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ABSTRACT

Erceg et al. (2000) show that when both wages and prices are sticky, maximization of expected

utility is equivalent to minimizing a loss function with three terms, involving measures of the

variability of wage inflation, price inflation and the output gap respectively. Here we generalize their

analysis, most importantly by not assuming the existence of output and employment subsidies that

eliminate the distortions resulting from market power in goods and labor markets, so that the

equilibrium level of output under flexible wages and prices would not necessarily be optimal. We

show that a quadratic loss function can still be justified that involves the same three terms, albeit

with different relative weights and a different definition of the output gap. Many conclusions of

Erceg et al. are thus found to apply more generally. However, we argue that in the presence of

significant steady-state distortions, simple rules of the kind that they examine are likely to

approximate optimal policy less closely than is suggested by their numerical results.
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In a seminal paper, Chris Erceg, Dale Henderson, and Andy Levin (2000) analyzed

the consequences for optimal monetary policy of the stickiness of both wages and

prices. A key contribution of their paper was the demonstration that the expected

utility of the representative household in their model could be approximated by an

objective with three terms, involving measures of the variability of wage inflation,

price inflation and the output gap respectively. While wage-inflation stabilization

has not commonly been included among the assumed objectives of monetary policy

in studies that lack welfare-theoretic foundations, Erceg et al. showed that in the

context of their model (with Calvo-style staggering of both wage- and price-setting

decisions), such an objective is appropriate in the case that wages as well as prices

are sticky. This is because variability of the rate of growth of nominal wages implies

misalignment of wages that are adjusted at different times, and hence inefficient

utilization of different types of labor. They showed furthermore that the existence of

this additional stabilization objective implies that a policy aimed solely at inflation

stabilization (a strict inflation target) is not generally optimal, and may be quite

undesirable. Instead, their numerical analysis suggests that one can do quite well by

targeting an appropriately chosen weighted average of wage and price inflation, with

a greater relative weight on wage inflation the greater the relative stickiness of wages.

Here we reexamine the issues raised by Erceg et al. in a slightly more general

setting. Following Rotemberg and Woodford (1997), Erceg et al. assume the exis-

tence of an output subsidy in order to eliminate the distortion resulting from the

market power of the suppliers of differentiated goods, and a similar employment sub-

sidy to eliminate the distortion resulting from the market power of the suppliers of

differentiated forms of labor.1 As a result, the equilibrium allocation of resources

would be optimal in their model, in the case that both wages and prices were fully

flexible. This is an important simplification, for it implies, even in the model with

sticky wages and prices, that the steady state level of output under a policy that

maintains stable prices is efficient, and hence that (to first order) an increase in the

average level of output would neither raise nor lower welfare. Hence in a quadratic

approximation to expected utility, obtained as a Taylor series expansion around the

allocation associated with this steady state, there is no linear term in the expected

level of output. This allows Erceg et al. to obtain a purely quadratic loss function,

1In fact, as we show below, there is no need for two distinct subsidies to achieve the result that
they seek. The presence of a linear term in the quadratic approximation to utility depends only on
the overall index Φ of the degree of inefficiency of steady-state output, introduced below.
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just as Rotemberg and Woodford (1997) do in the case that only prices are sticky.

Hence they obtain a welfare measure that can be evaluated, to second order in the

amplitude of the exogenous disturbances, using only an approximate solution for the

equilibrium resulting from a given policy rule that is accurate to first order, i.e., a

log-linear approximation to the model structural relations.

While this feature of their results makes the analysis much more tractable in the

case that they consider, the assumption of output and employment subsidies (rather

than positive tax rates on sales, payrolls, and wage income) is clearly unrealistic. Fur-

thermore, there is reason to fear that such an analysis may miss an important aspect

of the welfare consequences of stabilization policy. As Henderson and Kim (2003),

among others, have stressed, in exact models of optimal wage- and price-setting one

typically finds that stabilization policy affects the average levels of equilibrium output

and employment, and not simply their variability. In the welfare analysis of Erceg

et al., such effects may be neglected, because a change in the average level of output

that is only of second order in the amplitude of the disturbances has no second-order

effect on welfare; but this result depends on the fact that (owing to the assumed

subsidies) the steady-state level of output is optimal. Under more realistic assump-

tions, the steady-state level of output would be judged to be inefficiently low, owing

to tax distortions as well as market power in both the goods and labor markets; but

this would mean that a second-order effect of stabilization policy on average output

would make a second-order contribution to welfare, that might be as important (even

in the case of arbitrarily small disturbances) as the second-order welfare effects of

stabilization policy considered by Erceg et al.

Here we show how the analysis of Erceg et al. can be extended to take account of

such effects, and hence to allow a correct welfare analysis (to second-order accuracy)

even in the presence of substantial steady-state distortions. One approach to dealing

with such effects that has recently become popular involves solving for equilibrium

under alternative policy rules to second-order accuracy, using a second-order Taylor

series expansion of the model structural relations. Here we show instead that, even

in the case of a distorted steady state, it is possible to obtain a purely quadratic loss

function, similar to the one obtained by Erceg et al., which can then be evaluated to

second-order accuracy using only log-linear approximations to both the policy rule

and the model structural relations. This requires that we substitute out the linear

terms in the Taylor series expansion for expected utility in terms of purely quadratic
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terms, using the method employed by Benigno and Woodford (2004) in the case of

an economy with staggered price-setting but flexible wages. (Essentially, the effects

of stabilization policy on the average level of output are used to replace a welfare

measure that involves the average level of output by one that is purely quadratic.)

In this way, we are able to show that results similar to those of Erceg et al. continue

to obtain in the case of a distorted steady state, though the size of the steady-state

distortions matters for one’s quantitative conclusions regarding the nature of optimal

policy.

We generalize the analysis of Erceg et al. other respects as well. Erceg et al.

consider only policies with the property that in the absence of exogenous disturbances,

the equilibrium will correspond to the efficient steady state. (This means policies

under which both wages and prices will be constant, in the absence of exogenous

disturbances.) This allows them to obtain an approximate welfare measure that

involves only the variances of macroeconomic variables. We drop this assumption,

and so obtain an approximate welfare measure that also allows one to compare policies

under which the average inflation rate is not exactly zero. It turns out that in the kind

of model considered here, optimal policy does involve a zero average inflation rate; but

this result can be derived from our evaluation of alternative rules using the quadratic

loss function, rather than having to be assumed from the start.2 Finally, Erceg

et al. restrict attention to time-invariant policy rules, and evaluate unconditional

expected utility in the stationary equilibrium associated with such a rule. We show

instead how it is possible to evaluate discounted expected utility conditional upon

some initial state, though we propose a criterion for optimality (“optimality from a

timeless perspective”) under which optimal policy can be shown (rather than being

assumed) to be time-invariant.

2The conclusion is not an obvious one, in the case that the steady state with zero inflation is no
longer assumed to involve an efficient level of output, since the model is one in which the average
inflation rate affects the average level of output.
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1 Monetary Stabilization Policy: Welfare-Theoretic

Foundations

Here we describe our assumptions about the economic environment and pose the

optimization problem that a monetary stabilization policy is intended to solve. The

approximation method that we use to characterize the solution to this problem is then

presented in the following section. Further details of the derivation of the structural

equations of our model of nominal price and wage rigidities can be found in Erceg et

al. (2000) and Woodford (2003, chapter 3).

1.1 Objective and Constraints

In our model, there is a continuum of measure one of households. Household of type

j seeks to maximize

U j
t0 ≡ Et0

∞∑
t=t0

βt−t0
[
ũ(Cj

t ; ξt)− v(ht(j); ξt)
]
, (1.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of

differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θp−1

θp di

] θp
θp−1

, (1.2)

with an elasticity of substitution equal to θp > 1, and ht(j) is the quantity supplied

of labor which is specific to household of type j.

There is a continuum of measure one of differentiated goods and each household

consumes all the goods. The objective of policy is to maximize the sum of the utilities

of the households at time t0. We will assume risk-sharing among the households in a

way that they will face the same budget constraint and make the same consumption

choices even if they have different wages. It follows that the objective of policy is to

maximize Ut0 defined as

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

v(ht(j); ξt)dj

]
. (1.3)

To simplify the algebraic form of our results we shall restrict attention to the case of

isoelastic functional forms,

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 , (1.4)
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v(ht; ξt) ≡
λ

1 + ν
h1+ν

t H̄−ν
t , (1.5)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes. (We use

the notation ξt to refer to the complete vector of exogenous disturbances, including

C̄t and H̄t.) We assume that the labor used to produce each good is a CES aggregate

of the continuum of individual types of labor supplied by the households defined by

Ht(i) ≡
[∫ 1

0

ht(j)
θw−1

θw dj

] θw
θw−1

for some elasticity of substitution θw > 1. Here ht(j) is the labor of type j that is

hired. Each differentiated type of labor is supplied in a monopolistically-competitive

market. It follows that the demand for labor of type j on the part of wage-taking

firms is given by

ht(j) = Ht

(
wt(j)

Wt

)−θw

, (1.6)

where wt(j) is the nominal wage demanded for labor of type j and Wt is the Dixit-

Stiglitz wage index

Wt ≡
[∫ 1

0

wt(j)
1−θwdj

] 1
1−θw

, (1.7)

and Ht is defined as

Ht ≡
∫ 1

0

Ht(i)di.

We assume a common technology for the production of all goods

yt(i) = Atf(Ht(i)) = AtHt(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1. We first note that

we can write ∫ 1

0

v(ht(j); ξt)dj =
λ

1 + ν
H1+ν

t ∆w,tH̄
−ν
t , (1.8)

where

∆w,t =

∫ 1

0

(
wt(j)

Wt

)−θw(1+ν)

dj ≥ 1 (1.9)

is a measure of wage dispersion at date t. Moreover

Ht =

∫ 1

0

Ht(i)di = Y φ
t A−φ

t ∆p,t, (1.10)
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where

∆p,t ≡
∫ 1

0

(
pt(i)

Pt

)−θp(1+ωp)

di ≥ 1 (1.11)

is a measure of price dispersion at date t, in which Pt is the Dixit-Stiglitz price index

Pt ≡
[∫ 1

0

pt(i)
1−θpdi

] 1
1−θp

, (1.12)

and ωp ≡ φ− 1 Using (1.8), (1.10) and the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the composite

good, we can write the utility flow in the form U(Yt, ∆p,t, ∆w,t; ξt), where the vector ξt

now includes the exogenous disturbances Gt and At as well as the preference shocks.3

Hence we can write our objective (1.3) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆p,t, ∆w,t; ξt). (1.13)

We assume that the wage for each type of labor is set by the monopoly supplier

of that type, who stand ready to supply as many hours of work as turn out to be

demanded at that wage. We assume that wage setters fix the wages in monetary

units for a random interval of time, as in the model of staggered pricing introduced

by Calvo (1983). We let 0 ≤ αw < 1 be the fraction of wages that remain unchanged

in any period. A supplier that changes its wages in period t chooses its new wage

wt(j) to maximize

Et

{ ∞∑
T=t

(αwβ)T−t[ΛT wt(j)hT (wt(j))− v(hT (wt(j)); ξt)

}
, (1.14)

where ΛT is the representative household’s marginal utility of nominal income in

period T and the dependence of labor demand hT (j) upon the wage is given by (1.6),

3The government is assumed to need to obtain an exogenously given quantity of the Dixit-Stiglitz
aggregate each period, and to obtain this in a cost-minimizing fashion. Hence the government
allocates its purchases across the suppliers of differentiated goods in the same proportion as do
households, and the index of aggregate demand Yt is the same function of the individual quantities
{yt(i)} as Ct is of the individual quantities consumed {ct(i)}, defined in (1.2).
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and αT−t
w is the probability that a wage chosen in period t will not have been revised

by period T .

Each of the wage suppliers that revise their wages in period t choose the same

new wage w∗
t , that maximizes (1.14). Note that supplier j’s objective function is

a concave function of the quantity of working hours supplied ht(j), since revenues

are proportional to h
θw−1

θw
t (j) and hence concave in ht(j), while costs are convex in

ht(j). Moreover, since ht(j) is proportional to wt(j)
−θw , the objective function is also

concave in wt(j)
−θw . The first-order condition for the optimal choice of the wage

wt(j) is the same as the one with respect to wt(j)
−θw ; hence the first-order condition

with respect to wt(i),

Et

{ ∞∑
T=t

αw
T−tQt,T HT W θw

T

[
w∗

t − µw

vh(hT (w∗
t ); ξt)

ũc(YT −GT ; ξT )
PT

]}
= 0,

where

µw ≡
θw

θw − 1
,

is both necessary and sufficient for an optimum. In the above expression, Qt,T is

the stochastic discount factor by which financial markets discount random nominal

income in period T to determine the nominal value of a claim to such income in

period t. In equilibrium, this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

.

Under our assumed isoelastic functional forms, the optimal choice has a closed-form

solution
w∗

t

Wt

=

(
Kw,t

Fw,t

) 1
1+νθw

, (1.15)

where Kw,t and Fw,t are functions of current aggregate output Yt, the real wage

Wt/Pt, the index of price dispersion ∆p,t, the current exogenous state ξt, and the

expected future evolution of wage inflation, output, real wage, price dispersion and

disturbances, defined by

Fw,t ≡ Et

∞∑
T=t

(αwβ)T−tuy(YT ; ξT )Y φ
T A−φ

T ∆p,T
WT

PT

(
WT

Wt

)θw−1

, (1.16)

Kw,t ≡ Et

∞∑
T=t

(αwβ)T−tµwvh(Y
φ
T ; ξT )Y φ

T A
−φ(1+ν)
T ∆1+ν

p,T

(
WT

Wt

)θw(1+ν)

, (1.17)
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where we have used the definition

u(Y ; ξ) ≡ ũ(Y −G; ξ).

The wage index then evolves according to a law of motion

Wt =
[
(1− αw)w∗1−θw

t + αwW 1−θw
t−1

] 1
1−θw , (1.18)

as a consequence of (1.7). Substitution of (1.15) into (1.18) implies that equilibrium

wage inflation in any period is given by

1− αwΠθw−1
w,t

1− αw

=

(
Fw,t

Kw,t

) θw−1
1+νθw

, (1.19)

where Πw,t ≡ Wt/Wt−1. This defines a short-run aggregate supply relation between

wage inflation and output, real wage and the index of price dispersion, given the

current disturbances ξt, and expectations regarding future wage inflation, output,

real wage, the index of price dispersion and disturbances.

We can also use (1.18) to derive a law of motion of the form

∆w,t = hw(∆w,t−1, Πw,t) (1.20)

for the dispersion measure defined in (1.9), where

hw(∆w, Πw) ≡ αw∆wΠθw(1+ν)
w + (1− αw)

(
1− αwΠθw−1

w

1− αw

)− θw(1+ν)
1−θw

.

The producers for each differentiated good fix the prices of their goods in monetary

units for a random interval of time. We let 0 ≤ αp < 1 be the fraction of prices that

remain unchanged in any period. A supplier that changes its price in period t chooses

its new price pt(i) to maximize

Et

{ ∞∑
T=t

αT−t
p Qt,T Π(pt(i), PT ; WT , YT , ξT )

}

where the function

Π(p(i), P ; W,Y, ξ) ≡ (1− τ)p(i)Y (p(i)/P )−θp −W · f−1(Y (p(i)/P )−θp/A) (1.21)

indicates the after-tax nominal profits of a supplier with price p when the aggregate

price index is equal to P and aggregate demand is equal to Y . Here τ t is the propor-

tional tax on sales revenues in period t; we treat {τ t} as an exogenous disturbance
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process, taken as given by the monetary policymaker. We assume that τ t fluctuates

over a small interval around a non-zero steady-state level τ̄ ; this is a further reason

for inefficiency of the steady-state level of output, in addition to the market power of

the suppliers of differentiated goods.4 The disturbances τ t and At are also included

as elements of the vector of exogenous disturbances ξt.

Each of the suppliers that revise their prices in period t choose the same new price

p∗t , that maximizes (1.21). Note that supplier i’s profits are a concave function of the

quantity sold yt(i), since revenues are proportional to y
θp−1

θp

t (i) and hence concave

in yt(i), while costs are convex in yt(i). Moreover, since yt(i) is proportional to

pt(i)
−θp , the profit function is also concave in pt(i)

−θp . The first-order condition for

the optimal choice of the price pt(i) is the same as the one with respect to pt(i)
−θp ;

hence the first-order condition with respect to pt(i),

Et

{ ∞∑
T=t

αT−t
p Qt,T Π1(pt(i), PT ; WT , YT ; ξT )

}
= 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t (which

is the same for all the firms that adjust their prices at time t) is the solution to the

above equation.

Under our assumed isoelastic functional forms, the optimal choice has a closed-

form solution
p∗t
Pt

=

(
Kp,t

Fp,t

) 1
1+ωpθp

, (1.22)

where Fp,t and Kp,t are functions of current aggregate output Yt, the current exoge-

nous state ξt, and the expected future evolution of inflation, output, real wages and

disturbances, defined by

Fp,t ≡ Et

∞∑
T=t

(αpβ)T−t(1− τT )uy(YT ; ξT )YT

(
PT

Pt

)θp−1

, (1.23)

Kp,t ≡ Et

∞∑
T=t

(αpβ)T−tuy(YT ; ξT )φµp

WT

PT

(
YT

AT

)φ (
PT

Pt

)θp(1+ωp)

, (1.24)

4Other types of distorting taxes would have similar consequences, since it is the overall size of
the steady-state inefficiency wedge that is of greatest importance for our analysis, as we show below.
To economize on notation, we assume that the only distorting tax is of this particular kind.
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in which expressions

µp ≡
θp

θp − 1
. (1.25)

The price index then evolves according to a law of motion

Pt =
[
(1− αp)p

∗1−θp

t + αpP
1−θp

t−1

] 1
1−θp

, (1.26)

as a consequence of (1.12). Substitution of (1.22) into (1.26) implies that equilibrium

inflation in any period is given by

1− αpΠ
θp−1
p,t

1− αp

=

(
Fp,t

Kp,t

) θp−1

1+ωpθp

, (1.27)

where Πp,t ≡ Pt/Pt−1. This defines a short-run aggregate supply relation between

inflation and both output and real wage, given the current disturbances ξt, and ex-

pectations regarding future inflation, output, real wage and disturbances. We can

also use (1.26) to derive a law of motion of the form

∆p,t = hp(∆p,t−1, Πp,t) (1.28)

for the dispersion measure defined in (1.11), where

h(∆p, Πp) ≡ αp∆pΠ
θp(1+ωp)
p + (1− αp)

(
1− αpΠ

θp−1
p

1− αp

)− θp(1+ωp)

1−θp

.

Equations (1.20) and (1.28) are the sources in our model of welfare losses from price

and wage inflation or deflation. Finally we note that price and wage inflation rates

are related to the real wages as

wR,t = wR,t−1
Πw,t

Πp,t

, (1.29)

where wR,t ≡ Wt/Pt.

We assume the existence of a lump-sum source of government revenue (in addi-

tion to the proportional tax τ on sales revenues), and assume that the fiscal authority

ensures intertemporal government solvency regardless of what monetary policy may

be chosen by the monetary authority. This allows us to abstract from the fiscal con-

sequences of alternative monetary policies in our consideration of optimal monetary
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stabilization policy, as in Erceg et al. (2000) and much of the literature on monetary

policy rules.

Finally, we follow Erceg et al. in abstracting from any monetary frictions that

would account for a demand for central-bank liabilities that earn a substandard rate

of return; we nonetheless assume that the central bank can control the riskless short-

term nominal interest rate it, as discussed in Woodford (2003, chapter 2). We also

assume that the zero lower bound on nominal interest rates never binds under the

optimal policies considered below,5 so that we need not introduce any additional

constraint on the possible paths of output and prices associated with a need for

the chosen evolution of prices to be consistent with a non-negative nominal interest

rate. We also note that the ability of the central bank to control it in each period

gives it one degree of freedom each period (in each possible state of the world) with

which to determine equilibrium outcomes. Considering (1.20), (1.28) and (1.29) and

because of the existence of the aggregate-supply relations (1.19), (1.27) as necessary

constraints on the joint evolution of price, wage inflation rates and output, there is

exactly one degree of freedom to be determined each period, in order to determine

particular stochastic processes {Πw,t, Πp,t, Yt} from among the set of possible rational-

expectations equilibria. Hence we shall suppose that the monetary authority can

choose from among the possible processes {Πw,t, Πp,t, Yt} that constitute rational-

expectations equilibria, and consider which equilibrium it is optimal to bring about;

the detail that policy is implemented through the control of a short-term nominal

interest rate will not actually matter to our calculations.

1.2 Optimal Policy from a “Timeless Perspective”

Under the standard (Ramsey) approach to the characterization of an optimal pol-

icy commitment, one chooses among state-contingent paths {Πp,t, Πw,t, Yt, wR,t, ∆p,t,

∆w,t, Fp,t, Kp,t, Fw,t, Kw,t} from some initial date t0 onward that satisfy (1.16), (1.17),

(1.19), (1.20), (1.23), (1.24), (1.27), (1.28) and (1.29) for each t ≥ t0, given initial price

and wage dispersions ∆p,t0−1, ∆w,t0−1 and initial real wage wR,t0−1, so as to maximize

(1.13). Such a t0−optimal plan requires commitment, insofar as the correspond-

ing t−optimal plan for some later date t, given the initial conditions ∆p,t−1, ∆w,t−1

5This can be shown to be true in the case of small enough disturbances, given that the nominal
interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence of disturbances.
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and wR,t−1 obtaining at that date, will not involve a continuation of the t0−optimal

plan. This failure of time consistency occurs because the constraints on what can

be achieved at date t0, consistent with the existence of a rational-expectations equi-

librium, depend on the expected paths of the above set of variables at later dates;

but in the absence of a prior commitment, a planner would have no motive at those

later dates to choose a policy consistent with the anticipations that it was desirable

to create at date t0.

However, the degree of advance commitment that is necessary to bring about an

optimal equilibrium is of only a limited sort. Paralleling the analysis of Benigno and

Woodford (2004), it can be shown that the Ramsey problem can be decomposed in

two stages of which the second is fully recursive and of the same form of the Ramsey

problem itself except for an additional constraint on a particular set of variables. In

our case this set Xt is given by Xt ≡ (Fp,t, Kp,t, Fw,t, Kw,t).

Our aim here is to characterize policy that solves this constrained optimization

problem in which one chooses among state-contingent paths {xt, Xt}, with xt ≡ {Πp,t,

Πw,t, Yt, wR,t, ∆p,t, ∆w,t} from some initial date t0 onward that satisfy (1.16), (1.17),

(1.19), (1.20), (1.23), (1.24), (1.27), (1.28) and (1.29) for each t ≥ t0, given initial

price and wage dispersions ∆p,t0−1, ∆w,t0−1, real wage wR,t0−1 and an initial condition

on the set of variables Xt0 , so as to maximize (1.13). Because of the recursive form of

this problem, it is possible for a commitment to a time-invariant policy rule from date

t onward to implement an equilibrium that solves the problem, for some specification

of the initial commitments Xt. A time-invariant policy rule with this property is said

by Woodford (2003, chapter 7) to be “optimal from a timeless perspective.”6 Such

a rule is one that a policymaker that solves a traditional Ramsey problem would be

willing to commit to eventually follow, though the solution to the Ramsey problem

involves different behavior initially, as there is no need to internalize the effects of

prior anticipation of the policy adopted for period t0. One might also argue that it

is desirable to commit to follow such a rule immediately, even though such a policy

would not solve the (unconstrained) Ramsey problem, as a way of demonstrating

one’s willingness to accept constraints that one wishes the public to believe that one

will accept in the future.

6See also Woodford (1999) and Giannoni and Woodford (2002).
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2 A Linear-Quadratic Approximate Problem

In fact, we shall here characterize the solution to this problem (and similarly, derive

optimal time-invariant policy rules) only for initial conditions near certain steady-

state values, allowing us to use local approximations in characterizing optimal policy.

We establish that these steady-state values have the property that if one starts from

initial conditions close enough to the steady state, and exogenous disturbances there-

after are small enough, the optimal policy subject to the initial commitments remains

forever near the steady state. Hence our local characterization describes the long run

character of Ramsey policy, in the event that disturbances are small enough.7 Of

greater interest here, it describes policy that is optimal from a timeless perspective

in the event of small disturbances.

We first must show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) that involves constant values of all variables. To this

end we consider the purely deterministic case, in which the exogenous disturbances

C̄t,Gt,H̄t,At, τ t each take constant values C̄, H̄, Ā, τ̄ > 0, Ḡ ≥ 0 for all t ≥ t0. We

wish to find initial degree of price and wage dispersions ∆p,t0−1, ∆w,t0−1, an initial

real wage Wt0−1/Pt0−1, and initial commitments Xt0 = X̄ such that the solution to

the optimal problem involves a constant policy xt = x̄, Xt+1 = X̄ each period, in

which ∆̄p, ∆̄w and ω̄R are equal to the initial values for these variables. We show

in the appendix that the first-order conditions for this problem admit a steady-state

solution of this form, and we verify below that (when our parameters satisfy certain

bounds) the second-order conditions for a local optimum are also satisfied.

We show that Π̄p = Π̄w = 1(zero price and wage inflation), and correspondingly

that ∆̄p = ∆̄w = 1(zero price and wage dispersion). We may furthermore assume

without loss of generality that the constant values of C̄ and H̄ are chosen so that in

the optimal steady state, Ct = C̄ and Ht = H̄ each period.8

We next wish to characterize the optimal responses to small perturbations of

7See Benigno and Woodford (2004) for further discussion. In the simpler model treated there, it is
shown explicitly that Ramsey policy converges asymptotically to the steady state of the constrained
problem, so that the solution to the LQ approximate problem approximates the response to small
shocks under the Ramsey policy, at dates long enough after t0. A similar result could be established
here using similar reasoning.

8Note that we may assign arbitrary positive values to C̄, H̄ without changing the nature of the
implied preferences, as long as the value of λ is appropriately adjusted.
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the initial conditions and small fluctuations in the disturbance processes around the

above values. To do this, we compute a linear-quadratic approximate problem, the

solution to which represents a linear approximation to the solution to the policy

problem defined above. An important advantage of this approach is that it allows

direct comparison of our results with those obtained in other analyses of optimal

monetary stabilization policy. Other advantages are that it makes it straightforward

to verify whether second-order conditions hold that imply that a solution to our first-

order conditions will represent at least a local optimum, and that it provides us with

a welfare measure with which to rank alternative sub-optimal policies, in addition to

allowing computation of the optimal policy.

2.1 A Quadratic Approximate Welfare Measure

We begin by computing a Taylor-series approximation to our welfare measure (1.13),

expanding around the steady-state allocation defined above, in which yt(i) = Ȳ and

ht(j) = H̄ for each good and variety of labor at all times and ξt = 0 at all times.9 As

a second-order (logarithmic) approximation to this measure, we obtain10

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆p∆̂p,t − u∆w∆̂w,t

+ t.i.p. +O(||ξ||3), (2.30)

where Ŷt ≡ log(Yt/Ȳ ), ∆̂p,t ≡ log ∆p,t and ∆̂w,t ≡ log ∆w,t measure deviations of

aggregate output, price and wage dispersion measured from their steady-state levels,

the term “t.i.p.” collects terms that are independent of policy (constants and func-

tions of exogenous disturbances) and hence irrelevant for ranking alternative policies,

and ||ξ|| is a bound on the amplitude of our perturbations of the steady state.11 Here

9Here the elements of ξt are assumed to be c̄t ≡ log(C̄t/C̄), h̄t ≡ log(H̄t/H̄), at ≡ log(At/Ā),
Ĝt ≡ (Gt − Ḡ)/Ȳ , and τ̂ t ≡ (τ t − τ̄)/τ̄ , so that a value of zero for this vector corresponds to the
steady-state values of all disturbances. The perturbation Ĝt is not defined to be logarithmic so that
we do not have to assume positive steady-state value for this variable.

10See the appendix for details. Our calculations here follow closely those of Woodford (2003,
chapter 6) and Benigno and Woodford (2004).

11Specifically, we use the notation O(||ξ||k) as shorthand for O(||ξ, ∆̂1/2
p,t0−1, ∆̂

1/2
w,t0−1, X̂t0 ||k), where

in each case hats refer to log deviations from the steady-state values of the various parameters
of the policy problem. We treat ∆̂1/2

p,t0 , ∆̂1/2
w,t0 as expansion parameters, rather than ∆̂p,t0 , ∆̂w,t0
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the coefficient

Φ ≡ 1− θw − 1

θw

θp − 1

θp

(1− τ̄) < 1

measures the steady-state wedge between the marginal rate of substitution between

consumption and leisure and the marginal product of labor, and hence the inefficiency

of the steady-state output level Ȳ . The coefficients uyy, uyξ, u∆p and u∆w are defined

in the appendix.

In addition, we can take a second-order approximation to equations (1.20) and

(1.28) and integrate them to obtain

∞∑
t=t0

βt−t0 ∆̂w,t =
αw

(1− αw)(1− αwβ)
θw(1+ν)(1+νθw)

∞∑
t=t0

βt−t0
π2

w,t

2
+t.i.p.+O(||ξ||3),

(2.31)
∞∑

t=t0

βt−t0 ∆̂p,t =
αp

(1− αp)(1− αpβ)
θp(1+ωp)(1+ωpθp)

∞∑
t=t0

βt−t0
π2

p,t

2
+t.i.p.+O(||ξ||3),

(2.32)

where πp,t ≡ ln Pt/Pt−1 and πw,t ≡ ln Wt/Wt−1. Substituting (2.31) and (2.32) into

(2.30), we can then approximate our welfare measure by

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt −

1

2
uπpπ

2
p,t −

1

2
uπwπ2

w,t]

+t.i.p. +O(||ξ||3), (2.33)

for certain coefficients uπw , uπp > 0 defined in the appendix. Note that we can now

write our stabilization objective purely in terms of the evolution of the aggregate

variables {Ŷt, πw,t, πp,t} and the exogenous disturbances.

We note that when Φ > 0, there is a non-zero linear term in (2.33), which means

that we cannot expect to evaluate this expression to second order using only an

approximate solution for the path of aggregate output that is accurate only to first

order. Thus we cannot determine optimal policy, even up to first order, using this

approximate objective together with approximations to the structural equations that

are accurate only to first order. Erceg et al. (2000) avoid this problem by assuming

because (1.20), (1.28) imply that deviations of the inflation rates from zero of order ε only result
in deviations in the dispersion measures ∆p,t, ∆w,t from one of order ε2. We are thus entitled to
treat the fluctuations in ∆p,t, ∆w,t as being only of second order in our bound on the amplitude of
disturbances, since if this is true at some initial date it will remain true thereafter.
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an output subsidy (i.e., a value τ̄ < 0) of the size needed to ensure that Φ = 0. Here

we wish to relax this assumption. We show here that an alternative way of dealing

with this problem is to use a second-order approximation to the aggregate-supply

relations to eliminate the linear terms in the quadratic welfare measure. We show in

the appendix that to second order, equations (1.19) and (1.27) can be written as

Vj,t = ξj(c
′
j,xxt + cj,ξξt +

1

2
x′tCj,xxxt − x′tCj,xξξt +

1

2
cj,πpπ

2
p,t +

1

2
cj,πwπ2

w,t) + βEtVj,t+1

+s.o.t.i.p. +O(||ξ||3), (2.34)

for j = p, w. Here the notation “s.o.t.i.p.” indicates terms independent of policy that

are entirely of second or higher order, xt denotes a two-by-one vector whose elements

are Ŷt and ŵR,t ≡ log(wR,t/w̄R). We have defined

Vj,t ≡ πj,t +
1

2
vj,ππ2

j,t + vj,zπj,tZj,t,

where

Zj,t ≡ Et

∞∑
T=t

(αjβ)T−t[zj,yŶT + zj,rŵR,T + zj,ππj,T + zj,ξξT ];

for certain coefficients defined in the appendix. Note that to first order, Vj,t = πj,t,

and (2.34) reduces simply to

πj,t = ξj(c
′
j,xxt + cj,ξξt) + βEtπj,t+1, (2.35)

for j = p, w, which represents two “New Keynesian Phillips curve” relations, for

prices and wages respectively, as in Erceg et al. (2000).

In the appendix, we sum the two equations in (2.34) and integrate the resulting

equation forward to obtain a relation of the form

Vt0 = Et0

∞∑
t=t0

βt−t0 [Ŷt+
1

2
cyyŶ

2
t −Ŷtcyξξt+

1

2
cπpπ

2
p,t+

1

2
cπwπ2

w,t]+t.i.p.+O(||ξ||3). (2.36)

We can then use (2.36) to write the discounted sum of output terms in (2.33) as a

function of purely quadratic terms, up to a residual of third order. As shown in the

appendix, we can rewrite (2.33) as

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0
{qy

2
(Ŷt − Ŷ ∗

t )2 +
qp

2
π2

p,t +
qw

2
π2

w,t

}
+ Tt0 + t.i.p. +O(||ξ||3),

(2.37)
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where 12

Ω ≡ Ȳ uc > 0,

qy ≡ ω + σ−1 + Φ(1− σ−1)− Φσ−1(s−1
C − 1)

ω + σ−1
, (2.38)

Ŷ ∗
t = ω1Ŷ

n
t − ω2Ĝt + ω3τ̂ t, (2.39)

qp ≡ θp

ξp(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)], (2.40)

qw ≡ θw

ξw(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)], (2.41)

and

Ŷ n
t =

σ−1gt + ωqt − ωτ τ̂ t

(ω + σ−1)
, (2.42)

in which expressions

ω1 = q−1
y [(ω + σ−1) + Φ(1− σ−1)],

ω2 =
Φs−1

C σ−1

(ω + σ−1)2 + Φ[(1− σ−1)(ω + σ−1)− (s−1
C − 1)σ−1]

,

ω3 ≡ ωτ

(ω + σ−1) + Φ[(1− σ−1)− (s−1
C − 1)σ−1(ω + σ−1)−1]

.

Here Ŷ n
t and ω̂n

t represent log-linear approximations to the “natural rate of output

and real wage,” i.e., the flexible-price equilibrium levels of output and real wages

(Woodford, 2003, chap. 3). In terms of this notation, the log-linear aggregate supply

relations (2.35) can be written as

πp,t = κp[Ŷt − Ŷ n
t ] + ξp[ω̂R,t − ω̂n

t ] + βEtπp,t+1, (2.43)

πw,t = κw[Ŷt − Ŷ n
t ]− ξw[ω̂R,t − ω̂n

t ] + βEtπw,t+1, (2.44)

while

ω̂R,t = ω̂R,t−1 + πw,t − πp,t, (2.45)

where κp ≡ ξpωp and κw ≡ ξwνφ. The term Tt0 ≡ ΦȲ ūcVt0 is a transitory component

where Vt0 is defined in the appendix.

12In what follows, the following definitions have been used: σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Ȳ ; ω ≡

φν+ωp; ωqt ≡ νh̄t+φ(1+ν)at; gt ≡ Ĝt+sC c̄t; ωτ ≡ τ̄ /(1−τ̄); ξp ≡ (1−αpβ)(1−αp)/[αp(1+θpωp)];
ξw ≡ (1− αwβ)(1− αw)/[αw(1 + θwν)].
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Once again, we are interested in characterizing optimal policy from a timeless

perspective. We observe from the form of the structural relations (2.34) and the

definition of Vj,t that the aspects of the expected future evolution of the endogenous

variables that affect the feasible set of values for inflation rates, real wage and out-

put in any period t can be summarized (in our second-order approximation to the

structural relations) by the expected values of Vj,t+1, Zj,t+1 for j = p, w. Hence the

only commitments regarding future outcomes that can be of value in improving stabi-

lization outcomes in period t can be summarized by commitments at t regarding the

state-contingent values of those two variables in the following period. It follows that

we are interested in characterizing optimal policy from any date t0 onward subject to

the constraint that given values for Vj,t0 , Zj,t0 for j = p, w be satisfied,13 in addition

to the constraints represented by the structural equations.

But given predetermined values for Vj,t0 the value of the transitory component Tt0

is predetermined. Hence, over the set of admissible policies, higher values of (2.37)

correspond to lower values of

Et0

∞∑
t=t0

βt−t0
{qy

2
(Ŷt − Ŷ ∗

t )2 +
qp

2
π2

p,t +
qw

2
π2

w,t

}
. (2.46)

It follows that we may rank admissible policies in terms of the implied value of

the discounted quadratic loss function (2.46). Because this loss function is purely

quadratic (i.e., lacking linear terms), it is possible to evaluate it to second order

using only a first-order approximation to the equilibrium evolution of inflation and

output under a given policy. Hence the log-linear approximate structural relations

(2.43), (2.44) and (2.45) are sufficiently accurate for our purposes.

Similarly, it suffices that we use log-linear approximations to the variables Vj,t0

in describing the initial commitments, which are given by V̂j,t0 = πj,t0 for j = p, w.

Then an optimal policy from a timeless perspective is a policy from date t0 onward

that minimizes the quadratic loss function (2.46) subject to the constraints implied

by the linear structural relation (2.43), (2.44) and (2.45) holding in each period t ≥ t0

given the initial condition ω̂R,t0−1and subject also to the constraints that a certain

predetermined values for V̂p,t0 and V̂w,t0 be achieved.14 This last constraint may

13Note that a specification of initial values for these four variables corresponds, in our quadratic
approximation to the structural equations, to a specification of initial values for the four variables
Fp,t0 , Kp,t0 , Fw,t0 ,Kw,t0 in section 1.
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equivalently be expressed as a constraint on the initial inflation rates,

πp,t0 = π̄p,t0 πw,t0 = π̄w,t0 . (2.47)

2.2 Comparison with Erceg, Henderson and Levin

Thus we obtain a quadratic stabilization objective (2.46) similar to the one derived

in Erceg et al. (2000) under the assumption that Φ = 0, but now allowing for an

arbitrary degree of steady-state distortions. As in the analysis of Erceg et al., the loss

function is a sum of three terms, indicating the distortions resulting from variations in

the rate of price inflation, the rate of wage inflation, and the output gap, respectively.

There are, however, some noteworthy differences between (2.46) and the loss func-

tion of Erceg et al.. One is that the loss function of Erceg et al. is expressed as a

sum of variances of the three variables (price inflation, wage inflation, and the output

gap), whereas our loss function is linear in the expected values of these variables

squared. Our loss function implies (assuming that qy, qp, qw > 0, as discussed below)

that an increase in the variance of any of the variables, holding constant its mean

level, will lower welfare; and indeed our loss function is linear in the variances, holding

constant the expected values of the variables. But we find that there are also losses

associated with an average rate of price or wage inflation different from zero (in either

direction), and similarly with an average output gap different from zero; these effects

are neglected by Erceg et al. by assumption.15

The loss function (2.46) also differs from the one derived by Erceg et al. in that

it involves expected losses in each of an infinite sequence of periods, with the losses

expected in future periods discounted at the rate βt. The form of loss function derived

by Erceg et al. is instead obtained, following Rotemberg and Woodford (1997), by

evaluating the unconditional expectation of the utility of the representative household

in the stationary equilibrium implied by one stationary policy rule or another; since

14The constraint associated with a predetermined value for Zt0 can be neglected, in a first-order
characterization of optimal policy, because the variable Zt does not appear in the first-order approx-
imation to the aggregate-supply relation.

15Erceg et al. restrict their attention to policies with the property that in the absence of shocks,
the equilibrium obtained will be the optimal steady state. This restriction is innocuous as far as
the characterization of optimal stabilization policy is concerned (since the optimal policy belongs
to the class considered); but the more general form of loss function provides additional insight into
the nature of optimal policy.
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the unconditional expectation of the period utility in such an equilibrium is the same

each period, one need only consider the unconditional expectation of the utility flow in

a single period. The alternative (discounted) welfare measure derived here is instead

appropriate if one wishes to characterize optimal policy in the sense described above

(what we have called “optimal policy from a timeless perspective”). One advantage

of defining the policy problem as we have here is that it allows us to use standard

methods for the solution of (discounted) linear-quadratic stochastic control problems

to characterize optimal policy.16

Apart from these differences in what our loss function measures (and hence in the

form in which we report our results), there are also differences in our conclusions that

result from the fact that we treat the more general case in which Φ (our measure of

the overall severity of steady-state distortions) need not equal zero. First of all, a

non-zero value of Φ affects the quantitative magnitudes of the weights qy, qp, qw on the

different stabilization objectives. In the case that Ḡ = 0 (there are no steady-state

government purchases), each of these weights is proportional to

(ω + σ−1) + Φ(1− σ−1).

It then follows that increasing Φ (for given values of the other model parameters) does

not change the relative weights on alternative stabilization objectives, and hence the

relative ranking of alternative equilibria. Even in this case, however, the assumed

value of Φ will affect one’s conclusion about how much the improvement of stabi-

lization policy matters for welfare; in the case that we judge to be most realistic, in

which σ > 1,17 a higher value of Φ implies greater welfare gains from stabilization.

For example, if we calibrate the parameters ω and σ in accordance with the estimates

of Rotemberg and Woodford (1997),18 then an inefficiency wedge of a more realistic

magnitude, Φ = 1/3,19 would increase the expected losses from any given degree

of aggregate volatility by 45 percent, relative to what would be obtained under the

assumption that Φ = 0.

16For further discussion, see Woodford (2003, chap. 7).
17Note that in this model, σ is the intertemporal elasticity of substitution for all private expendi-

ture, and not simply for non-durable consumer expenditure. See Woodford (2003, chaps. 4, 5) for
further discussion.

18These values are ω = .473 and σ−1 = .157.
19This would result, for example, if we assume an elasticity of demand θ = 10, a wage markup of

8 percent, and an average tax rate τ̄ of 20 percent.
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In a more realistic parameterization, of course, one should allow for the existence

of a positive average level of government purchases, Ḡ, so that sC < 1. In this

case, increasing Φ does not increase qy by as great a factor as the increase in the

weights qp and qw; hence the relative weight on the output-stabilization objective

should be somewhat lower in an economy with a distorted steady state than would

be appropriate if Φ = 0. It is not clear, however, how important this qualification

is likely to be in practice. Under the calibration just considered, for example, if we

assume that Ḡ is equal to 20 percent of steady-state output, then increasing Φ from

0 to 1/3 will increase qp and qw by nearly 45 percent, as just discussed, while it will

increase qy by a factor of only 41 percent. However, the value obtained for the relative

weight qy/(qp + qw) under the assumption that Φ = 0 is exaggerated only by slightly

more than 2 percent.

Under more extreme assumptions about the share of government purchases in total

demand, the mis-estimation of the appropriate relative weight on output stabilization

could be much greater. In fact, the correct value of qy indicated by (2.38) may actually

be negative, whereas Erceg et al. conclude that the relative weight on the output

stabilization objective is positive (as we also find, if Φ = 0). This failure of convexity

of our welfare-theoretic loss function does not necessarily imply that the second-order

conditions for a local welfare maximum fail to hold, or that randomization of policy

would be welfare-improving, as discussed in Benigno and Woodford (2004). But such

a case would mean that the conclusions of Erceg et al. about the degree to which

one should be willing to accept greater variability of price and wage inflation for the

sake of output-gap stabilization would be quite inaccurate. This will occur, however,

only under fairly extreme assumptions. For example, a sufficient condition for qy to

be positive, regardless of the magnitude of the steady-state distortions, is that

sG <
(1 + ω)(ω + σ−1)

(1 + ω)(ω + σ−1) + σ−1
. (2.48)

(Here sG ≡ Ḡ/Ȳ is the steady-state share of government purchases in total demand.)

For moderate values of Φ, the value of sG can be even larger; but even the bound (2.48)

is likely to hold. For example, in the case of the Rotemberg-Woodford parameter

values, this bound holds as long as government purchases are no more than 85 percent

of GDP.

Allowing for Φ > 0 also changes the definition of the target output level Ŷ ∗
t in the

welfare-theoretic loss function (2.46). Contrary to what Erceg et al. obtain, Ŷ ∗
t no
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longer corresponds in general to the equilibrium level of output under flexible wages

and prices, Ŷ n
t , as shown by (2.39). We observe that when Φ = 0, ω1 = 1 and ω2 = 0,

so that (2.39) implies that Ŷ ∗
t = Ŷ n

t , in the absence of fluctuations in the tax rate

(also not considered by Erceg et al.). If, instead, Φ > 0, and in addition sG is positive

(but less than the upper bound (2.48)), then ω1 > 1. This means that fluctuations

in tastes or technology move Ŷ ∗
t by more than their effect on Ŷ n

t .20 This has the

consequence that attempting to stabilize output around trend rather than around

the time-varying target level would be an even greater mistake than is indicated by

an analysis that assumes that Φ = 0.

Furthermore, when Φ > 0, and sG satisfies (2.48),21 ω2 > 0 in (2.39). Indeed, one

can show that

ω2 >
σ−1

ω + σ−1
(ω1 − 1),

from which it follows (also using (2.42)) that an increase in government purchases

increases Ŷ ∗
t by less than the increase in Ŷ n

t . This means that it is not desirable

to allow output to increase quite as much in response to an increase in government

purchases as would occur under flexible wages and prices.22

The fact that the target level of output will move in a somewhat different way than

the flexible-wage-and-price equilibrium level of output (or natural rate of output) has

consequences for the degree to which stabilization of some combination of wages and

prices, without attention to the consequences of policy for aggregate real activity, is

likely to provide a good approximation to optimal policy. As a result, some of the

more suggestive results of Erceg et al. may not be quite so accurate a guide to policy

in the case of significant steady-state distortions.

We have shown that the policy objective (2.46) can be expressed solely as a

function of the evolution of the inflation rates and the welfare-relevant output gap

xt ≡ Ŷt − Ŷ ∗
t .

It is useful to write the linear constraints implied by our model’s structural equations

in terms of the welfare-relevant output gap as well. The aggregate-supply relations

20Under the parameter values considered above, for example, one would obtain ω1 = 1.02.
21In fact, it suffices for this conclusion (and for those of the previous paragraph) that sG be small

enough for qy to be positive.
22For example, under the parameter values considered above, an increase in government purchases

equal to one percent of steady-state output would increase Ŷ n
t by 0.25 percent, while it would increase

Ŷ ∗
t by only 0.14 percent.
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(2.43) and (2.44) can alternatively be expressed as

πp,t = κpxt + ξp[ω̂R,t − ω̂n
t ] + βEtπp,t+1 + up,t, (2.49)

πw,t = κwxt − ξw[ω̂R,t − ω̂n
t ] + βEtπw,t+1 + uw,t (2.50)

where uj,t, for j = p, w are composite “cost-push” terms. In terms of our previous

notation for the exogenous disturbances in the model, these are given by

uj,t ≡ κj(Ŷ
∗
t − Ŷ n

t )

= κj(ω1 − 1)Ŷ n
t − κjω2Ĝt + κjω3τ̂ t.

The presence of these “cost-push” terms23 (not present in the aggregate-supply

relations of Erceg et al.) implies a tension between the goals of wage and price

stabilization, on the one hand, and output-gap stabilization (in the welfare-relevant

sense) on the other. In the case that Φ = 0, then ω1 = 1, ω2 = 0, and up,t = uw,t = 0,

except if there are fluctuations in the tax rate. If, instead, Φ > 0, then there are

other reasons for the cost-push terms to be non-zero. As we have just discussed, in

the case of greatest interest, fluctuations in preferences or technology that raise the

natural rate of output will result in positive cost-push terms in both (2.49) and (??),

while increases in government purchases will result in negative cost-push terms in

both equations.

This makes it even more difficult for all three stabilization goals to be simul-

taneously achieved than is indicated by the analysis of Erceg et al. For example,

Erceg et al. conclude that if either wages or prices are completely flexible (so that

the welfare-theoretic weight on one of the stabilization objectives is zero), then it

should be possible to fully achieve both of the remaining stabilization objectives by

completely stabilizing wage inflation (if only wages are sticky) or price inflation (if

only prices are sticky). In the presence of cost-push terms, this ceases to be the case.

23Here we adopt the terminology of Clarida et al. (1999) for the case of a model with sticky
prices only. A more desirable terminology might be “inefficient supply shocks,” as we are interested
in disturbances to the aggregate-supply relations that are not due to changes in the efficient level
of output. There are variety of reasons for non-zero terms of this kind to appear, which need
not correspond to the specific sorts of disturbances traditionally associated with the “cost-push”
terminology. And it is equally important to recognize that not all disturbances that affect the cost
of supplying output represent “cost-push” shocks in the sense in which we use the term here, since
such disturbances usually imply a change in the efficient level of output.
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Even when prices are fully flexible, the presence of the cost-push terms implies that

complete stabilization of wage inflation will not imply complete stabilization of the

welfare-relevant output gap, or vice versa.24

Erceg et al. find, on the basis of numerical analysis of a calibrated model, that

a simple policy rule that stabilizes an index of wages and prices provides a close

approximation to optimal policy, if the relative weight on wages as opposed to prices

in this index is appropriately chosen.25 However, this result most likely depends

on their having made assumptions under which there are no cost-push terms. For

example, it is easy to see why the result is true, if there are no cost-push terms, in

the case just discussed in which only wages are sticky. (In that case, the appropriate

index to target involves nominal wages only.) But when cost-push terms are present,

as is almost inevitably the case if the steady state is distorted, optimal policy no

longer corresponds to stabilization of the nominal wage; instead, the nominal wage

should be a function of the history of the cost-push terms.26 On the other hand, the

optimal evolution of the real wage (and hence, of goods prices) should depend on the

evolution of the natural real wage ωn
t as well. In general, real disturbances will affect

the natural real wage in a different way than they affect the cost-push terms, and so

one cannot expect there to be any linear combination of wages and prices that will

be constant in an optimal equilibrium. Since in this case, the optimal simple rule is

fully optimal when there are no cost-push terms, but can be far from optimal when

Φ is far from zero, one suspects that the same is true when both wages and prices

are sticky.27

Erceg et al. also find that another class of simple policy rules, in which a weighted

average of price inflation and the output gap is stabilized, also provides a good ap-

proximation to optimal policy when the weights are appropriately chosen. But here

again, it is likely that the result depends on the absence of cost-push terms (in the case

of substantial stickiness of wages). Let us once more consider the simple case of per-

fectly flexible prices but sticky wages. In this case, optimal policy requires complete

24The corresponding result in the case of an economy in which only prices are sticky is established
by Benigno and Woodford (2004).

25See also Woodford (2003, chap. 6) for results in the same vein.
26A method that can be used to characterize the way in which the wage should depend on the

history of disturbances is discussed in the next section.
27The same conclusion is supported by a consideration of the case of “equally sticky” wages and

prices in section 3.1 below.
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stabilization of the nominal wage when there are no cost-push shocks. Flexibility of

prices means that the pricing relation (2.49) reduces to

ω̂R,t − ω̂n
t + ωpxt = 0,

if there is no cost-push term. At the same time, (2.50) implies that in the optimal

equilibrium, since wage inflation is always zero,

κwxt − ξw[ω̂R,t − ω̂n
t ] = 0,

if there is no cost-push term. Together, these two relations imply that xt = 0 in the

optimal equilibrium, which is a limiting case of the class of simple rules.

On the other hand, if Φ > 0, cost-push terms are present in both (2.49) and (2.50).

It is no longer optimal to fully stabilize wage inflation, exactly because this will no

longer imply complete stability of the output gap; instead, the optimal evolution

of both the nominal wage and the output gap will be a function of the history of

cost-push disturbances. At the same time, the optimal evolution of the real wage

(and hence, of goods prices), will depend on the evolution of the natural real wage as

well. Once again, there will in general be no linear combination of price inflation and

the output gap for which these different sorts of dependence on the history of real

disturbances will happen to cancel. And since the family of simple rules ceases to

include an optimal rule even in this special case, it is likely that it ceases to include

any rule that is so close to being optimal as Erceg et al. report, in the case that both

wages and prices are sticky.

3 Optimal Stabilization Policy

We now use our linear-quadratic approximate policy problem to characterize optimal

policy in the event of small enough disturbances. We begin by noting that the first-

order conditions associated with an LQ problem of this kind characterize an optimum

only in the case that certain second-order conditions are satisfied as well. However,

it follows from our results in the previous section that the weights qp, qw > 0. Hence

the loss function (2.46) is convex (and the second-order conditions are necessarily

satisfied) as long as qy > 0 as well.28 A sufficient condition for this, in turn, is that

28This condition is sufficient but not necessary. See further discussion in Benigno and Woodford
(2004).
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the share of government purchases in total demand satisfy (2.48). As long as this

bound is satisfied, the solution to the first-order conditions will represent an optimum

of the LQ problem. This means that in the even of small enough disturbances, this

same solution will represent a linear approximation to a policy that represents at

least a local welfare optimum in the exact model.

3.1 The Case of “Equally Sticky” Wages and Prices

As stressed by Erceg et al. (2000), it is not in general possible to fully stabilize all

the target variables in the loss function (2.46). However, in the absence of cost-push

shocks, optimal policy still corresponds to complete stabilization of an appropriately

defined index of wages and prices, in at least one special case. Suppose that θwφ−1 =

θp and that κp = κw = κ. (We can think of this special case as one in which wages

and prices are “equally sticky”.) In this case the loss function (2.46) can be written

as

Et0

∞∑
t=t0

βt−t0
{qy

2
xt

2 +
qπ

2
π̄2

t +
qp

2
(1− γ)(ω̂R,t − ω̂R,t−1)

2
}

(3.51)

where π̄t ≡ γπp,t + (1 − γ)πw,t is a weighted average of the price and wage inflation

rates, with weight 0 < γ < 1 determined by γ ≡ ωp/(ω + σ−1), and where qπ ≡ qp/γ.

Under these conditions, by subtracting (2.50) from (2.49) and using (2.45), we obtain

a difference equation for the evolution of the real wage, from which it follows that the

real wage is independent of policy. Moreover, by taking a weighted average of (2.50)

and (2.49), we obtain

π̄t = κxt + βEtπ̄t+1 + ut, (3.52)

where ut ≡ γup,t + (1− γ)uw,t.

In the case that Φ = 0 and there are no variations in the tax rate, as assumed by

Erceg et al., there are no cost-push terms, and ut = 0 at all times in (3.52). It then

follows that complete stabilization of π̄t implies complete stabilization of xt as well.

Since the real wage evolves independently of policy in this case, it is then obvious

that (3.51) attains its lowest possible value under such a policy. Hence it is optimal

to completely stabilize a weighted average of price inflation and wage inflation.

However, even when wages and prices are “equally sticky,” this result fails to

obtain in the case of a distorted steady state.29 When Φ > 0, real disturbances of

29It would also fail if there are variations in tax rates or in market power that would give rise to
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any sort will generally result in a non-zero cost-push term ut in (3.52), as discussed

in the previous section. Complete stabilization of π̄t continues to be possible, but in

this case requires fluctuations in xt, and it will be preferable to allow some degree of

variation in π̄t for the sake of greater stability of the output gap.

Since real wages are independent of policy, to characterize the optimal tradeoff one

can simply consider the processes {xt, π̄t} that maximize (3.51) under the constraint

(3.52) for each t ≥ t0, given an initial commitment for the value of π̄t0 . One observes

that the form of this problem is the same — and that the solution is therefore the

same (in the case of a given {ut} process and given values of qπ and qy) — as in the

Φ = 0 case treated in Woodford (2003, chap. 7).30 We recall here some of the main

results presented there, which directly apply to the present case as well.

The first-order conditions for the optimization problem just stated are of the form

qππ̄t + ϕt − ϕt−1 = 0, (3.53)

qyxt − κϕt = 0, (3.54)

for each t ≥ t0, where ϕt is the Lagrange multiplier associated with the constraint

(3.52) in period t. Bounded processes {π̄t, xt, ϕt} that satisfy (3.52) and (3.53) –

(3.54) for each t ≥ t0 and are consistent with the initial condition (2.47) represent an

optimum. Using (3.53) to eliminate π̄t and (3.54) to eliminate xt,
31 (3.52) becomes

an equation for the evolution of the multiplier

βqyEtϕt+1 − [(1 + β)qy + κ2qπ]ϕt + qyϕt−1 = qπqyut. (3.55)

The initial condition (2.47) can similarly be expressed as a constraint on the path of

the multipliers

ϕt0 − ϕt0−1 = −qππ̄t0 . (3.56)

An optimum can then be described by a bounded process {ϕt} for all dates t ≥ t0−1

that satisfies (3.55) for each t ≥ t0 and is also consistent with (3.56).

cost-push terms even in the case that Φ = 0.
30See also Clarida, Gali and Gertler (1999) for analysis of an LQ problem of this form.
31Here we assume that both qπ, qy 6= 0. Note that if either qπ or qy happens to equal zero, optimal

policy is easily characterized: it consists simply of the complete stabilization of the variable with
the non-zero weight in the loss function.
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Equation (3.55) has a unique bounded solution consistent with (3.56) if and only

if the characteristic equation

βµ2 −
[
1 + β +

κ2qπ

qy

]
µ + 1 = 0 (3.57)

has exactly one root such that |µ| < 1. This requires that the characteristic equation

have real roots, exactly one of which lies in the interval between -1 and 1; this in turn

is true if and only if qπ 6= 0 and

qy

qπ

> − κ2

2(1 + β)
. (3.58)

Note that (3.58) is necessarily satisfied if (2.48) holds, since in that case qπ, qy > 0.

A characterization of the optimal equilibrium is then obtained by solving (3.53)

and (3.54) for π̄t and xt respectively, where the multiplier process {ϕt} is specified

recursively by the relation32

ϕt = µϕt−1 − qπ

∞∑
j=0

βjµj+1Etut+j. (3.59)

Here µ is the root of (3.57) that satisfies −1 < µ < 1, and the initial value ϕt0−1 is

chosen so that the solution is consistent with the precommitted value for π̄t0 .

We note that even in the special case that wages and prices are “equally sticky,”

optimal policy will not involve complete stabilization of any weighted average of wages

and prices. Instead, the optimal evolution of π̄t will depend on the history of cost-

push disturbances. The optimal evolution of any other index of wages and prices

will depend both on this and the exogenous determinants of real wages, and since

different real disturbances will affect ut and the real wage ωR,t in different ways, there

will not generally be any index of wages and prices that will remain constant in the

optimal equilibrium.

32Details of this derivation are given in the appendix.
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3.2 The General Case

More generally, to derive the optimal policy we can write the Lagrangian as

Lt0 = Et0{
∞∑

t=t0

βt−t0
qy

2
x2

t +
qp

2
π2

p,t +
qw

2
π2

w,t + ϕp,t(πp,t − κpxt − ξpω̂R,t − βπp,t+1)

+ϕw,t(πw,t − κwxt + ξwω̂R,t − βπw,t+1) + ϕr,t(ω̂R,t − ω̂R,t−1 − πw,t + πp,t) +

+ϕ1,t0−1πp,t0 + ϕ2,t0−1πw,t0}.

The first-order conditions obtained by differentiation are then

qyxt − κpϕp,t − κwϕw,t = 0; (3.60)

qpπp,t + ϕp,t − ϕp,t−1 + ϕr,t = 0; (3.61)

qwπw,t + ϕw,t − ϕw,t−1 − ϕr,t = 0; (3.62)

ξpϕp,t − ξwϕw,t − ϕr,t + βEtϕr,t+1 = 0, (3.63)

for each t ≥ t0. The first-order conditions (3.60) to (3.63) together with the structural

equations (2.50), (2.49) and (2.45) need to be solve for the optimal path of the

lagrange multipliers {ϕp,t, ϕw,t, ϕr,t} and the variables {xt, πp,t, πw,t, wR,t} given the

initial conditions (2.47). We note that the initial conditions can similarly be expressed

as a constraint on the path of the multipliers

ϕp,t0 − ϕp,t0−1 + ϕr,t0 = −qpπ̄p,t0 ,

ϕw,t0 − ϕw,t0−1 − ϕr,t0 = −qwπ̄w,t0 .

We show in the appendix that we can express the above conditions as a linear

system of the form

[
A1 0

0 A4

]
Et

(
z1,t+1

z2,t

)
=

[
B1 B2

B3 B4

](
z1,t

z2,t−1

)
+

[
C1

C2

]
υt,

for matrices defined in the appendix, where

z′1,t ≡ [ϕp,t ϕw,t ϕr,t],

z′2,t−1 ≡ [ω̂R,t−1 ϕp,t−1 ϕw,t−1]
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and

υ′t ≡ [ω̂n
t up,t uw,t].

The determinacy of the equilibrium depends on the roots of the characteristic equation

associated with the system (A.67)

det(B − µA) = 0.

Rational-expectations equilibrium is determinate if the number of roots µi such that

|µi| < 1 is exactly equal to the number of predetermined variables, which in this case

is three. Under this condition, we show in the appendix that the unique non-explosive

solution is of the form

z1,t = −(V A)−1
1 (V A)2z2,t−1 − (V A)−1

1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j, (3.64)

z2,t = A−1
4 (B4−B3(V A)−1

1 (V A)2)z2,t−1+A−1
4 C2υt−A−1

4 B3(V A)−1
1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j,

(3.65)

for matrices again defined in the appendix. Using (3.60) to (3.63) and (3.64), (3.65)

we can obtain the optimal paths of the variables {xt, πp,t, πw,t, wR,t}.

3.3 Optimal Targeting Rules

Finally, following Giannoni and Woodford (2003), we can use the first-order conditions

to eliminate the three Lagrange multipliers, obtaining a target criterion of the form

(κw−κp)π
asym
t +(ξp +ξw)qt +(κw−κp){Et[βqt+1−qt]−Et−1[βqt−qt−1]} = 0, (3.66)

where

πasym
t ≡ qpξpπp,t − qwξwπw,t

is a measure of the asymmetry between price and wage inflation,

πsym
t ≡ qpξpπp,t + qwξwπw,t

qpξp + qwξw

is a average of the rates of price and wage inflation, and

qt ≡ (qpξp + qwξw)

[
πsym

t +
qy

qpξp + qwξw

(xt − xt−1)

]
.
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This criterion holds at all times in the optimal equilibrium, and a commitment to use

monetary policy to ensure that it holds ensures that the only non-explosive rational-

expectations equilibrium consistent with the policy will be the optimal one. In the

special case analyzed above in which κw = κp = κ > 0, the optimal target criterion

reduces to qt = 0, or

πsym
t +

qy

qpξp + qwξw

(xt − xt−1) = 0. (3.67)

This again allows us to consider the degree to which simple policy rules of either

of the two kinds discussed by Erceg et al. are likely to provide close approximations

to optimal policy in the general case. In the special case that wages and prices are

“equally sticky”, there is a linear combination of wage inflation, price inflation and

the output gap that it would be optimal to stabilize, given by the optimal target

criterion (3.67). However, all three target variables enter with non-zero weights in

this criterion, and because real disturbances should influence these three variables

in two distinct ways in the optimal equilibrium (both through their effects on the

cost-push terms and through their effects on the natural real wage), as discussed in

the previous section, it will not generally be possible to closely approximate any one

of them by a linear combination of the other two (except for the relation implied

by this target criterion itself). Hence one should not expect optimal policy to be

well-characterized by a rule that stabilizes any linear combination of wage inflation

and price inflation alone, or by a rule that stabilizes a linear combination of price

inflation and the output gap alone. In the more general case, optimal policy cannot

even be characterized by a static relation between all three variables; but there is even

less reason to believe that a good approximation to optimal policy can be obtained

without reference to all three variables.

4 Conclusion

We have shown how to extend the analysis of Erceg et al. to treat the case in which the

steady-state equilibrium level of output under a policy that maintains zero inflation is

suboptimal, due to tax distortions and market power, and in which, as a consequence,

the effects of stabilization policy on the average level of output are important for the

welfare evaluation of such policies. Even in this case, it is possible to approximate

the expected utility of the representative household by a purely quadratic objective,
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so that welfare can be evaluated, to second-order accuracy, using only a first-order

accurate solution for the equilibrium implied by a given policy rule.

As in the case of an efficient steady state treated by Erceg et al., the welfare-

theoretic loss function can be expressed as a sum of three quadratic terms, indicating

the distortions due to non-zero levels of wage inflation, price inflation and an appro-

priately defined output gap, respectively. The inefficiency of the steady state does

not change the general form of the loss function, but it does have quantitative im-

plications for both the weights on each of the three stabilization objectives, and for

the definition of the target level of output, deviations from which define the welfare-

relevant output gap. An important consequence of a distorted steady state is that

except under extremely special circumstances, one cannot expect real disturbances

to move the target level of output and the natural rate of output (the equilibrium

output level in the case of flexible wages and prices) to the same extent. This means

that almost any kind of real disturbances will create a tension between the objectives

of stabilizing the welfare-relevant output gap on the one hand and stabilizing wage

and price inflation and the other. As a result, it is likely that neither of the kinds of

simple rules considered by Erceg et al. — rules that stabilize a weighted average of

wage and price inflation with no reference to the output gap, and rules that stabilize

a weighted average of price inflation and the output gap with no reference to wage

inflation — will come as close to approximating fully optimal policy in an economy

with a distorted steady state as in the numerical examples that they consider.

Nonetheless, the most important of the conclusions of Erceg et al. remain valid.

The stickiness of wages implies that variations in the rate of wage inflation are as

closely related to distortions that monetary policy should seek to mitigate as are

variations in price inflation, and as a consequence, a strict (goods-price) inflation

target will not be optimal. Indeed, we have shown that in the more general model

considered here, optimal policy can be characterized by a targeting rule, but the

optimal target criterion generally involves the projected paths of price inflation, wage

inflation, and the output gap. The welfare gains from adoption of a more sophisticated

form of inflation target may be substantial; and our analysis suggests that they may

be even larger when one takes account of the likely degree of distortion of the steady-

state level of output in a realistic model.
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A Appendix

A.1 The deterministic steady state

Here we show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) of the recursive policy problem that involves constant

values of all variables. We consider a deterministic problem in which the exogenous

disturbances C̄t, Gt, H̄t, At, τ t each take constant values C̄, H̄, Ā, τ̄ > 0 and Ḡ ≥ 0

for all t ≥ t0. We wish to find an initial degree of price and wage dispersions ∆p,t0−1,

∆w,t0−1, initial real wage wR,t0−1 ≡ Wt0−1/Pt0−1 and initial commitments Xt0 = X̄

such that the recursive (or “stage two”) problem involves a constant policy xt0 = x̄,

Xt+1 = X̄ each period, in which ∆̄p, ∆̄w and w̄ are equal to the initial values.

We thus consider the problem of maximizing

Ut0 =
∞∑

t=t0

βt−t0U(Yt, ∆p,t, ∆w,t) (A.1)

subject to the constraints

Kp,tp(Πp,t)
1+ωpθp

θp−1 = Fp,t, (A.2)

Fp,t = (1− τ̄)uy(Yt − Ḡ)Yt + αpβΠ
θp−1
p,t+1Fp,t+1, (A.3)

Kp,t = φµpuy(Yt − Ḡ)wR,tY
φ
t Ā−φ + αpβΠ

θp(1+ωp)
p,t+1 Kp,t+1, (A.4)

∆p,t = αp∆p,t−1Π
θp(1+ωp)
p,t + (1− αp)p(Πp,t)

− θp(1+ωp)

1−θp , (A.5)

Kw,tp(Πw,t)
1+νθw
θw−1 = Fw,t, (A.6)

Fw,t = uy(Yt − Ḡ)Y φ
t Ā−φ∆p,twR,t + αwβΠθw−1

w,t+1Fw,t+1, (A.7)

Kw,t = µwvh(Y
φ
t )Y φ

t Ā−φ(1+ν)∆1+ν
p,t + αwβΠ

θw(1+ν)
w,t+1 Kw,t+1, (A.8)

∆w,t = αw∆w,t−1Π
θw(1+ν)
w,t + (1− αw)p(Πw,t)

− θw(1+ν)
1−θw , (A.9)

wR,t =
Πw,t

Πp,t

wR,t−1, (A.10)

and given the specified initial conditions ∆p,t0−1, ∆w,t0−1, wR,t0−1, Xt0 where we have

defined

p(Πp,t) ≡
(

1− αpΠ
θp−1
p,t

1− αp

)
,
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p(Πw,t) ≡
(

1− αwΠθw−1
w,t

1− αw

)
.

We introduce Lagrange multipliers φ1t through φ9t corresponding to constraints

(A.2) through (A.10) respectively. We also introduce multipliers dated t0 correspond-

ing to the constraints implied by the initial conditions Xt0 = X̄; the latter multipliers

are normalized in such a way that the first-order conditions take the same form at

date t0 as at all later dates. The first-order conditions of the maximization problem

are then the following. The one with respect to Yt is

0 = Uy(Yt, ∆p,t, ∆w,t)− (1− τ̄)[uyy(Yt − Ḡ)Yt + uy(Yt − Ḡ)]φ2,t

−φµpĀ
−φwR,t[uyy(Yt − Ḡ)Y φ

t + φY φ−1
t uy(Yt − Ḡ)]φ3,t +

−Ā−φwR,t∆p,t[uyy(Yt − Ḡ)Y φ
t + φY φ−1

t uy(Yt − Ḡ)]φ6,t

−µwĀ−φ(1+ν)∆1+ν
p,t [φvhh(Y

φ
t )Y 2φ−1

t + φvh(Y
φ
t )Y φ−1

t ]φ7,t (A.11)

that with respect to ∆p,t is

0 = U∆p(Yt, ∆p,t, ∆w,t) + φ4t − αpβΠ
θp(1+ωp)
p,t+1 φ4,t+1 − uy(Yt − Ḡ)Y φ

t Ā−φwR,tφ6,t

−(1 + ν)µwvh(Y
φ
t )Ā−φ(1+ν)Y φ

t ∆ν
p,tφ7,t (A.12)

that with respect to Πp,t is

1 + ωpθp

θp − 1
p(Πp,t)

(1+ωpθp)

θp−1
−1

pπ(Πp,t)Kp,tφ1,t − αp(θp − 1)Π
θp−2
p,t Fp,tφ2,t−1

−θp(1 + ωp)αpΠ
θp(1+ωp)−1
p,t Kp,tφ3,t−1 − θp(1 + ωp)αp∆p,t−1Π

θp(1+ωp)−1
p,t φ4,t+

−θp(1 + ωp)

θp − 1
(1− αp)p(Πp,t)

(1+ωpθp)

θp−1 pπ(Πp,t)φ4,t + Πw,tΠ
−2
p,twR,t−1φ9,t = 0; (A.13)

that with respect to Fp,t is

−φ1,t + φ2,t − αpΠ
θp−1
p,t φ2,t−1 = 0; (A.14)

that with respect to Kp,t is

p(Πp,t)
1+ωpθp

θp−1 φ1,t + φ3t − αpΠ
θp(1+ωp)
p,t φ3,t−1 = 0; (A.15)

that with respect to ∆w,t is

0 = U∆w(Yt, ∆p,t, ∆w,t) + φ8,t − αwβΠ
θw(1+ν)
w,t+1 φ8,t+1 (A.16)
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that with respect to Πw,t is

1 + νθw

θw − 1
p(Πw,t)

(1+νθw)
θw−1

−1pπ(Πw,t)Kw,tφ5,t − αw(θw − 1)Πθw−2
w,t Fw,tφ6,t−1

−θw(1 + ν)αwΠ
θw(1+ν)−1
w,t Kw,tφ7,t−1 − θw(1 + ν)αw∆w,t−1Π

θw(1+ν)−1
w,t φ8,t+

−θw(1 + ν)

θw − 1
(1− αw)p(Πw,t)

(1+νθw)
θw−1 pπ(Πw,t)φ8,t − Π−1

p,twR,t−1φ9,t = 0; (A.17)

that with respect to Fw,t is

−φ5,t + φ6,t − αwΠθw−1
w,t φ6,t−1 = 0; (A.18)

that with respect to Kw,t is

p(Πw,t)
1+νθw
θw−1 φ5,t + φ7,t − αwΠ

θw(1+ν)
w,t φ7,t−1 = 0; (A.19)

that with respect to wR,t is

0 = −φµpuy(Yt − Ḡ)Y φ
t Ā−φφ3,t − uy(Yt − Ḡ)Y φ

t Ā−φ∆p,tφ6,t

+φ9,t − βΠw,tΠ
−1
p,tφ9,t+1 (A.20)

We search for a solution to these first-order conditions in which Πp,t = Πw,t = Π̄,

∆p,t = ∆̄p, ∆w,t = ∆̄w, wR,t = w̄R, Yt = Ȳ at all times. A steady-state solution

of this kind also requires that the Lagrange multipliers take constant values. We

furthermore conjecture the existence of a solution in which Π̄ = 1, as stated in the

text. Note that such a solution implies that ∆̄p = ∆̄w = 1, p(Π̄p) = 1, p(Π̄w) = 1,

pπ(Π̄p) = −(θp − 1)αp/(1 − αp), pπ(Π̄w) = −(θw − 1)αw/(1 − αw) and K̄p = F̄p and

K̄w = F̄w. Using these substitutions, we find that (the steady-state version of) each of

the first-order conditions (A.11) – (A.20) is satisfied if the steady-state values satisfy

0 = Uy(Ȳ , 1, 1)− (1− τ̄)[uyy(Ȳ − Ḡ))Ȳ + uy(Ȳ − Ḡ))]φ2 +

+φµwµpĀ
−φ(1+ν)[φvhh(Ȳ

φ)Ȳ 2φ−1 + φvh(Ȳ
φ)Ȳ φ−1]φ2

(1− αpβ)φ4 = −U∆p(Ȳ , 1) + uy(Ȳ − Ḡ)Ā−φȲ φw̄Rφ6

−(1 + ν)µwvh(Ȳ
φ)Ā−φ(1+ν)Ȳ φφ6,

φ1 = (1− αp)φ2,
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φ3 = −φ2,

(1− αwβ)φ8 = −U∆w(Ȳ , 1, 1)

φ5 = (1− αw)φ6,

φ7 = −φ6

φ6 = φµpφ2

φ9 = 0

These equations can obviously be solved (uniquely) for the steady-state multipliers,

given any value Ȳ > 0 and w̄R > 0.

Similarly, (the steady-state versions of) the constraints (A.2) – (A.10) are satisfied

if

(1− τ̄)Ȳ 1−φ = φµpw̄RĀ−φ (A.21)

uy(Ȳ − Ḡ)Ā−φw̄R = µwvh(Ȳ
φ)Ā−φ(1+ν). (A.22)

Substituting (A.21) into (A.22) we can obtain

(1− τ̄)

φµpµw

uy(Ȳ − Ḡ)Ȳ = vh

((
Ȳ

Ā

)φ
) (

Ȳ

Ā

)φ

,

which can be solved for the steady-state value Ȳ . Then either (A.21) or (A.22) can

be solved to obtain the steady-state value w̄R given Ȳ .

A.2 A second-order approximation to utility (equations (2.30)

and (2.33))

We derive here equations (2.30) and (2.33) in the main text, taking a second-order

approximation to (equation (1.13)) following the treatment in Woodford (2003, chap-

ter 6). We start by approximating the expected discounted value of the sum of the

utilities of the households (the policy-objective function)

Ut0 = Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(ht(j); ξt)dj

]
. (A.23)

First we note that
∫ 1

0

v(ht(j); ξt)dj =
λ

1 + ν
H1+ν

t ∆w,tH̄
−ν
t = v(Ht; ξt)∆w,t
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where ∆w,t is the measure of price dispersion defined in the text. We can then write

(A.23) as

Ut0 = Et0

∞∑
t=t0

βt−t0 [u(Yt; ξt)− v(Ht; ξt)∆w,t] . (A.24)

The first term in (A.24) can be approximated using a second-order Taylor expan-

sion around the steady state defined in the previous section as

u(Yt; ξt) = ū + ūcỸt + ūξξt +
1

2
ūccỸ

2
t + ūcξξtỸt +

1

2
ξ′tūξξξt +O(||ξ||3)

= ū + Ȳ ūc · (Ŷt +
1

2
Ŷ 2

t ) + ūξξt +
1

2
Ȳ ūccŶ

2
t +

+Ȳ ūcξξtŶt +
1

2
ξ′tūξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ ūc + Ȳ 2ūcc]Ŷ

2
t − Ȳ 2ūccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ ūc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}
+

+t.i.p. +O(||ξ||3), (A.25)

where a bar denotes the steady-state value for each variable, a tilde denotes the

deviation of the variable from its steady-state value (e.g., Ỹt ≡ Yt−Ȳ ), and a hat refers

to the log deviation of the variable from its steady-state value (e.g., Ŷt ≡ ln Yt/Ȳ ).

We use ξt to refer to the entire vector of exogenous shocks,

ξ′t ≡
[

Ĝ gt qt τ̂ t h̄t at

]
,

in which Ĝt ≡ (Gt− Ḡ)/Y , gt ≡ Ĝt + sC c̄t, ω ≡ (φ− 1) + φν, ωqt ≡ νh̄t + φ(1 + ν)at,

τ̂ t ≡ (τ t − τ̄)/τ̄ , c̄t ≡ ln C̄t/C̄, at ≡ ln At/Ā, h̄t ≡ ln H̄t/H̄. Moreover, we use the

definitions σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Ȳ . We have used the Taylor expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3)

to get a relation for Ỹt in terms of Ŷt. Finally the term “t.i.p.” denotes terms that

are independent of policy, and may accordingly be suppressed as far as the welfare

ranking of alternative policies is concerned.
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We may similarly approximate v(Ht; ξt)∆w,t by

v(Ht; ξt)∆w,t = v̄ + v̄(∆w,t − 1) + v̄h(Ht − H̄) + v̄h(∆w,t − 1)(Ht − H̄) + (∆w,t − 1)v̄ξξt +

+
1

2
v̄hh(Ht − H̄)2 + (Ht − H̄)v̄hξξt +

1

2
ξ′tv̄ξξξt+O(||ξ||3)

= v̄(∆w,t − 1) + v̄hH̄

(
Ĥt +

1

2
Ĥ2

t

)
+ v̄h(∆w,t − 1)H̄Ĥt + (∆w,t − 1)v̄ξξt +

+
1

2
v̄hhH̄

2Ĥ2
t + H̄Ĥtv̄hξξt + t.i.p.+O(||ξ||3)

= v̄hH̄[
∆̂w,t

1 + ν
+ Ĥt +

1

2
(1 + ν)Ĥ2

t + ∆̂w,tĤt − νĤth̄t +

− ∆̂w,t

1 + ν
νh̄t] + t.i.p.+O(||ξ||3).

We take a second-order expansion of (1.20), obtaining

∆̂w,t = αw∆̂w,t−1 +
αw

1− αw

θw(1 + ν)(1 + νθw)
π2

w,t

2
+O(||ξ||3), (A.26)

from which it follows that ∆̂w,t is a second-order terms (since the equation can be

solved backward from date t0−1 and written showing ∆̂w,t as a function of t.i.p. and

quadratic terms). We now use (1.10) that in an exact form implies that

Ĥt = φ(Ŷt − at) + ∆̂p,t

We take a second-order expansion of (1.28), obtaining

∆̂p,t = αp∆̂p,t−1 +
αp

1− αp

θp(1 + ωp)(1 + ωpθp)
π2

p,t

2
+O(||ξ||3), (A.27)

from which it follows that also ∆̂p,t is a second-order term for the same reasons as

above. This implies that

Ĥ2
t = φ2(Ŷ 2

t − 2atŶt) +O(||ξ||3)
These results in turn allow us to approximate v(Ht; ξt)∆w,t

v(Ht; ξt)∆w,t = v̄hH̄φ

{
∆̂w,t

φ(1 + ν)
+ Ŷt +

∆̂p,t

φ
+

1

2
(1 + ν)φ(Ŷ 2

t − 2atŶt)− νŶth̄t

}
+

+t.i.p. +O(||ξ||3),

= (1− Φ)ūcȲ

{
∆̂w,t

1 + ω
+ Ŷt +

∆̂p,t

φ
+

1

2
(1 + ω)Ŷ 2

t − ωqtŶt

}
+

+t.i.p. +O(||ξ||3) (A.28)
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where we have used the steady state relation v̄hH̄φ = (1− Φ)ūcȲ where

Φ ≡ 1−
(

θp − 1

θp

)(
θw − 1

θw

)
(1− τ̄) < 1

measures the inefficiency of steady-state output Ȳ .

Combining (A.25) and (A.28), we finally obtain equation (2.30) in the text,

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆p∆̂p,t − u∆w∆̂w,t

+ t.i.p. +O(||ξ||3), (A.29)

where

uyy ≡ (ω + σ−1)− Φ(1 + ω),

uyξξt ≡ [σ−1gt + (1− Φ)ωqt],

u∆w ≡ (1− Φ)

1 + ω
,

u∆p ≡ (1− Φ)

φ
.

We finally observe that (A.26) and (A.27) can be integrated to obtain

∞∑
t=t0

βt−t0 ∆̂w,t =
αw

(1− αw)(1− αwβ)
θw(1+ν)(1+νθw)

∞∑
t=t0

βt−t0
π2

w,t

2
+t.i.p.+O(||ξ||3),

(A.30)
∞∑

t=t0

βt−t0 ∆̂p,t =
αp

(1− αp)(1− αpβ)
θp(1+ωp)(1+ωpθp)

∞∑
t=t0

βt−t0
π2

p,t

2
+t.i.p.+O(||ξ||3),

(A.31)

where πp,t ≡ ln Pt/Pt−1 and πw,t ≡ ln Wt/Wt−1.

By substituting (A.30) and (A.31) into (A.29), we obtain

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt −

1

2
uπpπ

2
p,t −

1

2
uπwπ2

w,t]

+t.i.p. +O(||ξ||3).
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This coincides with equation (2.33) in the text, where we have further defined

ξp ≡ (1− αpβ)(1− αp)

αp(1 + θpωp)
,

ξw ≡ (1− αwβ)(1− αw)

αw(1 + θpν)
,

uπp ≡ θp(1− Φ)

ξp

,

uπw ≡ θw(1− Φ)

ξwφ
.

A.3 A second-order approximation to the AS equations (equa-

tions (1.19) and (1.27))

Here we need to take approximations of two similar equations of the form

Γj,t ≡
(

1− αjΠ
θj−1
j,t

1− αj

)− 1+ωjθj
θj−1

=

(
Fj,t

Kj,t

)−1

for j = p,w. In what follows, ωw = ν. We show below that we can do it just once

and take care of the difference with some additional notation. We further re-define

the variables Fj,t and Kj,t as

Fj,t ≡ Et

{ ∞∑
T=t

(αjβ)T−tf j
t,T

}
,

Kj,t ≡ Et

{ ∞∑
T=t

(αjβ)T−tkj
t,T

}
,

with

f p
t,T ≡ (1− τT )C−σ̃−1

T C̄ σ̃−1

T YT P
1−θp

t,T , (A.32)

kp
t,T ≡ φµpC

−σ̃−1

T C̄ σ̃−1

T wR,T Y φ
T A−φ

T P
−θp(1+ωp)
t,T , (A.33)

fw
t,T ≡ C−σ̃−1

T C̄ σ̃−1

T Y φ
T A−φ

T ∆p,T wR,T W 1−θw
t,T (A.34)

kw
t,T ≡ λµwY

φ(1+ν)
T H̄−ν

t A
−φ(1+ν)
T ∆1+ν

p,T W
−θw(1+ν)
t,T (A.35)

where we have defined Pt,T ≡ Pt/PT , Wt,T ≡ Wt/WT . We can then obtain in an exact

log-linear form that

Γ̂j,t + F̂j,t = K̂j,t. (A.36)
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We take a second-order expansion of Fj,t and Kj,t, obtaining

F̂j,t +
1

2
F̂ 2

j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(f̂ j
t,T +

1

2
(f̂ j

t,T )2)

}

+O(||ξ||3), (A.37)

K̂j,t +
1

2
K̂2

j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(k̂j
t,T +

1

2
(k̂j

t,T )2)

}

+O(||ξ||3). (A.38)

Plugging (A.37) and (A.38) into (A.36), we obtain

Γ̂j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(k̂j
t,T − f̂ j

t,T )

}
+

+
(1− αjβ)

2
Et

{
+∞∑
T=t

(αβ)T−t((k̂j
t,T )2 − (f̂ j

t,T )2)

}
+

1

2
(F̂j,t − K̂j,t)(F̂j,t + K̂j,t) +O(||ξ||3). (A.39)

We note that in an exact log-linear form

k̂p
t,T − f̂p

t,T = −(1 + ωpθp)P̂t,T + ŵR,T + φ(ŶT − aT )− ŶT − ŜT ,

k̂w
t,T − f̂w

t,T = −(1 + νθw)Ŵt,T + φνŶT − νhT − φνaT + ν∆̂p,T − ŵR,T

+σ̃−1(ĈT − c̄T ),

where Ŝt ≡ ln(1− τ t)/(1− τ̄).

Furthermore we obtain that

k̂p
t,T + f̂p

t,T = (1 + φ)ŶT − φaT + (1− 2θp − ωpθp)P̂t,T + ŜT − 2σ̃−1(ĈT − c̄T ) + ŵR,T

= Xp,T + (1− 2θp − ωpθp)P̂t,T ,

k̂w
t,T + f̂w

t,T = φ(2 + ν)ŶT + (2 + ν)∆̂T − νh̄T − φ(2 + ν)aT + ŵR,T +

(1− 2θw − νθw)Ŵt,T − σ̃−1(ĈT − c̄T )

= Xw,T + (1− 2θw − νθw)Ŵt,T ,
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where we have defined

Xp,T ≡ (1 + φ)ŶT − φaT + ŜT − 2σ̃−1(ĈT − c̄T ) + ŵR,T .

Xw,T ≡ φ(2 + ν)ŶT + (2 + ν)∆̂T − νht − φ(2 + ν)at + ŵR,T − σ̃−1(ĈT − c̄T ).

We can then substitute into (A.39) and get

1

(1− αβ)
Γ̂j,t = −1

2
Γ̂j,tZj,t + Et

+∞∑
T=t

(αjβ)T−t(k̂j
t,T − f̂ j

t,T ) +

+
1

2
Et

+∞∑
T=t

(αjβ)T−t[(k̂j
t,T − f̂ j

t,T )][Xj,T + (1− 2θj − ωjθj)P̂
j
t,T ] +

+O(||ξ||3), (A.40)

where we use the definition P̂w
t,T = Ŵt,T and

Zj,t ≡ Et

+∞∑
T=t

(αjβ)T−t[Xj,T + (1− 2θj − ωjθj)P̂
j
t,T ].

By using (A.40), and defining

zj,T ≡ k̂j
t,T − f̂ j

t,T + (1 + ωjθj)P̂
j
t,T ,

we can write

Γ̂j,t

(1− αjβ)
= zj,t +

αjβ

(1− αjβ)
Et(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)−

1

2
Γ̂j,tZj,t +

1

2
αjβEtΓ̂j,t+1Zj,t+1 +

+
1

2
zj,tXj,t +

αjβ

2
Et{

+∞∑
T=t+1

(αjβ)T−t−1(1 + ωjθj)(1− 2θj − ωjθj)(−P̂ j2
t,t+1 +

−2P̂ j
t,t+1P̂

j
t+1,T )− (1 + ωjθj)P̂

j
t,t+1Xj,T + (1− 2θj − ωjθj)P̂

j
t,t+1zj,T}+O(||ξ||3),

which can be simplified to

Γ̂j,t

(1− αjβ)
= zj,t + αjβ

1

(1− αjβ)
Et(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1) +

1

2
zj,tXj,t +

−1

2
Γ̂j,tZj,t +

1

2
αjβEt{(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)Zj,t+1}

+
αjβ

2(1− αjβ)
(1− 2θj − ωjθj)Et{(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)P̂

j
t,t+1}+

+O(||ξ||3), (A.41)
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We next take a second-order expansion of Γ̂j,t

Γ̂j,t

(1 + ωjθj)
=

αj

1− αj

πj,t − 1− θj

2

αj

(1− αj)2
π2

j,t +O(||ξ||3), (A.42)

and note that and P̂ j
t−1,t = −πj,t. We can then plug (A.42) into (A.41) obtaining

πj,t =
1− θj,t

2

1

(1− αj)
π2

j,t + ξjzj,t + βEtπj,t+1 − 1− θj

2

αjβ

(1− αj)
Etπ

2
j,t+1

+
1

2
ξjzj,tXj,t − 1

2
(1− αjβ)πj,tZj,t +

β

2
(1− αjβ)Et{πj,t+1Zj,t+1}

−β

2
(1− 2θj − ωjθj)Et{π2

j,t+1}+O(||ξ||3). (A.43)

By integrating equation (A.43) forward from time t0 we can finally obtain

Vj,t0 = ξjEt0

∞∑
t=t0

βt−t0zj,t +
1

2
ξjEt0

∞∑
t=t0

βt−t0zj,tXj,t

+
θj(1 + ωj)

2
Et0

∞∑
t=t0

βt−t0π2
j,t +O(||ξ||3), (A.44)

where

Vj,t0 ≡ πj,t0 −
1− θj

2(1− αj)
π2

j,t0
+

(1− αjβ)

2
πj,t0Zj,t0 +

θj(1 + ωj)

2
π2

j,t0

and

Zj,t = Xj,t − αjβ

1− αjβ
(1− 2θj − ωjθj)Etπj,t+1 + αjβEtZj,t+1.

Finally, we can take a second-order approximation of the relation between output

and consumption Yt = Ct + Gt obtaining

Ĉt = s−1
C Ŷt − s−1

C Ĝt +
s−1

C (1− s−1
C )

2
Ŷ 2

t + s−2
C ŶtĜt + s.o.t.i.p. +O(||ξ||3), (A.45)

while

Ŝt = −ωτ τ̂ t + s.o.t.i.p. +O(||ξ||3), (A.46)

where ωτ ≡ τ̄ /(1 − τ̄). By substituting (A.45) and (A.46) into the definition of zj,t

and Zj,t in (A.43), we finally obtain a quadratic approximation to the AS relations.
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For the price constraint we obtain.

Vp,t0 = ξpEt0

∞∑
t=t0

βt−t0 [(φ− 1)Ŷt − φat + ŵR,t + ωτ τ̂ t]

+
1

2
ξpEt0

∞∑
t=t0

βt−t0{[φ2 − 1− 2σ−1(φ− 1)]Ŷ 2
t + 2[φ− σ−1]ŵR,tŶt + ŵ2

R,t}

+ξpEt0

∞∑
t=t0

βt−t0{[σ−1gt − φat]ŵR,t + [φ(σ−1 − φ)at + σ−1(φ− 1)gt + (1− σ−1)ωτ τ̂ t]Ŷt}

+
θp(1 + ωp)

2
Et0

∞∑
t=t0

βt−t0π2
p,t + s.o.t.i.p. +O(||ξ||3), (A.47)

This can be expressed compactly in the form

Vp,t0 = Et0

∞∑
t=t0

βt−t0ξp(c
′
p,xxt + cp,ξξt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t)

+s.o.t.i.p. +O(||ξ||3) (A.48)

or as

Vp,t = ξp(c
′
p,xxt + cp,ξξt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t) + βEtVp,t+1

+s.o.t.i.p. +O(||ξ||3) (A.49)

where we have defined

c′p,x ≡
[

(φ− 1) 1
]

cp,ξξt ≡ −φat + ωτ τ̂ t,

Cp,xx ≡
[

φ2 − 1− 2σ−1(φ− 1) φ− σ−1

φ− σ−1 1

]

Cp,xξ ≡
[

0 −σ−1(φ− 1) 0 −(1− σ−1)ωτ 0 0 −φ(σ−1 − φ)

0 −σ−1 0 0 0 0 φ

]

cp,π ≡ θp(1 + ωp)

ξp
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and

Vp,t = πp,t +
1

2
vπpπ

2
p,t + vp,zπp,tZp,t,

Zp,t = zp,yŶt + zp,rŵR,t + zπpπp,t + zp,ξξt + αpβEtZp,t+1,

in which the coefficients are defined as

vp,π ≡ θp(1 + ωp)− 1− θp

(1− αp)
, vp,z ≡ (1− αpβ)

2
,

vp,k ≡
ξpαp

1− αpβ
(1− 2θp − ωpθp),

zp,y ≡ (1 + φ− 2σ−1) + vp,k(ω + σ−1)

zp,r ≡ (1 + vp,k)

zp,ξξt ≡ 2σ−1gt − φ(1 + vp,k)at − ωτ (1− vp,k)τ̂ t,

zp,π ≡ −vp,k

ξp

.

Note that in a first-order approximation, (A.49) can be written simply as

πp,t = ξp[(φ− 1)Ŷt + ŵR,t + cp,ξξt] + βEtπp,t+1. (A.50)

We can also write (A.48) as

Vt0 = Et0

∞∑
t=t0

βt−t0ξp(c
′
p,xxt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t)

+t.i.p. +O(||ξ||3), (A.51)

where the term cξξt is now included in terms independent of policy. (Such terms

matter when part of the log-linear constraints, as in the case of (A.50), but not when

part of the quadratic objective.)
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For the wage constraint we obtain that

Vw,t0 = ξwEt0

∞∑
t=t0

βt−t0 [(φν + σ−1)Ŷt − ŵR,t − φνat − σ−1gt − νht]

+
1

2
ξwEt0

∞∑
t=t0

βt−t0{[(φ(2 + ν)− σ−1)(φν + σ−1)) + σ−1(1− s−1
C )]Ŷ 2

t

−2[φ− σ−1]ŵR,tŶt − ŵ2
R,t}

+ξwEt0

∞∑
t=t0

βt−t0 [−σ−1gt + φat]ŵR,t +

+ξwEt0

∞∑
t=t0

βt−t0 [σ−1(σ−1 − φ)gt − φν(1 + ν)ht + σ−1s−1
C Ĝt]Ŷt

−ξwEt0

∞∑
t=t0

βt−t0φ[2φν + φν2 + σ−1]atŶt +
θw(1 + ν)

2
Et0

∞∑
t=t0

βt−t0π2
w,t

+
θpν(1 + ωp)ξw

ξp

Et0

∞∑
t=t0

βt−t0π2
p,t + s.o.t.i.p. +O(||ξ||3),

This can be expressed compactly in the form

Vw,t0 = Et0

∞∑
t=t0

βt−t0ξw(c′w,xxt + cw,ξξt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t)

+s.o.t.i.p. +O(||ξ||3) (A.52)

or as

Vw,t = ξw(c′w,xxt + cw,ξξt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t) + βEtVw,t+1

+s.o.t.i.p. +O(||ξ||3) (A.53)

where we have defined

c′w,x ≡
[

φν + σ−1 −1
]

cw,ξξt ≡ −φνat − σ−1gt − νht,

Cw,xx ≡
[

(φ(2 + ν)− σ−1)(φν + σ−1) + σ−1(1− s−1
C ) −(φ− σ−1)

−(φ− σ−1) −1

]
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Cw,xξ ≡
[
−σ−1s−1

C −σ−1(σ−1 − φ) 0 0 φν(1 + ν) φ[2φν + φν2 + σ−1]

0 σ−1 0 0 0 −φ

]

cw,πw ≡
θw(1 + ν)

ξw

cw,πp ≡
θpν(1 + ωp)

ξp

and

Vw,t = πw,t +
1

2
vw,ππ2

w,t + vw,zπw,tZw,t,

Zw,t = zw,yŶt + zw,rŵR,t + zw,ππw,t + zw,ξξt + αwβEtZw,t+1,

in which the coefficients are defined as

vw,π ≡ θw(1 + ωw)− 1− θw

(1− αw)
, vw,z ≡ (1− αwβ)

2
,

vw,k ≡ αwξw

1− αwβ
(1− 2θw − νθw),

zw,y ≡ φ(2 + ν)− σ−1 + vw,k(φν + σ−1)

zw,ξξt ≡ σ−1(1− vw,k)gt − ν(1 + vw,k)h̄t − [φ(2 + v) + φνvw,k]at,

zw,π ≡ −vw,k

ξw

.

Note that in a first-order approximation, (A.53) can be written as simply

πw,t = ξw[(φν + σ−1)Ŷt − ŵR,t − φνat − σ−1gt − νht] + βEtπw,t+1. (A.54)

We can also write (A.52) as

Vw,t0 = Et0

∞∑
t=t0

βt−t0ξw(c′w,xxt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t)

+t.i.p. +O(||ξ||3). (A.55)

We can add (A.51) and (A.55) to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0(Ŷt +
1

2
cyyŶ

2
t − Ŷtcyξξt +

1

2
cπwπ2

w,t +
1

2
cπpπ

2
p,t) + t.i.p. +O(||ξ||3)
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which is equation (2.34) in the text, where now

cyy ≡ 2 + ω − σ−1 + σ−1(1− s−1
C )(ω + σ−1)−1

cyξξ ≡ (ω + σ−1)−1[−σ−1s−1
C Ĝt + (1− σ−1)σ−1gt + ω(1 + ω)qt − ωτ (1− σ−1)τ̂ t]

cπw ≡
θw(1 + ν)

ξw(ω + σ−1)

cπp ≡
θp(1 + ω)

ξp(ω + σ−1)

and

Vt ≡ Vw,t

ξw(ω + σ−1)
+

Vp,t

ξp(ω + σ−1)

A.4 Derivation of equation (2.37)

We can multiply equation (2.36) by ΦȲ ūc and subtract from (2.30) to obtain

Ut0 = −Ȳ ūcEt0

∞∑
t=t0

βt−t0

{
1

2
qyŶ

2
t − Ŷt(uyξξt + Φcyξξt) +

1

2
qpπ

2
p,t +

1

2
qwπ2

w,t

}
+

+Tt0 + t.i.p. +O(||ξ||3),

where

qp ≡ uπp + Φcπp

=
θp(1− Φ)

ξp

+ Φ
θp(1 + ω)

ξp(ω + σ−1)

=
θp

ξp(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)],

qw ≡ uπw + Φcπw

=
θw(1− Φ)

φξw

+ Φ
θw(1 + ν)

ξw(ω + σ−1)

=
θw

ξwφ(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)],

qy ≡ uyy + Φcyy

= (ω + σ−1)− Φ(1 + ω) + Φ(2 + ω − σ−1) + Φσ−1(1− s−1
C )(ω + σ−1)−1

= (ω + σ−1) + Φ(1− σ−1) +
Φσ−1(1− s−1

C )

ω + σ−1
.
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This can be rewritten in the form (2.37) given in the text, where

Ŷ ∗
t ≡ q−1

y [uyξξt + Φcyξξt]

= q−1
y {σ−1gt + (1− Φ)ωqt + (ω + σ−1)−1Φ[−σ−1s−1

C Ĝt + σ−1(1− σ−1)gt + ω(1 + ω)qt

−ωτ (1− σ−1)τ̂ t]}
= ω1Ŷ

n
t − ω2Ĝt + ω3τ̂ t,

and Ω, Ŷ n
t , and the ωi are defined as in the text.

A.5 Determinacy conditions

Consider the first-order conditions

qyxt = κpϕp,t + κwϕw,t, (A.56)

qpπp,t = −(ϕp,t − ϕp,t−1)− ϕr,t, (A.57)

qwπw,t = −(ϕw,t − ϕw,t−1) + ϕr,t, (A.58)

ξpϕp,t − ξwϕw,t − ϕr,t + βEtϕr,t+1 = 0, (A.59)

and the structural equations

πp,t = κpxt + ξp(ω̂R,t − ω̂n
t ) + up,t + βEtπp,t+1, (A.60)

πw,t = κwxt − ξw(ω̂R,t − ω̂n
t ) + uw,t + βEtπw,t+1, (A.61)

ω̂R,t = ω̂R,t−1 + πw,t − πp,t. (A.62)

We can substitute equations (A.56), (A.57), (A.58), (A.59) and (A.62) into (A.60) to

obtain

βqwqyEtϕp,t+1 = [qwqy(1 + β) + qpqwκ2
p + 2qwqyξp]ϕp,t +

−[qwqy + qwqyξp]ϕp,t−1 + qpqyξpϕw,t−1 +

+[qwqpκwκp − ξwqyqw − ξpqyqp]ϕw,t − qpqwqyξpω̂
n
t +

+qpqwqyup,t + qyξpqpqwω̂R,t−1 + qyξp(qp + qw)ϕr,t (A.63)
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We can substitute equations (A.56), (A.57), (A.58), (A.59) and (A.62) into (A.61) to

obtain

βqpqyEtϕw,t+1 = [qpqy(1 + β) + qpqwκ2
w + 2qpqyξw]ϕw,t +

−[qpqy + qpqyξw]ϕw,t−1 + qwqyξwϕp,t−1 +

+[qpqwκwκp − ξpqyqp − ξwqyqw]ϕp,t + qpqwqyξwω̂n
t

+qpqwqyuw,t − qyξwqpqwω̂R,t−1 + qyξw(qp + qw)ϕr,t, (A.64)

Substitution of (A.57) and (A.58) yields

qwqpω̂R,t = qwqpω̂R,t−1 + qw(ϕp,t − ϕp,t−1)− qp(ϕw,t − ϕw,t−1)

+(qp + qw)ϕr,t (A.65)

finally (A.59) implies

βEtϕr,t+1 = ϕr,t + ξwϕw,t − ξpϕp,t, (A.66)

We can write the set of the above conditions (A.64), (A.63), (A.65), (A.66) in the

following system

AEtzt+1 = Bzt + Cυt (A.67)

where

z′t ≡ [ϕp,t ϕw,t ϕr,t ω̂R,t−1 ϕp,t−1 ϕw,t−1],

and

υ′t ≡ [ω̂n
t up,t uw,t],

and

A ≡




βqwqy 0 0 0 0 0

0 βqpqy 0 0 0 0

0 0 β 0 0 0

0 0 0 qwqp 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,

B ≡




b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

−ξp ξw 1 0 0 0

qw −qp (qp + qw) qwqp −qw qp

1 0 0 0 0 0

0 1 0 0 0 0




,
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b11 ≡ [qwqy(1 + β) + qpqwκ2
p + 2qwqyξp],

b12 ≡ [qwqpκwκp − ξwqyqw − ξpqyqp],

b13 ≡ qyξp(qp + qw),

b14 ≡ qyξpqpqw,

b15 ≡ −[qwqy + qwqyξp],

b16 ≡ qpqyξp,

b21 ≡ [qpqwκwκp − ξpqyqp − ξwqyqw],

b22 ≡ [qpqy(1 + β) + qpqwκ2
w + 2qpqyξw],

b23 ≡ qyξw(qp + qw),

b24 ≡ −qyξwqpqw,

b25 ≡ qwqyξw,

b26 ≡ −[qpqy + qpqyξw],

C ≡




−qpqwqyξp qpqwqy 0

qpqwqyξw 0 qpqwqy

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




.

The determinacy of the equilibrium depends on the roots of the characteristic equation

associated with the system (A.67)

det(B − µA) = 0.

Rational-expectations equilibrium is determinate if the number of roots µi such that

|µi| < 1 is exactly equal to the number of predetermined variables which in our case

is three. Under this condition, we can solve the above system in the following way.

Consider as V the matrix of the left eigenvector associated with the roots of the

characteristic polynomial which are above the unit circle. The matrix V has the
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property that V B = ΦV A, where Φ is a diagonal matrix that contains the roots µi

such that |µi| > 1. By premultiplying (A.67) by V we obtain

Etkt+1 = Φkt + V Cυt (A.68)

where we have defined kt ≡ V Azt. A unique and stable solution for {zt} can be

obtained by

zt = −Et

∞∑
j=0

Φ−(j+1)V Cυt+j.

We can partition V A as V A = [(V A)1 (V A)2] according to the non-predetermined

and predetermined endogenous variables in zt = [z1,t z2,t−1] and we can obtain

(V A)1z1,t + (V A)2z2,t = −Et

∞∑
j=0

Φ−(j+1)Cυt+j,

which can be solved (under conditions of invertibility on V A1) as

z1,t = −(V A)−1
1 (V A)2z2,t−1 − (V A)−1

1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j (A.69)

We note that we can partition the system (A.67) in the following way

[
A1 0

0 A4

]
Et

(
z1,t+1

z2,t

)
=

[
B1 B2

B3 B4

](
z1,t

z2,t−1

)
+

[
C1

C2

]
υt

We can then substitute (A.69) into the lower block of the above system to obtain

z2,t = A−1
4 (B4−B3(V A)−1

1 (V A)2)z2,t−1+A−1
4 C2υt−A−1

4 B3(V A)−1
1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j

(A.70)

Using (A.69) and (A.70) and (A.56), (A.57), (A.58) and (A.62) we can obtain the

optimal path for {xt, πp,t, πw,t, ω̂R,t}.
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