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1. INTRODUCTION

People in countries like the United States are richer by a factor of about

10 or 20 than people a century or two ago. Whereas U.S. per capita income

today is $33,000, conventional estimates put it at $1800 in 1850. Yet even

this difference likely understates the enormous increase in standards of

living over this period. Consider the quality of life of the typical American

in the year 1850. Life expectancy at birth was a scant 40 years, just over half

of what it is today. Refrigeration, electric lights, telephones, antibiotics,

automobiles, skyscrapers, and air conditioning did not exist, much less

the more sophisticated technologies that impact our lives daily in the 21st

century.1

Perhaps the central question of the literature on economic growth is “Why

is there growth at all?” What caused the enormous increase in standards of

living during the last two centuries? And why were living standards nearly

stagnant for the thousands and thousands of years that preceded this recent

era of explosive growth?

The models developed as part of the renaissance of research on economic

growth in the last two decades attempt to answer these questions. While

other chapters discuss alternative explanations, this chapter will explore

theories in which the economics of ideas takes center stage. The discoveries

of electricity, the incandescent lightbulb, the internal combustion engine,

the airplane, penicillin, the transistor, the integrated circuit, just-in-time

inventory methods, Wal-Mart’s business model, and the polymerase chain

reaction for replicating strands of DNA all represent new ideas that have

been, in part, responsible for economic growth over the last two centuries.

1Ideally, the calculations of GDP should take the changing basket of goods and changes
in life expectancy into account, but the standard price indices used to construct these com-
parisons are inadequate. See, for example, DeLong (In progress) and Nordhaus (2003).
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The insights that arise when ideas are placed at the center of a theory of

economic growth can be summarized in the following Idea Diagram:

Ideas ⇒ Nonrivalry ⇒ IRS ⇒ Problems with CE

To understand this diagram, first consider what we mean by “ideas.” Romer

(1993) divides goods into two categories: ideas and objects. Ideas can

be thought of as instructions or recipes, things that can be codified in a

bitstring as a sequence of ones and zeros. Objects are all the rivalrous

goods we are familiar with: capital, labor, output, computers, automobiles,

and most fundamentally the elemental atoms that make up these goods. At

some level, ideas are instructions for arranging the atoms and for using the

arrangements to produce utility. For thousands of years, silicon dioxide

provided utility mainly as sand on the beach, but now it delivers utility

through the myriad of goods that depend on computer chips. Viewed this

way, economic growth can be sustained even in the presence of a finite

collection of raw materials as we discover better ways to arrange atoms and

better ways to use the arrangements. One then naturally wonders about

possible limits to the ways in which these atoms can be arranged, but the

combinatorial calculations of Romer (1993) and Weitzman (1998) quickly

put such concerns to rest. Consider, for example, the number of unique ways

of ordering twenty objects (these could be steps in assembling a computer

chip or ingredients in a chemical formula). The answer is 20!, which is

on the order of 1018. To put this number in perspective, if we tried one

different combination every second since the universe began, we would

have exhausted less than twenty percent of the possibilities.2

The first arrow in the Idea Diagram links ideas with the concept of non-

rivalry. Recall from public economics that a good is nonrivalrous if one

2Of course, one also must consider the fraction of combinations that are useful. Respond-
ing to one such combinatorial calculation, George Akerlof is said to have wondered, “Yes,
but how many of them are like chicken ice cream?”
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person’s use of the good does not diminish another’s use. Most economic

goods — objects — are rivalrous: one person’s use of a car, a computer,

or an atom of carbon dimishes the ability of someone else to use that ob-

ject. Ideas, by contrast, are nonrivalrous. As examples, consider public

key cryptography and the famous introductory bars to Beethoven’s Fifth

Symphony. Audrey’s use of a particular cryptographic method does not in-

hibit my simultaneous use of that method. Nor does Benji’s playing of the

Fifth Symphony limit my (in)ability to perform it simultaneously. For an

example closer to our growth models, consider the production of computer

chips. Once the design of the latest computer chip has been invented, it can

be applied in one factory or two factories or ten factories. The design does

not have to be reinvented every time a new computer chip gets produced

— the same idea can be applied over and over again. More generally, the

set of instructions for combining and using atoms can be used at any scale

of production without being diminished.

The next link between nonrivalry and increasing returns to scale (IRS) is

the first indication that nonrivalry has important implications for economic

growth. As discussed in Romer (1990), consider a production function of

the form

Y = F (A,X) (1)

where Y is output, A is an index of the amount of knowledge that has

been discovered, and X is a vector of the remaining inputs into production

(e.g. capital and labor). Our standard justification for constant returns to

scale comes from a replication argument. Suppose we’d like to double the

production of computer chips. One way to do this is to replicate all of the

standard inputs: we build another factory identical to the first and populate

it with the same material inputs and with identical workers. Crucially,

however, we do not need to double the stock of knowledge because of its
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nonrivalry: the existing design for computer chips can be used in the new

factory by the new workers.

One might, of course, require additional copies of the blueprint, and these

blueprints may be costly to produce on the copying machine down the hall.

The blueprints are not ideas; the copies of the blueprints might be thought

of as one of the rivalrous inputs included in the vector X . The bits of

information encoded in the blueprint — the design for the computer chip

— constitute the idea.

Mathematically, we can summarize these insights in the following two

equations. For some number λ > 1,

F (A, λX) = λY, (2)

and as long as more knowledge is useful,

F (λA, λX) > λY. (3)

That is, there are constant returns to scale to the standard rivalrous inputs

X and, therefore, increasing returns to scale to these inputs and A taken

together. If we double the number of factories, workers, and materials and

double the stock of knowledge, then we will more than double the produc-

tion of computer chips. Including ideas as an input into production naturally

leads one to models in which increasing returns to scale plays an important

role. Notice that a “standard” production function in macroeconomics of

the form Y = Kα(AL)1−α builds in this property.

Introducing human capital into this framework adds an important wrinkle

but does not change the basic insight. Suppose that the design for a computer

chip must be learned by a team of scientists overseeing production before

it can be used, thus translating the idea into human capital. To double

production, one can double the number of factories, workers, and scientists.

If one incorporates a better-designed computer chip as well, production
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more than doubles. Notice that the human capital is rivalrous: a scientist

can work on my project or your project, but not on both at the same time.

In contrast, the idea is nonrivalrous: two scientists can both implement a

new design for a computer chip simultaneously.

Confusion can arise in thinking about human capital if one is not careful.

For example, consider a production function that is constant returns in

physical and human capital, the two rivalrous inputs: Y = KαH1−α.

Now, suppose that H = hL, where h is human capital per person. Then,

this production function is Y = Kα(hL)1−α. There were constant returns

toK andH in our first specification, but one is tempted conclude that there

are increasing returns toK, L, and h together in the rewritten form. Which

is it? Does the introduction of human capital involve increasing returns,

just like the consideration of ideas?

The answer is no. To see why, consider a different example, this time

omitting human capital altogether. Suppose Y = KαL1−α. This is per-

haps our most familiar Cobb-Douglas production function and it exhibits

constant returns to scale in K and L. Now, rewrite this production func-

tion as Y = kαL, where k ≡ K/L is physical capital per person. Would

we characterize this production function as possessing increasing returns?

Of course not! Obviously a simple change of variables cannot change the

underlying convexity of a production function.

This example suggests the following principle. In considering the degree

of homogeneity of a production function, one must focus on the function

that involves total quantities, so that nothing is “per worker”. Intuitively,

this makes sense: if one is determining returns to scale, the presence of “per

worker” variables will of course lead to confusion. The application of this

principle correctly identifies the production function based on human capital

Y = KαH1−α as possessing constant returns. Introducing ideas into the

production function leads to increasing returns because of nonrivalry.
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Finally, the last link in our diagram connects increasing returns to scale

to “Problems with CE,” by which we mean problems with the standard

decentralization of the optimal allocation of resources using a perfectly

competitive equilibrium. A central requirement of a competitive equilib-

rium is that factors get paid their marginal products. But with increasing

returns to scale, as is well-known, this is not possible. Continuing with the

production function in equation (1) above, the property of constant returns

in X guarantees that3

FXX = Y. (4)

That is, paying each rivalrous factor its marginal product exhausts output,

so that nothing would be left over to compensate the idea inputs:

FXX + FAA > Y. (5)

If the stock of knowledge is also paid its marginal product, then the firm

would make negative profits. This means that the standard competitive

equilibrium will run into problems in a model that includes ideas.

These two implications of incorporating ideas into our growth models —

increasing returns and the failure of perfect competition to deliver optimal

allocations — are the basis for many of the insights and results that follow

in the remainder of this chapter. This chain of reasoning provides the key

foundation for idea-based growth theory.

The purpose of this chapter is to outline the contribution of idea-based

growth models to our understanding of economic growth. The next section

begins by providing a brief overview of the intellectual history of idea-based

growth theory, paying special attention to developments that preceded the

advent of new growth theory in the mid-1980s. Section 3 presents the sim-

plest possible model of growth and ideas in order to illustrate how these

3Since X is a vector, the notation in this equation should be interpreted as the dot product
between the vector of derivatives and the vector of inputs.
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theories explain long-run growth. Section 4 turns to a richer model. This

framework is used to compare the allocation of resources in equililibrium

with the optimal allocation. The richer model also serves as the basis for

several applications that follow in Sections 5 and 6. Section 5 provides

a discussion of the scale effects that naturally emerge in models in which

ideas play an important role and reviews a number of related contributions.

Section 6 summarizes what we have learned from growth accounting in

idea-based growth models, considers a somewhat controversial criticism

of endogenous growth models called the “linearity critique,” and briefly

summarizes some of the additional literature on growth and ideas. Finally,

Section 7 of this chapter concludes by discussing several of the most im-

portant open questions related to growth and ideas.

It is worth mentioning briefly as well what this chapter omits. The most

significant omission is a careful presentation of the Schumpeterian growth

models of Aghion and Howitt (1992) and Grossman and Helpman (1991)

and the very interesting directions in which these models have been pushed.

This omission, however, is remedied in another chapter of this handbook

by Aghion and Howitt. Probably the next most important omission is a

serious discussion of the empirical work in what is known as the productivity

literature on the links between R&D, growth, and social rates of return. An

excellent overview of this literature can be found in Griliches (1998).

2. INTELLECTUAL HISTORY OF THIS IDEA

The fundamental insight conveyed by the Idea Diagram is an idea itself.

And like many ideas, it is one that has been discovered, at least in part,

several times in the past, at times being appreciated as a deep insight and

at times being forgotten. A brief intellectual history of this idea follows, in

part because it is useful to document this history but also in part because it

helps to illuminate the idea itself.



GROWTH AND IDEAS 9

William Petty, an early expert on the economics of taxation, identified in

1682 one of the key benefits of a larger population:

As for the Arts of Delight and Ornament, they are best promoted by the greatest
number of emulators. And it is more likely that one ingenious curious man may
rather be found among 4 million than 400 persons. [quoted by Simon (1998), p.
372.]

More than a century later, Thomas Jefferson came closer to characterizing

the nonrivalrous nature of an idea:4

Its peculiar character... is that no one possesses the less, because every other
possesses the whole of it. He who receives an idea from me, receives instruction
himself without lessening mine; as he who lights his taper at mine, receives light
without darkening me. That ideas should freely spread from one to another over
the globe, for the moral and mutual instruction of man, and improvement of his
condition, seems to have been peculiarly and benevolently designed by nature,
when she made them, like fire, expansible over all space, without lessening their
density at any point... [Letter from Thomas Jefferson to Isaac McPherson, August
13, 1813, collected in Lipscomb and Bergh (1905) ]

But it was not until the 1960s that economists systematically explored

the economics of ideas. Kuznets (1960) intuits a link between population,

ideas, and economic growth, and Boserup (1965) emphasizes how popula-

tion pressure can lead to the adoption of new technologies. Arrow (1962b)

and Shell (1966) clearly recognize the failure of models of perfect compe-

tition to deliver optimal resource allocation in the presence of ideas. Phelps

(1966) and Nordhaus (1969) present explicit models in which the nonrivalry

of knowledge leads to increasing returns and derive the result, discussed in

detail below, that long-run growth in per capita income is driven by popu-

lation growth.5 Still, neither of these papers knows quite how seriously to

take this prediction, with Nordhaus calling it a “peculiar result” (page 23).

Within two years, however, Phelps (1968) is convinced:

4David (1993) cites this passage in emphasizing that ideas are “infinitely expansible,” a
phrase picked up by Quah (1996).

5The learning-by-doing models of Arrow (1962a) and Sheshinski (1967) contain a similar
result.
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One can hardly imagine, I think, how poor we would be today were it not for
the rapid population growth of the past to which we owe the enormous number of
technological advances enjoyed today... If I could re-do the history of the world,
halving population size each year from the beginning of time on some random
basis, I would not do it for fear of losing Mozart in the process. [pages 511–512]

This implication then becomes central to the popular writings of Julian

Simon in the debates over the merits and drawbacks of population growth,

as in Simon (1986, 1998).

The formal literature on idea-based growth falters considerably in the

1970s and early 1980s. Much of the work that is carried out involves

applications of the basic Solow (1956) model and the growth accounting

calculations that subsequently followed. By the mid-1980s, many of the

insights gleaned during the 1960s were no longer being taught in graduate

programs. In part, this period of neglect seems to have stemmed from

a lack of adequate techniques for modeling the departures from perfect

competition that are implied by the economics of ideas (e.g. see Romer

1994b). This theoretical gap gets filled through the work on imperfect

competition by Spence (1976) and Dixit and Stiglitz (1977).

Idea-based growth models are thrust to center stage in the profession

with the publication of a series of papers by Paul Romer (1986, 1987,

1990). These papers — most especially the last one — lay out with startling

clarity the link between economic growth and ideas.6 Shortly thereafter, the

models of Aghion and Howitt (1992) and Grossman and Helpman (1991)

introduce the Schumpeterian notions of creative destruction and business

stealing, pushing idea-based growth theory further.7

6This brief review obviously ignores many fundamental contributions to growth theory in
order to focus on the history of idea-based growth models. Other chapters in this handbook
will lay out the roles played by neoclassical growth models, AK models, and models of
growth driven by human capital accumulation.

7Other important contributions around this time include Judd (1985) and Segerstrom,
Anant and Dinopoulos (1990).
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3. A SIMPLE IDEA-BASED GROWTH MODEL
3.1. The Model

It is useful to begin with the simplest possible idea-based growth model

in order to see clearly how the key ingredients fit together to provide an

explanation of long-run growth. To strip the model to its essence, we ignore

physical capital and human capital; these will be introduced in the richer

framework of Section 4.

Suppose that in our toy economy the only rivalrous input in production

(theX variable in the introduction) is labor. The economy contains a single

consumption good that is produced according to

Yt = Aσt LY t, σ > 0, (6)

where Y is the quantity of output of the good, A is the stock of knowledge

or ideas, and LY is the amount of labor used to produce the good. Notice

that there are constant returns to scale to the rivalrous inputs, here just

labor, and increasing returns to labor and ideas taken together. To double

the production of output, it is sufficient to double the amount of labor using

the same stock of knowledge. If we also double the stock of knowledge,

we would more than double output.

The other good that gets produced in this economy is knowledge itself.

Just as more workers can produce more output in equation (6), more re-

searchers can produce more new ideas:

Ȧt = ν(At)LAt = νLAtA
φ
t , ν > 0. (7)

If A is the stock of knowledge, then Ȧ is the amount of new knowledge

produced at time t. LA denotes the number of researchers, and each re-

searcher can produce ν(A) new ideas at a point in time. To simplify further,

we assume that ν(A) is a power function.

Notice the similarity between equations (6) and (7). Both equations

involve constant returns to scale to the rivalrous labor input, and both allow
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departures from constant returns because of the nonrivalry of ideas. Ideas

are simply another good in this economy that labor can produce.

If φ > 0, then the number of new ideas a researcher invents over a given

interval of time is an increasing function of the existing stock of knowledge.

We might label this the standing on shoulders effect: the discovery of ideas

in the past makes us more effective researchers today. Alternatively, though,

one might consider the case where φ < 0, i.e. where the productivity of

research declines as new ideas are discovered. A useful analogy in this case

is a fishing pond. If the pond is stocked with only 100 fish, then it may be

increasingly difficult to catch each new fish. Similarly, perhaps the most

obvious new ideas are discovered first and it gets increasingly difficult to

find the next new idea.

With these production functions given, we now specify a resource con-

straint and a method for allocating resources. The number of workers and

the number of researchers sum to the total amount of labor in the economy,

L:

LY t + LAt = Lt. (8)

The amount of labor, in turn, is assumed to be given exogenously and to

grow at a constant exponential rate n:

Lt = L0e
nt, n > 0. (9)

Finally, the only allocative decision that needs to be made in this simple

economy is how to allocate labor. We make a Solow-like assumption that

a constant fraction s of the labor force works as researchers, leaving 1 − s

to produce goods.

3.2. Solving for Growth

The specification of this economy is now complete, and it is straightfor-

ward to solve for growth in per capita output, y ≡ Y/L. First, notice the
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important result that yt = (1 − s)Aσt , i.e. per capita output is proportional

to the stock of ideas (raised to some power). Because of the nonrivalry of

ideas, per capita output depends on the total stock of ideas, not on the stock

of ideas per capita.

Taking logs and time derivatives, we have the corresponding relation in

growth rates:

ẏt
yt

= σ
Ȧt
At
. (10)

Growth of per capita output is proportional to the growth rate of the stock

of knowledge, where the factor of proportionality measures the degree of

increasing returns in the goods sector.

The growth rate of the stock of ideas, in turn is given by

Ȧt
At

= ν
LAt

A1−φ
t

. (11)

Under the assumption that φ < 1, it is straightforward to show that the

dynamics of this economy lead to a stable balanced growth path (defined

as a situation in which all variables grow at constant rates, possibly zero).

For the growth rate ofA to be constant in equation (11), the numerator and

denominator of the right-side of that equation must grow at the same rate.

Letting gx denote the growth rate of some variable x along the balanced

growth path, we then have

gA =
n

1 − φ
. (12)

The growth rate of the stock of ideas, in the long-run, is proportional to the

rate of population growth, where the factor of proportionality depends on

the degree of returns to scale in the production function for ideas.

Finally, this equation can be substituted into equation (10) to get the

growth rate of output per worker in steady state:

gy = σgA =
σn

1 − φ
. (13)
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The growth rate of per capita output is proportional to the rate of popula-

tion growth, where the factor of proportionality depends on the degree of

increasing returns in the two sectors.

3.3. Discussion

Why is this the case? There are two basic elements of the toy economy

that lead to the result. First, just as the total output of any good depends on

the total number of workers producing the good, more researchers produce

more new ideas. A larger population means more Mozarts and Newtons,

and more Wright brothers, Sam Waltons, and William Shockleys. Second,

the nonrivalry of knowledge means that per capita output depends on the

total stock of ideas, not on ideas per person.8 Each person in the economy

benefits from the new ideas created by the Isaac Newtons and William

Shockleys of the world, and this benefit is not degraded by the presence of

a larger population.

Together, these steps imply that output per capita is an increasing func-

tion, in the long run, of the number of researchers in the economy, which in

turn depends on the size of the population. Log-differencing this relation,

the growth rate of output per capita depends on the growth rate of the num-

ber of researchers, which in turn is tied to the rate of population growth in

the long run.

At some basic level, these results should not be surprising at all. Once

one grants that the nonrivalry of ideas implies increasing returns to scale,

it is nearly inevitable that the size of the population affects the level of per

capita income. After all, that is virtually the definition of increasing returns.

In moving from this toy model to the real world, one must obviously

be careful. Probably the most important qualification is that our toy model

8Contrast this to the case in which “capital” replaces the word “ideas” in this phrase.
Because capital is rivalrous, output per capita depends on capital per person.
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consists of a single country. Without thinking more carefully about the flows

of ideas across countries in the real world, it is more accurate to compare

the predictions of this toy economy to the world as a whole rather than to

any single economy. Taiwan and China both benefit from ideas created

throughout the world, so it is not the Taiwanese or Chinese population that

is especially relevant to those countries’ growth experiences.

Another qualification relates to the absence of physical and human capital

from the model. At least as far as long-run growth is concerned, this

absence is not particularly harmful: recall the intuition from the Solow

growth model that capital accumulation is not, by itself, a source of long-

run growth. Still, because of transition dynamics these factors are surely

important in explaining growth over any given time period, and they will

be incorporated into the model in the next section.

Finally, it is worth mentioning briefly how this result differs from the

original results in the models of Romer (1990), Aghion and Howitt (1992),

and Grossman and Helpman (1991). Those models essentially make the

assumption that φ = 1 in the production function for new ideas. That

is, the growth rate of the stock of knowledge depends on the number of

researchers. This change serves to strengthen the importance of increasing

returns to scale in the economy, so much so that a growing number of

researchers causes the growth rate of the economy to grow exponentially.

We will discuss this result in more detail in later sections.

4. A RICHER MODEL AND THE ALLOCATION OF
RESOURCES

The simple model given in the previous section provides several of the

key insights of idea-based growth models, but it is too simple to provide

others. In particular, the final implication in the basic Idea Diagram related

to the problems a competitive equilibrium has in allocating resources has not
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been discussed. In this section, we remedy this shortcoming and discuss

explicitly several mechanisms for allocating resources in an economy in

which ideas play a crucial role. In addition, we augment the simple model

with the addition of physical capital, human capital, and the Dixit-Stiglitz

love of variety approach that has proven to be quite useful in modeling

growth.

The model presented in this section is developed in a way that has become

a de facto standard in macroeconomics. First, the economic environment —

the collection of production technologies, resource constraints, and utility

functions — is laid out. Any method of allocating resources is constrained

by the economic environment. Next, we present several different ways in

which resources can be allocated in this economy and derive results for each

allocation. The first allocation is the simplest: a rule-of-thumb allocation

analogous to the constant saving rate assumption of Solow (1956). The

second allocation is the optimal one, i.e. the allocation that maximizes util-

ity subject to the constraints imposed by the economic environment. These

first two are very natural allocations to consider. One then immediately is

led to ask the question of whether a decentralized equilibrium allocation,

that is one in which markets allocate resources rather than a planner, can

replicate the optimal allocation. In general, the answer to this question is

that it depends on the nature of the institutions that govern the equilibrium.

We will solve explicitly for one of these equilibrium allocations in Sec-

tion 4.4 and then discuss several alternative institutions that might be used

to allocate resources in this model.

4.1. The Economic Environment

The economic environment for this new model consists of a set of pro-

duction functions, a set of resource constraints, and preferences. These will

be described in turn.
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First, the basic production functions are these:

Yt =

(

∫ At

0
xθit di

)α/θ

H1−α
Y t , 0 < α < 1, 0 < θ < 1 (14)

K̇t = Yt − Ct − δKt, K0 > 0, δ > 0 (15)

Ȧt = νHλ
AtA

φ
t , A0 > 0, ν > 0, λ > 0, φ < 1 (16)

Equation (14) is the production function for the final output good. Final

output Y is produced using human capital HY and a collection of inter-

mediate capital goods xi. A represents the measure of these intermediate

goods that are available at any point in time. These intermediate goods

enter the production function through a CES aggregator function, and the

elasticity of substitution between intermediate goods is 1/(1 − θ) > 1.

Notice that there are constant returns to scale inHY and these intermediate

goods in producing output for a given A. However, there are increasing

returns to scale once A is treated as a variable. The sense in which this is

true will be made precise below.

Equation (15) is a standard accumulation equation for physical capital.

Equation (16) is the production function for new ideas. In this economy,

ideas have a very precise meaning — they represent new varieties of in-

termediate goods that can be used in the production of final output. New

ideas are produced with a Cobb-Douglas function of human capital and

the existing stock of knowledge.9 As in the simple model, the parameter

φ measures the way in which the current stock of knowledge affects the

production of new ideas. It nets out the standing on shoulders effect and

9Physical capital is not used in the production of new ideas in order to simplify the model.
A useful alternative to this approach is the “lab equipment” approach suggested by Rivera-
Batiz and Romer (1991) where units of the final output good are used to produce ideas,
i.e. capital and labor combine in the same way to produce ideas as to produce final output.
Apart from some technicalities, all of the results given below have exact analogues in a
lab-equipment approach.
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the fishing out effect. The parameter λ represents the elasticity of new idea

production with respect to the number of researchers. A value of λ = 1

implies that doubling the number of researchers doubles the production of

new ideas at a point in time for a given stock of knowledge. On the other

hand, one imagines that doubling the number of researchers might less than

double the number of new ideas because of duplication, suggesting λ < 1.

Next, the resource constraints for the economy are given by

∫ At

0
xit di = Kt (17)

HAt +HY t = Ht (18)

Ht = htLt (19)

ht = eψ`ht , ψ > 1 (20)

Lt = (1 − `ht)Nt (21)

Nt = N0e
nt, N0 > 0, n > 0. (22)

Breaking slightly from my taxonomy, equation (17) involves a production

function as well as a resource constraint. In particular, one unit of raw

capital can be transformed instantaneously into one unit of any intermediate

good for which a design has been discovered. Equation (17) then is the

resource constraint that says that the total quantity of intermediate goods

produced cannot exceed the amount of raw capital in the economy.

Equation (18) says that the amount of human capital used in the produc-

tion of goods and ideas equals the total amount of human capital available

in the economy. Equation (19) states the identity that this total quantity of

human capital is equal to human capital per person h times the total labor

force L (all labor is identical). An individual’s human capital is related by

the Mincerian exponential to the amount of time spent accumulating human

capital, `h, in equation (20). We simplify the model by assuming there are
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no dynamics associated with human capital accumulation.10 Equation (21)

defines the labor force to be the population multiplied by the amount of

time that people are not accumulating human capital, and equation (22)

describes exogenous population growth at rate n.

Finally, preferences in this economy take the usual form:11

Ut =

∫ ∞

t
Nsu(cs)e

−ρ(s−t) ds, ρ > n, (23)

ct ≡ Ct/Nt (24)

u(c) =
c1−ζ − 1

1 − ζ
, ζ > 0. (25)

4.2. Allocating Resources with a Rule of Thumb

Given this economic environment, we can now consider various ways in

which resources may be allocated. The primary allocative decisions that

need to be made are relatively few. At each point in time, we need to

determine the amount of time spent gaining human capital, `h, the amount

of consumption c, the amount of human capital allocated to research HA,

and the split of the raw capital into the various varieties {xi}. Once these

allocative decisions have been made, the twelve equations in (14) to (25)

above, combined with these four allocations pin down all of the quantities

in the model.12

10 This approach can be justified by a simple dynamic system of the form ḣ = µeψ`h−δh,
where human capital depreciates at rate δ. It is readily seen that in the steady state, this
equation implies that h is proportional to eψ`h , as we’ve assumed. More generally, of
course, richer equations for human capital can be imagined.

11To keep utility finite, we require a technical condition on the parameters of the model.
The appropriate condition can be determined by looking at the utility function and takes
the form

ρ > n +
λ

1 − φ
·

σ

1 − α
· (1 − ζ)n.

12The counting goes as follows. At a point in time we have the four allocation rules and
the twelve equations given above. The four rules pin down the allocations `h, C, HA, {xi},
and then twelve equations deliver Y , K, A, HY , H , h, L, N , U , c, and u. The careful
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The simplest way to begin allocating resources in just about any model

is with a “rule of thumb.” That is, the modeler specifies some simple,

exogenous rules for allocating resources. This is useful for a number of

reasons. First, it forces us to be clear from the beginning about exactly

what allocation decisions need to be made. Second, it reveals how key

endogenous variables depend on the allocations themselves. This is nice

because the subsequent results will hold along a balanced growth path even

if other mechanisms are used to allocated resources.

Definition 4.1. A rule of thumb allocation in this economy consists
of the following set of equations:

`ht = ¯̀
h ∈ (0, 1) (26)

1 − Ct/Yt = s̄K ∈ (0, 1) (27)

HAt/Ht = s̄A ∈ (0, 1) (28)

xit = x̄t ≡ Kt/At for all i ∈ [0, At]. (29)

As is obvious from the definition, our rule of thumb allocation involves

agents in the economy allocating a constant fraction of time to the accu-

mulation of human capital, a constant fraction of output for investment in

physical capital, a constant division of human capital into research, and al-

locating the raw capital symmetrically in the production of the intermediate

capital goods.

With this allocation chosen, one can now in principle solve the model

for all of the endogenous variables at each point in time. For our purposes,

it will be enough to solve for a few key results along the balanced growth

path of the economy, which is defined as follows:

counter will notice I’ve mentioned 15 objects but 16 equations. The subtlety is that we
should think of the allocation rule as determining {xi} subject to the resource constraint
in (17). (For comparison, notice that we choose HA and the resource constraint pins down
HY . Similarly, but loosely speaking, we choose “all but one” of the xi and the resource
constraint pins down the last one.)
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Definition 4.2. A balanced growth path in this economy is a sit-
uation in which all variables grow at constant exponential rates (possibly
zero) and in which this constant growth could continue forever.

The following notation will also prove useful in what follows. Let y ≡

Y/N denote final output per capita and let k ≡ K/N represent capital

per person. We will use an asterisk superscript to denote variables along a

balanced growth path. And finally gx will be used to denote the exponential

growth rate of some variable x along a balanced growth path.

With this notation, we can now provide a number of useful results for

this model.

Result 1. With constant allocations of the form given above, this model

yields the following results:

(a) Because of the symmetric use of intermediate capital goods, the
production function for final output can be written as

Yt = AσtK
α
t H

1−α
Y t , σ ≡ α(

1

θ
− 1). (30)

(b) Along a balanced growth path, output per capita y depends on
the total stock of ideas, as in

y∗t =

(

s̄K
n+ gk + δ

)
α

1−α

h∗(1 − s̄A)(1 − ¯̀
h)A

∗ σ
1−α
t . (31)

(c) Along a balanced growth path, the stock of ideas is increasing
in the number of researchers, adjusted for their human capital:

A∗
t =

(

ν

gA

)
1

1−φ

H
∗ λ

1−φ

At . (32)

(d) Combining these last two results, output per capita along the
balanced growth path is an increasing function of research, which
in turn is proportional to the labor force:

y∗t ∝ H∗γ
At = (hs̄ALt)

γ , γ ≡
σ

1 − α
·

λ

1 − φ
. (33)
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(e) Finally, taking logs and derivatives of these relationships, one
gets the growth rates along the balanced growth path:

gy = gk =
σ

1 − α
gA = γgHA = g ≡ γn. (34)

In general, these results show how the simple model given in the previous

section extends when a much richer framework is considered. Result (1a)

shows that this Dixit-Stiglitz technology reduces to a familiar-looking pro-

duction function when the various capital goods are used symmetrically.

Result (1b) derives the level of output per capita along a balanced growth

path, obtaining a solution that is closely related to what one would find

in a Solow model. The first term on the right side is simply the capital-

output ratio in steady state, the second term adjusts for human capital, the

third term adjusts for the fraction of the labor force working to produce

goods, and the fourth term adjusts for labor force participation. The final

term shows, as in the simple model, that per capita output along a balanced

growth path is proportional to the total stock of knowledge (raised to some

power).

Result (1c) provides the analogous expression for the other main pro-

duction function in the model, the production of ideas. The stock of ideas

along a balanced growth path is proportional to the level of the research

input (labor adjusted for human capital), again raised to some power. More

researchers ultimately mean more ideas in the economy.

Result (1d) combines these last two expressions to show that per capita

output is proportional to the level of research input, which, since human

capital per worker is ultimately constant, means that per capita output is

proportional to the size of the labor force.13 The exponentγ essentially mea-

sures the total degree of increasing returns to scale in this economy. Notice

13From now on we will leave the “raised to some power” phrase implicit.
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that it depends on the parameters of both the goods production function and

the idea production function, both of which may involve increasing returns.

Finally, Result (1e) takes logs and derivatives of the relevant “levels”

solutions to derive the growth rates of several variables. Output per worker

and capital per worker both grow at the same rate. This rate is proportional to

the growth rate of the stock of knowledge, which in turn is proportional to the

growth rate of the effective level of research. The growth rate of research is

ultimately pinned down by the growth rate of population. This last equality

parallels the result in the simple model: the fundamental growth rate in the

economy is a product of the degree of increasing returns and the rate of

population growth. An interesting feature of this result is that the long-run

growth rate does not depend on the allocations in this model. Notice that

s̄A, for example, does not enter the expression for the long-run growth rate.

Changes in the allocation of human capital to research have “level effects,”

as shown in Result (1b), but they do not affect the long-run growth rate.

This aspect of the model will turn out to be a relatively robust prediction of

a class of idea-based growth models.14

Pausing to consider the key equations that make up Result 1, the reader

might naturally wonder about the restrictive link between the growth rate of

human capital and the growth rate of the labor force that has been assumed.

For example, in considering Result (1d), one might accept that per capita

output is proportional to research labor adjusted for its human capital, but

wonder whether one can get more “action” on the growth side by letting

human capital per researcher grow endogenously (in contrast, it is constant

in this model).

14This invariance result can be overturned in models in which the population growth rate
is an endogenous variable, but the direction of the effects are sometimes odd. See Jones
(2003).
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The answer is that it depends on how one models human capital accumu-

lation. There are many richer specifications of human capital accumulation

that deliver results that ultimately resemble those in Result 1. One example

is given in footnote 10. Another is given in Chapter 6 of Jones (2002a). In

this latter example, an individual’s human capital represents the measure of

ideas that the individual knows how to work with, which grows over time

along a balanced growth path paralleling the growth in knowledge.

An example in which one gets endogenous growth in human capital per

worker occurs when one specifies an accumulation equation that is linear in

the stock of human capital itself: ḣ = βeψ`hh, reminiscent of Lucas (1988).

For reasons discussed below in Section 6.2, this approach is unsatisfactory,

at least in my view.

4.3. The Optimal Allocation of Resources

The next allocation we will consider is the optimal allocation. That is,

we seek to solve for the allocation of resources that maximizes welfare. Be-

cause this model is based on a representative agent, this is a straightforward

objective, and the optimal allocation is relatively easy to solve for.

Definition 4.3. The optimal allocation of resources in this econ-
omy consists of time paths {ct, `ht, sAt, {xit}}∞t=0 that maximize utility Ut
at each point in time given the economic environment, i.e. given equa-
tions (14) to (25), where sAt ≡ HAt/Ht.

In solving for the optimal allocation of resources, it is convenient to work

with the following current-value Hamiltonian:

Ht = u(ct) + µ1t(yt − ct − (n+ δ)kt) + µ2tνs
λ
Ath

λ
t (1 − `ht)

λNλ
t A

φ
t ,

(35)

where

yt = Aσt k
α
t [(1 − sAt)ht(1 − `ht)]

1−α. (36)



GROWTH AND IDEAS 25

This last equation incorporates the fact that because of symmetry, the op-

timal allocation of resources requires the capital goods to be employed in

equal quantities.

The current-value Hamiltonian Ht reflects the utility value of what gets

produced at time t: the consumption, the net investment, and the new ideas.

As suggested by Weitzman (1976), it is the utility equivalent of net domestic

product. The necessary first-order conditions for an optimal allocation can

then be written as a set of three control conditions ∂Ht/∂mt = 0, where

m is a placeholder for c, sA, and `h and two arbitrage-like equations

ρ̄ =
∂Ht/∂zt
µit

+
µ̇it
µit
, (37)

with their corresponding transversality conditions limt→∞ µite
−ρ̄tzt = 0.

In these expressions, z is a placeholder for k and A, with i = 1, 2 respec-

tively and ρ̄ = ρ− n is the effective rate of time preference. The arbitrage

interpretation equates the effective rate of time preference to the “dividend”

and “capital gain” associated with owning either capital or ideas, where the

dividend is the additional flow of utility, ∂Ht/∂zt.

Result 2. In this economy with the optimal allocation of resources, we

have the following results:

(a) All of the results in Result 1 continue to hold, provided the
allocations are interpreted as the optimal allocations rather than the
rule-of-thumb allocations. For example, output per person along the
balanced growth path is proportional to the stock of ideas (raised to
some power), which in turn is proportional to the effective amount
of research and therefore to the size of the population. As another
example, the key growth rates of the economy are determined as
in equation (34), i.e. they are ultimately proportional to the rate of
population growth where the factor of proportionality measures the
degree of increasing returns in the economy.
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(b) The optimal allocation of consumption satisfies the standard
Euler equation

ċt
ct

=
1

ζ

(

∂yt
∂kt

− δ − ρ

)

. (38)

(c) The optimal allocation of labor to research equates the value of
the marginal product of labor in producing goods to the value of
the marginal product of labor in producing new ideas. One way of
writing this equation is

sopAt
1 − sopAt

=

µ2t

µ1t
λȦt

(1 − α)yt
, (39)

where the “op” superscript denotes the optimal allocation. This
equation says that the ratio of labor working to produce ideas to
labor working to produce goods is equal to labor’s contribution to
the value of the new ideas that get produced divided by labor’s
contribution to the value of output per person that gets produced.
Notice that µ2/µ1 is essentially the relative price of a new idea in
units of output per person.

Along a balanced growth path, we can rewrite this expression as

sopA
1 − sopA

=

σYt/At
r∗−(gY −gA)−φgA

λȦt

(1 − α)Yt
(40)

where r∗ ≡ ρ + ζgc functions as the effective interest rate for
discounting future output to the present. The relative price of a
new idea is given by the presented discounted value of the marginal
product of the new idea in the goods production function. This
marginal product at one point in time is σY/A, and the equation
divides by r∗ − (gY − gA) − φgA to adjust for time discounting,
growth in this marginal product over time at rate gY − gA, and an
adjustment for the fact that each new idea helps to produce additional
ideas according to the spillover parameterφ. Finally, one can cancel
theY ’s from the numerator and denominator and replace Ȧ/A by gA
to get a closed-form solution for the allocation of labor to research
along a balanced growth path.
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(d) The optimal saving rate in this economy along a balanced growth
path can be solved for from the Euler equation and the capital ac-
cumulation equation. It is given by

sopK =
α(n+ g + δ)

ρ+ δ + ζg
(41)

where g is the underlying growth rate of the economy, given in
Result (1e). Notice that the optimal investment rate is proportional
to the ratio of the marginal product of capital evaluated at the golden
rule, n + g + δ, to the marginal product of capital evaluated at the
modified golden rule, ρ+ δ + ζg.

(e) The optimal allocation of time to human capital accumulation is
straightforward in this model, and essentially comes down to picking
`h to maximize eψ`h(1 − `h). The solution is to set `opht = 1 − 1/ψ
for all t. As mentioned before, this model introduces human capital
in a simple fashion, so the optimal allocation is correspondingly
simple.

4.4. A Romer-Style Equilibrium with Imperfect Competition

A natural question to ask at this point is whether some kind of market

equilibrium can reproduce the optimal allocation of resources. The discus-

sion at the beginning of this chapter made clear the kind of problems that

an equilibrium allocation will have to face: the economy is characterized

by increasing returns and therefore a standard competitive equilibrium will

generally not exist and will certainly not generate the optimal allocation of

resources. We are forced to depart from a perfectly competitive economy

with no externalities, and therefore one will not be surprised to learn in

this section that the equilibrium economy, in the absence of some kind of

policy intervention, does not generally reproduce the optimal allocation of

resources.

In this section, we study the equilibrium with imperfect competition

first described for a model like this by Romer (1990). Romer built on the
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analysis by Ethier (1982), who extended the consumer variety approach to

imperfect competition of Spence (1976) and Dixit and Stiglitz (1977) to the

production side of the economy. The economic environment (potentially)

involves departures from constant returns in two places, the production

function for the consumption-output good and the production function for

ideas. We deal with these departures by introducing imperfect competition

for the former and externalities for the latter.

Briefly, the economy consists of three sectors. A final goods sector

produces the consumption-capital-output good using labor and a collection

of capital goods. The capital goods sector produces a variety of different

capital goods using ideas and raw capital. Finally, the research sector

employs human capital in order to produce new ideas, which in this model

are represented by new kinds of capital goods. The final goods sector and

the research sector are perfectly competitive and characterized by free entry,

while the capital goods sector is the place where imperfect competition is

introduced. When a new design for a capital good is discovered, the design

is awarded an infinitely-lived patent. The owner of the patent has the

exclusive right to produce and sell the particular capital good and therefore

acts as a monopolist in competition with the producers of other kinds of

capital goods. The monopoly profits that flow to this producer ultimately

constitute the compensation to the researchers who discovered the new

design in the first place.

As is usually the case, defining the equilibrium allocation of resources in

a growth model is more complicated than defining the optimal allocation of

resources (if for no other reason than that we have to specify markets and

prices). We will begin by stating the key decision problems that have to

be solved by the various agents in the economy and then we will put these

together in our formal definition of equilibrium.
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Problem (HH). Households solve a standard optimization problem, choos-

ing a time path of consumption and an allocation of time. That is, taking

the time path of {wt, rt} as given, they solve

max
{ct,`ht,`t}

∫ ∞

0
Ntu(ct)e

−ρt dt, (42)

subject to

v̇t = (rt − n)vt + wtht`t − ct, v0 given, (43)

ht = eψ`ht, (44)

`ht + `t = 1, (45)

Nt = N0e
nt, (46)

lim
t→∞

vte
−
∫ t

0
(rs−n)ds ≥ 0. (47)

where vt is the financial wealth of an individual, wt is the wage rate per

unit of human capital, and rt is the interest rate.

Problem (FG). A perfectly competitive final goods sector takes the vari-

ety of capital goods in existence as given and uses the production technology

in equation (14) to produce output. That is, at each point in time t, taking

the wage rate wt, the measure of capital goods At, and the prices of the

capital goods pit as given, the representative firm solves

max
{xit},HY t

(

∫ At

0
xθit di

)α/θ

H1−α
Y t − wtHY t −

∫ At

0
pitxitdi. (48)

Problem (CG). Each variety of capital good is produced by a monopolist

who owns a patent for the good, purchased at a one-time price PAt. As

discussed in describing the economic environment, one unit of the capital

good can be produced with one unit of raw capital. The monopolist sees

a downward-sloping demand curve for her product from the final goods
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sector and chooses a price to maximize profits. That is, at each point in

time and for each capital good i, a monopolist solves

max
pit

πit ≡ (pit − rt − δ)x(pit) (49)

wherex(pit) is the demand from the final goods sector for intermediate good

i if the price is pit. This demand curve comes from a first-order condition

in Problem (FG). The monopoly profits are the revenue from sales of the

capital goods less the cost of the capital need to produce the capital goods

(including depreciation). The monopolist is small relative to the economy

and therefore takes aggregate variables and the interest rate rt as given.15

Problem (R&D). The research sector produces ideas according to the

production function in equation (16). However, each individual researcher

is small and takes the productivity of the idea production function as given.

In particular, each researcher assumes that the idea production function is

Ȧt = ν̄tHAt. (50)

That is, the duplication effects associated withλ and the knowledge spillovers

associated with φ in equation (16) are assumed to be external to the indi-

vidual researcher. In this perfectly competitive research sector, the repre-

sentative research firm solves

max
HAt

PAtν̄tHAt − wtHAt, (51)

taking the price of ideas PAt, research productivity ν̄t, and the wage rate

wt as given.

15To be more specific, the demand curve x(pi) is given by

x(pit) =

(

α
Y

∫ At

0
xθitdi

·
1

pit

)1/1−θ

.

We assume the monopolist is small relative to the aggregate so that it takes the price elasticity
to be −1/1 − θ.
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Now that these decision problems have been described, we are ready to

define an equilibrium with imperfect competition for this economy.

Definition 4.4. An equilibrium with imperfect competition in this
economy consists of time paths for the allocations {ct, `ht, `t, {xit}, Yt,Kt,
vt, {πit}, HY t, HAt, Ht, ht, Lt, Nt, At, ν̄t}

∞
t=0 and prices{wt, rt,{pit}, PAt}∞t=0

such that for all t:

1. ct, vt, ht, `ht and `t solve Problem (HH).
2. {xit} and HY t solve Problem (FG).
3. pit and πit solve Problem (CG) for all i ∈ [0, At].
4. HAt solves Problem (R&D).
5. (rt) The capital market clears: Vt ≡ vtNt = Kt + PAtAt.
6. (wt) The labor market clears: HY t +HAt = Ht.
7. (ν̄t) The idea production function is satisfied: ν̄t = νHλ−1

At Aφt .
8. (Kt) The capital resource constraint is satisfied:

∫ At
0 xitdi = Kt.

9. (PAt) Assets have equal returns: rt = πit
PAt

+ ṖAt
PAt

.
10. Yt is given by the production function in (14).
11. At is given by the production function in (16).
12. Ht = htLt.
13. Lt = `tNt and Nt = N0e

nt.

Notice that, roughly speaking, there are twenty equilibrium objects that

are part of the definition of equilibrium and there are twenty equations

described in the conditions for equilibrium that determine these objects

at each point in time.16 Not surprisingly, one cannot solve in general for

the equilibrium outside of the balanced growth path, but along a balanced

growth path the solution is relatively straightforward, and we have the

following results.

16The condition omitted from this definition of equilibrium is the law of motion for the
capital stock, given in the economic environment in equation (15). That this equation
holds in equilibrium is an implication of Walras’ Law. It can be derived in equilibrium by
differentiating the capital market clearing condition that V = K + PAA with respect to
time and making the natural substitutions.
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Result 3. In the equilibrium with imperfect competition:

(a) All of the results in Result 1 continue to hold along the bal-
anced growth path, provided the allocations are interpreted as the
equilibrium allocations rather than the rule-of-thumb allocations.
For example, output per person along the balanced growth path is
proportional to the stock of ideas (raised to some power), which in
turn is proportional to the effective amount of research and therefore
to the size of the population. As another example, the key growth
rates of the economy are determined as in equation (34), i.e. they are
ultimately proportional to the rate of population growth where the
factor of proportionality measures the degree of increasing returns
in the economy.

(b) The Euler equation for consumption and the allocation of time
to human capital accumulation are undistorted in this equilibrium.
That is, the equations that apply are identical to the equations de-
scribing the optimal allocation of resources;

ċt
ct

=
1

ζ
(reqt − ρ) (52)

`eqht = 1 − 1/ψ (53)

(c) The solution to Problem (CG) involves a monopoly markup over
marginal cost that depends on the CES parameter in the usual way:

peqit = peqt ≡
1

θ
(reqt + δ) (54)

Because of this monopoly markup, however, capital is paid less than
its marginal product, and the equilibrium interest rate is given by

reqt = αθ
Yt
Kt

− δ. (55)

Because the equilibrium economy grows at the same rate as the
economy with optimal allocations, the steady-state interest rate de-
termined from the Euler equation is the same in the two economies.
Therefore, the fact that capital is paid less than its marginal product
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translates into a suboptimally low capital-output ratio in the equi-
librium economy. Similarly, the equilibrium investment rate along
a balanced growth path is given by

seqK =
αθ(n+ g + δ)

ρ+ δ + ζg
= θsopK . (56)

(e) The equilibrium allocation of human capital to research equates
the wage of human capital in producing goods to its wage in pro-
ducing ideas. This result can be written in an equation analogous
to (39) as

seqAt
1 − seqAt

=
PAtȦt

(1 − α)Yt
. (57)

The ratio of the share of human capital working to produce ideas to
that working to produce goods is equal to the value of the output of
new ideas divided by labor’s share of the value of final goods.

Along the balanced growth path, we can rewrite this expression
as

seqA
1 − seqA

=

σθYt/At
req−(gY −gA)Ȧt

(1 − α)Yt
, (58)

which is directly comparable to the optimal allocation in equa-
tion (40). In comparing these two equations, we see three differ-
ences. The first two differences reflect the externalities in the idea
production function. The true marginal product of human capital in
research is lower by a factor of λ < 1 than the equilibrium economy
recognizes because of the congestion/duplication externality, which
tends to lead the equilibrium to overinvest in research. On the other
hand, the equilibrium allocation ignores the fact that the discovery
of new ideas may raise the future productivity of research if φ > 0.
This changes the effective rate at which the flow of future ideas
is discounted, potentially causing the equilibrium to underinvest in
research. Finally, the third difference reflects the appropriability of
returns. A new idea raises the current level of output in the final
goods sector according to the marginal productσY/A. However, the
research sector appropriates only the fraction θ < 1 of this marginal
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product. The reason is familiar from the standard monopoly diagram
in undergraduate classes: the profits appropriated by a monopolist
are strictly lower than the consumer surplus created by that mo-
nopolist. This appropriability effect works to cause the equilibrium
allocation of human capital to research to be too low. Overall, these
three distortions do not all work in the same direction, so that theory
cannot tell us whether the equilibrium allocation to research is too
high or too low.

4.5. Discussion

Let’s step back for a moment to take stock of what we learn from the

developments in this section. The most important finding is Result 1, to-

gether with the fact that it carries over into the other allocations as Result

(2a) and Result (3a). This result is simply a confirmation of the basic results

from the simple model in Section 3. Because of the nonrivalrous nature of

ideas, output per person depends on the total stock of ideas in the economy

instead of the per capita stock of ideas. This is a direct implication of the

fact that nonrivalry leads to increasing returns to scale. In turn, it implies

that output per capita, in the long run, is an increasing function of the total

amount of research, which in turn is an increasing function of the scale of

the economy, measured by the size of its total population. Log-differencing

this statement, we see that the growth rate of output per worker ultimately

depends on the growth rate of the number of researchers and therefore on

the growth rate of population. This has been analyzed and discussed ex-

tensively in a number of recent papers; these will be reviewed in detail in

Section 5 below.

The second main finding from models like this is that the equilibrium

allocation of resources is not generally optimal, at least not in the absence

of some kind of policy intervention. Here, the allocation of resources to

the production of new ideas can be either too high or too low, as discussed
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above.17 In addition, investment rates are too low in equilibrium, reflecting

the fact that capital is paid less than its marginal product so that some

resources are available to compensate inventive effort.

In this equilibrium, the suboptimal allocation of resources is easily reme-

died. A subsidy to capital accumulation and a subsidy or tax on research

can be financed with lump sum taxes in order to generate the optimal allo-

cation of resources. A useful exercise is to solve for the equilibrium in the

presence of such taxes in order to determine the optimal tax rates along a

balanced growth path.

Given the simplicity of this economic environment, there exist alternative

institutions that are equally effective in getting optimal allocations. For

example, consider a perfectly competitive economy in which all research

is publicly-funded. The government raises revenue with lump-sum taxes

and uses these taxes to hire researchers that produce new ideas. These new

ideas are then released into the public domain where anyone can use them

to produce capital goods in perfect competition.18

In practice of course, one suspects that obtaining the optimal allocation of

resources is more difficult than either the world of imperfect competition

with taxes and subsidies or the perfectly-competitive world with public

funding of research suggest. There are many different directions for re-

17This conclusion also holds true in the Schumpeterian growth models of Aghion and
Howitt (1992) and Grossman and Helpman (1991) discussed in Chapter 2 ??? of this
handbook, but for a different reason. In these quality-ladder models, a firm discovers a
better version of an existing product, displacing the incumbent producer. Some of the rents
earned by the innovator are the result of past discoveries, and some of the rents earned
by future innovators will be due to the discovery of the current innovator. This business
stealing creates another distortion in the allocation of resources to research. Because an
innovator essentially steals first and gets expropriated later, the effect of this business stealing
distortion is to promote excessive research. Because the model also features appropriability
problems and knowledge spillovers, the equilibrium amount of research can be either too
high or too low in these models.

18A useful exercise here is to define the competitive equilibrium with public funding of
research and to solve for optimal taxes and public expenditure.
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search, many different kinds of labor (different skill levels and talents), and

individual effort choices that are unobserved by the government. Indeed,

the available evidence suggests that the allocation of resources to research

falls short of the optimal level. Jones and Williams (1998) take advantage

of a large body of empirical work in the productivity literature to conclude

that the social rate of return to research substantially exceeds the private

rate of return, suggesting that research effort falls short of the optimum.

The implication of this is that there is no reason to think that we have

found the best institutions for generating the optimal allocation of resources

to research. Institutions like the patent system or the Small Business In-

novative Research (SBIR) grants program are themselves ideas. These

institutions have evolved over time to promote an efficient allocation of

resources, but it is almost surely the case that better institutions — better

ideas — are out there to be discovered.

Interestingly, this result can be illustrated within the model itself. Notice

how much easier it is to define the optimal allocation than it is to define

the equilibrium allocation. The equilibrium with imperfect competition

requires the modeler to be “clever” and to come up with the right institutions

(e.g., a patent system, monopolistic competition, and the appropriate taxes

and subsidies) to make everything work out. In reality, society must invent

and implement these institutions.

Three recent papers deserve mention in this context. Romer (2000) ar-

gues that subsidizing the key input into the production of ideas — human

capital in the form of college graduates with degrees in engineering and the

natural sciences — is preferable to government subsidies downstream like

the SBIR program. Kremer (1998) notes the large ex-post monopoly distor-

tions associated with patents in the pharmaceutical industry and elsewhere

and proposes a new mechanism for encouraging innovation. In particular,

he suggests that the government (or other altruistic organizations such as
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charitable foundations) should consider purchasing the patents for partic-

ular innovations and releasing them into the public domain to eliminate

the monopoly distortion. Boldrin and Levine (2002), in a controversial

paper, are even more critical of existing patent and copyright systems and

propose restricting them severely or even eliminating them altogether.19

They argue that first-mover advantages, secrecy, and imitation delays pro-

vide ample protection for innovators and that an economy without patent

and copyright systems would have a better allocation of resources than the

current regime in which copyright protection is essentially indefinite and

patents are used as a weapon to discourage innovation. Each of these papers

makes a useful contribution by attempting to create new institutions that

might improve the allocation of resources.

5. SCALE EFFECTS

Idea-based growth models are linked tightly to increasing returns to scale,

as was noted earlier in the Idea Diagram. The mechanism at the heart of this

link is nonrivalry: the fact that knowledge can be used by an arbitrarily large

number of people simultaneously without degradation means that there is

something special about the first instantiation of an idea. There is a cost

to creating an idea in the first place that does not have to be reincurred as

the idea gets used by more and more people. This fixed cost implies that

production is, at least in the absence of some other fixed factor like land,

characterized by increasing returns to scale.

Notice that nothing in this argument relies on a low marginal cost of

production or on the absence of learning and human capital. Consider

the design of a new drug for treating high blood pressure. Discovering the

precise chemical formulation for the drug may require hundreds of millions

19See also the important elaborations and clarifications in Quah (2002).
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of dollars of research effort. This idea is then simply a chemical formula.

Producing copies of the drug — pills — may be expensive, for example if

the drug involves the use of a rare chemical compound. It may also be such

that only the best-trained biochemists have the knowledge to understand

the chemical formula and manufacture the drug. Nevertheless, an accurate

characterization of the production technology for producing the drug is as a

fixed research cost followed by a constant marginal cost. Once the chemical

formula is discovered, to double the production of pills we simply double

the number of highly-trained biochemists, build a new (identical) factory,

and purchase twice as much of the rare chemical compound used as an

input.

Because the link between idea-based growth theory and increasing returns

is so strong, the role of “scale effects” in growth models has been the

focus of a series of theoretical and empirical papers. In discussing these

papers, it is helpful to consider two forms of scale effects. In models

that exhibit “strong” scale effects, the growth rate of the economy is an

increasing function of scale (which typically means overall population or

the population of educated workers). Examples of such models include

the first-generation models of Romer (1990), Aghion and Howitt (1992),

and Grossman and Helpman (1991). On the other hand, in models that

exhibit “weak” scale effects, the level of per capita income in the long run

is an increasing function of the size of the economy. This is true in the

“semi-endogenous” growth models of Jones (1995a), Kortum (1997), and

Segerstrom (1998) that were written at least partially in response to the

strong scale effects in the first generation models. The models examined

formally in the previous sections of this chapter fit into this category as

well.

To use an analogy from the computer software industry, are scale effects

a bug or a feature? I believe the correct answer is slightly complicated.
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I will argue that overall they are a feature, i.e. a useful prediction of the

model that helps us to understand the world. However, in some papers,

most notably in the first generation of idea-based growth models, these scale

effects appeared in an especially potent way, producing predictions in these

models that are easily falsified. This strong form of scale effects — in which

the long-run growth rate of the economy depends on its scale — is a bug.

Subsequent research has remedied this problem, maintaining everything

that is important about idea-based growth models but eliminating the strong

form of the scale effects prediction. This still leaves us, as discussed above,

with a weak form of scale effects: the size of the economy affects, in some

sense, the level of per capita income. This, of course, is nothing more

than a statement that the economy is characterized by increasing returns to

scale. The weak form of scale effects has its critics as well, but I will argue

two things. First, these criticisms are generally misplaced. And second,

it’s fortunate that this is the case: the weak form of scale effects is so

inextricably tied to idea-based growth models that rejecting one is largely

equivalent to rejecting the other.

The remainder of this section consists of two basic parts. Section 5.1

returns to the simple growth model presented in Section 3 to formalize the

strong and weak versions of scale effects. The remaining sections then

discuss a range of applications in the literature related to scale effects.

5.1. Strong and Weak Scale Effects

The simple model in Section 3 revealed that the growth rate of per capita

income is proportional to the growth rate of the stock of ideas. Consider

that same model, but replace the idea production function in equation (7)

with

Ȧt = νLλAtA
φ
t . (59)
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We could go further and incorporate human capital, as we did in the richer

model of Section 4, but this will not change the basic result, so we will

leave out this complication.

Now consider two cases. In the first, we impose the condition that φ < 1.

In the second, we will instead assume that φ = 1. In the case of φ < 1, the

analysis goes through exactly as in the models developed earlier, and the

growth rate of the stock of ideas along a balanced growth path is given by

gA =
λn

1 − φ
, (60)

which pins down all the key growth rates in the model. Notice that, as

before, the growth rate is proportional to the rate of population growth. It

is straightforward to show, as we did earlier, that the level of per capita

income in such an economy is an increasing function of the size of the

population. That is, this model exhibits weak scale effects. Finally, notice

that this equation cannot apply if φ = 1; in that case, the denominator

would explode.

To see more clearly the source of the problem, rewrite the idea production

function when we assume φ = 1 as

Ȧt
At

= νLλAt. (61)

In this case, the growth rate of knowledge is proportional to the number of

researchers raised to some power λ. If the number of researchers is itself

growing over time, the simple model will not exhibit a balanced growth

path. Rather, the growth rate itself will be growing! With φ = 1, the

simple model exhibits strong scale effects.

The first generation idea-based growth models of Romer (1990), Aghion

and Howitt (1992), and Grossman and Helpman (1991) all include idea

production functions that essentially make the assumption of φ = 1, and
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all exhibit the strong form of scale effects.20 The problem with the strong

form of scale effects is easy to document and understand. Because the

growth rate of the economy is an increasing function of research effort,

these models require research effort to be constant over time to match

the relative stability of growth rates in the United States and some other

advanced economies. However, research effort is itself growing over time

(for example, if for no other reason than simply because the population is

growing). These facts are now documented in more detail.

A useful stylized fact that any growth model must come to terms with

is the relative stability of growth rates in the United States over more than

a century. This stability can be easily seen by plotting per capita GDP

for the United States on a logarithmic scale, as shown in Figure 1. A

straight line with a growth rate of 1.8 percent per year provides a very

accurate description of average growth rates in the United States dating

back to 1870. There are departures from this line, of course, most clearly

corresponding to the Great Depression and the recovery following World

War II. But what is truly remarkable about this figure is how well a straight

line describes the trend.

Jones (1995b) made this point in the following way. Suppose one drew

a trend line using data from 1870 to 1929 and then extrapolated that line

forward to predict per capita GDP today. It turns out that such a prediction

matches up very well with the current level of per capita GDP, confirming

the hypothesis that growth rates have been relatively stable on average.21

20This is easily seen in the Romer expanding variety model, as that model is the building
block for the models developed in this chapter. It is slightly trickier to see this in the quality
ladder models of Aghion and Howitt (1992) and Grossman and Helpman (1991). In those
models, each researcher produces a constant number of ideas, but ideas get bigger over
time. In particular, each new idea generates a proportional improvement in productivity.

21Of course this is only an approximation. The growth rate from 1950 to 1994 averaged
1.95 percent, while the growth rate from 1870 to 1929 averaged 1.75 percent (see, e.g.,
Ben-David and Papell (1995) on this increase). On the other hand, the 2.20 percent growth
rate in the 1950s and 1960s is slightly higher than the 1.74 percent growth rate after 1970,
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FIGURE 1. U.S. GDP Per Capita, Log Scale

1860 1880 1900 1920 1940 1960 1980 2000

$2500 

$5000 

$10000

$15000

$20000

$25000

Year

1990 Dollars

Note: Data from Maddison (1995).

This stylized fact represents an important benchmark that any growth

model must match. Whatever the engine driving long run growth, it must

(a) be able to produce relatively stable growth rates for a century or more,

and (b) must not predict that growth rates in the United States over this

period of time should depart from such a pattern. To see this force of

this argument, consider first a theory like Lucas (1988) that predicts that

investment in human capital is the key to growth. In this model, the growth

rate of the economy is proportional to the investment rate in human capital.

But if investment rates in human capital have risen significantly in the 20th

century in the United States, as data on educational attainment suggests,

reflecting the productivity slowdown. Similar results can be obtained with GDP per worker
and GDP per hour worked, see Williams (1995).
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FIGURE 2. Researchers and Employment in the G-5 Countries (Index)
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Note: From calculations in Jones (2002b). Data on researchers before 1950
in countries other than the United States is backcasted using the 1965 research
share of employment. The G-5 countries are France, Germany, Japan, the
United Kingdom, and the United States.

this is a problem for the theory. It could be rescued if investment rates in

human capital in the form of on-the-job training have fallen to offset the

rise in formal education, but there is little evidence suggesting that this is

the case.

This stylized fact is even more problematic for the first-generation idea-

based growth models of Romer (1990), Aghion and Howitt (1992), and

Grossman and Helpman (1991) (R/AH/GH). These models predict that

growth is an increasing function of research effort, but research effort has

apparently grown tremendously over time. As one example of this fact,

consider Figure 2. This figure plots an index of the number of scientists
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and engineers engaged in research in the G-5 countries. Between 1950 and

1993, this index of research effort rose by more than a factor of eight. In

part this is because of the general growth in employment in these countries,

but as the figure shows, it also reflects a large increase in the fraction of

employment devoted to research. A similar fact can be documented using

just the data for the United States, or by looking at spending on R&D rather

than employment.22 The bottom line is that resources devoted to research

have exhibited a tremendous amount of growth in the post-war period,

while growth rates in the United States have been relatively stable. The

implication is that models that exhibit strong scale effects are inconsistent

with the basic trends in aggregate data. Evidence like this is one of the main

arguments in favor of models that exhibit weak scale effects instead.23

5.2. Growth Effects and Policy Invariance

At some level, the rejection of models with strong scale effects in favor

of models with weak scale effects should not be especially interesting. The

only difference between the two models, as discussed above, is essentially

the strength of the knowledge spillover parameter. In expanding variety

models, is φ = 1 or is φ < 1? Nothing in the evidence necessarily rules out

φ = .95, and continuity arguments suggest that the economics of φ = .95

and φ = 1 cannot be that different.

22There are several ways to look at the R&D spending share of GDP. For total R&D
expenditures as a share of GDP in the United States, most of the increase in the R&D share
occurs before 1960. However, if one substracts out R&D expenditures on defense and space
(which might be a reasonable thing to do since government output is valued at cost), or if
one focuses on non-federally-financed research, the trend in the U.S. share emerges clearly;
see Chapter 4 of the NSF’s Science and Engineering Indicators, 2004. Alternatively, there
are substantial trends in the R&D shares for most of the other G-7 countries; in addition to
the 2004 edition, see also the 1993 edition of the NSF’s Science and Engineering Indicators
to get data on the research shares back to 1970.

23The other main argument is the “linearity critique” discussed further in Section 6.2.
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The main difference in the economic results that one obtains in the two

models pertains to the ability of changes in policy to alter the long-run

growth rate of the economy. In the models that exhibit strong scale ef-

fects, the long-run growth rate is an increasing function of the number of

researchers. Hence, a policy that increases the number of researchers, such

as an R&D expenditure subsidy, will increase the long-run growth rate. In

contrast, if φ < 1, then the long run growth rate depends on elasticities of

production functions and on the rate of population growth. To the extent

that these parameters are unaffected by policy — as one might naturally

take to be the case, at least to a first approximation — policy changes such

as a subsidy to R&D or a tax on capital will have no affect on the long-run

growth rate. They will of course affect the long-run level of income and

will affect the growth rate along a transition path, but the long-run growth

rate is invariant to standard policy changes.

This statement can be qualified in a couple of ways. First, the population

growth rate is really an endogenous variable determined by fertility choices

of individuals. Policy changes can affect this choice and hence can affect

long-run growth even in a model with weak scale effects, as shown in Jones

(2003). However, the effects can often be counter to the usual direction.

For example, a subsidy to R&D can lead people to perform more research

and have fewer kids, reducing fertility. Hence a subsidy to research can

reduce the long-run growth rate. This can be true even if it is optimal to

subsidize research — this kind of model makes clear that long-run growth

and welfare are two very different concepts. The second qualification is

that one can imagine subsidies that affect the direction of research and that

can possibly affect long-run growth. For example, Cozzi (1997) constructs

a model in which research can proceed in different directions that may

involve different knowledge spillover elasticities. By shifting research to
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the directions with high spillovers, it is possible to change the long-run

growth rate.

Despite these qualifications, it remains true that in the semi-endogenous

growth models written to address the problem of strong scale effects,

straightforward policies do not affect the long-run growth rate. This has

led a number of researchers to seek alternative means of eliminating the

strong scale effects prediction while maintaining the potency of policy

to alter the long-run growth rate. Key papers in this line of research in-

clude Young (1998), Peretto (1998), Dinopoulos and Thompson (1998),

and Howitt (1999) (Y/P/DT/H).

These papers all work in a similar way.24 In particular, each adds a

second dimension to the model, so that research can improve productivity

for a particular product or can add to the variety of products. To do this in

the simplest way, suppose that aggregate consumption (or output) is a CES

composite of a variety of different products:

Ct =

(

∫ Bt

0
Y

1/θ
it di

)θ

, θ > 1, (62)

whereBt represents the variety of goods that are available at date t and Yit
is the output of variety i. Assume that each variety Yi is produced using

the Romer-style technology with φ = 1 in the simple model given earlier

in Section 3.

The key to the model is the way in which the number of different varieties

B changes over time. To keep the model as simple as possible, assume

Bt = Lβt . (63)

24This section draws heavily on Jones (1999).
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That is, the number of varieties is proportional to the population raised to

some power β. Notice that this relationship could be given microfounda-

tions with an idea production function analogous to that in equation (16).25

Finally, let’s assume each intermediate variety is used in the same quantity

so that Yit = Yt, implying Ct = Bθ
t Yt. Per capita consumption is then

ct = Bθ
t yt, and per capita consumption growth along a balanced growth

path is

gc = θgB + σgA = θβn+ σgA. (64)

Assuming an idea production function with φ = 1, like that in R/AH/GH,

the growth rate of the stock of ideas is proportional to research effort per

variety, LAt/Bt = sLt/Bt:

gA = νsLt/Bt = νsL1−β
t . (65)

Substituting this equation back into (64) gives the growth rate of per capita

output as a function of exogenous variables and parameters:

gc = θβn+ σνsL1−β
t . (66)

With β = 1 so thatBt = Lt, the strong scale effect is eliminated from the

model, while the effect of policy on long-run growth is preserved. That is,

a permanent increase in the fraction of the labor force working in research,

s, will permanently raise the growth rate. This is the key result sought by

the Y/P/DT/H models.

However, there are two important things to note about this result. First,

it is very fragile. In particular, to the extent that β 6= 1, problems reemerge.

If β < 1, then the model once again exhibits strong scale effects. Alterna-

tively, if β > 1, then changes in s no longer permanently affect the long-run

25For example, if Ḃ = LBγ , then equation (63) holds holds along a balanced growth
path with β = 1/(1 − γ).



48 CHARLES I. JONES

growth rate. Thus, the Y/P/DT/H result depends crucially on a knife-edge

case for this parameter value, in addition to the Romer-like knife-edge as-

sumption of φ = 1. Second, as the first term in equation (66) indicates,

the model still exhibits the weak form of scale effects. This result is not

surprising given that these are idea-based growth models, but it is useful to

recognize since many of the papers in this literature have titles that include

the phrase “growth without scale effects.” What these titles really mean

is that the papers attempt to eliminate strong scale effects; all of them still

possess weak scale effects. These points are discussed in more detail in

Jones (1999), Li (2000), and Li (2002).

5.3. Cross-Country Evidence on Scale Effects

One source of evidence on the empirical relevance of scale effects comes

from looking across countries or regions at a point in time. Consider first

the ideal cross-sectional evidence. One would observe two regions, one

larger than the other, that are otherwise identical. The two regions would

not interact in any way and the only source of new ideas in the two regions

would be the regions’ own populations. In such an ideal experiment, one

could search for scale effects by looking at the stock of ideas and at per

capita income in each region over time. In the long-run, one would expect

that the larger region would end up being richer.

In practice, of course, this ideal experiment is never observed. Instead,

we have data on different countries and regions in the world, but these

regions almost certainly share ideas and they almost certainly are not equal

in other dimensions. It falls to clever econometricians to use this data

to approximate the ideal experiment. No individual piece of evidence is

especially compelling, but the collection taken together does indeed suggest

that the cross-sectional evidence on scale effects supports the basic model.
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Certainly the most creative approximation to date is found in Kremer

(1993) and later appears in the Pulitzer Prize-winning book Guns, Germs,

and Steel by Jared Diamond (1997). The most recent ice age ended about

10,000 B.C. Before that time, ocean levels were lower, allowing humans to

migrate around the world — for example across the Bering Strait and into the

Americas. In this sense, ideas could diffuse across regions. However, with

the end of the ice age, sea levels rose, and various regions of the world were

effectively isolated from each other, at least until the advent of large sailing

ships sometime around the year 1000 or 1500. In particular, for approxi-

mately 12,000 years, five regions were mutually isolated from one another:

the Eurasian/African continents, the Americas, Australia, Tasmania (an is-

land off the coast of Australia), and the Flinders Island (a very small island

off the coast of Tasmania). These regions are also nicely ranked in terms

of population sizes, from the relatively highly-populated Eurasian/African

continent down to the small Flinders Island, with a population that likely

numbered fewer than 500.

It is plausible that 12,000 years ago these regions all had similar tech-

nologies: all were relatively primitive hunter-gatherer cultures. Now fast-

forward to the year 1500 when a wave of European exploration reintegrates

the world. First, the populous Old World has the highest level of techno-

logical sophistication; they are the ones doing the exploring. The Americas

follow next, with cities, agriculture, and the Aztec and Mayan civilizations.

Australia is in the intermediate position, having developed the boomerang,

the atlatl, fire-making, and sophisticated stone tools, but still consisting of

a hunter-gatherer culture. Tasmania is relatively unchanged, and the pop-

ulation of Flinders Island had died out completely. The technological rank

of these regions more than 10,000 years later matches up exactly with their

initial population ranks at the end of the last ice age.
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Turning to more standard evidence from the second-half of the twentieth

century, one is first struck by the apparent lack of support for the hypothesis

of weak scale effects. The most populous countries of the world, China

and India, are among the poorest, while some of the smallest countries like

Hong Kong and Luxembourg are among the richest. And the countries with

the most rapid rates of population growth — many in Africa — are among

the countries with the slowest rates of per capita income growth. How-

ever, a moment’s thought suggests that one must be careful in interpreting

this evidence. It is clearly not the case that Hong Kong and Luxembourg

are isolated countries that grow solely based on the ideas created by their

own populations. These countries benefit tremendously from ideas created

around the world. And in the case of the poor countries of the world, “other

things” are clearly not equal. These countries have very different levels of

human capital and different policies, institutions, and property rights that

contribute to their poverty. Hence, we must turn to econometric evidence

that seeks to neutralize these differences.

The clearest cross-country evidence in favor of weak scale effects comes

from papers that explicitly control for differences in international trade.

Intuitively, openness to international trade is likely related to openness to

idea flows, and the flow of ideas from other countries is one of the key

factors that needs to be neutralized. Backus, Kehoe and Kehoe (1992),

Frankel and Romer (1999), and Alcala and Ciccone (2002) are the main

examples of this line of work, and all find an important role for scale.

Alcala and Ciccone (2002) provide what is probably the best specification,

controlling for both trade and institutional quality (and instrumenting for

these endogenous variables), but the results in Frankel and Romer (1999)

are similar. Alcala and Ciccone find a long-run elasticity of GDP per worker
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with respect to the size of the workforce that is equal to 0.20.26 That is,

holding other things equal, a 10 percent increase in the size of the workforce

in the long run is associated with a 2 percent higher GDP per worker.27

Other cross-country studies, of course, have not been able to precisely

estimate this elasticity. Hall and Jones (1999), for example, found a point

estimate of about 0.05, but with a standard error of 0.06. Sala-i-Martin

(1997) does not find the size of the population to be a robust variable in his

four million permutations of cross-country growth regressions. Finally, it

should be recognized that this cross-country estimate of the scale elasticity

is not necessarily an estimate of the structural parameterγ in the idea models

presented earlier in Section 4. One needs a theory of technology adoption

and idea flows in order to make sense of the estimates. For example, in

a world where ideas flow to all places instantaneously, there would be no

reason to find a scale effect in the cross-section evidence.

A final piece of evidence that is often misinterpreted as providing evi-

dence against the weak scale effects prediction is the negative coefficient on

population growth in a cross-country growth regression, such as in Mankiw,

Romer and Weil (1992). Recall that the standard interpretation of these re-

gressions is that they are estimating transition dynamics. The negative

coefficient on population growth is interpreted as capturing the dilution of

the investment rate associated with the Solow model. Consider two coun-

tries that are identical but for different population growth rates. The country

with the faster population growth rate must equip a larger number of new

workers with the existing capital-labor ratio, effectively diluting the invest-

ment rate. The result is that such an economy has a lower capital-output

26The standard error of this particular point estimate is about 0.10. Across different
specifications, the elasticity ranges from a low of about 0.10 to a high of about 0.40.

27Of course in the model with trade, other things would not be equal: a change in
population would almost surely affect the trade-GDP ratios that measure openness in the
regression.



52 CHARLES I. JONES

ratio in steady state, reducing output per worker along the balanced growth

path. But this same force is also at work in any growth model, including

idea-based models, as was apparent above in Result (1b). The implication

is that this cross-country evidence is not inconsistent with models in which

weak scale effects play a role.

5.4. Growth over the Very Long Run

Additional evidence on the potential relevance of scale effects to eco-

nomic growth comes from what at first might seem an unlikely place: the

history of growth from thousands of years ago to the present.

One of the important applications of models of economic growth in recent

years has been to understand economic growth over this very long time

period. Many of our workhorse models of growth were constructed with

an eye toward 20th-century growth. Asking how well they explain growth

over a much longer period of time therefore provides a nice test of our

models.

The key fact that must be explained over this period is quite stunning

and is displayed in Figure 3. For thousands and thousands of years prior

to the Industrial Revolution, standards of living were relatively low. In

particular, the evidence suggests that there was no sustained growth in per

capita incomes before the Industrial Revolution.28 Then, quite suddenly

from the standpoint of the sweep of world history, growth rates accelerated

and standards of living began rising with increasing rapidity. At the world

level, per capita income today is probably about 10 times higher than it was

in the year 1800 or 1500 or even 10,000 years ago. A profound question in

economic history — and one that growth economists have begun delving

into — is this: How do we understand this entire time path? Why were

28See Lucas (1998), Galor and Weil (2000), Jones (2001), and Clark (2001) for a discus-
sion of this evidence.
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FIGURE 3. World Per Capita GDP (log scale)
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Note: Data from Maddison (1995) for years after 1500. Before 1500, we assume
a zero growth rate, as suggested by Maddison and others.

standards of living relatively low and stagnant for so long, why have they

risen so dramatically in the last 150 years, and what changed?29

The recent growth literature on this question is quite large, and a thorough

review is beyond the scope of the present chapter (additional discussion can

be found in Chapter ??? of this handbook, by Oded Galor). Representative

papers include Lee (1988), Kremer (1993), Goodfriend and McDermott

29A cottage industry(!) in recent years has sprung up in which macroeconomists bring
their modeling tools to bear on major questions in economic history. In addition to growth
over the very long run, macroeconomists have studied the Great Depression (Ohanian and
Cole (2001)), the Second Industrial Revolution (Atkeson and Kehoe (2002)), and the rise in
female labor force participation over the course of the 20th century (Greenwood, Seshadri
and Yorukoglu 2001) among other topics.
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(1995), Lucas (1998), Galor and Weil (2000), Clark (2001), Jones (2001),

Stokey (2001), Hansen and Prescott (2002), and Tamura (2002).

In several of these papers, scale effects play a crucial role. Scale is at the

heart of the models of Lee (1988), Kremer (1993), and Jones (2001), and

it also plays an important role in getting growth started in the model based

on human capital in Galor and Weil (2000).

The role of scale effects in these models can be illustrated most effectively

by looking at the elegant model of Lee (1988). The three key equations of

that model are

Yt = AtL
1−β
t T βt , Tt = 1 (67)

Ȧt
At

= γ logLt, A0 given (68)

L̇t
Lt

= α

(

log
Yt
Lt

− log ȳ

)

, L0 given. (69)

Equation (67) describes a production function that depends on ideasA, labor

L, and landT , which is assumed to be in fixed supply and normalized to one.

Equation (68) is a Romer-like production function for new ideas. Notice

that we have assumed the φ = 1 case so that we can get an analytic solution

below, but the nature of the results does not depend on this assumption.

Notice also that we assume all labor can produce ideas, and we assume

a log form. This makes the model log-linear, which is the second key

assumption needed to get a closed-form solution. Finally, equation (69) is

a Malthusian equation describing population growth. If output per person

is greater than the subsistence parameter ȳ, then population grows; if less

then population declines.

The model can be solved as follows. First, choose the units of output

such that the subsistence term gets normalized to zero, log ȳ = 0. Next, let

a ≡ logA and ` ≡ logL. Then the model reduces to a linear homogeneous
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system of differential equations:

ȧt = γ`t (70)

˙̀
t = αat − αβ`t. (71)

It is straightforward to solve this system to find

log
Yt
Lt

= ω1e
θ1t + ω2e

θ2t, (72)

where θ1 > 0 and θ2 < 0 are the eigenvalues associated with this system,

and ω1 > 0.30 That is, the solution involves a double exponential: the

natural log of output per worker grows exponentially, so that the growth

rate of output per worker, y ≡ Y/L, itself grows exponentially:

ẏt
yt

= ω1θ1e
θ1t + ω2θ2e

θ2t. (73)

Mathematically, it is this double exponential growth that allows the model

to deliver a graph that looks approximately like that in Figure 3.

Analytically, Lee’s result is extremely nice. However, the analytic results

are obtained only by simplifying the model considerably — perhaps too

much. For example, the model generates double exponential growth in

population as well. As shown in Kremer (1993), this pattern fits the broad

sweep of world history, but it sharply contradicts the demographic transition

that has set in over the last century, where population growth rates level off

and decline. In addition, the analytic results require the strong assumption

that φ = 1.

If one wishes to depart from the log-linear structure of Lee’s model, the

analysis must be conducted numerically. This is done in Jones (2001), with

30The differential system can be solved using linear algebra, as in Barro and Sala-i-Martin
(1995, page 480) or, even more intuitively, by writing it as a single 2nd order differential
equation, as in Boyce and DiPrima (1997, pp. 123-125). The values for the constants in
equation (72) are θ1 = (−αβ +

√

(αβ)2 + 4αγ)/2, θ2 = (−αβ −
√

(αβ)2 + 4αγ)/2,
ω1 = θ1/α×(α(a0−β`0)−θ2`0)/(θ1−θ2), ω2 = θ2/α×(θ1`0−α(a0−β`0))/(θ1−θ2).
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a more realistic demographic setup and with an idea production function

that incorporates φ < 1. The basic insights from Lee (1988) apply over

the broad course of history, but the model also predicts a demographic

transition and a leveling off of per capita income growth in the 20th century.

The model with weak scale effects, then, is able to match the basic facts

of income and population growth over both the very long run and the 20th

century.

The economic intuition for these results is straightforward. Thousands

and thousands of years ago, the population was relatively small and the

productivity of the population at producing ideas was relatively low. Per

capita consumption, then, stayed around the Malthusian level that kept pop-

ulation constant (ȳ in the Lee model above). Suppose it took 1000 years

for this population to discover a new idea. With the arrival of the new idea,

per capita income and fertility rose, producing a larger population. Dimin-

ishing returns associated with a fixed supply of land drove consumption

back to its subsistence level, but now the population was larger. Instead of

requiring 1000 years to produce a new idea, this larger population produced

a new idea sooner, say in 800 years. Continuing along this virtuous cir-

cle, growth gradually accelerated. Provided the economic environment is

characterized by a sufficiently large degree of increasing returns (to offset

the diminishing returns associated with limited land), the acceleration in

population growth produces a scale effect that leads to the acceleration of

per capita income growth. Eventually, the economy becomes sufficiently

rich that a demographic transition sets in, leading population growth and

per capita income growth to level out.31

31It is even possible for the demographic transition to drive population growth rates down
to zero, in which cases per capita income growth rates decline as well. There is always
growth in this world — even a constant population produces new ideas — but the growth
rate is no longer exponential. See Jones (2001).
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5.5. Summary: Scale Effects

Virtually all idea-based growth models involve some kind of scale effect,

for the basic reason laid out earlier in the presentation of the Idea Diagram.

The strong scale effects of many first-generation idea-based growth models

— in which the growth rate of the economy is an increasing function of

its size — are inconsistent with the relative stability of growth rates in the

United States in the 20th century. Subsequent idea-based growth models

replaced this strong scale effect with a weak scale effect, where the long-run

level of per capita income is an increasing function of the size of the econ-

omy. The long-run growth rate in these models is generally an increasing

function of the rate of growth of research effort, which in turn depends on

the population growth rate of the countries contributing to world research.

However, this growth rate is typically taken to be exogenous, producing the

policy-invariance results common in these models.

Simple correlations (say of income per person with population, or growth

rates of per capita income with population growth rates) on first glance ap-

pear to be inconsistent with weak scale effects. However, the ceteris paribus

assumption is not valid for such comparisons. Attempts to render other

things equal using careful econometrics certainly reveal no inconsistency

with the weak scale effects prediction, although they also do not necessarily

provide precise estimates of the magnitude of the key scale elasticity.

More broadly, the very long-run history of economic growth appears con-

sistent with weak scale effects. Models in which scale plays an important

role have proven capable of explaining the very long-run dynamics of pop-

ulation and per capita income, including the extraordinarily slow growth

over much of history and the transition to modern economic growth since

the Industrial Revolution.
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6. GROWTH ACCOUNTING, THE LINEARITY CRITIQUE, AND
OTHER CONTRIBUTIONS

This section summarizes a variety of additional insights related to idea-

based growth models. Section 6.1 discusses growth accounting in such

models, showing that scale effects have accounted for only about 20 percent

of U.S. growth in the post-war period. Increases in educational attainment

and increases in R&D intensity account for the remaining 80 percent. Sec-

tion 6.2 considers a somewhat controversial “linearity critique” of endoge-

nous growth models that first appeared in the 1960s. Finally, Section 6.3

will discuss briefly several other important contributions to the literature

on growth and ideas that have not yet been mentioned.

6.1. Growth Accounting in Idea-Based Models

Growth accounting in a neoclassical framework has a long, illustrious

tradition, beginning with Solow (1957). As is well known, such accounting

typically finds a residual, which is labeled “total factor productivity growth”

(TFP growth). In some ways, endogenous growth models can be understood

as trying to find ways to endogenize TFP growth, i.e. to make it something

that is determined within the model rather than assumed to be completely

exogenous. Having such a model in hand, then, it is quite natural to ask

how the model decomposes growth into its sources. That is, quantitatively,

how does a particular model account for growth?

Jones (2002b) conducts one of these growth accounting exercises in an

economic environment that is basically identical to that analyzed in Sec-

tion 4. In the long run in that model, per capita growth is proportional to

the rate of population growth of the idea-producing regions. Off a balanced

growth path, of course, growth can come from transition dynamics, for

example due to capital deepening or to rapid growth in the stock of ideas.

Given the stylized fact that U.S. growth rates have been relatively stable
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over a long period of time, one might be tempted to think that the U.S. is

close to its balanced growth path so that growth due to transition dynamics

is negligible. On the contrary, however, Jones shows that just the opposite

is true. Approximately 80 percent of U.S. growth in the post-war period is

due to transition dynamics associated in roughly equal parts with increases

in educational attainment and with increases in world R&D intensity. Only

about 20 percent of U.S. growth is attributed to the scale effect associated

with population growth in the idea-generating countries.32

This finding raises a couple of important questions. First, how it is that

growth rates can be relatively stable in the United States if transition dy-

namics are so important? The answer proposed by Jones (2002b) can be

seen in a simple analogy. Consider a standard Solow (1956) model that

begins in steady state. Now suppose the investment rate increases perma-

nently by 1 percentage point. We know that growth rates rise temporarily

and then decline. Now suppose the investment rate, rather than staying

constant, grows exponentially. We know that this cannot happen forever

since the investment rate is bounded below one. However, it could happen

for awhile. In such a world, it is possible for the continued increases in

the investment rate to sustain a constant growth rate that is higher than the

long-run growth rate. In the idea-based growth model analyzed by Jones

(2002b), it is not the investment rate in physical capital that is driving the

transition dynamics. Instead, educational attainment and research intensity

(the fraction of the labor force working to produce ideas in advanced coun-

tries) appear to be rising smoothly in a way that can generate stable growth,

at least as an approximation.

32Comin (2002) suggests that the contribution of R&D to growth could be even smaller.
The key assumptions he needs to get this result are that R&D as a share of GDP is truly
small, as measured, and that the elasticity of output with respect to ideas is small.
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The second natural question raised by this accounting concerns the future

of U.S. growth. If 80 percent of U.S. growth is due to transition dynamics,

then a straightforward implication of the result is that growth rates could

slow substantially at some point in the future when the U.S. transits to its

balanced growth path. To the extent that population growth rates in the idea-

producing countries are declining, this finding is reinforced. Still, there are

many other qualifications that must be made concerning this result. Most

importantly, it is not clear when the transition dynamics will “run out,”

particularly since the fraction of the labor force engaged in research seems

to be relatively small. In addition, the increased development of countries

like China and India means that the pool of potential idea creators could

rise for a long time.

6.2. The Linearity Critique

This section considers the somewhat controversial “linearity critique”

of endogenous growth models that first appeared in the 1960s. A coarse

version of the criticism is that such models rely on a knife-edge assumption

that a particular differential equation is linear in some sense. If the linearity

is relaxed slightly, the model either doesn’t generate long-run growth or

exhibits growth rates that explode. This section first presents the basic

issue and then attempts to show how it can be used productively to make

progress in our understanding of economic growth.33

Growth models that are capable of producing steady-state growth require

strong assumptions. For example, it is well-known that steady-state growth

is possible only if technological change is labor-augmenting or if the pro-

duction function is Cobb-Douglas.34 Another requirement is that the model

must possess a differential equation that is linear. That is, all growth models

33This section draws heavily on Jones (2003).
34See, for example, the Appendix to Chapter 2 in Barro and Sala-i-Martin (1995).
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that exhibit steady-state growth ultimately rest on an assumption that some

differential equation takes the form

Ẋ = X. (74)

Growth models differ primarily according to the way in which they label

theX variable and the way in which they fill in the blank in this differential

equation.35

For example, in the Solow (1956) model without technological progress,

the differential equation for capital accumulation is less than linear, and the

model cannot produce sustained exponential growth. On the other hand,

when one adds exogenous technological change in the form of a linear

differential equation Ȧt = gAt, one obtains a model with steady-state

growth. In the “AK” growth models of Frankel (1962) and Rebelo (1991),

the law of motion for physical capital is assumed to be linear. In the human

capital model of Lucas (1988), it is the law of motion for human capital

accumulation that is assumed to be linear. Finally, in the first-generation

idea-based growth models of Romer (1990), Aghion and Howitt (1992),

and Grossman and Helpman (1991), it is the idea production function itself

that is assumed to be a linear differential equation.

This kind of knife-edge requirement has made economists uncomfortable

for some time. Stiglitz (1990) and Cannon (2000) note that this is one reason

endogenous growth models did not catch on in the 1960s even though

several were developed.36 Solow (1994) resurrects this criticism in arguing

against recent models of endogenous growth.

35This approach to characterizing growth models is taken from Romer (1995). Two qual-
ifications apply. First, this linearity can be hidden in models with multiple state variables,
as discussed in Mulligan and Sala-i-Martin (1993). Second, linearity is an asymptotic re-
quirement, not a condition that needs to hold at every point in time, as noted by Jones and
Manuelli (1990).

36The very nice AK model of Frankel (1962) is perhaps the clearest example.
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What is not sufficiently well-appreciated, however, is that any model of

sustained exponential growth requires such a knife-edge condition. Neo-

classical growth models are not immune to this criticism; they just assume

the linearity to be completely unmotivated. One can then proceed in two

possible directions. First, one can give up on the desire that a model exhibit

steady-state growth. It is not clear where this direction leads, however.

One still wants a model to be able to match the steady exponential growth

exhibited in the United States for the last 125 years, and it seems likely that

a model that produces this kind of behavior will require a differential equa-

tion that is nearly linear. Alternatively, one can see the linearity critique

as an opportunity for helping us improve our growth models. That is, if a

growth model requires a linear differential equation, one can look for an

economic explanation for why linearity should hold and/or seek empirical

evidence supporting the linearity.

To see how this might work, consider briefly the main types of endoge-

nous growth models and the key differential equations of those models:

1. “AK” model K̇ = sKφ

2. Lucas model ḣ = uhφ

3. R/AH/GH model Ȧ = HAA
φ

4. Fertility model Ṅ = (b− d)Nφ

In each case, we can ask the question: “Why should we believe that φ ≈ 1

is valid in this model?” In particular, we consider the following experiment.

Suppose we hold constant the individual decision variables (e.g. the invest-

ment rate in physical capital or time spent accumulating human capital).

Suppose we then double the state variable. Do we double the change in the

state variable?

In the “AK” model, φ is the elasticity of output with respect to capital. In

the absence of externalities, this elasticity is the share of capital in income.
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Narrowly interpreting the model as applying to physical capital, one gets a

benchmark value of about 1/3. Some people prefer to include human capital

as well, which can get the share a little higher.37 But then one must appeal

to large externalities, and these externalities must be exactly the right size

in order to get φ ≈ 1.

Now turn to the human capital model of Lucas (1988). Consider a rep-

resentative agent who lives forever and spends 10 hours per week studying

to obtain skills. Are the skills that are added by one period of this studying

doubled if the individual’s stock of human capital is doubled? A natu-

ral benchmark might be that studying for 10 hours a week adds the same

amount, whether one is highly skilled or has little skill. It is far from ob-

vious that the 10 hours of studying increases skills proportionately over

time.38

This chapter has already discussed the Romer/AH/GH assumption of

φ = 1. Recall that one can make a case for φ < 0 if it gets harder over

time to find new ideas or φ > 0 if knowledge spillovers increase research

productivity, or even φ = 0 if researchers produce a constant number of

ideas with each unit of effort. The case of φ = 1 appears to have little in

the way of intuition or evidence to recommend it.

Finally, the last case above suggests placing the linearity in the equation

for population growth, as was done implicitly in the models discussed earlier

in the chapter. It can be thought of in this way: Let b and d denote the birth

rate and the mortality rate for an individual, respectively. Hold constant an

37I personally think this is a mistake. Human capital is different from physical capital in
many ways and gets treated differently in models that are careful about the distinction, e.g.
Bils and Klenow (2000).

38A subtlety in thinking through the human capital model comes from the Mincerian
wage regression evidence. Each year of schooling appears to raise a worker’s wage —
and hence productivity — by a constant percentage. One might be tempted to use this to
argue that φ = 1 in the human capital case. Bils and Klenow (2000) suggest instead that
a human capital accumulation equation of the form ḣ = eθuhφ is the right way to capture
this evidence.
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individual’s fertility behavior, and suppose we double the number of people

in the population. A natural benchmark assumption is that we double the

number of offspring. This is the intuition for why a linear differential

equation makes sense as a benchmark for the population growth equation.

More generally, I would make the claim that population growth is the

least objectionable place to locate a linear differential equation in a growth

model, for two reasons. First, if we take population as exogenous and feed

in the observed population growth rates into an idea-based growth model,

we can explain sustained exponential growth. No additional linearity is

needed. Second, the intuition above suggests that it is not crazy to think

this differential equation might be close to linear: people reproduce in

proportion to their number.39

This is one example of how the linearity critique can be used productively.

Proponents of particular endogenous growth models can seek evidence and

economic insights supporting the hypothesis that the particular engine of

growth in a model does indeed involve a differential equation that is close

to linear.

6.3. Other Contributions

There are a number of other very interesting papers that I have not had

time to discuss. These should be given more attention than simply the brief

mention that follows, but this chapter is already too long.

Kortum (1997) and Segerstrom (1998) are two important papers that

present growth models that exhibit weak scale effects. Both are motivated

in part by the stylized fact that total U.S. patents granted to U.S. inventors

does not show a large time trend for nearly a century, from roughly 1910

39This does not mean that fertility behavior, b, will ensure a positive rate of population
growth forever. That is a different question. Indeed, Jones (2001) supposes that a de-
mographic transition ultimately leads to zero population growth in attempting to explain
growth over the very long run.
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until 1990. If patents are a measure of useful ideas, this fact suggests that

the number of new ideas per year might have been relatively stable during

a time when per capita income was growing at a relatively constant rate.

How can this be? In the models provided above, the stock of ideas grows

at a constant rate, just like output. Kortum (1997) and Segerstrom (1998)

solve this puzzle by supposing that ideas, at least on average, represent

proportional improvements in productivity. The papers also assume that

new ideas are increasingly difficult to obtain, so that in steady state, a

growing number of researchers produce a constant number of new ideas,

which in turn leads to a constant rate of exponential growth.

Romer (1994a) makes an interesting point that appears (at least based

on citations) to have been under appreciated in the literature. The paper

considers the welfare cost of trade restrictions from the standpoint of mod-

els in which ideas play an important role. In neoclassical models, trade

restrictions, like other taxes, typically have small effects associated with

Harberger triangles that depend on the square of the tax rate. In contrast,

Romer shows that if trade restrictions reduce the range of goods (ideas)

available within a country, the welfare affect is proportional to the level of

the tax rate rather than its square. As a result, distortions that affect the use

of ideas can have much larger welfare effects than those same distortions

in neoclassical models.

Acemoglu (2002) surveys a number of important results that come from

thinking about the direction of technological change. In this general frame-

work, researchers can choose to search for ideas that augment different

factors. For example, they may search for ideas that augment capital or

skilled labor or unskilled labor. Other things equal, a market size effect

suggests that research will be targeted toward augmenting factors that are

in greater supply, especially when these factors can be easily substituted

for other factors of production.
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Greenwood, Hercowitz and Krusell (1997) and Whelan (2001) focus on

the rapid technological change that is associated with the declines in the

relative prices of consumer and producer durables (driven in large part by

the rapid declines in the quality-adjusted price of semiconductors). Green-

wood et al. (1997) show that investment-specific technological change can

account for roughly half of per capita income growth in the United States

in recent decades. Whelan (2001) extends this analysis by tying it to the in-

troduction of chained indexes in the national income and product accounts.

Finally, it is worth mentioning again that this chapter has largely omitted

a very important part of the literature on growth and ideas, that associated

with the Schumpeterian models of Aghion and Howitt (1992) and Grossman

and Helpman (1991) . These models were applied in detail to international

trade in Grossman and Helpman (1991). Aghion and Howitt (1998) contain

a rich analysis of an even wider range of applications, to such topics as

unemployment, the effects of increases in competition, patent races, and

leader-follower effects in R&D. In addition to these excellent treatments, a

separate Handbook chapter by Aghion and Howitt surveys some of these

important topics.

7. CONCLUSIONS

Thinking carefully about the way in which ideas are different from other

economic goods leads to a profound change in the way we understand

economic growth. The nonrivalry of ideas implies that increasing returns

to scale is likely to characterize production possibilities. This leads to a

world in which scale itself can serve as a source of long run growth. The

more inventors we have, the more ideas we discover, and the richer we all

are. This also leads to a world where the first fundamental welfare theorem

no long necessarily holds. Perfectly competitive markets may not lead to

the optimal allocation of resources. This means that other institutions may
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be needed to improve welfare. The patent system and research universities

are examples of such institutions, but there is little reason to think we’ve

found the best institutions — after all these institutions are themselves ideas.

While we have made much progress in understanding economic growth

in a world where ideas are important, there remain many open, interesting

research questions. The first is “What is the shape of the idea production

function?” How do ideas get produced? The combinatorial calculations of

Romer (1993) and Weitzman (1998) are fascinating and suggestive. The

current research practice of modeling the idea production function as a

stable Cobb-Douglas combination of research and the existing stock of

ideas is elegant, but at this point we have little reason to believe that it is

correct. One insight that illustrates the incompleteness of our knowledge

is that there is no reason why research productivity in the idea production

function should be a smooth, monotonic function of the stock of ideas.

One can easily imagine that some ideas lead to a domino-like unraveling of

phenomena that were previously mysterious, much like the general purpose

technologies of Helpman (1998). Indeed, perhaps the decoding of the

human genome or the continued boom in information technology will lead

to a large upward shift in the production function for ideas.40 On the

other hand, one can equally imagine situations where research productivity

unexpectedly stagnates, if not forever then at least for a long time. Progress

in the time it takes to travel from New York to San Francisco represents a

good example of this.

A second unresolved research question is “What is the long-run elasticity

of output per worker with respect to population?” That is, how large are

increasing returns to scale. This parameter (labeled γ in the main models

of this chapter) is crucially related to the long-run rate of growth of the

40Dale Jorgenson, in his Handbook chapter, suggests that the information technology
revolution may do just this.
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economy. Estimating it precisely would not only provide confirmation

of idea-based growth theory but would also help us in accounting for the

sources of economic growth.

Finally, a policy-related question: “What are better institutions and poli-

cies for encouraging the efficient amount of research?” There is a large,

suggestive literature on social rates of return to research and on the extent

to which firms might underinvest in research. Still, none of these individ-

ual studies is especially compelling, and more accurate estimates of these

gaps would be valuable. To the extent that the returns to research do not

reflect the marginal benefit to society, better institutions might improve

allocations.
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