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ABSTRACT

Productivity spillovers are often cited as a reason for geographic specialization in production. A large

literature in medicine documents specialization across areas in the use of surgical treatments, which

is unrelated to patient outcomes. We show that a simple Roy model of patient treatment choice with

productivity spillovers can generate these facts. Our model predicts that high-use areas will have

higher returns to surgery, better outcomes among patients most appropriate for surgery, and worse

outcomes among patients least appropriate for surgery. We find strong empirical support for these

and other predictions of the model, and decisively reject alternative explanations commonly

proposed to explain geographic variation in medical care.
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I. Introduction  

Since Marshall (1890), economists have used the concept of productivity spillovers in 

production to rationalize the agglomeration of industries in certain parts of the country – software 

in Silicon Valley, furniture in North Carolina, and biotechnology in Cambridge, Massachusetts.1  

For Marshall, these spillovers arise from workers learning from other workers who have the 

specialized knowledge, although there are alternative mechanisms, such as the selective migration 

of inputs that favor one sector, that can generate productivity spillovers. Regardless of the precise 

mechanism, area specialization tends to be self reinforcing: the specialization of production 

increases the productivity of all local firms in that sector, further encouraging firms to specialize.  

Thus, small differences in local conditions can result in large differences in specialization and 

productivity, emphasizing the importance of path dependence and the potential “lock-in” of 

historical events (Arthur, 1989).  

In this paper we derive testable empirical implications of productivity spillovers in an 

equilibrium model of specialization based on a prototypical Roy model. In our generalized Roy 

model, regions specialize between two sectors. As the proportion of workers in an area that are 

employed in one sector increases, productivity spillovers increase the productivity for all workers 

in that sector, while simultaneously reducing productivity in the competing sector.  Thus, this 

model naturally generates higher returns to working in a specialized sector, yet does not 

necessarily generate any relationship between specialization and overall productivity (because of 

the negative externality on workers in the competing sector). If there is limited mobility across 

areas, the productivity spillovers can generate multiple-equilibria with different rates of 

specialization across areas, and where a high degree of specialization in equilibrium is not 

necessarily related to overall productivity of the area.  

We test the equilibrium implications of the Roy model with productivity spillovers in the 

context of the treatment of heart attacks.  There are three reasons that the treatment of heart attacks 

is a particularly useful application for thinking about geographic productivity spillovers.  First, 

markets for heart attack treatment are geographically distinct. The acute nature of this condition 

requires immediate treatment and generally precludes a patient from traveling long distances to 

seek care. Therefore, mobility is limited and it is possible to observe production in many distinct 

                                                 
1 For example, Zucker et al. (1988) link the timing of entry and location of biotechnology firms to 
the presence of academics that publish in basic science journals, while Jaffe et al. (1993) 
document that inventors tend to cite patents that were developed in the same geographic region.  
In medical care, there is a large literature on knowledge spillovers beginning with Coleman, Katz 
and Menzel (1957) who found that doctors who were more integrated with colleagues were the 
first to adopt a new drug. More broadly, Acemoglu and Angrist (2000) and Moretti (2003, 
2004a,b) find evidence of human capital externalities on wages and productivity.  
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local markets.  Second, the treatment of heart attacks is characterized by the choice between two 

competing interventions—intensive management characterized by the use of surgical or invasive 

interventions, and non-intensive management characterized by the use of drugs and other non-

invasive interventions. Some geographic areas specialize in the intensive management of heart 

attacks, while others specialize in non-intensive management.  Finally, unlike other markets, 

neither production choice can completely dominate a market because some patients are always 

more appropriate for a particular intervention (for example, 95 year old patients do not benefit 

from surgery, and must be treated non-invasively).  Thus, the productivity of both intensive and 

non-intensive management can be observed in all markets. 

Understanding geographic variations in medical care is of interest in its own regard. 

Beginning with the work of Sir Allison Glover who documented significant variation in 

tonsillectomy rates across areas in the United Kingdom [Glover (1938)], an enormous body of 

literature in economics and medicine has documented variations in the use of intensive treatments 

(that is surgical or technologically intensive treatments) across comparable locales. Traditional 

explanations such as sampling variation, differences in income and insurance, patient-preferences, 

and underlying health status do not explain these variations.2 Surprisingly, the use of more 

intensive procedures is not associated with improved satisfaction, outcomes, or survival but is 

associated with significantly higher costs. (Fisher et al., 2003a,b and Baicker and Chandra 

(2004a,b).3 These facts stand in sharp contrast to the results of Randomized Clinical Trials (RCT) 

that consistently find gains from the surgical management of acute conditions that are routinely 

interpreted as evidence in support of more intensive management of patients.4  These apparently 

conflicting findings can potentially be explained by a model of diminishing returns. Whereas 

RCTs are performed on a group of patients most likely to benefit from the intervention, the lack of 

a cross-sectional relationship between intensity and outcomes is explained by a “flat of the curve” 

argument, where physicians perform the intervention until the marginal return is zero. Indeed, this 

is the interpretation that is used by McClellan et.al (1994) and McClellan and Newhouse (1997), 

                                                 
2 Phelps (2000) provides an economists perspective of the immense literature on geographic 
variation in physician practice style. The medical literature on this topic is succinctly summarized 
in Chassin et. al (1987), Fisher et al (1994), Baicker and Chandra (2004a, 2004b) and the 
Dartmouth Atlas of Health Care [Wennberg  and Cooper  (1999) and Wennberg and Birkmeyer 
(2000)]. 
3 Similar observations have been made by comparing treatments and outcomes in the US and 
Canada. See Cutler (2002) for a review of this literature.  

 4 See for example, Anderson et.al (2003) and Jacobs (2003). A review of over 23 trials by Keeley, 
Boura and Grines (2003) noted the demonstrated superiority of the intensive intervention over 
fibrionic therapy.  



 3

to explain the small returns from more intensive treatments for heart attacks. Likewise, in the 

medical literature, Fisher et al. (2003b) argue that a 30 percent reduction in Medicare spending 

(such that spending in high use regions is reduced to that of low intensity areas) would not have 

any deleterious effects on patient outcomes or satisfaction. 

While the diminishing returns model is intuitively appealing, it has a number of problems. 

First, there is no reason to expect wide variation in the use of treatments across areas that are 

similar, without making additional assumptions such as area norms or supplier-induced demand. 

Second, such models predict a positive relationship between usage and outcomes unless all areas 

are in the range of zero marginal benefits.  A more fundamental problem with the diminishing 

returns model is that it predicts that the marginal benefit from more intensive patient treatment is 

lower in areas that are more aggressive.  But US-Canada comparisons using IV methods (Beck et 

al., 2003) and time-series comparisons (Pilote, McClellan, et al., 2003) suggest the opposite: the 

marginal benefit from more technologically intensive treatment in heart attack patients is larger in 

the US, where management of heart attacks is much more aggressive. As we discuss in the next 

section, these stylized facts are completely consistent with a model that incorporates productivity 

spillovers.  

We organize our paper as follows. In Section II, we generalize a prototypical Roy model 

of specialization to allow for productivity spillovers, and derive a wide range of testable 

predictions of this model. Two of these predictions are consistent with other models, but others are 

unique to the Roy model with productivity spillovers. In Section III we describe our data and 

estimation strategy.  Section IV tests the implications of the model using chart-data from the CCP 

on a sample of Medicare beneficiaries who had a heart attack. Section V concludes and discusses 

the policy implications of our work including its implications for the interpretation of randomized 

clinical trials. In the data appendix to this paper we describe the precise details of our estimation 

sample.  

 

II. A Roy Model of Heart Attack Treatment with Productivity Spillovers 

 We consider a simple Roy model of patient treatment choice in the presence of 

productivity spillovers.  In this model, an individual patient chooses between two alternative 

treatments: intensive intervention (denoted s, since this treatment path usually involves surgery) 

versus non-intensive management (denoted m, since this option emphasizes medical 

management).  The physician chooses the treatment option that maximizes expected utility, based 

on the expected survival rate (Survivals, Survivalm) associated with each option. The survival rate 

from a given treatment option depends on patient characteristics (Z), but is also positively related 

to the fraction of all patients that receive the same treatment (Ps, Pm=1-Ps).  Thus, a patient’s 
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choice of a specific treatment has a positive productivity externality on all other patients receiving 

the same treatment.5   

 More formally, conditional on the fraction of patients receiving the treatment, let the 

survival rate associated with each treatment option take the simple form: 

(1) Survivali  =  βiZ  + αiPi, + εi  for i=s,m. 

The first term (βiZ) represents an index of how appropriate a given patient is for each treatment 

based on medically relevant characteristics (Z). The second term (αiPi) captures the productivity 

spillover, which is positive if α>0: area specialization in a given treatment improves survival for 

all patients receiving that treatment. The final term (εi) represents factors that influence survival 

and which are known to the patient (or physician) at the time of choosing a treatment option but 

unobserved to the econometrician.  

An individual patient receives the intensive treatment only if the survival benefit is 

positive. Therefore, the probability that an individual patient receives the intensive treatment is 

given by: 

(2) Pr{intensive treatment} = Pr{ (Survivals - Survivalm) > 0 }  

=  Pr{ (αs+αm)Ps - αm + (βs-βm)Z > (εs - εm) }. 

Among the patients that choose the intensive treatment, the expected survival benefit is given by:  

(3)  E[(Survivals - Survivalm)|intensive treatment]  

=  (βs-βm)Z  + (αs+αm)Ps - αm. + E[(εs - εm)|intensive treatment]. 

Thus, the expected survival benefit among patients receiving the intensive treatment (the treatment 

on the treated) depends on a patient’s relative appropriateness for the treatment, the proportion of 

all patients that receive the intensive treatment, and a term representing the selection effect.  

 Equations (1)-(3) represent a standard Roy model except that, in equilibrium, Ps must be 

equal to the proportion of patients choosing the intensive treatment according to equation (2).  

Assuming that both Z and ε vary in the population, this implies the following equilibrium 

condition must hold: 

(4) Ps   =  EZ [Pr{ (αs+αm)Ps - αm + (βs-βm)Z > (εs - εm) }] 

  ≡  G(Ps). 

Thus, equilibrium in this model is defined as a solution to equation (4) (a fixed point).  In other 

words, in equilibrium the proportion of patients choosing the intensive treatment must generate 

                                                 
5 This feature is similar to how network externalities are modeled by Katz and Shapiro (1985, 
1986). An alternative model, that we estimate and reject (see Table 8), uses: Survivali  =  βiZ  + 
αiNi, + εi  for i=s,m. Here, N is the number of patients in an area that receive the ith treatment. This 
alternative model predicts that larger areas are better at the use of both interventions.  
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survival benefits to intensive treatment that are consistent with this proportion actually choosing 

the treatment.  For example, if half of patients choose surgery but this generates survival benefits 

such that fewer than half of all patients would actually choose surgery, then surgery rates will 

decline until they reach an equilibrium value. 

 This simple model has a number of very strong empirical implications.  First, as 

illustrated in Figure 2, Equation (4) can generate variation across areas in the proportion of 

patients receiving the intensive treatment for two different reasons.  For a given distribution of 

patients (which fixes the function G), there can be multiple equilibria because of the productivity 

spillovers.  For example, panel A illustrates a situation with two equilibria:  An intensive 

equilibrium in which most patients receive surgical treatment and the returns to this treatment are 

high, and a non-intensive equilibrium in which few patients receive surgical treatment and the 

returns to this treatment are low (the middle point crossing point represents an unstable 

equilibrium).  Alternatively, differences across areas in the distribution of patients (which changes 

the function G) will also lead to different equilibria.6  For example, panel B illustrates a situation 

in which most of the patients in one area are more appropriate for surgery leading to an intensive 

equilibrium, while most of the patients in the non-intensive area are not appropriate for surgery.  

Even in the single equilibrium scenario the productivity spillover increases the differences across 

areas: Having more surgically appropriate patients in an area (a shift upward in G) increases the 

return to surgical treatment for other patients, which in turn leads to a further increase in surgery 

(a move to the right along G).  Thus, small differences in the distribution of patients can 

potentially generate large equilibrium differences in specialization across areas. 

A second empirical implication of the model that follows immediately is that identical 

patients will be more likely to be treated intensively in an area where more patients are appropriate 

for intensive management of the heart-attack (based on Z). Any shift in the distribution of patients 

(Z) that results in a higher proportion being treated surgically (Ps) results in a higher probability of 

choosing surgery for each patient as a direct consequence of Equation (2).  This implication is 

similar to that tested by Goolsbee and Klenow (2002) for individuals’ purchase of home 

computers: Preferences of the population have spillovers on the choice of an individual.  While 

this implication of the model is always true in the single equilibrium case, it may not hold in the 

multiple equilibrium case if a shift in the distribution of Z affects the choice among the 

equilibrium.  Unfortunately, our model is silent on what determines the choice among multiple 

equilibria.  

                                                 
6 Arthur (1989) emphasizes the importance of “lock-in” by historical events. In our application, 
two regions might have differed in terms of their distribution of initial patient types. This 
difference is what caused the choice of present specialization. 
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A number of additional implications of the model are illustrated in Figure 3.  For 

simplicity, we ignore unobserved patient characteristics (ε) in this figure in order to focus on the 

intuition of the model; under standard regularity assumptions about ε (see Heckman and Honore 

(1990)) this results in no loss of generality, but significantly simplifies the exposition. The top 

panel plots survival as a function of a patient’s appropriateness for intensive management (which 

depends on Z) for each of the two treatment options (intensive and non-intensive).  Patients to the 

left of the intersection of these two curves are treated non-intensively, while patients to the right 

are treated intensively.  Patients further to the right are both more likely to receive intensive 

treatment, and experience higher returns to the treatment if treated.  Thus, the model predicts that 

the return to surgery (treatment on the treated) is highest among patients with the highest 

probability of treatment.   

The bottom panel of Figure 3 illustrates four additional implications of the model by 

comparing these survival curves between intensive and non-intensive areas.  First, the quality of 

non-intensive management is worse in areas that are intensive.  Thus, there should be a negative 

relationship between the proportion of patients that receive surgically intensive treatment and 

indicators of the quality of care for patients treated medically – i.e., intensive surgical treatment 

crowds out good medical management.  A second implication of the model follows directly: In 

intensive areas survival will be higher among patients that are most appropriate for intensive 

management, but lower among patients that are more appropriate for medical management.  In 

other words, the areas’ specialization in intensive management helps patients that are appropriate 

for this type of care but hurts patients who require less intensive management.  For example, to the 

extent that age is a crude proxy for requiring less intensive management, our model predicts that 

very-old patients are worse off being in an intensive area, while those who are younger benefit 

from their areas’ specialization on the intensive margin. On net, however, overall mortality may be 

higher or lower in surgically intensive areas. 

A third implication of our model is that the marginal patients receiving the intensive 

treatment in intensive areas will be less appropriate for the treatment than the average patient 

receiving the intensive treatment.  As shown in the top panel of Figure 3, patients are given the 

intensive surgical treatment if their appropriateness is above the point where the medical and 

surgical survival curves intersect.  As seen in the bottom panel of Figure 3, this intersection is at a 

lower appropriateness level in intensive areas. Therefore, the additional patients receiving the 

intensive treatment in these surgically intensive areas are less appropriate than the patients 

receiving the intensive treatment in non-intensive areas. 

A final implication of our model is that among those receiving intensive treatment, the 

survival benefit in the surgically intensive area is larger than the survival benefit in the medically 
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intensive area.  In other words, the treatment effect on the treated will be larger in more intensive 

areas.  As can be seen in the bottom panel of Figure 3, this higher return is the net result of higher 

survival if patients are treated intensively and lower survival if patients are treated medically in the 

surgically intensive areas.  Thus, the high return to intensive treatment in surgically intensive areas 

is the result of both a positive productivity externality on intensive treatment and a negative 

productivity externality on medical treatment. 

Many of these implications would not be predicted in a model that does not allow for 

productivity spillovers.  For example, the flat-of-the-curve argument suggests a model in which 

the survival return to intensive treatment for a given patient is the same everywhere. In this model, 

the higher treatment rates in some areas might be the result of excess capacity or financial 

incentives that lower the cost of providing intensive care and encourage the treatment of patients 

who receive little benefit.  But such a model unequivocally predicts that the average survival 

benefit of intensive treatment will be lower for patients receiving the treatment in high-intensity 

areas.  Moreover, since externalities play no role in the flat-of-the-curve argument, this model 

does not imply a lower quality of medical management or higher mortality among patients least 

appropriate for intensive treatment in high-intensity areas.  Finally, the characteristics of other 

patients in the area play no role in determining treatment of a given patient in the flat-of-the-curve 

model, while this is a fundamental feature of models with productivity spillovers. 

In addition to having a wide range of testable empirical implications, the fundamental 

assumption of productivity spillovers in our model is quite plausible in health care. Much of 

physician learning about new techniques and procedures occurs from direct contact with other 

physicians (“see one, do one, teach one”), which leads to natural Marshallian knowledge 

spillovers from practicing in an area in which physicians have specialized in a particular style of 

practice.  In their seminal paper on knowledge spillovers in medicine, Coleman, Katz and Menzel 

(1957) found that doctors who were the most integrated in a social-network were the first to adopt 

a new drug. More recently, a randomized control trial found that providing information to 

"opinion leaders" in a hospital resulted in large increases in the use of appropriate medications 

following heart attacks and decreases in the use of outdated therapies (Soumerai et al., 1998).  

Another mechanism generating productivity spillovers may be through the availability of support 

services in area hospitals (cath labs, cardiac surgeons, cardiac care units, nurse staff), which will 

depend more on the overall practice style in the area rather than on any individual patient’s needs.  

Finally, productivity spillovers may occur through the matching process of physicians to areas, 

since physicians who are more skilled at a particular treatment may self-select into areas in which 

use of this treatment is more common.     
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A second advantage of our model is that it is generally consistent with the key empirical 

regularities summarized in the introduction.  In particular, our productivity spillovers model can 

generate: (1) substantial differences across areas in the use of intensive procedures that is 

unrelated to average patient outcomes, (2) a negative correlation between surgical intensity and 

the quality of medical management of a condition, and (3) large returns to receiving the intensive 

intervention, particularly in high-intensity areas.  Thus, a very simple equilibrium model of 

productivity spillovers can rationalize all of the main stylized facts in the literature. 

 

III. Data and Estimation. 

Data 

 We focus our empirical work on the treatment of AMI for four reasons. First, 

cardiovascular disease, of which AMI is the primary manifestation, is the leading cause of death in 

the US. Each year about 1.5 million people in the United States have heart attacks; of these over 

200,000 AMIs occur in the Medicare population alone. The toll in lives is heavy; about one-third 

of these patients die in the acute phase. Second, the acute nature of heart-attacks requires that the 

patient be immediately treated at the nearest hospital; a feature that reduces the possibility of 

selection where patients of a certain type seek care in another part of the country. Third, 

treatments for AMI are well understood and well measured—more intensive management relies 

on bypass and angioplasty as two procedures to restore blood-flow to the coronary arteries. We 

measure the use of this class of interventions by focusing on cardiac catheterization since it is a 

well-understood marker for surgically intensive management of patients (see for example, 

McClellan et.al (1994) and McClellan and Newhouse (1997)).7 Alternatively, the non-intensive 

treatment regime would use fibrinolytics therapy (also known thrombolytics), that dissolve clots 

that may have formed in a blood vessel.  These drugs are administered intravenously either as 

single injections or as a drip.  Common thrombolytics include streptokinase and tissue 

Plasminogen Activator (tPA). Regardless of whether a patient is treated using intensively or using 

thrombolytics, patients should also be prescribed beta-blockers during their hospital stay that 

reduce the uptake of adrenalin and thereby slow the heart.  Beta-blockers have been shown to 

improve outcomes for the majority of patients, their use is substantially below what most experts 

                                                 
7 In performing cardiac catheterization, a cardiologist inserts a thin plastic tube (catheter) into an 
artery or vein in the arm or leg, from where it is advanced into the chambers of the heart and into 
the coronary arteries.  The catheter measures the bloods oxygen saturation and blood pressure 
within the heart. It us also used to get information about the pumping ability of the heart muscle. 
Catheters are also used to inject dye into the coronary arteries which can then be imaged to assess 
arterial stenosis using an x-ray. Catheters with a balloon on the tip (that is inflated in order to 
compress the atherosclerotic plaque to improve blood flow) are referred to as PTCA.  
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believe is appropriate, and the rate of beta-blocker use among AMI patients is a widely used 

measure of the quality of medical care [Jencks (2003), and Baicker and Chandra (2004a)]. 

Because beta-blockers are form of medical management of patients, their use serves as a marker of 

the quality of non-intensive medical management in an area. Finally, because mortality post-AMI 

is high, a well-defined endpoint is available to test the efficacy of alternative interventions.  

 Because acute myocardial infarction is both common and serious, it has been the topic of 

intense scientific and clinical interest. One effort to incorporate evidence-based practice guidelines 

into the care of heart attack patients, begun in 1992, is the Health Care Financing Administration's 

Health Care Quality Improvement Initiative Cooperative Cardiovascular Project (CCP). The CCP 

developed quality indicators that were based heavily on clinical practice guidelines developed by 

the American College of Cardiology and the American Heart Association. Information about more 

than 200,000 patients admitted to hospitals for treatment of heart attacks was obtained from 

clinical records. The CCP is considerably superior to administrative data (of the type used by 

McClellan et.al (1994)) as it collects chart data on the patients—detailed information is provided 

on laboratory tests, the location of the myocardial infraction, and the condition of the patient at the 

time of admission. In the data Appendix we provide a detailed account of the estimation sample 

used in this paper.  

 

 

Defining Geography.  

 To construct local markets for health care we exploit insights from The Dartmouth Atlas 

of Health Care. The Atlas divides the U.S. into 306 Hospital Referral Regions (HRR), with each 

region determined at the zip code level by the use of an algorithm reflecting commuting patterns 

and the location of major referral hospitals.  The regions may cross state and county borders, 

because they are determined solely by migration patterns of patients.  For example, the Evansville, 

Indiana hospital referral region encompasses parts of three states because it draws patients so 

heavily from Illinois and Kentucky. HRRs are best viewed as the level where tertiary services 

such as cardiac surgery are received (although they are not necessarily the appropriate 

geographical level for primary care services). We describe the precise algorithm to construct the 

HRRs in the Data Appendix to the paper. 

 Analysis at the HRR level is preferable to analysis at the city, or state level since it uses 

the empirical pattern of patient commuting to determine the geographic boundaries of each referral 

region, rather than assuming that the arbitrary political boundaries of states and cities also define 

the level at which the health care is delivered.  Furthermore, for the purpose of studying 

geographic productivity spillovers, an analysis at the HRR level is superior to one at the level of 
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individual hospital for two reasons.  First, patients can be assigned to HRR based on their 

residence, rather than based on the hospital at which they received treatment (which may be 

endogenous).  In addition, geographic productivity spillovers are likely to operate at a broader 

level than that of a given hospital, e.g. these spillovers are expected to reach beyond the boundary 

of the firm to affect productivity at all firms in a region. Physicians often have operating privileges 

in multiple hospitals and interact (socially and professionally) with other doctors who may or may 

not practice in their hospital, and patients are commonly referred to other hospitals within the 

HRR for treatment. Through such interactions, the entire area (as measured by HRRs) is more 

appropriate for analyzing equilibrium implications of productivity spillovers.8  

 

Estimation 

The key estimating equations in this paper take the following form: 

(5)  Outcomeijk = β0k +  β1k Intensive Treatmenti +  XiΠk +  uijk 

Here, Outcomeijk refers to either survival or costs for patient i in HRR j; k is an indicator variable 

that indexes the different groups for whom the effect of intensive management is sought (e.g., 

patients appropriate for intensive management versus not, or alternatively, high-intensity HHRs 

versus low intensity HRRs). Following McClellan et.al (1994) and McClellan and Newhouse 

(1996), Intensive Treatment is measured by the receipt of cardiac catheterization within 30 days of 

the AMI.  Alternatively, in some specifications we use total spending (Medicare Part A and Part B 

charges) in the first year after the AMI as a proxy for intensive treatment. The vector Xi includes 

the entire set of CCP controls listed in the data appendix.  These variables provide a relatively 

complete summary of the patient’s condition at the time of admission, i.e. include all of the 

relevant clinical information available to the physician in the patient’s chart at the time of the heart 

attack. Our tables report estimates of β1k  and their difference between different sub-samples of the 

data; the latter is the  central parameter of interest for the purpose of testing our model. Standard 

errors are clustered at the level of each area. 

                                                 
8 As an alternative to the use of HRRs we have also re-estimated our analysis using the U.S. 
Census Bureaus’ “Metropolitan Statistical Area” (MSA) designation of urban areas. In general, 
HRRs may be thought of encompassing the relevant MSA with the addition of surrounding rural 
areas whose patients travel to the MSA to seek care. Using the MSA sample results in a loss of 
sample size, and introduces some noise into the IV analysis since within an MSA (such as 
Manhattan or Boston) there is much less variation in differential distance.  The results reported in 
this paper are robust the use of MSAs, with the exception of the IV estimates which while not 
statistically different from what we report are very imprecise.  
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 Both our model and common sense suggest that the choice of intensive treatment for a 

patient will be endogenous.  Even though we have excellent information on the patient’s clinical 

condition at admission, the attending physician or cardiologist is likely to make the treatment 

choice based on information that is not observable in the CCP (for example, using information 

observed in the weeks following the initial admission).  In particular, the selection problem that 

confounds OLS estimation of the above equation is that intensive treatment is recommended to 

patients who will benefit most, and these patients are typically in better health (e.g. did not die in 

the first 24 hours after the heart attack).  This selection of healthy patients into treatment biases 

OLS estimates toward finding a large effect of intensive treatment. We follow the work of 

McClellan et.al (1994) and estimate equation (5) using instrumental variables. In particular, we 

use differential distance (measured as the distance between the patient’s zip-code of residence and 

the nearest catheterization hospital minus the distance to the nearest non-cath hospital) as an 

instrument for intensive treatment.  We capped differential distance at +/- 25 miles based on 

preliminary analysis that suggested little effect of differential distances beyond 25 miles on the 

probability that a patient receives catheterization. 

 To define a patient’s clinical appropriateness for intensive management we estimate a 

logistic regression model for the probability of receiving cardiac catheterization within 30 days of 

the heart attack. Specifically we estimate: 

(6)  Pr(Cardiac Cathij)= G(θ0 + θj + XiΦ) 

Here, θj  is the risk-adjusted logistic index for the use of cardiac catheterization in HRR j 

(j=1,2,...,306).  This equation is analogous to equation (2) in our model, with the HRR fixed 

effects capturing the externality that causes similar patients to be treated differently across areas. 

Fitted values from this regression, Pr(Cardiac Cathij)= Ĝ (θ0 + XiΦ), are used as an empirical 

measure of clinical appropriateness for cardiac catheterization. For simplicity, in much of the 

empirical work we split the fitted values at their median to yield two equally sized groups; those 

above the median are appropriate for intensive management, and those below are not. In order to 

classify areas as being intensive versus not, we construct HRR level (risk-adjusted) catheterization 

rates by recovering the θj   from the equation above.  

 

IV. Empirical Results. 

 Our empirical results are organized into two sections.  We begin by testing the basic 

implications of the Roy model – that patients are sorted into surgery versus medical management 

based on the returns to each type of treatment.  We then turn to testing the model’s implications 

that depend on the presence of productivity spillovers.  
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A. Testing Implications of the Basic Roy Model 

 Table 1 presents IV estimates of the impact of CATH (as a marker for intensive treatment) 

on 1-year survival and 1-year costs (in thousands of 1996 dollars). In the first panel of Table 1 we 

present the analysis for all patients, and then the remaining panels estimate separate regressions by 

the clinical appropriateness of the patient. In the third column we instrument costs with 

differential-distance to estimate the cost-effectiveness of spending on survival.  The results in 

Table 1 suggest that the returns to more intensive management of patients are increasing in clinical 

appropriateness, as predicted by our model. Patients appropriate for catheterization who received 

the intervention saw an 18.4 percentage point survival gain relative to appropriate patients who did 

not receive intensive therapy. For the less appropriate group, the effect of receiving catheterization 

is not statistically different from zero. Column 2 of the table demonstrates that it also costs more 

to treat a patient who is clinically inappropriate for intensive management aggressively. One 

reason of this finding is the risk of iatrogenic (physician induced) complications that require 

additional rehabilitation days in the ICU or CCU. Column 3 uses total dollars spent on a patient as 

a measure of intensity. By this measure, increasing intensity (by spending an additional $1000 on 

a heart-attack patient) raises survival by 3.8 percentage points for patients who are appropriate for 

intensive management, but by nothing for patients who are not good candidates for intensive 

management. The lower panel of Table 1 provides an alternative breakdown of patients into 

appropriateness groups based on age (65-80 versus over 80). Clinical guidelines recommend that 

older patients not be treated surgically, suggesting that the returns to such treatment should be 

negligible for the over 80 group. The last panel of Table 1 confirms that this is indeed the case. 

Together, the results in Table 1 provide support for our Roy-model characterization of 

specialization—patients most appropriate for intensive treatment benefit most from such therapy, 

whereas those least appropriate for it do not benefit from it.  

 Table 2 explores the validity of differential distance as an instrument in our sample. 

Following McClellan et al. (1994), we split the sample in half and compare average characteristics 

of the sample above and below the median differential distance (-2.0 miles).  The first two 

columns show that among all patients, there is a 6.1 percentage point difference in the CATH rate 

between the samples above and below the median, with higher differential distance to a CATH 

hospital associated with lower rates of CATH.  A similar pattern is seen when the sample is 

restricted to patients who are most or least appropriate for CATH based on their propensity score 

or their age.  Even among the patients with low propensity scores or over age 80, there is a 3-4 

percentage-point decline associated with being further from a CATH hospital.  These differences 

are all highly significant, even after controlling for the full set of patient controls from the CCP 
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(the first-stage F-statistics on differential distance are over 50 for all specifications reported in 

Table 1). 

 The third and fourth columns of Table 2 report survival rates for patients above and below 

the median differential distance.  If differential distance is unrelated to patient mortality risk, then 

these estimates can be combined with the difference in CATH rates from the first two columns to 

form a simple Wald estimate of the effect of CATH on survival.  Among all patients, there is a 0.9 

percentage point decline in survival associated with being further from a CATH hospital, 

suggesting that the intensive treatment associated with CATH leads to improved survival.  The 

Wald estimate suggests that CATH is associated with a 15 percentage-point improvement in 

survival (.009 gain in survival / .061 increase in CATH), an estimate quite close to the 14.2 

percent estimate from Table 1 that controlled for the full set of patient controls.  The remaining 

rows show results for other patient samples that are similarly consistent with the Table 1 

estimates, with a larger association between differential distance and survival seen among patients 

that are more appropriate for CATH and no relationship seen among patients that are less 

appropriate for CATH.  Given the similarity of the Wald estimates to IV estimates with a full set 

of patient controls, it appears that differential distance is uncorrelated with observable differences 

in mortality risk.  The fifth and sixth columns show that, as expected, there is little difference in 

the average 1-year predicted survival rate (from a logit of survival on the patient controls) for 

patients above and below the median differential distance. 

 The final two columns of Table 2 compare average 30-day predicted CATH rate (the 

propensity to get CATH) for only those patients getting CATH in the areas above and below 

median differential distance.  If the additional patients getting CATH in the low differential 

distance sample were less appropriate for CATH, we would expect to see that the average patient 

getting CATH in these areas would have a lower propensity.  In contrast, we see little difference in 

the sample that is nearer to a CATH hospital.  Thus, it appears that differential distance is an 

instrument that increases CATH rates among a sample of patients that is very similar (at least on 

observable factors) to the average patient being treated.  Therefore, it appears reasonable to 

interpret the IV coefficients as estimates of the treatment effect in the treated population.  

 In the remaining tables we evaluate the between-area predictions of our model. We begin 

with testing the simplest between-area implication: To be consistent with an economic model of 

specialization, our theoretical model predicts that as areas increase their intensity the additional 

patients receiving the intensive management should be less clinically appropriate for the 

intervention. In contrast, a non-economic model would predict that intensive areas simply perform 

more intensive treatments on all patients; there is no triage of patients into the treatment based on 

their appropriateness. To test this insight we estimate: 
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(7)  Appropriatenessij = µ0 + µ1 ln(Cath Rate)j  + ei 

The dependent variable is a measure of the appropriateness of a patient for cardiac cath (e.g., the 

propensity score), and the equation is estimated at the patient level only for individuals receiving 

CATH. The explanatory variable of interest is the natural logarithm of the risk-adjusted area 

CATH rate. Following the logic of Gruber, Levine and Staiger (1999), the coefficient µ1 measures 

the difference in mean Appropriateness between the average and the marginal patient receiving the 

invasive treatment.  If average appropriateness among patients getting CATH is declining as the 

CATH rate rises (µ1<0), we infer that the marginal patient getting CATH was less appropriate than 

the average patient (analogously to deriving marginal cost curves from average cost curves). 

 The results of estimating equation (7) are reported in Table 3. As the area’s intensity 

increases, the marginal patient is 4.5 percentage points less likely to be appropriate for intensive 

treatments. As a robustness check, we included two alternative measures of clinical 

appropriateness: age and a measure of clinical ineligibility for CATH as defined by the American 

College of Cardiologists (AHA) and the American Heart Association (AHA). Table 3 indicates 

that by both measures, the marginal patient is significantly less likely to be appropriate for cardiac 

catheterization.9  

 Figure 3 provides a graphical illustration of this relationship. For each of the 306 HRRs 

we graph the average propensity to receive cardiac catheterization (amongst patients who actually 

received it) against the log of the area risk-adjusted CATH rate. Using local-regression, we 

estimated the relationship between the average propensity and the risk-adjusted CATH rate and 

the slope of this line at each point (which we also smoothed).  These estimates were then used to 

plot average and marginal patient receiving treatment.  As seen in the figure, average 

appropriateness of patients getting CATH declines in more intensive areas. The average 

appropriateness can decline only if the marginal patient is less appropriate— as the lower line in 

Figure 3 indicates, the appropriateness of the marginal patient appears to be below the average 

patient and also declines as areas become more surgically intensive. 

 

B. Testing Implications of Productivity Spillovers 

 The empirical results in Tables 1-3 provide support for the basic assumptions of the Roy 

model – that patients are sorted into surgery versus medical management based on the returns to 

                                                 
9 Both measures are included as covariates in our estimation of the empirical appropriateness for 
cardiac catheterization. As such, these results are not three separate confirmations of the same 
prediction. The ACC/AHA measures are based on an evaluation of the patients chart 
characteristics and classify each patient as being ideal, appropriate, and inappropriate for 
catheterization; see Scanlon et.al (1999) for details.  
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each type of treatment. The remaining tables focus on testing for the presence of productivity 

spillovers.  Table 4 tests the prediction that the quality of medical management is worse in areas 

that are surgically intensive. To measure the extent of intensive treatment in an area, we use the 

risk-adjusted 30-day CATH rate in each HRR.  The risk-adjusted CATH rate reflects variation 

across areas in the probability that observationally identical patients will receive CATH, and 

therefore measures the productivity externality through its role of increasing the probability of 

receiving the intensive treatment (see equation 2).  To measure the quality of medical care in an 

area, we use the risk-adjusted rate ate which patients received beta-blockers in the HRR. Use of 

beta-blockers is a widely used marker for the quality of medical care.  Not surprisingly, the risk-

adjusted CATH rate is positively correlated with other risk-adjusted rates of intensive surgical 

treatment such as bypass (CABG) and angioplasty (PTCA).  More importantly, the negative 

correlation between the risk-adjusted CATH and beta-blocker rates supports the view that the 

quality of medical management is worse in surgically intensive areas. 

 The remaining rows of Table 4 report the correlation between risk-adjusted CATH rates 

and other area-level characteristics of interest.  Risk-adjusted CATH rates are positively associated 

with cardiovascular surgeons per capita (physicians who perform cardiac surgery), and the number 

of CATH labs per capita.  These correlations are consistent with the view that a higher level of 

support services available in high-intensity areas may contribute to the externalities. The last three 

rows of this table demonstrate, perhaps surprisingly, that risk-adjusted CATH rates are not 

strongly associated with demographic characteristics of the HRR such as population, income, or 

education.  

 A more fundamental implication of productivity spillovers is that the same patient will be 

more likely to receive intensive treatment in an area where more patients receive this type of 

treatment. This suggests that the characteristics of other patients in the population will influence 

the treatment choice of an individual. Empirically, this implies that risk-adjusted CATH rates (the 

HRR effect on CATH, holding individual patient characteristics constant) should be higher in 

areas where the average patient is more appropriate for CATH.  In the first column of Table 5 we 

regress risk-adjusted CATH rates on the average propensity to get CATH in each HRR.  The 

coefficient is statistically significant and implies that for every 1 percentage point increase in the 

expected CATH rate (based on patient characteristics), there is an additional 0.71 percentage point 

increase in the area CATH rate because of spillovers.  In the second column we control for area 

demographics which could potentially confound this relationship, but they are insignificant and do 

not materially change the coefficient.  In the final two columns, we repeat this exercise using the 

risk-adjusted beta-blocker rate as the dependent variable.  The model implies that we should see 

the opposite effect in these regressions, as the rise in CATH-appropriate patients exerts a negative 
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externality on the quality of medical care.  The coefficient on the average propensity to get CATH 

is negative and significant, implying that every 1 percentage-point increase in the expected CATH 

rate reduces the use of beta blockers by 0.75 percentage points.  This estimate is also robust to 

controls for area demographics, although the percent of the population under age 65 and per capita 

income both have independent significant effects on beta-blocker use. 

 A key implication of the productivity spillovers, which cannot be reconciled by other 

models, is that the return to intensive management should be higher in high-intensity areas versus 

low intensity ones.  To test this prediction, we use our estimates of HRR level intensity from the 

estimation of equation (6) to classify patients as being treated in high or low intensity regions (as 

measured by whether the risk-adjusted CATH rates is above or below the median rate). In Table 6, 

we report IV estimates of the effect of receiving intensive management within each of these two 

groups. The results of this analysis are reported in a manner that mirrors the estimates in Table 1. 

The survival returns to intensive management in intensive areas is roughly three times the return 

observed in low intensity areas, while there is no statistically significant difference in the costs 

associated with the different areas. As an alternative test, we should also find that those areas with 

poor medical management have better outcomes from the use of intensive procedures. In the next 

panel of Table 6, we classify patients into areas of differing intensity based on the area’s risk-

adjusted beta-blocker usage rates.  High beta-blocker usage is an indicator of high quality medical 

management, suggesting that these areas have specialized in medical management and therefore 

should have a low return to intensive treatment.  Once again, we note the dramatic degree to which 

the predictions of area specialization are at work: The impact of CATH on survival is much 

smaller in areas with good medical management. 

 Finally, Table 7 tests a unique implication of productivity spillovers: Patients most 

appropriate for intensive treatments are better off being treated in high-intensity areas, while 

patients who are least appropriate for intensive treatments should be worse off in such areas. To 

test this prediction we split patients into 3 equal-sized groups of appropriateness for intensive 

treatments. Within each group, we report the relationship between survival and the area CATH 

rate in the first column. We also report the relationship between spending and the area rate in the 

second column. The first panel of Table 7 replicates the central finding from the area-variations 

literature—area intensity is associated with costs but not associated with improved outcomes 

among patients as a whole. However, as the second panel demonstrates this finding masks 

significant heterogeneity in the effect of intensive by patient appropriateness. Patients appropriate 

for intensive managements clearly benefit from being treated in intensive areas. However, as the 

productivity externality predicts, patients least appropriate for intensive treatments are harmed as a 

result of being treated in intensive areas. The size of the negative externality is surprisingly 
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large—increasing area CATH intensity by ten percentage points (0.1) would reduce the survival of 

patients least appropriate for CATH by 0.75 percentage points. This finding holds true (although 

less significant) when we split the data by alternative indicators of appropriateness for intensive 

treatment, including age and ACC/AHA guidelines.  

 Our model suggests that patients who are inappropriate for CATH are worse off in 

intensive areas because (1) the quality of medical management in these areas is worse than in 

other areas, and (2) few of these patients receive intensive treatment, even in the more intensive 

areas.  The last two columns of Table 7 explore these two dimensions of care directly by 

estimating the relationship between area CATH intensity and the rate at which patients receive 

beta blockers (as an indirect marker of quality of medical management) and CATH (as a direct 

marker of intensive management).   Beta-blocker use is lower among all patient groups in the high 

intensity areas, suggesting that quality of medical management is generally poor in these areas. At 

the same time, CATH rates among those patients least appropriate for CATH rise much less in 

high intensity areas than for other patients.  Thus, worse outcomes for this group appear to result 

from worse medical management in areas with high CATH intensity, as our model predicts.  

 Medical practice guidelines recommend that nearly all patients receive beta blockers, 

independent of whether they are treated intensively or non-intensively.  Nevertheless, one might 

be concerned that lower beta-blocker use in high CATH intensity areas was simply the mechanical 

substitution of surgery for beta blockers among a subset of patients, rather than a broad indicator 

of low quality medical management.  Figure 4 provides two pieces of evidence against this 

mechanical interpretation.  This figure plots the percent of patients who receive beta-blockers 

during hospitalization against patient appropriateness for catheterization (estimated by a running 

regression) in HRRs with risk-adjusted CATH rates above and below the median. First, the use of 

beta blockers is actually higher among patients that are more appropriate for CATH, which is the 

opposite of the mechanical substitution explanation.  Furthermore, we see that intensive areas are 

less likely to provide beta-blockers to all patients (as was seen in Table 7), suggesting that these 

areas provide poor quality medical management to all patients.  

 Finally, our analysis has assumed that productivity spillovers depend on the proportion of 

patients receiving a given treatment, rather than the absolute number.  Alternatively, productivity 

spillovers could be more prevalent in larger areas; larger HRRs such as Los Angeles or Manhattan 

may excel at both the intensive and non-intensive delivery of care. To explore this hypothesis 

further, we estimate the relationship between alternative measures of HRR size and patient 

survival in Table 8. We regress 1-year survival on patient risk-adjusters, the risk-adjusted CATH 

rate and the log of the resident population (first 4 columns) and log of AMIs per hospital (last four 

columns). Table 8 demonstrates that the size measures are largely insignificant—larger areas do 
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not result in improved survival. On the other hand, the “externality” (as measured by the HRR 

CATH rate) is always protective of patients who are appropriate for CATH and harmful for 

inappropriate patients.   

 

V. Conclusion 

A very simple equilibrium model of patient treatment choice with geographic productivity 

spillovers appears to rationalize the main stylized facts concerning variation across areas in the use 

of technologically intensive medical care. The model yields a range of additional empirical 

implications, which we found uniform support for in our analysis of treatment for heart attacks.  

Alternative models, such as those based on “flat-of-the-curve” medicine and supplier-induced 

demand, have fundamentally different implications that are clearly rejected by the data.  Thus, 

there appears to be strong empirical support for the presence of productivity spillovers in medical 

care. 

Although knowledge spillovers are the most natural interpretation of our model and 

empirical results, there are certainly other mechanisms that could generate similar spillovers.  For 

example, the spillovers may come from a form of network externality, in which specialization in a 

given treatment results in better support services arising in the area (e.g. specialized surgical 

centers, nursing staff, etc.).  Alternatively, area specialization may attract physicians with a 

comparative advantage in that specialty, thereby generating better outcomes within the narrow 

specialty but worse outcomes more broadly.  These models share the key feature that 

specialization in one sector improves productivity in that sector while reducing productivity 

elsewhere, thereby reinforcing the tendency to specialize.  A careful analysis of the welfare 

implications of our results will require knowledge of the underlying mechanism.  Nevertheless, all 

of these mechanisms generate similar empirical implications in our data.   

The presence of productivity spillovers may justify a policy intervention to ameliorate the 

deleterious effects of the externality. However, evaluating the welfare implications of any 

proposed intervention is not a trivial exercise.  Understanding what policy lever to push hinges 

importantly on whether the variations observed in the data are the consequence of single or 

multiple equilibria. With multiple equilibria we may be able to identify areas stuck in sub-optimal 

equilibrium, and one-time interventions that “shock” the system to a different equilibrium would 

be called for (for example, see O’Connor et al. (1996)). With single equilibrium, productivity 

spillovers can generate either too much or too little intensive treatments, depending on the size of 

the externalities and the distribution of patients in the area.  Thus, from a policy perspective, the 

evidence to date has little to say about whether there is any reason to reduce the variation across 
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areas in the use of technologically intensive treatments or, if so, what would be the appropriate 

policy response. 

Our results also raise important questions about what can be learned from randomized 

controlled trials in medicine.  While randomized trials are considered the gold standard for 

determining the effectiveness of a given medical treatment, they are designed to provide a partial-

equilibrium estimate of the treatment effect in a well-defined population.  But with productivity 

spillovers, the general equilibrium effect of adopting a new treatment could be smaller or larger 

than the partial equilibrium estimate of treatment effectiveness, because of the negative externality 

imposed on patients who are more appropriate for an alternative treatment and the positive 

externality on patients who are more appropriate for the new treatment.  This general-equilibrium 

effect is not identified in a typical randomized trial, but could potentially be estimated in a trial 

that randomized across areas rather than individuals. In addition, the effectiveness of the treatment 

depends on where the trial is conducted (just as our IV estimates depended on intensity in the 

area): Surgical interventions may perform poorly in an area that specializes in medical 

management of its patients and perform well in a more surgically intensive area. As such the 

external validity of a randomized trial is compromised.  

The implications of our findings go well beyond the treatment of heart attacks. To the 

extent that productivity spillovers are a common feature of many sectors, our results provide 

compelling evidence that such spillovers are an important feature of geographic specialization.  

Moreover, our results provide some of the first direct evidence of the negative externalities 

imposed on a subset of the population because of equilibrium pressures towards specialization.  

Such negative externalities are a central component of arguments for government intervention. 

Finally, our model has interesting empirical implications when applied to the more general 

question of human capital externalities.  For example, our model would suggest that people living 

in areas with higher ability populations would be more likely (holding ability constant) to go to 

college, the return to going to college in these areas would be higher, but wages of low ability 

people in these areas would be lower.  In principal, these are all testable implications. 



 20

 

Data Appendix 
 
I. Construction of Hospital Referral Regions. Hospital Referral Regions are constructed using a 
two part algorithm.  
Step 1: All acute care hospitals in the 50 states and the District of Columbia were identified from 
the American Hospital Association Annual Survey of Hospitals and the Medicare Provider of 
Services files and assigned to a location within a town or city. The list of towns or cities with at 
least one acute care hospital (N=3,953) defined the maximum number of possible Hospital Service 
Areas (HAS). Second, all 1992 and 1993 acute care hospitalizations of the Medicare population 
were analyzed according to ZIP Code to determine the proportion of residents' hospital stays that 
occurred in each of the 3,953 candidate HSAs. ZIP Codes were initially assigned to the HSA 
where the greatest proportion (plurality) of residents were hospitalized. Approximately 500 of the 
candidate HSAs did not qualify as independent HSAs because the plurality of patients resident in 
those HSAs were hospitalized in other HSAs. The third step required visual examination of the 
ZIP Codes used to define each HSA. Maps of ZIP Code boundaries were made using files 
obtained from Geographic Data Technologies (GDT) and each HSA's component ZIP Codes were 
examined. In order to achieve contiguity of the component ZIP Codes for each HSA, "island" ZIP 
Codes were reassigned to the enclosing HSA, and/or HSAs were grouped into larger HSAs. This 
process resulted in the identification of 3,436 HSAs, ranging in total 1996 population from 604 
(Turtle Lake, North Dakota) to 3,067,356 (Houston) in the 1999 edition of the Atlas. Intuitively, 
one may think of HSAs as representing the geographic level at which “front end” services such as 
diagnoses are received.  
Step II:  Hospital service areas make clear the patterns of use of local hospitals. A significant 
proportion of care, however, is provided by referral hospitals that serve a larger region. Hospital 
referral regions were defined in the Dartmouth Atlas by documenting where patients were referred 
for major cardiovascular surgical procedures and for neurosurgery. Each hospital service area was 
examined to determine where most of its residents went for these services. The result was the 
aggregation of the 3,436 hospital service areas into 306 hospital referral regions that were named 
for the hospital service area most often used by residents of the region. Thus if a Medicare 
enrollee living in Hartford, CT were admitted to a hospital in Boston, MA, the utilization would be 
attributed to Hartford, and not to Boston.  This assignment avoids the serious shortcoming of 
unusually high utilization rates in large referral centers such as Boston or Rochester, MN. 
 
II. Construction of CCP Estimation Sample:  
The CCP used bills submitted by acute care hospitals (UB-92 claims form data) and contained in 
the Medicare National Claims History File to identify all Medicare discharges with an 
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) 
principal diagnosis of 410 (myocardial infarction), excluding those with a fifth digit of 2, which 
designates a subsequent episode of care.  The study randomly sampled all Medicare beneficiaries 
with acute myocardial infarction in 50 states between February 1994 and July 1995, and in the 
remaining 5 states between August and November, 1995 (Alabama, Connecticut, Iowa, and 
Wisconsin) or April and November 1995 (Minnesota); for details see O’Connor et.al (1999).  The 
Claims History File does not reliably include bills for all of the approximately 12% of Medicare 
beneficiaries insured through managed care risk contracts, but the sample was representative of 
the Medicare fee-for-service (FFS) patient population in the United States in the mid-1990s.  After 
sampling, the CCP collected hospital charts for each patient and sent these to a study center where 
trained chart abstracters abstracted clinical data.  Abstracted information included elements of the 
medical history, physical examination, and data from laboratory and diagnostic testing, in addition 
to documentation of administered treatments.  The CCP monitored the reliability of the data by 
monthly random reabstractions.  Details of data collection and quality control have been reported 
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previously in Marciniak et.al (1998). Finally, the CCP supplemented the abstracted clinical data 
with diagnosis and procedure codes extracted from Medicare billing records and dates of death 
from the Medicare Enrollment Database.   
For our analyses, we delete patients who were transferred from another hospital, nursing home or 
emergency room since these patients may already have received care that would be unmeasured in 
the CCP. We transformed continuous physiologic variables into categorical variables (e.g., 
systolic BP < 100 mm Hg or > 100 mm Hg, creatinine <1.5, 1.5-2.0 or >2.0 mg/dL) and included 
dummy variables for missing data.  We used date of death to identify patients who did or did not 
survive through each of three time points: 1-day, 30-days, and 1-year after the AMI.  For all 
patients, we identified whether they received each of 6 treatments during the acute hospitalization: 
reperfusion (defined as either thrombolysis or PCI within 12 hours of arrival at the hospital), 
aspirin during hospitalization, aspirin at discharge, beta-blockers at discharge, ACE inhibitors at 
discharge, smoking cessation counseling, and each of 3 treatments within 30-days of the AMI: 
cardiac catheterization, PCI, or CABG.  We used the ACC/AHA guidelines for coronary 
angiography to identify patients who were ideal (Class I), uncertain (Class II), or inappropriate 
(Class III) for angiography; these details are provided in Scanlon et.al (1999). 
 For each AMI patient we computed Medicare Part A and Part B costs within 1 year by 
weighting all Diagnosis Related Groups (DRGs) and Relative Value Units (RVUs) nationally. 
This measure of costs abstracts from the geographic price adjustment in the Medicare program.  
 
III. Construction of clinical appropriateness index, HRR cathetherization rates, and HRR 
beta-blocker rates. 
To compute this index we estimate a logistic regression model for the probability of receiving 
cardiac catheterization within 30 days of the heart-attack. We estimate: 

Pr(Cardiac Cathij)= F(θ0 + θj + XiΦ) 
Pr(Beta Blockersij)= F(θ0 + Πj + XiΦ) 

Fitted values from this regression, Pr(Cath|X),  are used as an empirical measure clinical 
appropriateness for cardiac catheterization. The HRR fixed effects for the use of cardiac 
catheterization and beta-blockers are obtained as θj, and Πj respectively. Note that these fixed-
effects are not used to obtain our empirical measure of appropriateness for cardiac catheterization. 
Included in this model are the following risk-adjusters: 
 
Age, Race, Sex (full interactions) 
previous revascularization (1=y) 
hx old mi (1=y) 
hx chf (1=y) 
history of dementia  
hx diabetes (1=y) 
hx hypertension (1=y) 
hx leukemia (1=y) 
hx ef <= 40 (1=y) 
hx metastatic ca (1=y) 
hx non-metastatic ca (1=y) 
hx pvd (1=y) 
hx copd (1=y) 
hx angina (ref=no) 

hx angina missing (ref=no) 
hx terminal illness (1=y) 
current smoker 
atrial fibrillation on admission 
cpr on presentation 
indicator mi = anterior 
indicator mi = inferior 
indicator mi = other 
heart block on admission 
chf on presentation 
hypotensive on admission 
hypotensive missing 
shock on presentation 
peak ck missing 

peak ck gt 1000 
non-ambulatory (ref=independent) 
ambulatory with assistance 
ambulatory status missing 
albumin low(ref>=3.0) 
albumin missing(ref>=3.0) 
bilirubin high(ref<1.2) 
bilirubin missing(ref<1.2) 
creat 1.5-<2.0(ref=<1.5) 
creat >=2.0(ref=<1.5) 
creat missing(ref=<1.5) 
hematocrit low(ref=>30) 
hematocrit missing(ref=>30) 
ideal for CATH (ACC/AHA criteria)
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Figure 1: Multiple Equilibrium (Panel A), versus Single Equilibrium (Panel B) 

Characterizations of Area Variations. 
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Figure 2: Graphical Illustration of Specialization with Productivity Spillovers 

 
 

Panel A describes the relationship between two alternative ways to treat patients within an area. The survival production 
possibilities frontier describes the best treatment for a patient of given clinical appropriateness. The model predicts that the 
returns to intensive management are increasing in patients’ appropriateness for such interventions. Panel B contrasts the care 
across two areas that differ in their surgical intensity. The productivity spillover results in patients appropriate for intensive 
management being better off in the surgically intensive areas, whereas patients appropriate for non-intensive management 
being worse off in such areas. See Section II of text for details and formal model. 
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Figure 3: Relation Between Average Patient and Marginal Patient Receiving Cardiac 
Catheterization 

 
For each of the 306 HRRs we graph the average propensity to receive cardiac catheterization 
(amongst patients who actually received it) against the log of the area risk-adjusted CATH rate. Using 
local-regression, we estimated the relationship between the average propensity and the risk-adjusted 
CATH rate and the slope of this line at each point.  These estimates were then used to plot average 
(upper line) and marginal patient (lower line and estimated as the local difference in the average) 
receiving treatment. 
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Figure 4: Percent of Patients Getting Beta Blockers by Patient Propensity to Get Cath 
In HRRs With Low (Top Line) and High (Bottom Line) Risk-Adjusted Cath Rate 
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This figure plots the percent of patients who receive beta-blockers during hospitalization against 
patient appropriateness for catheterization (estimated by a local regression) in HRRs with risk-
adjusted CATH rates above and below the median. 
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Table 1: Instrumental Variable Estimates of Intensive Management and Spending on 1 Year 
Survival by Clinical Appropriateness of Patient 

 
  IV Estimates of 
  Impact of CATH: Impact of $1000: 

Sample: 
on 1-Year 
Survival 

on 1-year     
Cost ($1000s) 

on 1-year 
Survival 

        
1. All patients 0.142 9.086 0.016 
   (n=129,895) (0.036) (1.810) (0.005) 
        
2.By CATH propensity       
  a. Above the Median 0.184 4.793 0.038 
     (n=64,799) (0.034) (1.997) (0.017) 

  b. Below the Median 0.035 17.183 0.002 
     (n=65,096) (0.083) (3.204) (0.005) 

      Difference: 0.149 -12.39 0.036 
  (0.090) (3.775) (0.018) 
        
       
3. By age       
   a. 65-80 0.171 6.993 0.024 
     (n=89,947) (0.037) (1.993) (0.009) 
   b. Over 80 0.016 16.026 0.001 
     (n=39,948) (0.108) (2.967) (0.007) 

      Difference: 0.155 -9.033 0.023 
  (0.114) (3.574) (0.011) 

 
Notes: CATH propensity is an empirical measure of patient appropriateness for intensive treatments. 
We define this measure by using fitted values from a logit model of the receipt of cardiac 
catheterization on all the CCP risk-adjusters. Differential-distance (measured as the distance between 
the patient’s zip-code of residence and the nearest catheterization hospital minus the distance to the 
nearest hospital) is the instrument. Each model includes all the CCP risk-adjusters and the standard 
errors are clustered at the level of each HRR.  
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Table 2: Relationship Between Differential-Distance and Probability of Catheterization and 
Survival, and Differential-Distance and Observable Characteristics 

 

  

30-day CATH rate 
 
 
 

1-year Survival  
 
 
 

1-year Predicted 
Survival  
 
 

30-day predicted 
CATH rate for 
patients getting 
CATH 

 DD 
Below 
Median 

DD 
Above 
Median 

DD 
Below 
Median 

DD 
Above 
Median 

DD 
Below 
Median 

DD 
Above 
Median 

DD Below 
Median 

DD 
Above 
Median 

Sample:                 
                  
All patients 48.9% 42.8% 67.6% 66.7% 67.5% 67.2% 63.3% 63.2% 
  (n=129,997)                
                  
By CATH propensity                 
   Above the Median 74.0% 67.1% 84.6% 83.8% 83.4% 83.5% 72.6% 72.6% 
     (n=64,733)                

   Below the Median 22.9% 19.5% 50.1% 50.4% 51.1% 51.6% 32.3% 32.5% 
     (n=65,244)                
                  
By age                 
   65-80 61.1% 54.9% 74.3% 73.5% 73.9% 73.9% 67.4% 67.3% 
     (n=90,016)                
   Over 80 20.3% 16.5% 52.1% 52.1% 52.6% 52.7% 34.6% 34.1% 
     (n=39,961)                
                  

Notes: CATH propensity is an empirical measure of patient appropriateness for intensive treatments. 
We define this measure by using fitted values from a logit model of the receipt of cardiac 
catheterization on all the CCP risk-adjusters. Differential-distance (measured as the distance between 
the patient’s zip-code of residence and the nearest catheterization hospital minus the distance to the 
nearest hospital) is the instrument. Each model includes all the CCP risk-adjusters and the standard 
errors are clustered at the level of each HRR.  
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Table 3: Relationship between the Average and Marginal Patient Receiving Cardiac 
Catheterization 

   
 
 

 

Characteristic of average 
patient getting CATH 
across all areas 
 

Patient Characteristic   

Difference Between 
average patient and 
marginal patient getting 
CATH in higher-CATH 
HRRs 
 
 

   
1. CATH propensity 0.633 -0.045 
 (0.002) (0.008) 
   
2. Over age 80 0.125 0.063 
 (0.002) (0.012) 
   

0.028 0.010 3. Not eligible for CATH using 
ACC/AHA guidelines (0.001) (0.003) 

 
Notes: CATH propensity is an empirical measure of patient appropriateness for intensive treatments. 
We define this measure by using fitted values from a logit model of the receipt of cardiac 
catheterization on all the CCP risk-adjusters. Sample is restricted to patients receiving cardiac 
catheterization within 30 days of an AMI. ACC/AHA guidelines reflect a binary variable assigned to 
each patient in the CCP that measures whether the patient is ideal, appropriate, or not eligible for 
catheterization based on chart-review.  
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Table 4: Correlation of HRR Level Measures of Intensive Treatment, Medical Management, 
Support of Medical Treatment and Demographic Characteristics 

      
     Correlation 
   10th 90th with HRR 
HRR indicator Mean SD percentile percentile CATH rate 

Measures of intensive treatment      
Risk-adjusted 30-day CATH rate 46.3% 9.1% 34.5% 58.3% 1.00 
Risk-adjusted 30-day PTCA rate 17.7% 5.1% 11.3% 23.6% 0.81 
Risk-adjusted 30-day CABG rate 13.4% 2.9% 10.2% 16.9% 0.51 
Risk-adjusted 12-hour PTCA rate 2.7% 2.6% 0.6% 5.8% 0.52 
 
Measures of Quality of medical management      
Risk-adjusted β-blocker rate 45.6% 9.5% 34.2% 58.3% -0.31 
 
Support for intensive treatment      
Cardiovascular Surgeons per 100,000 1.06 0.27 0.70 1.40 0.33 
Cath Labs per 10,000 2.40 0.76 1.50 3.30 0.39 
 
Demographic characteristics      
log of resident population 13.96 0.89 12.72 15.18 -0.05 
log of per capita income 9.55 0.20 9.31 9.85 0.02 
Percent College graduates 19.3% 5.5% 13.1% 26.6% -0.05 

 
Notes: HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a patient 
level regression the receipt of CATH or beta-blockers on HRR fixed effects and CCP risk-adjusters. CATH 
propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure 
by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk-adjusters. 
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Table 5: Relationship between HRR Patient Characteristics and HRR Treatment 
 

 HRR Level Dependent Variables 
     
 
 

HRR-Level Independent Variables:  

Risk-adjusted
30-day 
CATH rate 
 

Risk-adjusted
30-day 
CATH rate 
 

Risk-adjusted 
Beta Blocker 
Rate 
 

Risk-adjusted
Beta Blocker 
Rate 
 

     
     
Average propensity to get CATH 0.707 0.761 -0.753 -0.590 
 (0.248) (0.239) (0.306) (0.205) 
     
Percent under age 65  0.253  -0.534 
  (0.193)  (0.199) 
     
log of resident population  -0.006  -0.009 
  (0.008)  (0.009) 
     
log of per capita income  0.031  0.209 
  (0.034)  (0.031) 
     
     
R-squared 0.04 0.05 0.04 0.21 
N 303 303 303 303 

 
Notes: HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a 
patient level regression the receipt of CATH or beta-blockers on HRR fixed effects and CCP risk-adjusters. 
CATH propensity is an empirical measure of patient appropriateness for intensive treatments. We define this 
measure by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP 
risk-adjusters. 



 34

Table 6: Instrumental Variable Estimates of Intensive Management and Spending on Survival, 
by Surgical Intensity of Hospital Referral Region 

 

Impact of $1000:

Sample:
on 1-Year 
Survival

on 1-year     Cost 
($1000s)

on 1-year 
Survival

1. By HRR risk-adjusted CATH rate

a.  Above the Median 0.256 6.691 0.038
     (n=63,771) (0.061) (3.510) (0.021)

b.  Below the Median 0.09 9.835 0.009
     (n=66,124) (0.059) (3.155) (0.007)

      Difference: 0.166 -3.144 0.029
(0.085) (4.720) (0.022)

2. By HRR risk-adjusted β-blocker rate

a.  Below the Median 0.189 6.33 0.03
     (n=64,862) (0.050) (2.434) (0.013)

b.  Above the Median 0.071 11.003 0.006
     (n=65,033) (0.048) (2.550) (0.005)

      Difference: 0.118 -4.673 0.024

IV Estimates of

Impact of CATH:

 
 
Notes: HRR intensity rates are computed as the risk-adjusted fixed effects from a patient level 
regression the receipt of CATH or beta-blockers on HRR fixed effects and CCP risk-adjusters.  
Differential-distance (measured as the distance between the patient’s zip-code of residence and the 
nearest catheterization hospital minus the distance to the nearest hospital) is the instrument. Each 
model includes all the CCP risk-adjusters and the standard errors are clustered at the level of each 
HRR.  
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Table 7: Relationship Between HRR Catheterization Rate, Survival and Costs, by Clinical 
Appropriateness for Intensive Management 

 
 

  

OLS Estimates of the Relationship Between HRR Risk-Adjusted 
CATH Rate and: 

 

Sample: 
1-Year 
Survival 

1-year Cost 
($1000s) 

Beta Blocker in 
Hospital 

Catheterization 
within 30 days 

          
1. All patients 0.007 8.093 -0.28 0.702 
  (n=138,873) (0.019) (1.410) (0.073) (0.004) 
          
2. By CATH propensity         
   a. Top Tercile 0.052 10.012 -0.366 0.802 
     (n=46,287) (0.019) (1.439) (0.073) (0.032) 

   b. Middle Tercile 0.03 11.154 -0.271 0.906 
     (n=46,295) (0.030) (1.784) (0.082) (0.021) 

   c. Bottom Tercile -0.075 2.763 -0.209 0.369 
     (n=46,291) (0.028) (1.612) (0.073) (0.021) 
       
 Difference (Top-Bottom): 0.127 7.249 -0.157 0.433 
 (0.034) (2.161) (0.103) (0.038) 
          
3. By age         
   a. 65-80 0.023 9.616 -0.311 0.775 
     (n=96,093) (0.021) (1.448) (0.072) (0.012) 

   b. Over 80 -0.031 4.738 -0.215 0.531 
     (n=42,780) (0.028) (1.603) (0.080) (0.022) 
       
 Difference (Top-Bottom): 0.054 4.878 -0.096 0.244 
  (0.035) (2.160) (0.108) (0.025) 
          
4. By AHA/ACC criterion         
   a. Ideal 0.027 9.845 -0.302 0.769 
     (n=89,569) (0.023) (1.599) (0.076) (0.010) 

   b. Appropriate -0.002 6.174 -0.282 0.752 
     (n=31,800) (0.024) (1.537) (0.080) (0.026) 

   c. Not appropriate -0.08 2.958 -0.177 0.264 
     (n=17,504) (0.040) (1.511) (0.065) (0.021) 
       
 Difference (Top-Bottom): 0.107 6.887 -0.125 0.505 
     (0.046) (2.200) (0.100) (0.023) 
          

Notes: CATH propensity is an empirical measure of patient appropriateness for intensive treatments. 
We define this measure by using fitted values from a logit model of the receipt of cardiac 
catheterization on all the CCP risk-adjusters.  HRR surgical and medical intensity rates are computed 
as the risk-adjusted fixed effects from a patient level regression the receipt of CATH or beta-blockers 
on HRR fixed effects and CCP risk-adjusters. 
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Table 8: Relationship between Survival and alternative measures of HRR size, by clinical appropriateness of patient 
 

  By CATH propensity  By CATH propensity 
HRR-Level Independent 
Variables: 

All patients 
 

Top 
Tercile 

Middle 
Tercile 

Bottom 
Tercile 

All patients 
 

Top 
Tercile 

Middle 
Tercile 

Bottom 
Tercile 

         
Risk-adjusted CATH rate 0.006 0.052 0.031 -0.077 0.008 0.053 0.031 -0.075 
 (0.019) (0.019) (0.030) (0.028) (0.019) (0.019) (0.030) (0.028) 
         
log of resident population -0.002 -0.001 0.002 -0.007     
 (0.002) (0.002) (0.003) (0.003)     
         
log of AMIs per hospital     0.005 0.014 0.006 -0.007 
     (0.004) (0.005) (0.007) (0.006) 
         
N 138,873 46,287 46,295 46,291 138,873 46,287 46,295 46,291 

 
Notes: CATH propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure by 
using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk-adjusters.  HRR surgical and 
medical intensity rates are computed as the risk-adjusted fixed effects from a patient level regression the receipt of CATH or beta-
blockers on HRR fixed effects and CCP risk-adjusters. 

 




