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I. Introduction

A. Facts

In 1800 agriculture accounted for 46 percent of U.S. output, while 74 percent of

the U.S. population worked in agriculture. By 2000 agriculture made up 1.4 percent

of output. Less than 2.5 percent of the populace worked in agriculture. Figure 1

tells the story about the decline in agriculture.1 What could have accounted for

agriculture’s precipitous fall? The idea here is that along with economic development

many new goods are introduced. As incomes rise, expenditure gets directed toward

new products. That is consumption moves in large measure along the extensive

margin, so to speak, and not the intensive one.

New Goods: The number of goods produced has increased dramatically since the

Second Industrial Revolution. The increase in the number of consumption goods is

hard to document. Historically, home production accounted for a large amount of

consumption. For instance, 92 percent of baked goods were made at home in 1900.2

This had dropped to 22 percent by 1965. Similarly, 98 percent of vegetables consumed

were unprocessed, as opposed to 30 percent in 1970.3 Per-capita consumption of

canned fruits rose from 3.6 pounds in 1910 to 21.6 pounds in 1950.4 In the early

1970s there were 140 vehicle models available.5 This had risen to 260 by the late

1The data for agriculture’s share of income derives from four sources: (i) 1800-1830, Weiss (1994,

Tables 1.2, 1.3 and 1.4); (ii) 1840-1900, Gallman (2000, Table 1.14); (iii) 1910-1970, Historical Sta-

tistics of the United States: Colonial Times to 1970 (Series F 251); 1980-2000, Bureau of Economic

Analysis, US Department of Commerce. The numbers from Weiss (1994) were obtained by mul-

tiplying his series on output per worker by the size of the labor force (prorated by his labor-force

participation rate). The data on agriculture’s share of employment comes from three sources: (i)

1800 to 1900, Margo (2000, Table 5.3); (ii) 1910 to 1960, Lebergott (1964, Tables A1 and A2); (iii)

1970-1999, U.S. Census Bureau, US Department of Commerce.
2See Lebergott (1976, Table 1, p. 105).
3Ibid.
4Ibid.
5Federal Reserve Bank of Dallas, 1998 Annual Report, (Exhibit 3, p. 6).
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Figure 1: The Decline of Agriculture, 1800-2000.

1990s. Likewise, there were 2,000 packaged food products available in 1980 compared

with about 10,800 today.6

Trademarks and the Number of Firms: Another measure of the rise in new goods

might be trademarks. A trademark is a symbol used by a manufacturer to distinguish

his product from others. Figure 2 shows the registration of trademarks since 1870.

This is a flow measure. It can be thought of as a proxy for the number of new

goods introduced each year. The stock of outstanding trademarks at a point in time

will be much larger. It can be estimated using data on trademark registrations and

renewals.7 Likewise, one might expect that as the number of goods and services

6Ibid.
7For period 1891 to 1970 the data on registered trademarks and renewels was taken fromHistorical

Statistics of the United States: Colonial Times to 1970 (Series W 107 and 108). These series

were updated using data from the United States Patent and Trademark Office, US Department of

Commerce, Annual Reports. The stock of trademarks was computed as follows: Let the time-t stock

be denoted by tt. The stock of trademarks is assumed to evolve in line with

tt+1 = δtt + [it + rt],
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in the U.S. economy increases so will the number of firms. There is some evidence

suggesting that this is the case. Figure 3 plots the number of firms per capita in the

U.S. economy.8 As can be seen, it rises.

Consumer Expenditure Patterns: Figure 4 traces some major categories of Per-

sonal Consumption Expenditure taken from the National Income and Product Ac-

counts.9 At the turn of the last century spending on food accounted for 44 percent

of the household budget. Today it is 15 percent. The decline in food’s share of total

expenditure was matched by a rise in spending in other categories. The only other

category showing a secular decline similar to food is clothing. Until recently most

other expenditure categories were small relative to food. Spending on medical care,

which shows a rapid increase, now exceeds spending on food. Clearly the rise in

where it represents new registrations at time t, rt is renewals, and δ is the depreciation factor on

trademarks. Trademarks need to be renewed roughly every 20 years. Most of them aren’t. Now,

represent the mean of rt/(rt−20 + it−20) by rt/(rt−20 + it−20). This measures the survival rate on

trademarks. The depreciation factor on trademarks is then taken to be given by

δ = [rt/(rt−20 + it−20)]
1/20.

.
8This evidence is based on income tax receipts: Historical Statistics of the United States: Colonial

Times to 1970 (Series V1) and the corresponding updated data taken from Internal Revenue Service,

U.S. Department of the Treasury. This data encompasses virtually all business in the U.S. and

includes corporations, partnerships, and non-farm sole proprietorships. Evidence based on data

taken from Dun & Bradshaw, Inc shows that the number of firms per capita has remained constant

— Historical Statistics of the United States: Colonial Times to 1970 (Series V20). The latter series

is probably the least preferable and is biased toward large firms. It is based on financial market

dealings and excludes many types of business — those engaged in amusements, farming, finance,

insurance, one-man services, professions, and real estate. The series for the number of firms was

deflated by size of the population as recorded in the Statistical Abstract of the United States (2001,

Table 1).
9Source: National Income and Product Accounts, Personal Consumption Expenditure by Type

of Product, Table 2.6, Bureau of Economic Analysis, US Department of Commerce. The numbers

for 1900 to 1929 are taken from Lebergott (1996, Table A1).
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Figure 2: Estimated Stock of Trademarks, 1871-2000.
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Figure 3: Number of Firms per Capita, 1939-2000.
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Figure 4: Expenditure Shares by Major Catergories, 1900-2000: Purchased Food;

Household Operation; Clothing, Accessories and Services; Medical Care; Education;

Personal Care; Personal Business; Recreation; Religion and Welfare; Housing; Trans-

portation.

medical spending was associated with the development of new goods. Figure 5 makes

this point clear with a chronology of medical innovations. Likewise, Figure 6 plots

expenditure on electricity, a component of the near stationary household operations

category shown in Figure 4. While electricity is a relatively small fraction of the

household budget, it shows a strong upward trend over the last hundred years, linked

with the development of many new electrical goods. Last, over the last century total

recreation has increased its share in the household budget. Figure 7 shows spending

on toys, a component of this category.
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Figure 5: Medicine, 1900-2000.
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Figure 6: Electricity, 1900-2000.
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Figure 7: Toys, 1900-2000.

B. The Analysis

Kuznets (1957) was an early researcher to report some facts about agriculture,

both across time and space. He documented the secular decline in agriculture’s shares

of output and employment for a number of countries (see his Tables 7 and 14). He

also noted that agriculture declined with economic development in a cross section of

countries (see his Tables 3 and 10).

Given these facts some models have been developed that connect structural trans-

formation with economic development. Two first-rate examples are Echevarria (1997)

and Laitner (2000). Laitner (2000) develops a model of the decline in agriculture and

the rise in manufacturing that occurs with economic progress. His analysis relies

on a satiation level for agricultural consumption. At a certain point an increase in

agricultural consumption provides no more utility. At this stage individuals start

consuming manufacturing goods. Echevarria’s (1997) model is quite similar. In her

setting the utility function for primary goods (read agricultural goods for the current

8



purpose) is more concave at low levels of income than are the utility functions for

manufacturing and services. Therefore, at low levels of income an individual prefers

to spend most of his income on primary goods. A subsistence level for primary goods

consumption would work in a similar way. Along these lines, restrictions on tastes and

technology that allow for tractable solutions to growth models have been developed

by Kongsamut et al. (2001). Last, Gollin et al. (2002) argue that the release of labor

from agriculture, due to gains in productivity, is an important spur in the economic

development process.

There is nothing wrong with modelling structural change in this fashion. In fact,

it can be viewed as a shorthand for the model built here. The idea here is that at

higher levels of economic development it pays to bring new goods on line. This notion

is contained in a classic paper by Romer (1987). The application and formulation

here are different though: the current analysis focuses on structural change and the

analysis is done within the context of a multisector model with perfect competition

and decreasing returns to scale.10 With additively separable concave utility, the

benefit from bringing a new good on line will exceed the benefit from consuming

more of an old good. Thus, the need to rely on satiation and subsistence points

in utility can be lessened (or even avoided if desired). Plus, the consumption of a

greater array of goods seems to be part and parcel of economic development. The

model developed here matches quite well the pattern of structural change observed in

10In interesting work Yorukoglu (2000) connects the development of new goods with business

cycles. In his model firms must decide each period whether or not to attempt to introduce a new

product. Once a product is introduced it goes through “process innovation” over time whereby it

can be manufactured at lower and lower cost. His setup has interesting implications for economic

fluctuations. Suppose the number of products out on the market is small relative to the size of

the economy. It will be profitable for firms to attempt to introduce new products. This will lead

to a burst of product innovation and a boom. Eventually, the market may become flooded with

products. It then no longer pays to introduce a new product. So, product innovation stalls. Worse

still, process innovation implies that the existing products can be produced at lower and lower cost.

This may lead to a decline in employment. Hence, a recession ensues.
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the U.S. data. An interesting question to ask is: By how much has economic welfare

increased over the last 200 years? It is easy to address this question through the eyes

of the model. The answer obtained is compared with some conventional model-free

measures of the rise in living standards.

II. The Model

A. Tastes and Technology

The world is described by a three-sector overlapping-generations model. An

individual lives for two periods. The first sector in the economy produces agricultural

goods. The second manufactures a generic good, and the last sector produces new

goods.

Tastes: Represent the momentary utility function for a person by

α ln(a) + ψ ln(c) + σ
NR
i=0

ln(max(si, s))di,

0 < α,ψ, σ < 1 and α+ ψ + σ = 1. (1)

Here a is the quantity consumed of agricultural goods. Each person also consumes a

generic manufacturing good, c, that is produced by the urban sector. The quantity

consumed of new good i is denoted by si. The term s represents a lower bound on

new goods consumption. For whatever reason, in the real world there does seem to be

some lumpiness in the consumption of goods. This would arise endogenously if there

are fixed costs associated with purchasing or consuming a good (or for that matter

producing each unit). Without this assumption an individual would unrealistically

desire to consume some amount of all goods, so long as prices are finite, albeit perhaps

in infinitesimal quantities. With this assumption an individual will want to consume

a determinate number of new goods, given a particular set of prices. Additionally,

10



this assumption permits utility to be defined when some goods aren’t consumed.11

The variable N represents the upper bound on the number of new goods that can

ever be produced.

Sources and Uses of Income: All individuals supply one unit of labor. They

work only when young and earn the wage w. An individual can use his income for

consumption or savings. Savings is done using bonds, b, which pay gross interest at

rate r. These bonds are backed by capital. Agricultural goods and new goods can be

purchased at the prices pa and pi.

Production: The output of agricultural goods, ya, is governed by a standard

Cobb-Douglas production function,

ya = zak
λ
a l
1−λ
a ,

where ka and la are the quantities of capital and labor hired in agriculture. Likewise

yc units of the generic manufacturing good can be produced using kc units of capital

11Any properly specified new-goods model must define utility when some new goods aren’t

consumed. To illustrate the issue, consider a utility function over new goods of the form

σN ln[(1/N)
R N
i=0

sρi di]
1/ρ, for ρ ≤ 1.This utility function is often adopted in Romer-style new-goods

models. Observe that when ρ = 0 one gets a logarithmic utility function of the form employed in

(1), ignoring the presence of the lower bound; i.e., when max(si, s) is replaced by si. While this

setup may appear to be more general than the one used here, note that for the purposes at hand,

this utility function will not be suitable for use when ρ ≤ 0 — when degree of curvature is greater
than or equal to the ln case. In this situation utility is not well defined when si = 0 for some i.

This is typically finessed by ignoring the zero terms in the utility function. That is, by defining the

utility function to be σN ln[(1/N)
R
N sρi di]

1/ρ, for ρ ≤ 1,where N = {i : si > 0}. In the logarithmic
case this amounts to saying that zero consumption of good si yields zero utility. Now, if this is

strictly true then no one would consume less than one unit of si, since this yields negative utility;

i.e., ln(si) < 0 when si < 1. Therefore, this implicitly sets a lower bound on consumption of s= 1.

Hence, when this assumption is explicitly taken into account the analysis proceeds along the lines

developed here. Even when 0 < ρ < 1, limsi→0d ln[(1/N)
R N
i=0

sρi di]
1/ρ/dsi =∞. This has the unre-

alistic feature that an individual will consume all goods so long as prices are finite, albeit perhaps

some in infinitesimal quantities.

11



services and lc units of labor according to

yc = zck
ω
c l
1−ω
c .

Output from this sector is used for both consumption and capital accumulation.

Finally, a type-i new good is produced in line with

yi = zik
κ
i l

τ
i . (2)

There is a fixed cost, φ, associated with the production of each new good i. This cost

is in terms of labor. The idea is that this fixed cost will slow down the introduction of

new goods into the economy.12 To cover the fixed cost, firms must earn profits after

meeting their variable costs. To this end, assume that there are decreasing returns to

scale in production. There is free entry into all production activity. The number of

specialized firms will be determined by a zero-profit condition. Denote the number

of firms that produce the new good i by ni. Assume that total factor productivity is

common across all types of new goods so that zi = zs for all i, s ∈ [0, N ].

Capital Accumulation: At a point in time the aggregate stock of capital will be

represented by k. The law of motion for capital is described by

k0 = δk+ i,

where δ is the factor of depreciation and i represents gross investment (in terms of

the generic manufacturing good). There is free mobility of capital across sectors.

Technological Progress: Technological progress will be captured by growth in za,

zc, and zi. As zi rises it becomes easier to recover the fixed costs associated with

producing new goods. As za and zc also rise so does consumer income, and hence

the demand for a greater number of new goods. Therefore, the number of new goods

produced will increase over time. This leads to a natural decline in agriculture’s share

of the economy.

12This assumption isn’t needed for the theory.
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B. A Young Worker’s Optimization Problem

How will a young worker choose his consumption plan? Given the form of pref-

erences (1), it’s clear that if a young worker consumes new good i then he will set

si ≥ s. Without loss of generality, order the new goods from the lowest to the highest

price and assume that a young worker chooses to consume the first I new goods when

young, and the first Io0 when old. A young worker’s optimization problem can then

be written as

max
a,ao0,c,co0,si≥s,so0i ≥s,I,Io0

{α ln(a) + ψ ln(c) + βα ln(ao0) + βψ ln(co0) (3)

+σ
IR

i=0

ln(si)di+ βσ
Io0R
i=0

ln(so0i )di+ σ(N − I) ln(s) + βσ(N − Io0) ln(s)},

subject to

c+ paa+
co0

r0
+

p0aa
o0

r0
+

IR
i=0

pisidi+
Io0R
i=0

p0i
r0
so0i di = w. (4)

Here the superscript “o” denotes an allocation when old while the “0” signifies that a

variable’s value next period is being considered. This problem is more or less standard

with one twist: the determination of the number of new goods to consume.

The Consumption of Each Good : Given logarithmic structure for preferences, it

is easy to solve for the quantity consumed of each good. The solution for c is given

by

c =
ψ

α+ ψ + βα+ βψ + σI + βσIo0
w. (5)

Likewise, the solutions for si and so0i read

pisi =
σ

α+ ψ + βα+ βψ + σI + βσIo0
w, (6)

and
p0is

o0
i

r0
=

βσ

α+ ψ + βα+ βψ + σI + βσIo0
w, (7)

at least when si > s and so0i > s. In the equilibrium being developed all new goods

will sell at the same price, ps, so that pi = ps for all i. Hence, si = ss for all i such

that si > s; likewise, so0i = so0s for all i such that s
o0
i > s.
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The Number of New Goods: The first-order conditions for the number of new

goods consumed each period, I and Io0, are given by

σ[ln(sI)− ln(s)] ≤
ψ

c
pIsI (with equality if I > 0), (8)

and

βσ[ln(so0Io0)− ln(s)] ≤
ψ

c
p0Io0

so0Io0

r0
(with equality if Io0 > 0). (9)

Take expression (8). The value of an extra good is σ[ln(sI)− ln(s)], the lefthand side.

This good costs pIsI . To convert this cost into utility terms multiply by the marginal

utility of first-period consumption or ψ/c to get ψpIsI/c, the righthand side. Using

(5), (6) and (7) it conveniently follows that13

sI = so0Io0 = es. (10)

Now, when will (8) and (9) hold with strict equality? It is easy to deduce that

both equations can hold tightly only when pI = p0Io0/(r
0β). If pI < p0Io0/(r

0β) then

13Observe that as the lower bound s approaches zero the quantity of new good I consumed, sI ,

becomes infinitesimal. That is, as s falls the individual would like to consume more new goods by

consuming less of each new good. Without a lower bound on consumption, s, the individual would

like to consume the whole spectrum of new goods, albeit in infinitesimal quantities as N becomes

large. This is true in a Romer-style model, too. In the current setting with perfect competition,

as s declines the number of firms producing each new good will decline. In Romer (1987) this is

precluded by the monopoly assumption that restricts the number of firms producing each good to

be one. This limits the total number of goods that can be produced.

The feature that a consumer would like to consume all goods when prices are finite, although

perhaps in infinitesimal quantities, is unrealistic. The lower bound on consumption, s, avoids this

problem. Another way to proceed, might be to use a utility function over new goods of the formRN
i=0

U(si)di, with −M < U(0), U1(0) < M for some M > 0. Here utility is well defined when a new

good isn’t consumed. And, at a high enough price the individual will choose not to consume a good.

This is not in the class of utility functions typically used in applied work, though. Note that parts of

the current analysis will still carry through. For instance, the equation (8) determining the number

of new goods will appear as U(sI) − U(0) = (ψ/c)pIsI (with equality if I > 0). The intuition for

this equation is identical to (8).
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only (8) can hold. In this situation it is optimal to consume new goods just when

young so that Io0 = 0. To summarize:

I ≥ 0 and Io0 = 0, if pI < p0Io0/(r
0β),

I ≥ 0 and Io0 ≥ 0, if pI = p0Io0/(r
0β),

I = 0 and Io0 ≥ 0, if pI > p0Io0/(r
0β).

(11)

In the subsequent analysis only the first two cases transpire. These two cases will be

referred to as Zone 1 and Zone 2.

Discussion: Some intuition for the solution to the consumer’s problem (3) can

be gleaned from Figure 8.14 For expositional purposes, assume that the economy is

in Zone 1 and let all new goods sell at the same price pi — again, an assumption that

will be met in equilibrium under study. Now, consider the decision to consume the

marginal new good, I. How much of new good I should the agent purchase: sI = 0,

which amounts to not consuming, or some quantity sI ≥ s? The utility that an

agent derives from consuming more of new good I is shown on the diagram. If the

consumer doesn’t buy I he realizes the utility level ln(s), indicated by the rectangle.

Alternatively, if he buys the good then he will purchase more than s and experience

the utility level ln(sI). Utility then rises in the fashion shown by the concave utility

function UU 0. The cost of consuming new good I is shown by the straight line CC 0.

First, by consuming I the agent loses the automatic utility level ln(s), so to speak,

associated with not consuming it — cf. (3). Second, by buying more of new good

I the agent diverts expenditure away from consuming more of the other new goods.

These goods cost the same as I and have a marginal utility of 1/si = 1/(es), the

slope of the line CC 0. The individual will pick the consumption quantity, sI , that

equates marginal benefit and marginal cost. This will be the level associated with the

point of tangency between the two lines (as shown by the inverted triangle). Here,

ln(sI) = ln(s) + sI/(es), which implies sI = es — c.f. (8) in conjunction with (5) and

(6).15

14Credit for this diagram goes to Shouyong Shi.
15The solution to consumer’s problem has a similarity to employment lotteries, à la Rogerson
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(1988). There is a nonconvex region in preferences, as Figure 8 clearly shows. The individual

convexifies this by moving along extensive margin. He consumes some new goods, and not others.

In the equilibrium under study, for each new good i ∈ [0, N ] the individual can be thought of
choosing the quantity si from the two-point set {0, es}. He randomly picks some new goods on the
[0, N ]-spectrum to maximize his utility. Let him choose to consume the fraction I/N of new goods

when young, and the fraction Io0/N when old. His decision problem can be formulated as

max
a,ao0,c,co0,I/N,Io0/N

{α ln(a) + ψ ln(c) + βα ln(ao0) + βψ ln(co0)

+σN [
I

N
ln(es) + (1− I

N
) ln(s)] + βσN [

Io0

N
ln(es) + βσ(1− Io0

N
) ln(s)]},

subject to

c+ paa+
co0

r0
+

p0aa
o0

r0
+

I

N
Npi(es) +

Io0

N
N
p0i
r0
(es) = w.

The solution to this problem is represented by the circle on Figure 8. Here, the individual can be

thought of as realizing the level of utility ' = [(I/N) ln(es)+(1−I/N) ln(s)] that is associated with
consuming the convex combination of new goods χ = (I/N)× (es) + (1− I/N)× 0.
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C. The Firms’ Problems

First consider the firm in the generic manufacturing sector. Its problem is

πc = max
lc,kc

[zck
ω
c l
1−ω
c − wlc − (r − δ)kc]. (12)

Next, the problem facing a firm in the agricultural sector can be written as

πa = max
la,ka

[pazak
λ
a l
1−λ
a − wla − (r − δ)ka]. (13)

Perfect competition implies that factors will be paid their marginal products. Euler’s

theorem then guarantees that πc = πa = 0. From the solution to problem (12), it

is easy to deduce that the wage rate can be expressed as a function of the return

on capital and the level of TFP in the generic manufacturing sector. The solution

to problem (13) then implies that the price of agricultural goods can be expressed

as a function of the return on capital, and the levels of TFP in the agricultural and

manufacturing goods sector. Hence, write w =W (r−δ; zc) and pa = Pa(r−δ; za, zc).16

Finally, turn to the production of new goods. The problem here is

πi = max
li,ki

[pizik
κ
i l

τ
i − wli − wφ− (r − δ)ki]. (14)

Now, free entry into the production of new goods guarantees that profits will be zero.

Therefore,

πi = 0. (15)

The zero-profit condition in conjunction with the solution to the firm’s problem allows

for the price of new goods to be expressed as a function of the return on capital, the

real wage rate, and the level of TFP. One can therefore write pi = Pi(r − δ; zc, zi).17

Since zi = zs for all i, s ∈ [0, N ] and Pi is not a function of i, it transpires that pi = ps

for all i and s that are produced. Note that there is really just one price to worry

about, r.

16The interested reader is referred to equations (21) and (28) in the Appendix.
17For more detail, see equation (22) in the Appendix.
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D. Market-Clearing Conditions

The markets for goods and factors must clear each period. Take the goods

markets first. The market-clearing condition for generic manufacturing is

c+ co + k0 − δk = yc, (16)

while the one for agriculture appears as

a+ ao = ya.

The market for each new good requires that

µisi + µois
o
i = niyi,

where µi denotes the fraction of a generation that will consume good i. Note that

in order to have a symmetric equilibrium, the demand must be same for each new

good produced. Now, the total number of new goods produced in a period is given

by max(I, Io). The young generation consumes the fraction 0 ≤ I/max(I, Io) ≤ 1 of

these goods. If each young worker randomly picks his I goods from the max(I, Io)

being offered then µi = I/max(I, Io).18 Similarly, µoi = Io/max(I, Io). Now, suppose

that pi < p0i/(r
0β); i.e., that the economy is in Zone 1. Then, µi = 1 and µo0i = 0.

Alternatively, if pi = p0i/(r
0β) it may transpire that 0 < µi, µ

o0
i < 1.

The factor market conditions appear as

ka + kc +max(I, I
o)niki = k,

and

la + lc +max(I, I
o)nili +max(I, I

o)niφ = 1. (17)

18In other words think about the index i in (3) as representing each young worker’s personal

numbering scheme over the new goods available in the first and second periods of his life. That is,

out of the max(I, Io) new goods available in the first period of his life he can choose to order them

as he wishes on the interval [0,max(I, Io)]. The same is true for the second period.
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Definition A competitive equilibrium is a set of time paths for consumption,

{at, aot , ct, cot , si,t, soi,t, It, Iot }∞t=0, labor and capital inputs, {la,t, lc,t, li,t}∞t=0 and {ka,t, kc,t, ki,t}∞t=0,

the number of firms producing new goods, {ni,t}∞t=0, and interest rates, {rt}∞t=0, such

that for an initial capital stock, k0, a time path for total factor productivities, {za,t, zc,t, zi,t}∞t=0,

and the pricing functions, W (·), Pa(·) , Pi(·):

1. The consumption allocations, {at, aot+1, ct, cot+1, si,t, soi,t+1, It, Iot+1}∞t=0, solve the

consumer’s problem (3), given the path for prices {W (rt−δ; zc,t), Pa(rt−δ; za,t, zc,t), Pi(rt−

δ; zc,t, zi,t), rt}∞t=0.

2. The factor allocations, {la,t, lc,t, li,t}∞t=0 and {ka,t, kc,t, ki,t}∞t=0, solve the firms’

problems (12) to (14), given the path for prices {W (rt−δ; zc,t), Pa(rt−δ; za,t, zc,t), Pi(rt−

δ; zc,t, zi,t), rt}∞t=0.

3. There are zero profits in the new goods markets as dictated by (15).

4. All goods and factor markets clear so that equations (16) to (17) hold.

III. Results

Can the above framework explain the rise of manufacturing and the decline of

agriculture that occurred over the last two hundred years? The engine of change in

the model is technological progress. Hence, to answer this question, some discussion

on the extent of technological progress in agriculture and manufacturing over the

1800-to-2000 period of interest is in order.

A. Technological Progress in Agriculture and Non-Agriculture

Take agriculture first. Total factor productivity (TFP) grew at 0.48 percent per

year between 1800 and 1900.19 Its annual growth rate fell to 0.26 percent in the

19The estimates for the growth rates of agricultural productivity from 1800 to 1900 come from

Atack et al. (2000, Table 6.1).
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interval 1900 to 1929 and then rose to 2.24 percent over the 1929-to-1960 period.20

Between 1960 and 1996 it grew at an annual rate of 2.18 percent.21 Hence, by chaining

these estimates together, it is easy to calculate that TFP increased by a factor of 7.61

between 1800 and 1996. TFP in the non-agricultural sector — labelled manufacturing

— rose at a faster clip. It grew at an annual rate of 0.75 percent over the period 1800

to 1900.22 Its growth rate then picked up to 1.63 percent across 1899 to 1929 and to

2.01 percent from 1929 to 1966.23 Last, manufacturing TFP grew at an annual rate

of 0.70 percent from 1966 to 2000.24 Over the period 1800 to 2000 non-agricultural

TFP grew by a factor of 9.25. Figure 9 shows the series obtained for agricultural and

non-agricultural TFP.

B. Analysis of Comparative Steady States

Choice of Parameter Values: In order to simulate the model values must be

assigned to various parameters. These are listed in Table 1. Almost nothing is known

about the appropriate values for some parameters, such as the lower bound on new

goods consumption, s, or the fixed cost associated with running a firm producing

new goods, φ. So, the parameter values are picked to generate two steady-state

20The estimates for the growth in agricultural TFP for the 1900-to-1929 and 1929-to-1960 periods

are computed from data in Historical Statistics of the United States: Colonial Times to 1970 (Series

W7).
21Source: Economic Research Service, United States Department of Agriculture, Agricultural Pro-

ductivity in the U.S. (98003). Available online at http://usda.mannlib.cornell.edu/usda/usda.html.
22The estimates for technological progress in the nonagricultural sector prior to 1900 are backed

out using economy-wide TFP and sectoral share data taken from Weiss (1994, Tables 1.2 -1.4) and

Gallman (2000, Tables 1.7 and 1.14) in conjunction with the Atack et al (2000, Table 6.1) agricultural

estimates.
23These estimates are calculated from data in Historical Statistics of the United States: Colonial

Times to 1970 (Series W8).
24Source: Bureau of Labor Statistics, U.S. Department of Labor, Multifactor Productivity Trends,

Table 2: Private Non-Farm Business: Productivity and Related Indexes,1948-2001. Available on line

at http://www.bls.gov/news.release/prod3.t02.htm.
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Figure 9: Total factor productivity in agriculture and non-agriculture, 1800-2000.

equilibriums that mimic some key features of the U.S. data for the years 1800 and

2000. A guide to the informal selection procedure adopted will now be given. Before

proceeding, assume that a model period is 20 years and that the (annualized) rate of

physical depreciation on capital is 8 percent.

U.S. Economy, circa 1800 : In 1800 agriculture accounted for 46 percent of

U.S. output and 74 percent of employment. A steady state will be constructed that

matches these two features. To this end, normalize the initial levels of total factor

productivity so that za = zc = zi = 1. Next, assume that no new goods were produced

in 1800. This can be achieved by picking high values for s and φ. By doing this output

will be comprised by just agricultural and generic manufacturing goods. While it’s

hard to know what are reasonable values for labor’s share of income in agriculture,

1− λ, and generic manufacturing, 1− ω, it is known that for the aggregate economy

it should be about 70 percent. This implies that

χ(1− λ) + (1− χ)(1− ω) = 0.70,
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where χ is agriculture’s share of output. This restriction can be used to pin down

a value for capital’s share in agriculture, λ, given a value for capital’s share in the

generic manufacturing, ω. In other words, let

λ = 1.0 + [(1− χ1800)/χ1800](1− ω)− 0.70/χ1800.

The choice of ω will be discussed shortly.

U.S. Economy, circa 2000 : Two hundred years later agricultural’s share of output

and employment had dropped to just 1.4 and 2.5 percent, respectively. Output had

increased by 36.7 times.25 Can a steady state be constructed that replicates these two

facts? Over this time period total factor productivity in agriculture rose 7.61 fold.

So, set za = 7.61. Similarly, total factor productivity in non-agriculture increased

9.25 times. Thus, let zc = zi = 9.25. The responsiveness of output to changes in

TFP is sensitive to capital’s share of income. The larger capital’s share of income is

the bigger will be the response. This transpires because capital is the reproducible

factor in the model. The observed 36.7-fold increase in output can be obtained by

setting capital’s share in the generic goods sector, ω, to 0.46. New goods are produced

competitively. Therefore, any profits earned in this sector are absorbed completely by

the fixed costs of production. Recall that the fixed cost of producing new goods are

borne entirely in terms of labor. Thus, labor’s share of income in the new goods sector

is given by (1 − κ). Assuming that new goods weigh heavily in the 2000 economy,

this dictates setting κ at about 30 percent; let κ = 0.28. To choose the exponent

on labor, τ , assume that profits, and hence fixed costs, amount to 10 percent of new

goods production so that τ = 1.0− κ− 0.10.

Last, three taste parameters need to be picked: α, ψ, and β. In the adopted

parameterization the circa-2000 steady state lies in Zone 2. Hence, r = 1/β.26 An

annual interest rate of about 7.5 percent can be achieved by setting β = 0.9320. The

weights on the various categories of consumption in utility are chosen to obtain the
25This estimate is based on the data presented in Mitchell (1998, Table J1) together with the

NIPA accounts.
26This normally wouldn’t be the case for an overlapping generations model.
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best fit matching agricultural’s share of output and employment over the period 1800

to 2000.

Table 1 — Parameter Values

Tastes: α = 0.23, ψ = 0.22, β = 0.9320, σ = 1.0− 0.23− 0.22, s = 0.1.

Technology: ω = 0.46, λ = 0.11, κ = 0.28, τ = 0.62, φ = 0.03, and δ = (1.0− 0.08)20.

1. Welfare Gain

So by how much did welfare increase between 1800 and 2000? To address this

question, define the expenditure function, E(pa, p0a,
−→pi ,−→pi 0, r0, u), by

E(pa, p
0
a,
−→pi ,−→pi 0r0, u) ≡ min

c,,co0,a,ao0,si≥s,so0i ≥s,I,Io0
{c+paa+

co0

r0
+
p0aa

o0

r0
+

IZ
i=0

pisidi+

Io0Z
i=0

p0i
r0
so0i di}

(18)

subject to

{α ln(a) + ψ ln(c) + σ

Z I

i=0

ln(si)di

+ β[α ln(ao0) + ψ ln(co0) + σ

Z Io0

i=0

ln(so0i )di]

+ σ(N − I) ln(s)− βσ(N − Io0) ln(s)} = u,

(19)

where−→pi represents the vector of new goods prices for the current period. The solution

to this problem will be once again characterized by the first-order conditions (5) to

(9), but now the choice variables must also satisfy the utility constraint (19) rather

than the budget constraint (4).

Consider comparing welfare across two steady states, labeled old and new. Let

the subscript 0 denote a variable’s value in the old steady state and the subscript

T represent the variable’s value in the new steady state. In the new steady state a

young agent will earn wT , face the prices pa,T , −→pi,T , and rT , and realize utility, uT . In
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the old steady state, the young agent would have earned w0 and realized utility u0.

Now, it would cost the amount E(pa,T , pa,T ,−→pi,T ,−→pi,T , rT , u0) to provide the old level

of utility, u0, at the new set of prices, pa,T , −→pi,T , and rT . At this level of income a

young agent would be indifferent between living in the new steady state or staying in

the old steady one with the wage rate, w0. Any extra income improves the agent’s

lot. Hence, a measure of the proportionate change in welfare across these two steady

states, analogous to a compensating variation, is given by27

ln(wT )− ln[E(pa,T , pa,T ,−→pi,T ,−→pi,T , rT , u0)].

Another utility-based measure is based on the concept of an equivalent variation. It

measures the cost of providing the new level of utility, uT , at the prices that the agent

faces in old steady-state, pa,0,
−→pi,0, and r0 .28 This gives

ln[E(pa,0, pa,0,
−→pi,0,−→pi,0, r0, uT )]− ln[w0].

Wages increase from w0 to wT across the two steady states. This doesn’t take

into account the fact that the cost of living may have also shifted due to a change in

prices. The conventional way to control for this would be to deflate wages in the new

steady state by a price index. The Laspeyres price index, LT , is given by

LT =
(c0 + co0) + pa,T (a0 + ao0) + pi,T (I0 + Io0)es

(c0 + co0) + pa,0(a0 + ao0) + pi,0(I0 + Io0)es
.

It measures the rise in the cost of purchasing the initial basket of goods. The growth

in real income based on the Laspeyres price index is

ln(wT/LT )− ln(w0) = ln(wT )− ln(LTw0).

Of course agents wouldn’t buy the initial basket of goods in the new steady state.

They would substitute toward those goods whose prices have fallen. The Paasche price
27The compensating variation, CV , associated with the move from the old to the new steady state

is E(pa,T , pa,T ,
−−→pi,T ,−−→pi,T , rT , u0) − w0. Therefore, definitionally, E(pa,T , pa,T ,

−−→pi,T ,−−→pi,T , rT , u0) =
CV + w0. Hence, the above welfare measure can be written as ln(wT )− ln(CV + w0).
28The price vector, −→pi,0, is defined only over the new goods that are in existence in the old steady

state.
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index, PT , computes the rise in cost of living using the basket of goods consumed in

the final steady state.

PT =
(cT + coT ) + pa,T (aT + aoT ) + pi,T (IT + IoT )es

(cT + coT ) + pa,0(aT + aoT ) + pi,0(IT + IoT )es
.

The growth in real income using the Paasche price index is

ln(wT/PT )− ln(w0).

The Fisher price index, FT , is a geometric mean of the Laspeyres and Paasche indices

so that FT =
√
LT × PT . Last, the Tornqvist index, TT , is defined by

ln(TT ) = (
ξa,0 + ξa,T

2
) ln(

pa,T
pa,0

) + (
ξi,0 + ξi,T

2
) ln(

pi,T
pi,0
),

where ξx,t is the period-t expenditure share of good x (for x = a, i) in consumption

so that, for example,

ξa,0 =
pa,0(a0 + ao0)

(c0 + co0) + pa,0(a0 + ao0) + pi,0(I0 + Io0)es
.

A problem with the Paasche price index is that many of the goods purchased in

the new steady state were not available in the old steady one. For example, assume

that no new goods were produced in the old steady state. The price pi,0 would not

exist then. For this reason, the Laspeyres index is used in practice — the price pi,0

won’t appear in the denominator of this index since I0 = Io0 = 0 when new goods

aren’t consumed. Hicks (1940) suggested constructing a "virtual price" to overcome

this problem with new goods. The virtual price is the lowest price for the new good

at which the consumer would choose zero units, given the prices for the other goods

and his income. It is easy to construct such virtual prices in the model. To see this,

assume that no new goods are consumed in the old steady state. Also suppose that

r0 < 1/β, or that the old steady state lies in Zone 1 (implying in general that I0 ≥ 0

and Io0 = 0). Recall that if some new goods are consumed then equation (8) will hold

with equality so that si = es. Therefore, using (6) it will transpire that

pi,0 =
σ

α+ ψ + βα+ βψ + σI0

w0
es

.
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This equation gives the inverse demand curve for new goods. To compute the virtual

price, pvi,0, set I0 = 0 in this demand relationship to obtain

pvi,0 =
σ

α+ ψ + βα+ βψ

w0
es

.

Some intuition for the differences between the various welfare measures is pro-

vided in Figure 10. The diagram portrays a static setting with just two types of goods,

generic and new. Tastes are once again represented by (3), but now set α = β = 0.

Equation (10) will once again give the quantity consumed of each new good, or si = es.

Given this, Figure 10 shows indifference curves over the quantity of generic goods, c,

and the number of new goods, I, consumed. The slope of one of these indifference

curves is −ψ/(σc). Now, imagine a situation where there are no new goods produced.

Here c = w. This situation is portrayed by the point A. Suppose that new goods

become available. Point B shows this situation. Recall that in equilibrium each new

good that is produced will sell at the same price, pi. The slope of the budget con-

straint is given by −1/(pies) — the cost of consuming es units of a new good is pies.29

Clearly the consumer is better off. He is on a higher indifference curve. At the new

prices, you could take away from the consumer CV units of income and he would

remain on his old indifference curve at the point D. This shows the compensating

variation. The Laspeyres price index shows no change in real income. Why? At the

new set of prices the cost of the old consumption bundle is still w since no new goods

were consumed. Hick’s (1940) virtual price is given by slope of the indifference going

through the point A. According to the Paasche index real income increases by the

amount P . By giving the consumer this amount he can afford to buy the new bundle

of goods, represented by point B, at the old set of (virtual) prices. Last, the distance

EV measures the equivalent variation. It asks how much income would consumer

have to be given in order to get his new level of utility without any new goods — see

point E.

Table 2 presents the gain in welfare according to the various measures. The

29The budget constraint is c+ piIes = w.
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Figure 10: Welfare Measures.

welfare gain due to technological progress and the introduction of new goods is large

by any measure. The utility-based estimate based upon the compensating varia-

tion suggests that welfare rose by 300 percent, when measured in terms of generic

consumption. This is a (continuously compounded) gain of about 1.5 percent a year.

The traditional index number measures report gains very similar to the compensating

variation criteria. These numbers are strikingly similar to an estimated 300 percent

increase in the U.S. real wage over the 1800 to 2000 period.30 The other utility-based

estimate based upon equivalent variation concept reports a much larger welfare gain

of 2,000 percent. This translates into a welfare gain of about 10 percent a year. This

measure asks by how much would income have to increase in 1800, when there were

no new goods, in order to provide today’s level of utility. Providing a modern utility

level using just yesteryear’s goods is an expensive proposition. The traditional index

30This estimate is based on real wage data contained in Williamson (1995, Table A1) for the period

1830 to 1988. The Williamson (1995) series was updated to 2000 using data from the Bureau of

Labor Statistics. The resulting series was then extrapolated back to 1800.
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number concepts miss this point. Theoretically speaking, there is no good reason

to prefer the compensating over the equivalent variation, or vice versa. Taking an

average of the two utility-based measures suggests that welfare increased by 1,151

percent or grew at about 6 percent a year. Perhaps the safest thing to say, though,

is that welfare increased by at least 300 percent.

Table 2: Gain in Welfare

Measure Welfare Gain, %

Compensating Variation 309

Equivalent Variation 1,994

Laspeyres 280

Paasche 305

Fisher 292

Tornqvist 302

C. Transitional Dynamics

The Computational Experiment: Now, imagine starting the model off in a steady

state that resembles the U.S. in 1800 and letting it converge to a new steady state

that resembles the U.S. in 2000. To undertake this experiment the time path for

TFP shown in Figure 9 will be inputted into the simulation. The circles on the series

indicate the values at 20 year intervals that will be used when simulating the model’s

transitional dynamics. What will the economy’s behavior over this time period look

like? From the earlier results it can be surmised that economy will initially be in

Zone 1 and then transit into Zone 2. So before proceeding, a comment will be made

about the model’s local dynamics in Zone 2.31

Local Dynamics: The dynamics approaching the Zone 2 steady state can be

characterized analytically. Recall that the price of the new good can be written as

31The discussion below on the model’s Zone-2 local dynamics can be omitted without loss of

continuity.
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pi = Pi(r−δ; zc, zi). Now, assume that the economy is in Zone 2. Equation (11) holds

tightly in this Zone. It gives the following difference equation for the interest rate

r0βPi(r − δ; zc, zi) = Pi(r
0 − δ; z0c, z

0
i). (20)

To have a steady state, technological progress must abate. Hence, suppose that

z0c = zc, and z0i = zi. What can be said about the solution to this difference equation

in this situation? The lemma below provides the answer. The cases described by the

lemma are portrayed in Figure 11.

Lemma The difference equation (20) has two rest points, viz r = 1/β and r = δ. Its

local dynamics are as follows:

1. When κ− ω < 0 the system converges monotonically to the rest point given by

r = 1/β. The rest point r = δ is unstable.

2. When κ− ω > 0 two modes of behavior can happen:

(a) If (κ − ω)/(1 − ω) < 1 − βδ then the system converges monotonically to

the rest point r = δ. The system exhibits oscillations around the r = 1/β

rest point. These cycles converge when (κ− ω)/(1− ω) < (1− βδ)/2 and

diverge otherwise.

(b) Alternatively, if (κ− ω)/(1− ω) > 1− βδ the system converges monoton-

ically towards the rest point r = δ. The rest point r = 1/β is unstable.

Proof. See Appendix

Remark The calibrated version of model is described by Case 1. Suppose instead

that κ− ω > 0. Then, as a practical matter, any reasonable calibration will result in

(κ− ω)/(1− ω) < (1− βδ)/2 . This will transpire because the differences in capital

shares across industries are small. Hence, for all empirically relevant equilibrium the

rest point r = 1/β will be stable.

Sectoral Shifts: The transitional dynamics for the model are shown in Figure

12. Given the parameterization adopted, convergence to the new steady state (where
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Figure 11: The Model’s Local Dynamics, Zone 2.
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Figure 12: The Decline of Agriculture, 1800-2000 — U.S. Data and Model.

r = 1/β) is monotone. (I.e., the economy is described by Case 1 in the lemma.) The

model economy transits out of Zone 1 into Zone 2 in 1880. Observe that agriculture’s

shares of GDP and employment decline along with technological progress. The time

paths predicted by the model match the data very well, with one blemish that will

be discussed now.

Note that in the U.S. data, agriculture’s share of employment, ϑ, significantly

exceeded its share of output, χ, in 1800. This is a bit of task to achieve with a

Cobb-Douglas production structure, at least when new goods aren’t produced. To

see why, note that the efficiency conditions for employment in agriculture and generic

manufacturing imply that the following relationship between relative employment and

outputs must hold

χ

1− χ
≡ paya

yc
=
1− ω

1− λ

la
lc
≡ 1− ω

1− λ

ϑ

1− ϑ
.
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Figure 13: The Rise in the Number of New Goods and Firms, 1800-2000 — Model.

Hence, if agriculture is to constitute a higher fraction of employment vis a vis output

then labor’s share of income must be disproportionately higher in this sector; i.e.,

(1−λ)/(1−ω) must be bigger than one since [ϑ/(1−ϑ)]/[χ/(1−χ)] is. This could be

done by picking a high value for ω, or capital’s share of income in the generic sector.

The required value is 0.74. This value is unrealistic and implies that small changes

in non-agricultural TFP will have enormous effects on output.

Coinciding with the fall in agriculture is the rise in new goods, as Figure 13

illustrates. As can be seen, at low levels of economic development no new goods

are produced. As the state of technology progresses income rises. Workers begin to

demand new goods. Both the number of new goods produced, and the number of

firms producing them, rise. On some other dimensions the predictions for the model

are reasonable. The interest rate is trapped between 4.6 and 8.2 percent. Labor’s

share of income hovers around 70 percent.
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IV. Conclusions

So, what is the connection between technological progress, the introduction of

new goods, and the structure of production? A simple story is told here. As incomes

rise, it pays for producers to introduce new goods and services. Consumers demand

new goods as incomes rise because the benefit from consuming a new good is higher

than the benefit from consuming more of an old good. The appealing aspect of this

explanation is that in the data the importance of agriculture seems to fall unabated as

economies develop, and the model developed here is consistent with that prediction.

(More precisely, so long as TFP increases, agriculture’s share of GDP keeps declining.

It does not asymptote to a positive constant.)

The model developed here also provides a framework, albeit crude, with which

to analyze the impact that new goods have on economic welfare. The impact of

technological progress on economic welfare is sizable. The exact magnitude depends

on the welfare criteria used. The analysis suggests that economic welfare grew by

at least 1.5 percent a year, and by perhaps as much as 10 percent a year. More

elaborate versions of the model could undoubtedly do a better job. For instance,

process innovation could be incorporated into the framework to capture the decline

in a product’s price after its introduction. At a point in time, each vintage of new

goods would then be consumed in differing amounts. Over time the consumption

of a new product would follow a diffusion curve. This may create more powerful

substitution effects that could create some divergence among the various indices of

welfare. A model provides an ideal laboratory to evaluate the performance of the

various indices.
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V. Appendix

A. The Lemma

By using the first-order conditions to problem (14), it can be deduced that the

profits earned by a firm in the new goods sector will be given by

πi = (1− κ− τ)κκ/(1−κ−τ)τ τ/(1−κ−τ)(pizi)
1/(1−κ−τ)(r − δ)−κ/(1−κ−τ)w−τ/(1−κ−τ)

− wφ = 0.

Next, the first-order conditions to problem (12) imply that

w =W (r − δ; zc) ≡ (1− ω)zc(
r − δ

ωzc
)ω/(ω−1). (21)

Using the above two equations in conjunction with (15) allows the price for new goods

to be written as

pi = Pi(r − δ; zc, zi) ≡ z−1i [
φ

(1− κ− τ)
](1−κ−τ)κ−κτ−τ (22)

×(1− ω)1−κω(1−κ)ω/(1−ω)z(1−κ)/(1−ω)c (r − δ)[κ−ω]/(1−ω).

It is then straightforward to calculate that

Pi1(r − δ; zc, zi) =
1

r − δ

κ− ω

(1− ω)
Pi(r − δ; zc, zi). (23)

With (22) in hand, it is easy to see that the difference equation (20) can be rewritten

as

r0β(r − δ)[κ−ω]/(1−ω) = (r0 − δ)[κ−ω]/(1−ω), (24)

when z0c = zc and z0i = zi. What can be said about the solutions to this equation?

Lemma The difference equation (20) has two rest points, viz r = 1/β and r = δ. Its

local dynamics are as follows:

1. When κ− ω < 0 the system converges monotonically to the rest point given by

r = 1/β. The rest point r = δ is unstable.
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2. When κ− ω > 0 two modes of behavior can happen:

(a) If (κ − ω)/(1 − ω) < 1 − βδ then the system converges monotonically to

the rest point r = δ. The system exhibits oscillations around the r = 1/β

rest point. These cycles converge when (κ− ω)/(1− ω) < (1− βδ)/2 and

diverge otherwise.

(b) Alternatively, if (κ− ω)/(1− ω) > 1− βδ the system converges monoton-

ically towards the rest point r = δ. The rest point r = 1/β is unstable.

Proof. Rewrite the mapping given by (20) as

r0 = D(r; zc, zi). (25)

(Recall that in a steady state, z0c = zc and z0i = zi.) It’s clear from (24) that r0 = r =

1/β and r0 = r = δ are both rest points to this equation. By the implicit function

theorem D is a C1 function with

dr0

dr
= D1(r; zc, zi) =

r0βPi1(r − δ; zc, zi)

Pi1(r0 − δ; zc, zi)− βPi(r − δ; zc, zi)
. (26)

Using (22), (23), and (20) in (26) it can be calculated that

dr0

dr
= D1(r; zc, zi) =

[(κ− ω)/(1− ω)]r0(r0β)(1−ω)/(κ−ω)

[(κ− ω)/(1− ω)]r0 − (r0 − δ)
(27)

=
[(κ− ω)/(1− ω)]r0(r0β)(1−ω)/(κ−ω)

∆(r0)
.

First, if κ−ω < 0 then Pi1(r− δ; zc, zi) and Pi1(r
0− δ; zc, zi) < 0. From (26) it is

easy to see that dr0/dr = D1(r; zc, zi) > 0 for all r and r0 combinations. Therefore, the

law of motion D rises continuously from the point r0 = r = δ and converges asymp-

totically to limr→∞D(r; zc, zi) = ∞. It is also easy to deduce that dr0/dr|r0=r=1/β =

D1(1/β; zc, zi) < 1; in fact, D1(r; zc, zi) < 1 whenever r > 1/β. Furthermore, from

(27) it can be seen that dr0/dr|r0=r=δ = D1(δ; zc, zi) = (δβ)
(1−ω)/(κ−ω) > 1. Hence, the

system converges monotonically to the rest point r0 = r = 1/β from any r 6= δ.
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Second, suppose that κ− ω > 0. From (27) it is apparent that

dr0

dr
T 0 as ∆(r0) T 0.

In turn it is easy to compute that

∆(r0) T 0 as r0 S δ(
1− ω

1− κ
).

[Note that (1− ω)/(1− κ) > 1 when κ− ω > 0.] Consequently, the law of motion D

approaches the point r0 = δ(1−ω
1−κ ) ≡ ξ and r = (ξ−δ)/(ξβ)(1−ω)/(κ−ω)+δ from two ways:

(i) upwards from below, and (ii) downwards from above. That is, it starts off from

r0 = r = δ and rises upwards to r0 = δ(1−ω
1−κ ) ≡ ξ and r = (ξ − δ)/(ξβ)(1−ω)/(κ−ω) + δ.

It then bends backwards, and as r returns to δ, the law of motion D asymptotes

to limr→δ D(r; zc, zi) = ∞. Now, from (27) it is obvious that 0 < dr0/dr|r0=r=δ =

D1(δ; zc, zi) = (δβ)(1−ω)/(κ−ω) < 1. Therefore, the rest point r0 = r = δ is locally

stable.

What about the other rest point, r0 = r = 1/β? Two subcases occur depending

on whether ∆(1/β) T 0. First, note that

∆(1/β) T 0 as κ− ω

1− ω
T 1− βδ.

Now assume that ∆(1/β) > 0. It follows from (27) that dr0/dr|r0=r=1/β > 1. In this

case the rest point r0 = r = 1/β is unstable. Alternatively, suppose that ∆(1/β) < 0.

Here, the system oscillates around the rest point r0 = r = 1/β. Are these oscillations

locally stable? Equation (27) implies that

dr0/dr|r0=r=1/β T −1 as κ− ω

1− ω
S (1− βδ)/2.

¥

B. Transitional Dynamics

Pick a T large enough so that convergence takes place within T + 1 periods.

That is, so that all variables in the model will take their steady state values by period
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T + 1. Start iteration j with a guess for the interest rate path, {rt}Tt=0, and the

time path for the number of new goods consumed by the young, {It}Tt=0, denoted by

{rjt}Tt=0 and {Ijt }Tt=0 respectively. Now, with a little bit of work, it can be shown that

pa = Pa(r − δ; za, zc) ≡
(r − δ)λw1−λ

zaλ
λ(1− λ)(1−λ)

. (28)

Hence, a guess can be obtained, using (28), (22) and (21), for the price and wage paths

{pa,t}Tt=0,{pi,t}Tt=0, and{wt}Tt=0. Represent this by {pja,t}Tt=0,{pji,t}Tt=0, and{w
j
t}Tt=0.

Time period t: In time period t the state variables will be kt, bt, and rt. Given

the guess {rjx+1}Tx=t+1 and {Ijx}Tx=t+1, a solution for either rt+1 or It must be found,

depending on whether the model is in Zone 1 or Zone 2. This is done using the capital

market-clearing condition.

kt+1 = bt+1.

The supply of capital, bt+1, derives from the optimization problem (3) for the period-t

young. It is equal to their savings so that

bt+1 = wt − ct − pa,tat − Itpi,tes.

The demand for capital, kt+1, reads

kt+1 = ka,t+1 + kc,t+1 +max{It+1, Iot+1}ni,t+1ki,t+1.

In the above equation the superscript o denotes an allocation by an old agent. Fur-

thermore It+1 is determined by the time-(t+1) solution to (3) while Iot+1 is determined

by the time−t solution to (3) — the solutions will depend upon what zone the model

is in. The period-(t+1) number of firms in the new goods sector i, ni,t+1, is given by

ni,t+1 = [
(It+1 + I0t+1)/max{It+1, I0t+1}

zi,t+1kκi,t+1l
τ
i,t+1

]es.

The demand for capital in the agricultural sector is given by

ka,t+1 =
at+1

za,t+1(ka,t+1/la,t+1)λ−1
,
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where

at+1 = at+1 + aot+1.

Note that at+1 will be determined by the time-(t+ 1) solution to (3) while aot+1 will

obtain from the time-t solution to this problem. In the model all period-(t+1) capital-

labor ratios, such as ka,t+1/la,t+1, can be expressed as functions of the period-(t+ 1)

interest rate, rt+1 — recall that wt+1 is a function of rt+1. In a similar vein the capital

stock employed in the new goods sector is

ki,t+1 = [
si,t+1

zi,t+1(ki,t+1/li,t+1)−τ
]1/(κ+τ),

where

si,t+1 =
It+1

max{It+1, Iot+1}
es+

Iot+1
max{It+1, Iot+1}

es.

Again, note that ki,t+1/li,t+1 can be written as a function of rt+1.

The period-(t+ 1) market-clearing condition for generic manufacturing goods is

ct+1 + kt+2 − δkt+1 = zc,t+1kc,t+1(kc,t+1/lc,t+1)
ω−1,

which implies that

kc,t+1 = {ct+1 + kt+2 − δ[ka,t+1 + ni,t+1max{It+1, Iot+1}ki,t+1]}

/[zc,t+1(kc,t+1/lc,t+1)
ω−1 + δ].

Here aggregate manufacturing consumption, ct+1, is

ct+1 = ct+1 + cot+1,

where ct+1 and cot+1 are given by the time-(t + 1) and time-t solutions to (3). Note

that kt+2 can readily be computed from time-(t+ 1) aggregate savings.

By tracing through the above equations, it can be seen that, given a guess for

{rjx+1}Tx=t+1 and {Ijx}Tx=t+1, everything can be solved out for in terms of just either

rt+1 or It depending upon whether the model is in Zone 1 or Zone 2. When the model

is in Zone 2 then rt+1 is pinned down by the difference equation pi,t+1/rt+1 = βpi,t.
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[Note that the period-t young agent’s intertemporal budget constraint (4) implies that

solving out for It is the same thing as solving out for Iot+1.
32 The variable It+1 comes

from the guess path.] When the model is in Zone 1 then It (or equivalently Iot+1) is

determined by the solution to the optimization problem (3) as a function of rt+1.33

Initial Period 0: At time zero there is an unanticipated wealth redistribution

given the unexpected shift in technology. Hence, the initial interest rate, r0, that

clears the capital market must also be computed. There are now two variables that

need to be solved for: r0, and either r1 or I0. That is, the initial interest rate is not

a state variable that has been determined in the previous period. The solution for

either r1 or I0 obtains in the manner described above. The solution for r0 is achieved

by adding the time-0 capital market-clearing condition

ka,0 + kc,0 +max{I0, Io0}ni,0ki,0 = k0.

The demand for capital in the agricultural sector is given by

ka,0 =
a0

za,0(ka,0/la,0)λ−1
,

where

a0 = a0 + ao0.

Here the solution for ao0 obtains from

ao0 =
α

α+ ψ + σIo0
rk0/pa,0.

32It is easy to calculate that in Zone 2

Iot+1 = wt/(βpi,tes)− (α+ ψ + βα+ βψ)/(σβ)− It/β.

33In line with (11), when pi,t < pi,t+1/(rt+1β) it transpires that Iot+1 = 0. When pi,t >

pi,t+1/(rt+1β) then

Iot+1 = wtrt+1/(pi,t+1es)− (α+ ψ + βα+ βψ)/(βσ).
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In a similar vein the capital stock employed in the new goods sector is

max{I0, Io0}ni,0ki,0 = max{I0, Io0}ni,0(
(r0 − δ)

κpi,0zi,0(ki,0/li,0)−τ
)1/(κ+τ−1).

In the above two equations I0 is determined by the time-0 solution to (3) while Io0

will be specified by

Io0 = max{
r0k0
pi,0es

− α+ ψ

σ
, 0}.

The market-clearing condition for generic manufacturing goods is

c0 + k1 − δk0 = zc,0kc,0(kc,0/lc,0)
ω−1,

which implies that

kc,0 = {c0 + k1 − δk0}/[zc,0(kc,0/lc,0)ω−1].

Here aggregate manufacturing consumption, c0, is given by

c0 = c0 + co0,

where c0 derives from (3) while co0 is determined by

co0 =
ψ

α+ ψ + σIo0
r0k0.

The algorithm: The algorithm proceeds by iterating down the time path starting

at time 0 and moving on to time period T . The solution {rt, It}Tt=0 obtained at each

iteration j is used as a revised guess for iteration j+1. The algorithm continues until

{rjt , Ijt }Tt=0 → {rj+1t , Ij+1t }Tt=0.
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