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ABSTRACT

This article measures scientific influence by means of citations to academic papers. The data source
is the Institute for Scientific Information (ISI); the scientific institutions included are the top 110
U.S. research universities; the 12 main fields that classify the data cover nearly all of science; and
the time period is 1981-1999. Altogether the database includes 2.4 million papers and 18.8 million
citations. Thus the evidence underlying our findings accounts for much of the basic research
conducted in the United States during the last quarter of the 20th century. This research in turn
contributes a significant part of knowledge production in the U.S. during the same period.

The citation measure used is the citation probability, which equals actual citations divided by
potential citations, and captures average utilization of cited literature by individual citing articles.
The mean citation probability within fields is on the order of 10-5. Cross-field citation probabilities

are one-tenth to one-hundredth as large, or 10-6 to 10-7. Citations between pairs of citing and cited

fields are significant in less than one-fourth of the possible cases. It follows that citations are largely

bounded by field, with corresponding implications for the limits of scientific influence.

Cross-field citation probabilities appear to be symmetric for mutually citing fields. Scientific

influence is asymmetric within fields, and occurs primarily from top institutions to those less highly

ranked. Still, there is significant reverse influence on higher-ranked schools. We also find that top

institutions are more often cited by peer institutions than lower-ranked institutions are cited by their

peers. Overall the results suggest that knowledge spillovers in basic science research are important,

but are circumscribed by field and by intrinsic relevance. Perhaps the most important implication of

the results are the limits that they seem to impose on the returns to scale in the knowledge production

function for basic research, namely the proportion of available knowledge that spills over from one

scientist to another.
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I. Introduction   

 This paper is part of a larger project that has occupied much of our time in recent years 1.  In the early 

going the project’s main goal is to describe basic research interactions among the top 110 U.S. universities, 

among the top 200 U.S. R&D firms, and between the universities and firms. Owing to space constraints, 

this paper concentrates on measurement of scientific influence among universities.  The time period is 

1981-1999; the scope of our investigation includes all of science. The data cover 2.4 million scientific 

papers by universities and 18.8 million citations to these papers2.  To date our research emphasizes pre-

technology science rather than patented technology, though the two overlap.  Branstetter (2003), Darby and 

Zucker (2003), Jensen and Thursby (1999), and other papers show that this overlap is important to 

technical progress.  This paper’s study of scientific influence within academia, however, lays the 

groundwork for understanding its influence on industry, since fertile areas of science can give rise to 

industrial science, in part by means of faculty consultants and entrepreneurs (Audretsch and Stephan, 1996; 

Zucker, Darby and Brewer, 1998). 

This paper describes scientific influence, which in principle refers to the productive role that earlier 

work plays in later work.  Our goal is to trace scientific influence across institutions, sciences, and time.  

Space limitations confine our measurements not just to universities, but to a single indicator, citations to 

scientific papers from other papers.  But publications are the most common channel of knowledge flow in a 

recent survey of industrial research (Cohen, Nelson, and Walsh, 2002), let alone universities.  The findings 

in this paper are a first step towards allowing for many channels of influence, especially collaboration and 

mobility of graduate students and faculty.  We assume that papers represent new knowledge, though the 

amount of this knowledge varies.  We also assume that citations to papers on the whole indicate intellectual 

influence rather than pre-publication strategy or honorific referencing. 

The citation measures used in this paper owes a great deal to bibliometrics.  Examples of this literature 

are De Solla Price (1965, 1986), Garfield (1972), Narin and Hamilton (1996), Narin, Hamilton, and 

Olivastro (1997), and Van Raan (1990), among others.       

                                                 
1 During the planning phases of the project we had the indisputable advantage as well as undeniable 
privilege of working with Zvi Griliches.  We deeply and profoundly regret that he did not live to see this 
work near completion. 
2 The full data set consisting of all papers and citations of the universities and firms amounts to 2.7 million 
papers and more than 20 million citations. 

 



 

The following are key questions raised in the course of our research. What determines the level of 

influence within different fields?  How does influence within fields compare with influence across fields?  

How common are the “between” components compared to “within” components?  Are cross-field 

influences symmetric or not?  What role does quality of scientific institutions play in scientific influence?  

Could scientific influence increase with quality in such a way as to reinforce scientific excellence?3

This paper draws on a literature which argues that the role of outside knowledge in productivity growth 

is important but limited.  Its common thread is that knowledge flows are constrained by limited relevance, 

so that increasing returns from knowledge are correspondingly limited. The various studies cover 

agriculture (Evenson and Kislev, 1975), manufacturing (Scherer, 1982a, b), basic research (Adams, 1990), 

applied industrial research (Adams and Jaffe, 1996), as well as surveys of the externalities from R&D and 

their limits (Griliches, 1979, 1992). Our approach to measurement of these limits has been shaped by Jaffe 

(1986), Trajtenberg (1990), and especially Jaffe and Trajtenberg (1999).   

Likewise the findings in this paper imply that limits apply to the relevance of scientific ideas.  And 

since science could replenish research opportunities in industry (and conversely), this result bears on 

economic growth.  In the evolution of growth theory, scale effects in the knowledge production function 

have been steadily curtailed over time.  Thus, opportunities for growth have been viewed as deriving from 

the growth of R&D rather than its level, supported by a contribution from spillovers that is sufficient to 

avoid diminishing returns to research.  However, growth models (Romer (1990), and Jones (1995, 2002)) 

tend to assume that knowledge flow without friction throughout countries and even the world4.   And yet 

our findings suggest that the frictions are substantial, so that influence is limited by the narrow applicability 

of most discoveries.  

The measure of scientific influence used in this paper is the citation probability, which divides actual 

citations by potential citations. This is the average number of citations per potentially cited paper, divided 

by the number of potentially citing papers.  This measure captures the rarity of citation by individual 

science papers by normalizing actual citations by potential citations. 

                                                 
3 This is the Matthew Effect. For more on this topic see Merton (1973) and Zuckerman (1977).  
4 Marshall (1920, p. 220) observes that “Many of those economies in the use of specialized skill and 
machinery which are commonly regarded as within the reach of very large factories, do not depend on the 
size of individual factories.  Some depend on the aggregate volume of production of the kind in the 
neighborhood; while others again, especially those connected with the growth of knowledge and the 
progress of the arts, depend chiefly on the aggregate volume of production in the whole civilized world.”     
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Main findings of the paper are as follows.  First, the within-field citation probability is on the order of 

10-5 and is 10 to 100 times the between-field citation probability.  The comparative rarity of cross-field 

citations holds even when cross-field interactions are required to be statistically significant.  

 Second, the number of significant cross-field interactions is one-fourth of the potential number. Since 

the data include 12 science fields, there are 11×12=132 cross-field interactions.  Thirty-two of these differ 

significantly from zero.  This suggests that knowledge flows are bounded by scientific distance, just as 

knowledge flows in industry are bounded by technological distance (Adams and Jaffe, 1996). 

Third, the findings support the hypothesis of symmetry of cross-citation between pairs of mutually 

citing fields.  The rate at which biology cites medicine is nearly the same as the rate at which medicine cites 

biology.   However, this finding is conditional on two-way citation.  Asymmetries exist, but take a more 

subtle form of applied fields citing underlying basic fields more than the reverse.   

Fourth, the modal or most frequent lag in science citations based on publication years, a measure of the 

speed of diffusion, is slightly more than three years.  This compares with a modal lag of more than five 

years in patent citations based on analogous grant years (Jaffe and Trajtenberg, 1999).   

Fifth, the rank of scientific institutions increases scientific influence.  Sixth, citation interactions with 

peer institutions increase with rank.  University-fields in the top 20% cite one another at a significantly 

higher rate more than university-fields in the middle 40% or bottom 40% cite one another.  This suggests 

that knowledge flows from peer programs increase with rank.    

The rest of this paper consists of five sections.  Section II motivates the paper by reexamining the 

knowledge production function in light of our findings.  Section III discusses the meaning of science 

citations, presents the citation probability, and describes the science citation function.  Section IV describes 

the data, specifies the science fields, and discusses measurement of the quality of scientific institutions.  

Section V reports econometric estimates of the science citation function.  Section VI concludes. 

II. Motivation       

We motivate the empirical findings by exploring a knowledge production function in which searching 

the literature increases absorption of knowledge into current research.  The research process  accumulates 

heterogeneous stocks of knowledge.  Accumulation of one stock depends on several knowledge stocks, as 

the findings suggest, and on the allocation of labor to invention and searching the literature.  The stocks 
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consist of basic scientific knowledge.  Using this construct we illustrate the constrained output-maximizing 

allocation of scientific labor.  We then show how this allocation might replicate the empirical results below.   

Let  be the time derivative of science i , let  be “inventive” labor engaged in discovery, and let 

be “absorptive” labor in i engaged in searching stock .  Then the knowledge production function is 
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whereλ  is the Lagrangian multiplier. Adopting this as the objective avoids the assumption of profit 

maximization, which is not clearly relevant to university research. Maximization of H yields the follwing 

first order conditions for absorptive labor in the same and other fields: 
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In the interest of brevity we omit the first order condition for  and we assume that the second order 

conditions are satisfied.  The top equation determines absorption of science in the same field while the 

second inequality determines absorption of other fields.  In the case of generally small

iL

iiβ  and ijβ , 

absorptive labor is small in the face of limited research budgets.  Limiting values of ijβ  imply that the 

second member of (2) is a strict inequality.  In that case science  drops out of the production function 

for , as we frequently find.  If, as also appears to hold empirically, technological distance generates an 

j

i
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extreme drop off in the cross-term ijβ  relative to iiβ , absorptive labor in the same science  

exceeds  committed to other sciences.  To see this, let the second member of (2) be an equation, 

compute the ratio of the two equations, and solve for .  After some manipulations the result is 
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If , and if, as already postulated,ji AA ≈ ijii ββ > , then it follows that .  To put this point 

another way, unless  greatly exceeds , absorptive labor is concentrated within the same field. 

ijii KK >

jA iA

In the next section we argue that science citations proxy for absorptive labor, even  if with error, by 

representing the outcome of that labor.  If this is so the implications of this section are reflected in a small 

propensity to cite, dominance of within-field citations, and absence of many between-field citation 

possibilities. 

III. Citation Analysis 

A. The Meaning of Science Citations      

Science citations refer to prior literature, but their motivation is obscure.  Citations could measure 

influence of earlier ideas, they could limit the problem being addressed, they could seek to refute findings, 

or they could be a strategy to raise the odds of acceptance.  Of these motives the first two are most likely to 

represent scientific influence.  Given negative or strategic citations, though, we have to regard citations as 

measuring scientific influence with error5.   

Science citations are typically controlled by authors. Referees and editors can suggest references, 

but their inclusion requires author’s assent, suggesting some knowledge of the references.  In contrast 

patent citations are often suggested by examiners and attorneys and do not imply the same acquaintance as 

science citations do.  This is an advantage of science citations, but it should not be overstated.  The quality 

of science citations varies with the people that make them.  Again the citations could be strategic because 
                                                 
5 See Banks, Fogarty, and Jaffe (1996) for an analysis that uses a set of NASA patents, as well as expert 
opinion on the patents, to test the validity of patent citations, answered in the affirmative, as an indicator of 
the importance of patents.   
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authors choose references with no monetary punishment, unlike patent citations.  Citations have gotten 

easier to make because of search engines, though whether this raises or lowers quality is unclear.   

Suppose that science citations reflect credible investments of time spent searching the literature. 

What would be the earmarks of such investments?  For starters, the number of citations would set marginal 

benefit of another citation equal to its marginal cost, as above. This suggests that citations would span 

larger fractions of smaller disciplines, since similar marginal benefit and cost relationships across 

disciplines would lower the proportion of larger literatures that is cited.  Furthermore, literatures requiring 

larger investments of time per cited paper would result in lower citations, size of literature held constant. 

B. Citation Measures 

The citation probability used by Jaffe and Trajtenberg (1999) is one way to take account of the size of 

citing and cited populations.  The citation probability is 

(4)  
jtiT

iTjt
iTjt nn

c
p =  

where i and j are citing and cited groups, defined below, and T and t are citing and cited years, T>t.   The 

term in the numerator is the citation count from group i in year T to group j in year t.  Citations are the 

number of linked papers in (i, T) and (j, t).  The product of and  in the denominator are the numbers 

of potentially citing and potentially cited papers in (i, T) and (j, t) that could be linked.  Thus (4) is bounded 

between 0 and 1 and has a probability interpretation.  If not one paper in (i, T) cites not one paper in (j, t) 

then (4) equals zero. If every paper in (i, T) cites every paper in (j, t) then (4) equals 1.0.  In fact (4) is 

closer to zero than 1.0, reflecting limits on citation that operate on individual scientific papers. 
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Of course the citation probability is one of several measures that could be examined.   It is a measure 

of average (not total) scientific influence by group  on papers in group i .  The logic is this.  Suppose that 

a paper in iT  (with superscript ) references a fraction of the literature in , as indicated by citations per 

paper .  This resembles a utilization rate.  The average utilization rate of the literature in  by 

papers in  is then the sum over  of  divided by , or (4).  For a group of citing papers it 

makes more sense to use the group utilization rate, which is  or (4) multiplied by the number of 
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citing papers .   But an analysis of alternative metrics is beyond the scope of this article, which deals 

with measuring scientific influence on individual papers. 

iTn

C. Citation Function   

The citation probability (4) is defined on cells that are specified by citing and cited groups i and j and 

by years.  The groups are first of all fields.  But if the citing and cited fields are the same, then we make a 

further distinction.  In that case we supplement field with rankings of scientific institutions into high, 

medium, or low “rank-stratification” classes.  The use of rank-stratification classes in the citation function 

is discussed below, while section IV.C explains the empirical procedure that defines the classes.  That 

procedure relies heavily on National Research Council peer rankings of the quality of graduate programs, 

which are statistically independent of the bibliometric evidence that we explore below.    

To fit the citation probability to the data we adapt a procedure used in Jaffe and Trajtenberg (1999) to 

explain patterns of patent citation.  We incorporate the following features of the data.  As already noted, we 

incorporate differences in own and cross-field citation propensities.  Second, we allow for top-down 

asymmetries in citation which favor leading scientific institution.  Third, we take account of the early 

peaking of citation, followed by a long decline, as the lag in citation increases.  In this section we model 

these effects using nonlinear regression6.  The baseline citation function is:    

(5)   
( )[ ]

( )[ ]{ } iTjtutT

tTjtTijiTjtp

+−−−

−−=

    2  exp1             

  11 exp

β

ββααα
 

In (5) ijα is the average probability that field  cites field , i j Tα  is the average probability that a citation is 

made in periodT , and tα  is the average probability that a citation is received in period t .  In the data i  

and  represent the 12 fields of science in table 1 below.  Notice that the parameters are defined relative to 

a baseline value

j

7.  We normalize ijα by the parameter for chemistry citing itself, whose value accordingly 

equals 1.0.  Likewise Tα  and tα  are parameters that are normalized by the earliest periods citing and 

cited, whose values equal 1.0.  The estimation procedure does not converge when we specify a full set of 

                                                 
6 We thank Adam Jaffe for nonlinear regression programs that we modified and used in this paper. 
7 Use of a baseline value avoids indeterminacy in the multiplicative specification (4).  This indeterminacy is 
the analogue to the dummy variable trap in additive regression models. 
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citing and cited years, so we aggregate citing years into periods: 1981-1985, 1986-1990, 1991-1995, and 

1996-1999.  Thus T and Tα  refer to citing intervals, while t and tα refer to single years cited.  

The parameter 1β  stands for the decay rate in citations by the baseline field of chemistry.  The j1β  

terms are thus decay parameters relative to chemistry.  The parameter 2β  governs overall diffusion.  

Since 2β  positions the overall rate of citation, this parameter is not identified by field independently of the 

ijα  vector.  Finally, the error term is .  Estimates of the citation function (5) are shown in table 4 

below.  The exponential form of (5) handles the familiar hump-shaped pattern of citations over different 

lags, as in figure 1 below. 

iTjtu

Recall that in addition to (5) we consider a more elaborate specification of the citation function.  This 

version allows for rank-stratification class effects within sciences.  To allow for such effects we replace the 

within-field parameter iiα  with this 3×3 matrix of citation possibilities: 

(6)    
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Equation (6) takes rank-stratification class effects into account within fields, where most citations occur8.  

The leading subscript of (6) refers to field while trailing subscripts refer to the top 20%, the middle 40%, 

and the bottom 40% of institutions.  Again the parameters are identified up to a baseline value, which in 

this case is the probability that top 20% institutions in chemistry cite each other.  Hence 11,4α =1. 

The first row of (6) consists of probabilities that top 20% schools cite themselves, middle 40% 

institutions, and bottom 40% institutions. The second row capture probabilities that the middle 40% cites 

the top 20%, themselves, and the bottom 40%. And in the third row are probabilities that the bottom 40% 

cites the top 20%, the middle 40%, and themselves.  We report estimates of (6) in table 5. 

We group the data on citations, potentially citing papers, and potentially cited papers into cells for the 

purpose of estimation.  The cells are as follows. For each field i  and field  combination there are 171 j

                                                 
8 Citations between fields may be too uncommon to allow estimates of rank-stratification effects. 
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citing and cited year combinations, given a citation lag of at least one year9.  For each such combination we 

define nine cells within fields, as in (6).  Between-field cells are fields potentially citing 11 other fields10.  

Given 12 fields there are 9×12=108 within-field cells, and up to 11×12=132 between-field cells, or up to 

240 cells, for each of the 171 citing and cited year combinations.  The potential number of cells is 

240×171=41,040.  But 4,206 of these are missing.  This happens because citing and cited year pairs are 

missing if cross-field citations are rare.  Thus the number of cells is 41,040-4,206= 36,834.  

IV. Description of the Database 

A.  Scientific Papers and Citations Data 

The data set consists of 2.4 million publications of the top 110 U.S. universities and 18.8 million 

citations to those papers during 1981-1999.  The top 110 universities that are included in the data account 

for about three-fourths of the academic R&D conducted in the U.S.  The schools are identified in the 

appendix to Adams, Black, Clemmons, and Stephan (2004).  

The source of the data is the Institute for Scientific Information (ISI) in Philadelphia, Pennsylvania.  

The set of publications includes articles, reviews, notes, and proceedings, or ISI’s standard set of 

communications, in 12 main fields of science that span scientific research.  The fields are agriculture, 

astronomy, biology, chemistry, computer science, earth sciences, economics and business; engineering, 

mathematics and statistics; medicine, physics, and psychology.   

The papers appear in 7,137 scientific journals. The set expands to include new journals through the end 

of the sample period.  The journal set is also world-wide in scope.   It is important to note that journals are 

assigned to a single dominant field11.  This assignment is reasonably accurate for the vast majority of 

specialized journals, in part because of the breadth of the 12 fields.  But the method produces serious 

assignment errors for about one percent or 70 journals that fall into the Multidisciplinary category.  ISI 

                                                 
9 Papers in 1999 can cite papers from 1998 through 1981, forming 18 combinations.  Papers in 1998 can 
cite papers from 1997 through 1981, forming 17 combinations.  This continues through 1982, when only 
1981 papers can be cited.  The sum of the series is S=18+17+16+…+1, or S=(19×18)÷2=171.  
10 In table 4 we ignore rank-stratification classes and average over all nine probabilities that correspond to 
all possible interactions between the different rank-stratification classes for each science. 
11 In the case of 5,507 journals that are currently published, we follow the assignment of journals to fields 
by ISI and rely on ISI’s experience to provide an accurate assignment.  In the case of 1,630 journals that are 
formerly published we rely on field assignments of CHI (Computer Horizons Inc.).  The argument is the 
same, that experience of an established firm in bibliometrics is likely to be more accurate than idiosyncratic 
assignments by ourselves.        
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treats this category as part of biology, which accounts for the largest number of its papers.  General 

Multidisciplinary journals include Nature, Science, Proceedings of the National Academy of Sciences 

USA, and Philosophical Transactions of the Royal Society.  To classify all articles in these journals in 

biology is a mistake, though solutions to the problem are scarce.  Moreover, quite a few Multidisciplinary 

journals are linked to biology, so that this error applies to less than one percent of the journals12. 

The main alternative is to assign papers according to academic departments of the authors. But current 

bibliometric information rules this out, and in any event this would not generate multiple field 

assignments13.   This is unlike patents, where multiple class assignments of individual patents are common.  

To carry out multiple assignments clear criteria would be needed and these would have to be agreed on by a 

Scientific Papers Office, much like the Patent Office.  Neither of these conditions is currently satisfied.  

Another problem is that science citation data do not and cannot include publication date but not first 

submission dates at the start of perhaps several submissions.  The use of publication dates creates an 

upward bias in the citation lag.  The reason is that the lag between cited publication dates and citing 

submission dates captures the lag when the paper is written.  The extra “frictional” lag between citing 

submission and publication dates overstates the true lag.  This point suggests that differences in diffusion 

across science are biased by the use of citing publication dates.   

While voluminous, the scientific papers and citations data are only a window on scientific research.  

They are truncated on the left and right in time.  As a result we lack most of the citations to papers from the 

late 1990s, since the citations are not yet made.  We know nothing about the papers that influenced research 

in the early 1980s since citations to these papers are excluded.   The data are also limited by sector and 

country.  They are limited to papers that have at least one author in the top 110 U.S. universities.  Citations 

made by U.S. researchers to foreign institutions are excluded, as are citations received by U.S. researchers 

from foreign institutions.  For this reason many of the rich interactions of the international scientific 

enterprise are left out of our analysis.  But the system of U.S. university citations and papers is still a great 

improvement over what we have had. 

                                                 
12 Examples include Bioinformatics, Biomaterials, Biometrics, Biometrika, Journal of Mathematical 
Biology, Journal of Theoretical Biology and many others.  
13 As an experiment we tried to assign all Harvard papers to one of the 12 main science fields using address 
information.  A third of the papers could not be assigned to a field using information on authors’ Harvard 
addresses.  This led us to abandon the effort, though more could be done on this in the future were journals 
to codify fields of authors and classify papers by field of author rather than field of journal.    
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B. Field Dimensions of Citation     

Table 1 looks at field dimensions of the data.  The 12 main science fields are shown on the left.  The 

second column reports total papers, percent of all papers, total citations received, and percent of all 

citations received.  The third column reveals the composition of main fields in terms of sub-fields.  Besides 

variation in size and complexity, the table brings out differences in citation practices.  Biology ranks 

second in publications and first in citations received.  Computer science ranks last in both, pointing out how 

differences in the size of citing populations and propensities to cite can affect citation.   

For the field combinations that are significant in the regressions, table 2 reports means of citations, 

potential papers citing, and potential papers cited.  Table 2 excludes self-citation by a university to itself, as 

do all later tables.  Such “institutional” self-citation reflects influence of a university’s past research rather 

than knowledge spillovers.  Out of similar concerns we exclude same-university citations between fields.  

Even these precautions do not eliminate hidden self-citations due to collaborations with other universities, 

but they are the best that we can do with the present information.    

The top entry for each science displays within-field citations, potential papers citing, and potential 

papers cited. This is followed by similar statistics on cross-field interactions.  For example, biology 

interacts with agriculture, chemistry, earth sciences, medicine, and psychology.  By and large the cross-

field interactions in table 2 seem reasonable.  For example, biology and medicine are significantly linked 

through cross-citation and chemistry and physics are similarly linked.  While this information confirms 

expectations as to the structure of the sciences, it also shows selectivity of cross-field interactions.  Each of 

the 12 fields can interact with any of the others, yielding a total of 12×11=132 possible interactions, and yet 

only 32 or about one-fourth are significant. 

Not surprisingly, citations within fields are more common than between-field citations. This is partly 

because of our field definitions, which sweep up sub-fields into large aggregates.  But it represents as well 

greater scientific influence within disciplines, as explained in sections II and IIIA.  This discussion neglects 

differences in the size of cross- and within field interactions.   Comparing the highest cross-field citation 

count to the within field count shows that astronomy, mathematics and statistics, and physics are almost 

autonomous from the rest of science.  But the life science fields, agriculture, biology, medicine, and 

psychology display strong cross-field dependencies.   
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Table 3 reports mean citation probabilities.  We report means, standard deviations, maxima, and 

minima to show variations in the probabilities.  On average within-field probabilities are 10 to 100 times 

greater than cross-field probabilities.  In small fields such as astronomy, computer science, earth sciences, 

and economics, within field probabilities exceed the corresponding probabilities in large fields like biology, 

chemistry, and medicine.  Following sections II and IIIA, our explanation for this is that research tends to 

span a larger fraction of the smaller fields, holding constant the difficulty of searching the literature.   

Figure 1 explores lags in citation.  The figure graphs the mean citation probability by citation lag.  

Since the data cover 19 years, the maximum lag is 18 years.  Four curves are represented in the figure.  

Higher curves represent actual and fitted citation probabilities within fields by citation lag.  As in other 

applications, both curves are hump-shaped and positively skewed.  The fitted curve declines at a faster rate 

because it controls for the higher propensity to cite in recent years, which dominates longer lags.  The 

lower curves show the result of including actual and fitted citation probabilities between fields.   

C. Citations and the Quality of Scientific Institutions 

As noted, we distinguish high, medium, and low rank-stratification classes in part of the analysis.  

The expanded regressions require nine parameters for different combinations of citing and cited rank-

stratification class.  Four classes would imply 16 parameters; five classes 25 parameters, and so on.  

Allowing for three classes is a compromise that limits the parameters that are handled in the estimation 

procedure while still allowing estimates of rank-stratification effects.      

We classify schools into rank-stratification classes as follows.  First, we use the 1993 National 

Research Council (NRC) department chair rankings of graduate programs (National Research Council, 

1995) to assign quality ranks to schools.  NRC collects rankings in these 10 broad sciences: astronomy, 

biology, chemistry, computer science, earth sciences, economics and business; engineering, mathematics 

and statistics; physics, and psychology.  NRC does not rank agriculture and medicine.  As a very imperfect 

substitute we use federal R&D of the top 110 schools in 1998 to rank agriculture and medicine.  The 

strength of the 1993 NRC rankings is their emphasis on quality of program rather than quantity of funding.  

Use of federal R&D to rank agriculture and medicine weakens the link between quality and citations.  And 

yet peer rankings in agriculture and medicine are lacking. 
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The number of ranked graduate programs varies with the size of disciplines.   The scale of 

engineering, biology, and medicine leads us to break out 75 schools in these fields with the rest of the 

schools treated as a residual institution.  In the case of eight fields—agriculture, chemistry, computer 

science, earth sciences, economics and business; mathematics and statistics; physics, and psychology—we 

consider 50 separate schools, with the remainder again treated as a residual14.  In the case of astronomy, 

where there are few ranked programs we break out 25 schools and treat the rest as a residual.  The size of 

residual “institutions” treated in this way is the same as an average ranked program.   

We classify the rank of a school as high if it falls in the top 20% of ranked schools in a field, as 

medium if it falls in the middle 40% and as low if it falls in the bottom 40% (including the remainder)15.  In 

this way we construct the rank-stratification classes used in the study.  Next we calculate the number of 

citations, the number of potentially citing papers, and the number of potentially cited papers for every 

citing and cited field, every rank-stratification class combination, and every citing and cited pair of years. 

Figure 2 sums up the evidence on citation interactions between rank-stratification classes, 

averaged across the 12 sciences. Clearly the citation probability from the top 20% to the middle 40% lies 

below the probability from the middle 40% to the top 20%.  To see this, compare the middle bar in the 

leftmost group to the first bar in the middle group.  The same holds true of other groups.  Scientific 

influence is top-down rather than bottom-up, though less highly ranked schools do influence those higher 

ranked.  In addition the figure shows that the probability of citation among top 20% schools exceeds the 

probability among the middle 40%.  And the probability of citation among the middle 40% again exceeds 

the probability among the bottom 40%.  By this measure, knowledge flows among peer schools increase 

with rank.  To an extent this counters the leveling effect of the top-down asymmetry of knowledge flows. 

Figures 3 and 4 illustrate field differences in the rank-stratification effects.  Figure 3 contains 

findings for engineering, where these effects are small.  Thus in figure 3 the citation probability varies by a 

factor of 1.75:1 across classes and this citation gradient is smaller than the average for the 10 fields that are 

ranked by quality of graduate program. 

                                                 
14 There are 48 formally recognized schools of agriculture.  All other research in agriculture derives from 
researchers scattered through related disciplines. 
15 The percentage ranking implies that there are 15 institutions in the top 20% of engineering, biology, and 
medicine.  There are 10 schools in the top 20% of agriculture, chemistry, computer science, earth sciences, 
economics and business; mathematics and statistics; physics, and psychology.  The top 20% of astronomy 
consists of five schools.  In this way scale conditions size of the rank-stratification classes.  

 13



 

Results for economics and business are shown in figure 4.  Rank-stratification effects are large:  

the citation probability varies by 4.25:1 across classes, and the gradient is the steepest of any field.  The 

difference in figures 3 and 4 is likely due to greater inequality of program quality in economics than in 

engineering16.  The crossing of the citation curves in figure 4 also suggests some separation of research in 

the bottom 40% of economics from the rest of the field.  This is because the bottom 40% cites itself at a 

higher rate than it is cited by higher-ranked departments in this field.                                                 

V. Findings  

A. Citation Function Estimates   

We turn next to econometric results from fitting the citation function to the data.  Table 4 reports 

estimates of the baseline function (5).  We begin by discussing the within- and between-field intercept 

parameters.  Recall that the parameters are normalized by chemistry.  All the within-field parameters differ 

significantly from zero.  There is considerable variation in the within-field rate of citation, from a low 

0.234 in engineering to a high 13.346 in astronomy, and this is a 50 to 1 range in citation probabilities.  

These differences are highly significant compared with the baseline value of 1.0.      

Even the leading cross-field parameters are considerably smaller than the within field parameters. 

Indeed, citation parameters within fields are typically 10 to 100 times larger than the cross-field parameters, 

though the cross-field parameters only include those that are near or above the 5% level of significance17.    

Fields vary in the extent to which they cite other fields.  Judging by the ratio of the leading cross-field 

parameter to the within-field parameter, the following fields—agriculture, biology, engineering, and 

medicine—are strongly dependent on other sciences.  This shows up in the closeness of agriculture and 

biology, biology and medicine, engineering and computer science, and medicine and biology, where the 

cross-field parameter is 1/5 or more the size of the within-field parameter.  Some of the cross-field effects 

may reflect the difficulty of drawing distinctions between fields, but some are real.  In contrast, 

mathematics and statistics shows no significant dependence on other disciplines. 

                                                 
16 The much higher citation probability in economics and business is due in part to the smaller size of the 
economics and business literature.  This issue is discussed in sections II and III.  
17 The results reported in the table are about the same whether interactions that are insignificantly different 
from zero are included or not in the estimation procedure and thus whether the data cells on which such 
estimates are based are or are not included.  This implies that insignificant cells add very little information.  
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Turning to year effects, we find that these are U-shaped and reach a minimum in 1991.  This pattern 

controls for citing period effects, which drop slightly during the late 1980s and increase thereafter.  The 

cited year parameters seem to measure vintage effects, although the most recent papers have not had the 

same opportunity to be cited as earlier papers.   The upward drift in citation over time is shown by the 

rising parameters over more recent citing intervals. 

This discussion of table 4 concludes with the decay and diffusion parameters.   Differentiation of the 

citation function (5) shows that the reciprocal of the baseline diffusion parameter  (chemistry) times the 

diffusion parameter for each science  yields the modal lag, or the lag at which citations peak: 

1β

i1β

 (7)   iiModalL 11, /1 ββ= . 

To prove this, take the derivative of the citation function, set it equal to zero, and solve for . The 

modal lag is a measure of the speed of diffusion.  Table 4 shows that this lag ranges from 1.75 years in 

physics to 4.2 years in computer science.   Average modal lags between citing and cited publication years 

are about two years less than lags for patented technology (Jaffe and Trajtenberg, 1999) based on citing and 

cited grant years.  Since publication and grant years are to a degree analogues, one interpretation of this 

difference could be that Open Science institutions accelerate the spread of knowledge through society 

compared with proprietary technology

iModalL ,

18. 

 The peak citation probability is approximately equal to 

(8)       iiP 112
max / βββ=

For chemistry (where =1) the peak citation probability is approximately 2.0×10i1β
-4.  This is roughly 100 

times larger than the peak citation probability for patent citations, which is about 1.5×10-6, indicating the 

greater volume of science citations compared with patent citations19. 

Table 5 reports estimates of the rank-stratification effects within sciences that follow the expanded 

citation function (6).  Reporting in table 5 is limited to rank-stratification parameters, since the other 

estimates are closely similar to those of table 4. 

                                                 
18 See David (1998) for an account of the creation of Open Science institutions as a result of competing 
patronage arrangements, and of the importance of these institutions for the rise of science in Europe. 
19 This comparison draws on Appendix B of Jaffe and Trajtenberg (1999), which reports a baseline value 
for 1β of 0.190, and a value for 2β of 0.289×10-6. 
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Results are as follows.  First, the diagonal parameters generally confirm the view that institutions 

in the top 20% are more likely to cite other top 20% institutions than middle 40% institutions are to cite 

each other; and these are more likely to each other than bottom 40% institutions are. For example, the 

diagonal parameters in computer science for the top 20%, middle 40%, and bottom 40% are 1.490, 1.176, 

and 0.712.  The same pattern holds everywhere but agriculture.  Citation probabilities increase with rank of 

institutions, suggesting that knowledge spillovers among peer institutions rise with quality. 

A second feature is the tendency for less prestigious schools to cite those more prestigious at a 

higher rate than the reverse.  The implication is that scientific influence is primarily from the top-down.  

Chemistry provides an example.  The parameter for the top 20% citing the middle 40% is 0.700, while the 

parameter for the middle 40% citing the top 20% is 0.924.  The difference turns out to be highly significant.  

The same pattern holds in other comparisons within chemistry and most other disciplines and implies that 

scientific influence increases with quality of program.  The main exception again is agriculture. 

B. Conditional Symmetry Tests 

The regression findings of tables 4 and 5 suggest opportunities to test for symmetry of the citation 

parameters across fields and rank-stratification classes.  Table 6 summarizes the results. Note that these are 

pair-wise tests of symmetry of the parameters, which we shall call conditional symmetry tests, because they 

assume statistically significant two-way citation between pairs of fields or classes. 

The first line of table 6 reports tests of equality of the cross-field citation parameters in table 4.  

For example, does the rate at which medicine cites biology differ from the rate at which biology cites 

medicine?  The first line provides a summary of answers to this question, if citation takes place in both 

directions.  The answer is that cross-citation effects are symmetric.  The null hypothesis of equality of the 

parameters is usually accepted.  One exception is economics, which cites mathematics and statistics more 

than the reverse at the 1% level of significance.  A second case is physics, which cites astronomy at a 

higher rate than the reverse at the 2% level of significance. Two other cross-citation parameters are 

unbalanced and are missed by the above evaluation: agriculture cites earth sciences and astronomy cites 

biology, but neither is cited in return.  Besides this, the conditional symmetry tests miss asymmetries in 

scientific influence that occur in the main body of scientific papers.  Many papers use older mathematics 

and statistics but feedback effects from these fields to modern mathematics and statistics are less common.  

 16



 

Our method ignores such hidden asymmetries, which require encoding of article content that is beyond 

current frontiers of bibliometrics. 

The second line of table 6 tests for differences in the probability of citation by rank-stratification 

class and refers to table 5.  Equality and symmetry are rejected in most cases, with agriculture the main 

exception.  Findings for computer science illustrate the result.  The top 20% institutions in computer 

science cite each other more than the middle or bottom 40% institutions do, and the differences are 

significant at the 1% level.  The third line tests for asymmetries in top-down versus bottom-up citation.  

Symmetry in the cross-effects is rejected at the 1% level in most cases, with agriculture and medicine the 

exceptions20.  Thus asymmetry of the rank-stratification effects in table 6 is accepted most of the time.   

VI. Conclusion   

This paper has described scientific influence among U.S. universities measured by means of citations 

to scientific papers.   One finding is that scientific influence mostly occurs within fields.  Another is that 

cross-field interactions are selective: significant cross-field interactions represent less than a quarter of 

potential cases.  Collectively this suggests that academic knowledge flows are bounded by scientific 

distance, much as industrial knowledge flows seem to be hemmed in by technological distance (Adams and 

Jaffe, 1996). 

We also find that two-way interactions between fields are typically symmetric, so that field A cites 

field B as often as B cites A.   Still, we are convinced that hidden asymmetries are present in field-to-field 

interactions.  This is because applied fields cite other fields more often than more basic fields cite, and 

because of deeply buried content in applied science papers that uses and interprets basic science materials, 

while the reverse is not true.        

In addition, knowledge seems to diffuse rapidly, and may turn out to diffuse more rapidly within 

science than technology does within industry.  Scientific paper citations are also more abundant than patent 

citations judged by citation frequency.  Our evidence confirms that rank of field in a university is correlated 

with scientific influence.  Tests of the null hypothesis that higher ranked university-fields are more often 

cited than those lower-ranked are accepted in 30 out of 36 cases.  We test whether interactions with peer 
                                                 
20 The reappearance of agriculture and medicine on the list of exceptions calls for an explanation.  In part 
the pattern recurs because we rank programs according to quantity of federal R&D rather than quality of 
graduate program.  But also the two fields may show greater equality than most other sciences.  This 
tendency seems to hold for engineering, where rank-stratification classes follow the NRC rankings. 
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institutions increase with rank. The answer is again yes, in 30 out of 36 cases.  This implies that 

surrounding programs reinforce research in a given program more as rank increases.    

The work presented here is but one ingredient in a full-fledged knowledge production for the academic 

sector.  The production process would explain papers and patents of universities and it would include as 

explanatory variables knowledge spillovers as well as current and past contributions from a university’s 

own research21.   Of course, pursuit of this agenda requires information on different channels of interaction 

among universities and fields, as well as the spillback of a university-field’s own past research, besides its 

current research support. 

Still further ahead our goal is to extend this methodology to consider effects on firm papers and patents 

of multi-dimensional spillovers from universities to firms and from firms to firms, in addition to the role of 

firm’s own research efforts in the determination of innovative success22.  The resulting edifice of the 

knowledge production function in industry is itself an ingredient, though a crucial one, in the economics of 

growth and technical change. 

                                                 
21 Adams and Griliches (1998) studied production of academic research for samples of university-fields, 
but without knowledge spillovers.  Their findings suggest that production obeyed constant returns at the 
aggregate level, but decreasing returns at the individual level.  This may follow from knowledge 
externalities, or another factor operating more strongly at the individual level, such as errors in variables.  
22 Popp (2002) represents an approach to this question. 
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Figure 1--Mean Citation Probabilities by Citation Lag
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Figure 2--Mean Citation Probabilities Within Fields
Between Schools of Different Rank
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Figure 3--Probability of Citation by Citing and Cited Rank

Of School, Engineering
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Figure 4--Probability of Citation by Citing and Cited Rank
Of School, Economics and Business
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Table 1 
Definition, Size, and Composition of 12 Main Science Fields 

Practiced in the Top 110 U.S. Universities, 1981-1999 
 

 
Main Science Field 

 

 
Total Papers 

(% of Total Papers) 
[Total Citations Received] 

{% of Total Citations Received} 
 

 
Sub-Field Composition of Main Science Field 

 

 
Agriculture 
 

 
189,740 
(7.8%) 

[730,777] 
{3.9%} 

 

 
General agriculture and agronomy; aquatic sciences; animal 
sciences; plant sciences; agricultural chemistry; entomology 
and pest control; food science and nutrition; veterinary 
medicine and animal health 
 

Astronomy 
 

35,795 
(1.5%) 

[371,982] 
{2.0%} 

 

Astronomy and astrophysics 

Biology 
 

639,195 
(26.3%) 

[8,339,862] 
{44.4%} 

General biological sciences; biochemistry and biophysics; cell 
and developmental biology; ecology and environment; 
molecular biology and genetics; biotechnology and applied 
microbiology; microbiology; experimental biology; 
immunology; neurosciences and behavior; pharmacology and 
toxicology; physiology; oncogenesis and cancer research  
 

Chemistry 
 

195,437 
(8.0%) 

[1,371,491] 
{7.3%} 

 

General chemistry; analytical chemistry; inorganic and 
nuclear chemistry; organic chemistry and polymer science; 
physical chemistry and chemical physics; spectroscopy, 
instrumentation, and analytical science 
  

Computer Science 
 

28,184 
(1.2%) 

[76,424] 
{0.4%} 

 

Computer science and engineering; information technology 
and communications systems 
 

Earth Sciences 
 

73,126 
(3.0%) 

[566,280] 
{3.0%} 

 

Atmospheric sciences; geology and other earth sciences; 
geological, petroleum, and mining engineering; oceanography 
  

Economics and 
Business 
 

43,892 
(1.8%) 

[161,813] 
{0.9%} 

 

Economics; accounting; decision and information sciences; 
finance, insurance, and real estate; management; marketing 
 

Engineering 
 

170,569 
(7.0%) 

[467,955] 
{2.5%} 

Aeronautical engineering; biomedical engineering; chemical 
engineering; civil engineering; electrical and electronics 
engineering; engineering mathematics; environmental 
engineering and energy; industrial engineering, materials 
science; mechanical engineering; metallurgy; nuclear 
engineering 
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Table 1 
Definition, Size, and Composition of 12 Main Science Fields 

Practiced in the Top 110 U.S. Universities, 1981-1999 
 

 
Main Science Field 

 

 
Total Papers 

(% of Total Papers) 
[Total Citations Received] 

{% of Total Citations Received} 
 

 
Sub-Field Composition of Main Science Field 

 

 
Mathematics and 
Statistics 
 

 
61, 061 
(2.5%) 

[187,484] 
{1.0%} 

 

 
Mathematics; biostatistics and statistics 

Medicine 
 

659,000 
(27.1%) 

[4,563,261] 
{24.3%} 

General and internal medicine; anesthesia and intensive care; 
cardiovascular and hematology research; cardiovascular and 
respiratory systems; clinical immunology and infectious 
disease; clinical psychology and psychiatry; dentistry and oral 
surgery; dermatology; endocrinology, metabolism, and 
nutrition; environmental medicine and public health; 
gastroenterology and hepatology; health care sciences and 
services; hematology; medical research, diagnosis, and 
treatment; medical research, general topics; medical research, 
organs and systems; neurology; oncology; ophthalmology; 
orthopedics, rehabilitation, and sports medicine; 
otolaryngology; pediatrics; radiology, nuclear medicine, and 
imaging; reproductive medicine; research, laboratory 
medicine, and medical technology; rheumatology; surgery; 
urology and nephrology   
 

Physics 
 

217,026 
(8.9%) 

[1,219,080] 
{6.5%} 

 

General physics; applied physics, condensed matter, and 
materials science; optics and acoustics 
 

Psychology 116,976 
(4.8%) 

[727,673] 
{3.9%} 

 

Psychology and psychiatry 
 

Notes: Citations received derive from top 110 universities during the period 1981-1999.  They are not a 
census of citations received from all scientific institutions or all papers in the future.  Citations can be from 
any field to any field among the sciences listed in the table.  The total number of papers is 2,430,001.  The 
total number of citations received is 18,784,082. 
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Table 2 
Mean Citations and Papers by Citing and Cited Field of Science, 

The Top 110 U.S. Universities, 1981-1999 
 

 
Citing Field 

 

 
Cited Field Citations Potential Papers 

Citing 
Potential Papers 

Cited 

     
Agriculture Agriculture 2,543 11,326 10,671 
       “   Biology 1,843 “ 34,411 
       “    Earth Sciences 106 “ 3,979 
 
Astronomy 

 
Astronomy 

 
3,218 

 
2,879 

 
2,127 

       “    Biology 212 “ 34,411 
       “    Earth Sciences 123 “ 3,979 
       “    Physics 118 “ 11,747 
 
Biology 

 
Biology 

 
40,349 

 
44,135 

 
34,411 

       “    Agriculture 905 “ 10,671 
       “     Chemistry 625 “ 10,035 
       “    Earth Sciences 351 “ 3,979 
       “    Medicine  6,454 “ 36,725 
       “     Psychology  530 “ 7,007 
 
Chemistry 

 
Chemistry 

 
4,989 

 
12,166 

 
10,035 

       “    Biology 1,101 “ 34,411 
       “    Physics 492 “ 11,747 
 
Computer Science 

 
Computer Science 

 
326 

 
2,031 

 
1,410 

       “    Mathematics & Statistics 28 “ 3,572 
       “    Engineering 81 “ 8,205 
 
Earth Sciences 

 
Earth Sciences 

 
3,324 

 
5,312 

 
3,979 

       “    Astronomy 113 “ 2,127 
       “    Biology 668 “ 34,411 
 
Economics & Business 

 
Economics & Business 

 
1,315 

 
2,966 

 
2,632 

       “     Mathematics & Statistics 153 “ 3,572 
       “    Psychology 54 “ 7,007 
 
Engineering 

 
Engineering 

 
1,501 

 
11,434 

 
8,205 

       “    Computer Science 133 “ 1,410 
       “     Mathematics & Statistics 99 “ 3,572 
       “    Physics 328 “ 11,747 
 
Mathematics & Statistics 

 
Mathematics & Statistics 

 
828 

 
3,975 

 
3,572 

       “    Computer Science 19 “ 1,410 
       “    Economics & Business 32 “ 2,632 
       “    Engineering 48 “ 8,205 
 
Medicine 

 
Medicine 

 
26,714 

 
45,734 

 
36,725 

       “    Biology 9,764 “ 34,411 
       “ 
 

   Psychology 737 “ 7,007 
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Table 2 
Mean Citations and Papers by Citing and Cited Field of Science, 

The Top 110 U.S. Universities, 1981-1999 
 

 
Citing Field 

 

 
Cited Field Citations Potential Papers 

Citing 
Potential Papers 

Cited 

 
Physics 

 
Physics 

 
13,561 

 
16,272 

 
11,747 

       “     Astronomy 174 “ 2,127 
       “    Chemistry  315 “ 10,035 
       “     Engineering 226 “ 8,205 
 
Psychology 

 
Psychology 

 
4,399 

 
7,804 

 
7,007 

       “    Biology 555 “ 34,411 
       “    Economics & Business 50 “ 2,632 
       “ 
 

   Medicine 789 “ 36,725 

Notes:  Entries are means over as many as 171 citing and cited year pairs for each citing and cited field 
combination, where the lags range from one to eighteen years.  The statistics are based on 36,834 cells that 
report number of citations and numbers of potentially citing and cited papers, classified by citing and cited 
groups and years.  Self-citations within a field and citations between fields in the same university are 
excluded from this analysis. 
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Table 3 

Moments of the Citation Probabilities, By Citing and Cited Field 
Papers and Citations of the Top 110 U.S. Universities, 1981-1999 

 

Mean S.D. Min Max 
Citing Field Cited Field (All Entries in Units of 10-6  a )   

 
 
Agriculture 

 
Agriculture 

 
20.7 

 
6.6 

 
8.6 

 
38.7 

       “   Biology 4.6 1.2 2.3 7.1 
       “    Earth Sciences 2.3 0.6 0.8 4.0 
 
Astronomy 

 
Astronomy 

 
526.0 

 
226.3 

 
108.2 

 
1081.0 

       “    Biology 2.2 1.7 0.3 11.2 
       “    Earth Sciences 11.8 7.1 2.1 40.9 
       “    Physics 3.6 2.2 0.6 14.7 
 
Biology 

 
Biology 

 
25.7 

 
11.9 

 
5.0 

 
44.6 

       “    Agriculture 1.9 0.7 0.7 3.3 
       “     Chemistry 1.4 0.5 0.5 2.5 
       “    Earth Sciences 1.9 0.7 0.6 3.4 
       “    Medicine  3.9 1.7 0.9 7.0 
       “     Psychology  1.7 0.6 0.7 3.7 
 
Chemistry 

 
Chemistry 

 
40.9 

 
16.5 

 
11.1 

 
84.1 

       “    Biology 2.5 1.0 0.8 5.1 
       “    Physics 3.4 1.2 1.1 5.8 
 
Computer Science 

 
Computer Science 

 
125.5 

 
52.6 

 
41.0 

 
302.3 

       “    Mathematics & Statistics 4.0 2.1 0.3 11.5 
       “    Engineering 4.9 2.3 0.7 12.9 
 
Earth Sciences 

 
Earth Sciences 

 
159.1 

 
56.9 

 
67.8 

 
416.6 

       “    Astronomy 10.3 5.8 2.3 42.1 
       “    Biology 3.5 1.5 1.4 10.4 
 
Economics & Business 

 
Economics & Business 

 
165.1 

 
47.4 

 
80.2 

 
262.4 

       “     Mathematics & Statistics 15.1 7.6 1.6 39.0 
       “    Psychology 2.7 1.2 0.2 6.0 
 
Engineering 

 
Engineering 

 
15.9 

 
5.0 

 
6.1 

 
27.3 

       “    Computer Science 8.6 3.0 2.0 17.7 
       “     Mathematics & Statistics 2.5 0.7 0.7 4.5 
       “    Physics 2.4 0.8 0.8 4.8 
 
Mathematics & Statistics 

 
Mathematics & Statistics 

 
58.2 

 
13.6 

 
31.3 

 
86.8 

       “    Computer Science 3.6 1.7 0.4 10.2 
       “    Economics & Business 3.3 1.9 0.2 11.0 
       “    Engineering 1.5 0.6 0.3 3.9 
 
Medicine 

 
Medicine 

 
15.5 

 
6.1 

 
4.1 

 
25.8 

       “    Biology 5.9 2.5 1.2 10.5 
       “ 
 

   Psychology 2.3 0.7 0.9 4.3 
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Table 3 
Moments of the Citation Probabilities, By Citing and Cited Field 
Papers and Citations of the Top 110 U.S. Universities, 1981-1999 

 

Mean S.D. Min Max 
Citing Field Cited Field (All Entries in Units of 10-6  a )   

 
 
Physics 

 
Physics 

 
60.2 

 
49.0 

 
10.0 

 
238.0 

       “     Astronomy 5.0 3.2 0.5 14.1 
       “    Chemistry  2.0 0.9 0.5 4.5 
       “     Engineering 1.6 0.7 0.4 3.5 
 
Psychology 

 
Psychology 

 
79.6 

 
23.9 

 
30.7 

 
145.5 

       “    Biology 2.0 0.6 0.8 3.5 
       “    Economics & Business 2.5 1.8 0.1 11.6 
       “ 
 

   Medicine 2.7 0.9 1.0 4.9 

Notes.  The entries are means over as many as 171 citing and cited year pairs for each of the citing and 
cited field combinations.   The calculations are based on 36,834 citing and cited field, rank-stratification 
class, and year observations.  See the text for more discussion.  a The statement that all entries are in units 
of 10-6 means that 20.7 is 20.7×10-6, 6.6 is 6.6×10-6, and likewise for all the other entries in the table. 
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Table 4 

Baseline Citation Function, with Cross-Field Effects 
The Top 110 U.S. Universities, 1981-1999 

 
 

Variable or Statistic 
 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Field Intercepts (αi s) 

    

Citing Field Cited Field     

 
Agriculture 

 
Agriculture 

 
0.334 

 
0.020 

 
16.7 

 
-33.3 

      “  Biology 0.073 0.012 6.1 -77.3 
      “  Earth Sciences 0.036 0.019 1.9 -50.7 

      
Astronomy Astronomy 13.346 0.337 39.6 36.6 
      “ Biology 0.057 0.024 2.4 -39.3 
      “ Earth Sciences 0.265 0.042 6.3 -17.5 
      “ Physics 0.086 0.031 2.8 -29.5 
      
Biology Biology 0.702 0.023 30.5 -13.0 
      “ Agriculture 0.048 0.017 2.8 -56.0 
      “ Chemistry 0.035 0.017 2.1 -56.8 
      “ Earth Sciences 0.048 0.021 2.3 -45.3 
      “ Medicine 0.102 0.013 7.8 -69.1 
      “ Psychology 0.041 0.019 2.2 -50.5 
      
Chemistry Chemistry 1.000 -- -- -- 
      “  Biology 0.058 0.016 3.6 -58.9 
      “ Physics 0.076 0.020 3.8 -46.2 
      
Computer Science Computer Science 1.616 0.056 28.9 11.0 
      “  Engineering 0.065 0.021 3.1 -44.5 
      “ Mathematics & Statistics 0.053 0.026 2.0 -36.4 
      
Earth Sciences Earth Sciences 2.929 0.079 37.1 24.4 
     “ Astronomy 0.186 0.031 6.0 -26.3 
      “ Biology 0.066 0.015 4.4 -62.3 
      
Economics & Business Economics & Business 2.358 0.066 35.7 20.6 
      “ Mathematics & Statistics 0.190 0.024 7.9 -40.9 
      “ Psychology 0.035 0.019 1.8 -50.8 
      
Engineering Engineering 0.234 0.018 13.0 -42.6 
      “ Computer Science 0.124 0.025 5.0 -35.0 
      “ Mathematics & Statistics 0.036 0.019 1.9 -50.7 
      “ Physics 0.035 0.014 2.5 -68.9 
      
Mathematics & Statistics Mathematics & Statistics 0.867 0.035 24.8 -3.8 
       “ Computer Science 0.049 0.029 1.7 -32.8 
       “  Economics & Business 0.047 0.025 1.9 -38.1 
       “ Engineering 

 
0.021 0.019 1.1 -51.5 
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Table 4 
Baseline Citation Function, with Cross-Field Effects 

The Top 110 U.S. Universities, 1981-1999 
 

 
Variable or Statistic 

 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Field Intercepts (αi s) 

    

Citing Field Cited Field     

 
Medicine 

 
Medicine 

 
0.324 

 
0.014 

 
23.1 

 
-48.3 

       “ Biology 0.126 0.011 11.5 -79.5 
       “ Psychology 0.045 0.015 3.0 -63.7 
      
Physics Physics 3.414 0.096 35.6 25.1 
       “ Astronomy 0.239 0.059 4.1 -12.9 
       “ Chemistry 0.086 0.040 2.2 -22.9 
       “ Engineering 0.069 0.041 1.7 -22.7 
      
Psychology Psychology 1.137 0.034 33.4 4.0 
       “ Biology 0.028 0.011 2.5 -88.4 
       “ Economics & Business 0.034 0.020 1.7 -48.3 
       “  Medicine 0.037 0.010 3.7 -96.3 
 
Cited Year Effects 

     

       1981    1.000 -- -- -- 
       1982  1.012 0.009 112.4 1.3 
       1983  1.031 0.010 103.1 3.1 
       1984  1.027 0.011 93.4 2.5 
       1985  0.993 0.011 90.3 -0.6 
       1986  0.956 0.011 86.9 -4.0 
       1987  0.862 0.011 78.4 -12.5 
       1988  0.798 0.011 72.5 -18.4 
       1989  0.761 0.011 69.2 -21.7 
       1990  0.739 0.012 61.6 -21.8 
       1991  0.722 0.012 60.2 -23.2 
       1992  0.775 0.013 59.6 -17.3 
       1993  0.725 0.013 55.8 -21.2 
       1994  0.744 0.015 49.6 -17.1 
       1995  0.766 0.016 47.9 -14.6 
       1996  0.822 0.018 45.7 -9.9 
       1997  0.832 0.019 43.8 -8.8 
       1998  1.110 0.028 39.6 3.9 
 
Citing Interval Effects 

     

       1981-1985  1.000 --  -- 
       1986-1990  0.925 0.008 115.6 -9.4 
       1991-1995  1.070 0.015 71.3 4.7 
       1996-1998 
 

 1.160 0.022 52.7 7.3 
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Table 4 
Baseline Citation Function, with Cross-Field Effects 

The Top 110 U.S. Universities, 1981-1999 
 

 
Variable or Statistic 

 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Decay Parameter (β1) 

 
0.353 

 
0.006 

 
58.8 

 
-- 

Diffusion Parameter (β2) 7.2×10-5 1.86×10-6 387.1 -- 
 

Field Decay Parameters (β1i s) 
    

  Agriculture  0.778 0.029 26.8 -7.7 
  Astronomy  1.044 0.016 65.3 2.8 
  Biology  1.068 0.021 50.9 3.2 
  Chemistry  1.000 -- -- -- 
  Computer Science  0.675 0.015 45.0 -21.7 
  Earth Sciences   0.849 0.014 60.6 -10.8 
  Economics & Business  0.679 0.012 56.6 -26.8 
  Engineering  0.738 0.037 19.9 -7.1 
  Mathematics & Statistics  0.716 0.018 39.8 -15.8 
  Medicine  0.917 0.024 38.2 -3.5 
  Physics  1.623 0.028 58.0 22.3 
  Psychology 
 

 0.691 0.013 53.2 -23.8 

Notes.  The number of cells, classified by citing and cited fields and years, is 36,834.  The adjusted 
R2=0.900 and the standard error of the regression (the root mean squared error) is 0.0013.  Citations from 
the same university are treated as self-citations and hence are excluded from the equation.  Reported cross-
field citation parameters are at or near the margin of significance for a test of H0=0.  
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Table 5 

Citation Function: Effects of Rank Stratification-Class 
The Top 110 Universities, 1981-1999 

(Asymptotic Standard Errors in Parentheses) 
 

Cited Rank-Stratification Class  
Field and Citing Rank-

Stratification Class Top 20% 
 

Middle 40% Bottom 40% 

 
Agriculture 

   

   Top 20% 
 

0.198 
(0.017) 

0.224 
(0.016) 

0.198 
(0.017) 

   Middle 40%  
 

0.244 
(0.017) 

0.232 
(0.016) 

0.203 
(0.017) 

   Bottom 40% 
 

0.195 
(0.017) 

0.184 
(0.016) 

0.326 
(0.022) 

Astronomy    
   Top 20% 
 

8.733 
(0.263) 

9.753 
(0.291) 

7.969 
(0.239) 

   Middle 40%  
 

11.254 
(0.335) 

8.133 
(0.244) 

7.902 
(0.236) 

   Bottom 40% 
 

9.893 
(0.295) 

8.852 
(0.264) 

7.723 
(0.231) 

Biology    
   Top 20% 
 

0.867 
(0.031) 

0.528 
(0.021) 

0.303 
(0.015) 

   Middle 40%  
 

0.733 
(0.026) 

0.451 
(0.018) 

0.307 
(0.015) 

   Bottom 40% 
 

0.531 
(0.021) 

0.395 
(0.017) 

0.275 
(0.014) 

Chemistry    
   Top 20% 
 

1.000 
(--) 

0.700 
(0.028) 

0.516 
(0.023) 

   Middle 40%  
 

0.924 
(0.032) 

0.660 
(0.026) 

0.519 
(0.022) 

   Bottom 40% 
 

0.809 
(0.028) 

0.623 
(0.023) 

0.490 
(0.019) 

Computer Science    
   Top 20% 
 

1.490 
(0.059) 

1.079 
(0.047) 

0.598 
(0.035) 

   Middle 40%  
 

1.636 
(0.063) 

1.176 
(0.049) 

0.739 
(0.037) 

   Bottom 40% 1.280 
(0.051)  

1.066 
(0.045) 

0.712 
(0.035) 

Earth Science    
   Top 20% 
 

2.685 
(0.086) 

2.093 
(0.068) 

1.671 
(0.056) 

   Middle 40%  
 

2.556 
(0.081) 

1.852 
(0.061) 

1.608 
(0.053) 

   Bottom 40% 
 

2.140 
(0.069) 

1.801 
(0.059) 

1.519 
(0.050) 

Economics and Business    
   Top 20% 
 
 

2.693 
(0.086) 

1.572 
(0.054) 

0.678 
(0.030) 
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Table 5 
Citation Function: Effects of Rank Stratification-Class 

The Top 110 Universities, 1981-1999 
(Asymptotic Standard Errors in Parentheses) 

 

Cited Rank-Stratification Class  
Field and Citing Rank-

Stratification Class Top 20% 
 

Middle 40% Bottom 40% 

 
Economics and Business (Cont.) 

   

   Middle 40%  
 

2.853 
(0.090) 

1.597 
(0.054) 

0.897 
(0.035) 

   Bottom 40% 
 

2.001 
(0.065) 

1.528 
(0.051) 

1.046 
(0.037) 

Engineering    
   Top 20% 
 

0.211 
(0.018) 

0.156 
(0.016) 

0.122 
(0.016) 

   Middle 40%  
 

0.198 
(0.017) 

0.140 
(0.015) 

0.122 
(0.015) 

   Bottom 40% 
 

0.173 
(0.017) 

0.141 
(0.016) 

0.124 
(0.016) 

Mathematics and Statistics    
   Top 20% 
 

0.857 
(0.040) 

0.637 
(0.033) 

0.365 
(0.025) 

   Middle 40%  
 

0.910 
(0.040) 

0.575 
(0.029) 

0.382 
(0.023) 

   Bottom 40% 
 

0.677 
(0.032) 

0.543 
(0.027) 

0.395 
(0.022) 

Medicine    
   Top 20% 
 

0.248 
(0.013) 

0.226 
(0.012) 

0.180 
(0.011) 

   Middle 40%  
 

0.252 
(0.013) 

0.211 
(0.011) 

0.187 
(0.011) 

   Bottom 40% 
 

0.222 
(0.013) 

0.206 
(0.012) 

0.187 
(0.012) 

Physics    
   Top 20% 
 

2.184 
(0.077) 

2.258 
(0.078) 

1.572 
(0.059) 

   Middle 40%  
 

2.634 
(0.089) 

2.840 
(0.094) 

2.253 
(0.076) 

   Bottom 40% 
 

2.120 
(0.073) 

2.622 
(0.087) 

1.994 
(0.068) 

Psychology    
   Top 20% 
 

0.929 
(0.034) 

0.806 
(0.031) 

0.658 
(0.025) 

   Middle 40%  
 

0.996 
(0.036) 

0.755 
(0.029) 

0.634 
(0.024) 

   Bottom 40% 
 

0.880 
(0.031) 

0.748 
(0.027) 

0.610 
(0.022) 

Notes.  The number of citing and cited group and year observations is 36,834.  The adjusted R2=0.938 and 
the standard error of the regression (root mean squared error) is 0.0010.  * The t-statistic is reported for the 
null hypothesis H0=0. ** The t-statistic is reported for the null hypothesis that H1=1. Citations from the 
same university are treated as self-citations and hence are excluded from the equation.  The regression 
includes all the cross-field citation parameters, cited year effects, and citing year interval effects of Table 5.
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Table 6  
Conditional Symmetry Tests of the Citation Function 

Top 110 Universities, 1981-1999 
 

 
Test 

 

 
Null Hypothesis 

 
Purpose 

 
Summary 

 

 
Exceptions 

 
 
Equality of Between-
Field Citation 
Parameters 
 

 

jiij αα =  
 
Check for asymmetries in 
the direction of citation 
between fields i  and j  

 
Equality is accepted by 13 of 15 
tests at the 5% level of significance  

 
Economics and Business cites Mathematics and Statistics 
more than the reverse (χ2=16.7, P<0.0001);  Physics cites 
Astronomy more than the reverse (χ2=5.1, P=0.0240) 

Equality of Within-
Field, Within Rank-
Stratification Class 
Parameters 
 

llikki ,, αα =  
 

 

Check for asymmetries in 
citation within quality 
groups k  and l  within 
field i  

Equality is rejected by 33 of 36 
tests at the 1% level of significance. 
Citation increases with quality of 
institution in 30 of 36 tests 

Top 20% of Agriculture is cited less than the bottom 40% 
(χ2=33.7, P<0.0001); middle 40% is cited less than the 
bottom 40% (χ2=21.5, P<0.0001).  Top 20% of Physics is 
cited less than the middle 40% (χ2=139.7,P<0.0001);    

Equality of Within-
Field, Between Rank-
Stratification Class 
Parameters 
 

lkikli ,, αα =  Check for asymmetries in 
citation across quality 
groups k  and l  and within 
field i  

Equality is rejected by 30 of 36 
tests at the 1% level of significance. 
Citation is less top to bottom than it 
is bottom to top in 30 of 36 tests  

All tests accept equality in agriculture.  Equality between 
the top 20% and middle 40% of engineering is accepted at 
the 1% but not 2% levels (χ2=5.1, P=0.0237). Equality 
between the top 20% and middle 40% of medicine is 
accepted at the 1% but not 3% levels (χ2=4.6, P=0.0317).  
Equality between the middle 40% and bottom 40% of 
medicine is accepted. 
          

Notes.  All χ2 tests are Wald Tests that evaluate the difference in the parameters from zero evaluated at the unrestricted likelihood function.
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