗∗∗ 0.101 -0.286

(1.406) (0.529) (0.563)

PNOx × Crisis 4.447∗∗∗ -0.234 0.325

(1.218) (0.471) (0.512)

Quantity -0.014∗∗∗ -0.004∗ -0.008∗∗∗

(0.002) (0.002) (0.002)

Quantity2 1.766×10−6∗∗∗ 5.838×10−7∗∗ 1.156×10−6∗∗∗
(2.169×10−7) (2.590×10−7) (2.968×10−7)

θ × Y r98 -0.038 0.090 -0.078

(0.023) (0.069) (0.064)

θ × Y r99 0.017 0.124∗∗ -0.022

(0.045) (0.054) (0.056)

θ × Y r00 0.058∗∗∗ 0.218∗∗∗ 0.122∗∗∗

(0.013) (0.022) (0.029)
∗ denotes signiÞcant at the .1 level, ∗∗ at the .05 level, and ∗∗∗ at the .01 level
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Table 10: Strategic Pricing Relationship Estimates�Intra-day Variation in θ

Linear-log Model Log-log Model Linear-log Model

Constant 24.650∗∗∗ 14.257∗∗∗ 1.223

(7.440) (3.091) (1.490)

PNatGasPG&E 1.574 9.800∗∗∗ 7.084∗∗∗

(5.811) (2.893) (2.033)

PNatGasSCE 14.772∗ -15.296∗∗∗ -7.919∗∗∗

(8.015) (3.973) (2.518)

PNatGasSDG&E -9.080 8.872∗∗∗ 5.339∗∗∗

(5.959) (2.388) (1.403)

PNOx -5.334∗∗∗ 0.668 0.132

(1.445) (0.537) (0.271)

PNOx × Crisis 5.129∗∗∗ -0.769∗ 0.013

(1.260) (0.470) (0.257)

Quantity -0.014∗∗∗ -0.004∗∗ 0.002∗∗∗

(0.002) (0.002) (0.001)

Quantity2 1.700×10−6∗∗∗ 4.700×10−7∗∗∗ -1.720×10−7∗∗∗
(2.169×10−7) (1.835×10−7) (6.626×10−8)

θ ×Wday × Pk 0.068∗∗∗ 0.221∗∗∗ 0.242∗∗∗

(0.013) (0.017) (0.008)

θ ×Wday ×OffPk 0.059∗∗∗ 0.255∗∗∗ 0.260∗∗∗

(0.012) (0.024) (0.010)

θ ×Wend 0.092∗∗∗ 0.283∗∗∗ 0.308∗∗∗

(0.018) (0.027) (0.011)
∗ denotes signiÞcant at the .1 level, ∗∗ at the .05 level, and ∗∗∗ at the .01 level
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Table 11: Summary Statistics of Actual MC minus NEIO MC (linear model)

Mean Std Dev Skew Kurtosis Min Max

MC − dMCNEIO −2.00 29.27 −2.44 10.71 −201.41 202.28

Table 12: Supplemental Information and Estimates of Market Power

Linear Model. For variables marked as known, their estimate from the Direct MC equation are

used and treated as Þxed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4

Constant -7.200∗∗∗ 23.972∗∗∗ 21.832∗∗∗ 27.107∗∗∗ -17.157∗∗∗

(0.676) (7.256) (4.872) (7.726) (5.100)

PNatGasPG&E 0.944∗∗ 1.214 known -0.111 -7.888

(0.423) (5.899) (6.178) (7.010)

PNatGasSCE 4.227∗∗∗ 14.630∗ known 27.387∗∗∗ 66.134∗∗∗

(1.235) (8.176) (8.463) (10.649)

PNatGasSDG&E 3.205∗∗∗ -8.120 known -21.580∗∗∗ -45.083∗∗∗

(1.065) (5.993) (6.647) (8.479)

PNOx 0.128 -5.008∗∗∗ -5.380∗∗∗ known -12.693∗∗∗

(0.103) (1.420) (1.443) (1.536)

PNOx 0.098 4.814∗∗∗ 5.137∗∗∗ known 11.689∗∗∗

×Crisis (0.099) (1.234) (1.302) (1.348)

Quantity 0.002∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.015∗∗∗ known

(0.000) (0.003) (0.002) (0.003)

Quantity2 -6.52×10−9 1.723×10−6∗∗∗ 1.735×10−6∗∗∗ 1.794×10−6∗∗∗ known

(1.525×10−8) (2.170×10−7) (2.170×10−7) (2.263×10−7)
θ 0.070 0.063∗∗∗ 0.061∗∗∗ 0.055∗∗∗ 0.130∗∗∗

(0.138)� (0.013) (0.013) (0.011) (0.018)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
� This represents the standard devation.
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Table 13: Supplemental Information and Estimates of Market Power

Log-log Model. For variables marked as known, their estimate from the Direct MC equation are

used and treated as Þxed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4

Constant -7.200∗∗∗ 7.249∗∗∗ 3.353 13.814∗∗∗ -1.544

(0.676) (2.583) (3.187) (7.726) (2.312)

PNatGasPG&E 0.944∗∗ 7.779∗∗∗ known 6.145∗∗ 6.487∗∗∗

(0.423) (2.926) (2.818) (2.681)

PNatGasSCE 4.227∗∗∗ -8.400∗∗ known -14.699∗∗∗ -3.442

(1.235) (3.674) (3.475) (3.147)

PNatGasSDG&E 3.205∗∗∗ 6.135∗∗∗ known 11.790∗∗∗ 2.171

(1.065) (2.286) (1.903) (2.083)

PNOx 0.128 0.157 -0.247 known 0.144

(0.103) (0.506) (0.454) (0.472)

PNOx 0.098 -0.304 -0.072 known -0.350

×Crisis (0.099) (0.454) (0.440) (0.425)

Quantity 0.002∗∗∗ -0.003 -0.005∗∗∗ -0.003∗ known

(0.000) (0.002) (0.002) (0.002)

Quantity2 -6.52×10−9 3.969×10−7∗∗ 6.673×10−7∗∗∗ 4.694×10−7∗∗ known

(1.525×10−8) (1.941×10−7) (1.778×10−7) (2.193×10−7)
θ 0.073 0.226∗∗∗ 0.186∗∗∗ 0.218∗∗∗ 0.247∗∗∗

(0.096)� (0.019) (0.017) (0.020) (0.006)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
� This represents the standard devation.
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Table 14: Supplemental Information and Estimates of Market Power

Linear-Log Model. For variables marked as known, their estimate from the Direct MC equation are

used and treated as Þxed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4

Constant -7.200∗∗∗ -0.086 0.530 3.910 -8.101∗∗∗

(0.676) (3.359) (2.607) (2.775) (1.831)

PNatGasPG&E 0.944∗∗ 4.636 known 3.696 3.840

(0.423) (3.294) (3.445) (2.762)

PNatGasSCE 4.227∗∗∗ 0.183 known -1.359 3.432

(1.235) (4.239) (4.465) (3.390)

PNatGasSDG&E 3.205∗∗∗ 3.909 known 4.945∗∗ 0.817

(1.065) (2.562) (2.183) (1.905)

PNOx 0.128 -0.402 -0.330 known -0.490

(0.103) (0.475) (0.404) (0.387)

PNOx 0.098 0.402 0.356 known 0.480

×Crisis (0.099) (0.437) (0.388) (0.358)

Quantity 0.002∗∗∗ -0.003∗∗ -0.003∗∗ -0.004∗∗∗ known

(0.000) (0.001) (0.001) (0.001)

Quantity2 -6.52×10−9 5.205×10−7∗∗∗ 5.202×10−7∗∗∗ 5.705×10−7∗∗∗ known

(1.525×10−8) (1.638×10−7) (1.595×10−7) (1.644×10−7)
θ 0.071 0.162∗∗∗ 0.162∗∗∗ 0.157∗∗∗ 0.201∗∗∗

(0.090)� (0.019) (0.019) (0.020) (0.005)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
� This represents the standard devation.
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A.2 Robustness Checks

A.2.1 Endogenous MC Spline

Table 15: Strategic Pricing Relationship Estimates (Spline Function)

Model 1 Model 2 Model 3

Constant -14.993∗∗∗ -5.004∗∗∗ -14.524∗∗∗

(3.612) (4.615) (3.741)

PNatGasPG&E 0.456 5.633 0.948

(5.360) (5.833) (5.266)

PNatGasSCE 28.819∗∗∗ 36.379∗∗∗ 28.632∗∗∗

(7.585) (8.342) (7.384)

PNatGasSDG&E -19.277∗∗∗ �34.927∗∗∗ -19.744∗∗∗

(6.205) (7.729) (6.105)

PNOx -5.645∗∗∗ -5.303∗∗∗ -5.914∗∗∗

(1.448) (1.429) (1.474)

PNOx × Crisis 5.407∗∗∗ 5.062∗∗∗ 5.657∗∗∗

(1.262) (1.241) (1.287)

Spline1 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗

(0.0004) (0.0006) (0.0004)

Spline2 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗

(0.003) (0.003) (0.003)

θ 0.065∗∗∗

(0.014)

θ × Y r98 -0.065∗∗∗

(0.020)

θ × Y r99 -0.009

(0.039)

θ × Y r00 0.059∗∗∗

(0.014)

θ ×Wday × Pk 0.071∗∗∗

(0.014)

θ ×Wday ×OffPk 0.058∗∗∗

(0.013)

θ ×Wend 0.093∗∗∗

(0.019)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
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A.2.2 Selected Sample

Table 16: Direct Measures of Lerner and Adjusted Lerner Indexes�Selected Sample

Linear Model Log-log Model Linear-Log Model

LI Adj LI Adj LI Adj LI N

Entire Sample 0.228 0.125 0.130 0.126 11853

(0.205) (0.164) (0.094) (0.086)

1998 0.186 0.126 0.128 0.116 2671

(0.186) (0.186) (0.107) (0.093)

1999 0.174 0.141 0.130 0.126 4428

(0.153) (0.167) (0.095) (0.088)

2000 0.302 0.109 0.131 0.131 4754

(0.234) (0.146) (0.087) (0.080)

Weekday Peak 0.287 0.121 0.129 0.122 3446

(0.240) (0.155) (0.088) (0.075)

Weekday Offpeak 0.205 0.109 0.125 0.119 5529

(0.183) (0.151) (0.092) (0.083)

Weekend 0.203 0.160 0.140 0.143 2878

(0.187) (0.192) (0.105) (0.101)

Numbers in parentheses represent standard deviations.
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Table 17: Strategic Pricing Relationship Estimates�Selected Sample

Linear Model Log-log Model Linear-Log Model

θ 0.042∗∗∗ 0.166∗∗∗ 0.139∗∗∗

(0.015) (0.036) (0.027)

θ × Y r98 -0.084∗∗∗ 0.048 -0.003

(0.031) (0.099) (0.068)

θ × Y r99 -0.026 0.088 0.039

(0.061) (0.072) (0.058)

θ × Y r00 0.034∗∗ 0.155∗∗∗ 0.112∗∗∗

(0.015) (0.043) (0.036)

θ ×Wday × Pk 0.044∗∗∗ 0.168∗∗∗ 0.202∗∗∗

(0.015) (0.036) (0.018)

θ ×Wday ×OffPk 0.034∗∗ 0.193∗∗∗ 0.215∗∗∗

(0.015) (0.047) (0.021)

θ ×Wend 0.046∗∗ 0.207∗∗∗ 0.247∗∗∗

(0.023) (0.053) (0.024)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
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A.2.3 Weekday Peak Observations

Table 18: Direct Measures of Lerner and Adjusted Lerner Indexes�Weekday Peak

Linear Model Log-log Model Linear-Log Model

LI Adj LI Adj LI Adj LI N

Entire Sample 0.228 0.096 0.103 0.097 4340

(0.243) (0.147) (0.094) (0.083)

1998 0.214 0.108 0.113 0.103 1050

(0.230) (0.162) (0.104) (0.089)

1999 0.172 0.094 0.094 0.091 1792

(0.187) (0.134) (0.088) (0.082)

2000 0.304 0.089 0.106 0.101 1498

(0.287) (0.151) (0.093) (0.081)

Numbers in parentheses represent standard deviations.

Table 19: Strategic Pricing Relationship Estimates�Weekday Peak

Linear Model Log-log Model Linear-Log Model

θ 0.079∗∗∗ 0.198∗∗∗ 0.167∗∗∗

(0.030) (0.046) (0.021)

θ × Y r98 -0.036 0.010 -0.091

(0.089) (0.155) (0.088)

θ × Y r99 0.067 0.047 -0.031

(0.188) (0.126) (0.077)

θ × Y r00 0.079∗∗ 0.189∗∗∗ 0.134∗∗∗

(0.038) (0.053) (0.033)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
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A.2.4 Hour 11-21 Observations

Table 20: Direct Measures of Lerner and Adjusted Lerner Indexes�Hours 11-21

Linear Model Log-log Model Linear-Log Model

LI Adj LI Adj LI Adj LI N

Entire Sample 0.198 0.108 0.107 0.100 9724

(0.225) (0.169) (0.104) (0.093)

1998 0.169 0.105 0.105 0.093 2354

(0.201) (0.164) (0.108) (0.091)

1999 0.149 0.114 0.104 0.099 4015

(0.169) (0.173) (0.105) (0.098)

2000 0.277 0.104 0.112 0.106 3355

(0.272) (0.167) (0.100) (0.088)

Weekday Peak 0.228 0.096 0.103 0.097 4340

(0.243) (0.147) (0.094) (0.083)

Weekday Offpeak 0.207 0.119 0.123 0.107 2480

(0.212) (0.171) (0.105) (0.086)

Weekend 0.145 0.118 0.099 0.097 2904

(0.195) (0.195) (0.116) (0.110)

Numbers in parentheses represent standard deviations.
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Table 21: Strategic Pricing Relationship Estimates�Hour 11-21 observations

Linear Model Log-log Model Linear-Log Model

θ 0.065∗∗∗ 0.216∗∗∗ 0.167∗∗∗

(0.020) (0.027) (0.021)

θ × Y r98 -0.084∗∗ 0.037 -0.092

(0.044) (0.100) (0.088)

θ × Y r99 -0.030 0.086 -0.031

(0.080) (0.076) (0.077)

θ × Y r00 0.057∗∗∗ 0.216∗∗∗ 0.134∗∗∗

(0.021) (0.028) (0.033)

θ ×Wday × Pk 0.074∗∗∗ 0.227∗∗∗ 0.241∗∗∗

(0.021) (0.024) (0.009)

θ ×Wday ×OffPk 0.089∗∗∗ 0.272∗∗∗ 0.262∗∗∗

(0.028) (0.030) (0.011)

θ ×Wend 0.121∗∗∗ 0.288∗∗∗ 0.311∗∗∗

(0.038) (0.039) (0.013)

* denotes signiÞcant at the .1 level, ** at the .05 level, and *** at the .01 level
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Figure 1: Scatterplot of Actual MC versus Strategic Quantity
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Figure 2: Kernel Density Estimate of Actual MC minus NEIO MC

41



0
10

0
20

0
30

0
40

0
$/

M
W

h

0 5000 10000 15000
Strategic Quantity

Actual MC NEIO MC

Figure 5: Scatterplot of Actual MC and NEIO MC Estimates versus Strategic Quantity
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Figure 6: Scatterplot of Actual MC and Endeogenous Spline NEIO MC Estimates
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