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ABSTRACT

Most affine models of the term structure with stochastic volatility (SV) predict that the variance of

the short rate is simultaneously a linear combination of yields and the quadratic variation of the spot

rate. However, we find empirically that the A1(3) SV model generates a time series for the variance

state variable that is strongly negatively correlated with a GARCH estimate of the quadratic

variation of the spot rate process. We then investigate affine models that exhibit ‘unspanned

stochastic volatility (USV).’ Of the models tested, only the A1(4) USV model is found to generate

both realistic volatility estimates and a good cross-sectional fit. Our findings suggests that interest

rate volatility cannot be extracted from the cross-section of bond prices. Separately, we propose an

alternative to the canonical representation of affine models introduced by Dai and Singleton (2001).

This representation has several advantages, including: (I) the state variables have simple physical

interpretations such as level, slope and curvature, (ii) their dynamics remain affine and tractable, (iii)

the model is econometrically identifiable, (iv) model-insensitive estimates of the state vector process

implied from the term structure are readily available, and (v) it isolates those parameters which are

not identifiable from bond prices alone if the model is specified to exhibit USV.
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1 Introduction

The affine class of term structure models as characterized by Duffie and Kan (DK, 1996) owes much

of its popularity to its analytic tractability.1 In particular, the affine class possesses closed-form

solutions for both bond and bond-option prices (Duffie, Pan, and Singleton (2000)), efficient ap-

proximation methods for pricing swaptions (Collin-Dufresne and Goldstein (2002b), Singleton and

Umantsev (2002)), and closed-form moment conditions for empirical analysis (Singleton (2001),

Pan (2002)). As such, it has generated much attention both theoretically and empirically.2

In this paper, we make two contributions to the affine term structure literature. First, we propose

a new representation in which the elements of both the state vector and parameter vector have unique

economic interpretations. In contrast, most affine yield representations are written in terms of a

latent state vector whose elements have no economic interpretation of their own. The advantages of

our representation over representations in terms of a latent state vector are discussed below.

As a second contribution, we use this representation to estimate three and four-factor stochas-

tic volatility models. As is well known, most affine models of the term structure with stochastic

volatility (SV) predict that the variance of the short rate is simultaneously a linear combination of

yields and the quadratic variation of the spot rate. However, we find empirically that the variance

state variable in the A1(3) model is unable to play this dual role. As such, we investigate how well

an A1(4) model exhibiting ‘unspanned stochastic volatility’ (USV) performs. USV models break

the dual role that the variance state variable plays, in turn allowing it to accurately capture the time

series of interest rate volatility. We now discuss these two contributions.

1.1 New representation of affine models

Typically affine term structure models are written in terms of a Markov system of latent state vari-

ables X = {X1, . . . , Xn} that describe the entire state of the term structure (see, e.g., Piazzesi

(2004) for a survey). One problem with these latent factor models is that the parameter vector {φ}
might not be identifiable even if a panel data set of all possible fixed income securities were avail-

able. Currently, two approaches have been proposed in the literature to deal with identification.

The first approach, due to DK, is to obtain an identifiable model by rotating from the latent state

variables to a set of observable zero coupon yields (with distinct finite maturities). Unfortunately, as

we discuss below, their approach is often difficult to implement and therefore has not been widely

used. Further, for unspanned stochastic volatility models (Collin-Dufresne and Goldstein (2002))

the rotation is not implementable.

The second approach, due to Dai and Singleton (DS, 2000), consists of performing a set of

‘invariant transformations’ that leave security prices unchanged but reduce the number of parame-
1The affine class essentially includes all multi-factor extensions of the models of Vasicek (1977) and Cox, Ingersoll

and Ross (1985).
2See the recent survey by Dai and Singleton (2003) and the references therein.
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ters.3 After performing several invariant transformations, DS obtain a canonical representation for

latent affine term structure models which they refer to as ‘maximal’ in the sense that no additional

parameters can be identified even if the prices of all fixed income securities were available.4 How-

ever, a limitation of latent variable models is that neither the state variables nor the parameters have

any economic meaning of their own. As such, to interpret the results of the model (beyond just

goodness-of-fit), a rotation to a state vector which is economically meaningful is eventually nec-

essary. Further, as we demonstrate below, the DS canonical representation is only locally and not

globally identifiable. As such, two researchers with the same data can obtain different estimates for

the state vector and parameter vector.5

Below, we combine insights from both DS and DK to identify an invariant transformation of

latent variable affine models where the resulting representation is both tractable and is specified in

terms of economically meaningful state variables. Specifically, we rotate the state vector so that it

is composed of two types of variables: (i) the first few components in the Taylor series expansion

of the yield curve, which have economic interpretations such as level, slope and curvature, and (ii)

their quadratic covariations. While our rotation is not unique, the choices it offers are intuitive

and adaptable to a particular dataset and/or estimation method. Such a representation has several

advantages:

First, because the state vector has a unique economic interpretation, both the state vector and

the parameters are globally identifiable.

Second, since our representation provides simple economic interpretations for both the state

variables and the parameters of the model, their values can be directly compared across different

countries, sample periods, or even different models. In contrast, parameters and the state variables

obtained from a latent representation cannot be compared until a rotation to an economically mean-

ingful representation is performed.6

Third, our approach makes clear that the issue of identification rests mainly with the risk-neutral

measure. Indeed, our approach allows us to identify how many parameters are identifiable with

cross-sectional information only – a concept which we refer to as Q-maximality. This issue is

important because the tractability of the affine class is mostly in regards to its risk-neutral dynamics.
3DS identify three such types of ‘invariant transformations’: (i) rotation of the state vector TA , (ii) Diffusion rescaling

TD , (iii) Brownian motion rotation TO .
4As shown in Collin-Dufresne and Goldstein (2002) several ‘maximal’ models are actually not identified if one ob-

serves only bond (or yield) data. Indeed, in the presence of unspanned stochastic volatility (USV) the parameters of the
drift of volatility typically cannot be identified unless one observes derivative data in addition to bond yields.

5Following Rothenberg (1971), a model is globally identified if every parameter vector implies a unique probability
distribution for observable security prices, i.e. no parameter vectors are observationally equivalent. A model is only
locally idenfiable when there exist multiple parameter vectors that imply the same distribution but these parameter vectors
are not “close.” A model is unidentified when all open sets around a given parameter vector include another vector that is
observationally equivalent to it.

6It is often the case that state variables are highly correlated with one or more principal components, and thus re-
searchers interpret the state variable as such. However, such interpretations are approximate at best. Furthermore, as
shown by Duffee (1996) Tang and Xia (2005), the weights of such principal components change over time and across
countries. Hence, attempting to compare models and/or parameters through their implied principal component dynamics
is at best suggestive and likely somewhat misleading.
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Indeed, some researchers (e.g., Duarte (2003)) have combined affine risk-neutral dynamics with

non-affine historical measure dynamics in order to improve goodness-of-fit. Our approach makes it

simple to determine the number of risk-neutral parameters that are identifiable. Once this is done

and the state vector is identified, it is a trivial matter to determine which risk premia parameters are

identifiable.

Our representation also has several advantages over that of DK. First, it is easy to implement.

In contrast, as we discuss below, DK’s yield factor representation requires solving systems of non-

linear equations that are often not solvable in closed form. Second, our representation works for

unspanned stochastic volatility (USV) models, for which there does not exist a one-to-one mapping

between state variables and yields. Without such a mapping, the DK approach is not implementable.

Third, for those models that exhibit USV, this representation isolates those parameters which are not

identifiable from bond prices alone. Finally, this representation simplifies the form of the parameter

constraints imposed by USV, in turn facilitating empirical investigation (we discuss this further

below). One potential advantage of DK’s representation is that its state vector is composed of

directly-observable yields rather than just theoretically-observable yields whose values need to be

approximated. We note, however, that even DK’s approach typically requires that zero-coupon

yields be approximated from coupon yields. Further, we show using simulated data that it is possible

to obtain accurate estimates of our state variables that are insensitive to the method used.7

1.2 Identifying a failure of three-factor affine models

The second contribution of our paper adds to the growing literature that documents empirical failings

of three-factor affine models. This previous literature has reported that standard affine models have

trouble simultaneously fitting some cross-sectional and time-series properties of the yield curve

(Duffee (2002), Dai and Singleton (2002b)). For example, Duffee (2002) reports that standard three-

factor affine models cannot match the observed relationship between expected returns on bonds and

the slope of the term structure. Duffee addresses this shortcoming by proposing a more flexible

‘essentially affine’ specification of the risk-premia. This added flexibility significantly reduces the

tension between fitting expected returns, which are tied to physical measure dynamics, and fitting

the cross-section of bonds, which are determined by the risk-neutral distribution.8 However, both

Duffee and Duarte (2003) find that three factor affine models, even with generalized risk premia,

cannot simultaneously capture both the time-variation in conditional variances and the forecasting

power of the slope of the term-structure. Furthermore, Duffee reports that adding a fourth factor

would make his investigation impractical.

In this paper, we report another trade-off between capturing cross-sectional and time-series
7This may prove useful from a practical perspective in that, because we can estimate a time series for the state vector

before attempting to identify parameter estimates, we can come up with a good first guess for the parameter vector, in
turn simplifying the search over an often very large dimensional parameter space.

8See also Chacko (1997).
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properties of the term structure. Here, however, the trade-off involves second-order moments.9

Specifically, most affine models with stochastic volatility predict that the variance of the short rate

is simultaneously a linear combination of yields and the quadratic variation of the spot rate. The

former property implies that it should be possible to extract spot rate volatility solely from the

cross-section of bond prices, independent of any time-series information. Yet, when we estimate

the unrestricted essentially affine A1(3) model of the term structure, we obtain the ‘self-inconsistent’

result that the factors that explain the term structure are essentially unrelated to actual term structure

volatility. In particular, the volatility factor extracted from this model (i.e., the ‘term structure-

implied volatility’) is strongly negatively correlated with volatilities estimated using rolling win-

dows or a standard GARCH model applied to the time series of the 6-month rate. Furthermore, the

strong in-sample fit of that model breaks down following the end of the estimation period, suggest-

ing deep misspecification.

We interpret these findings as evidence that the A1(3) model cannot simultaneously describe the

yield curve’s level, slope, curvature, and volatility. That is, volatility is unable to play the dual role

that the A1(3) model predicts it does. The estimation of such a model therefore presents a tradeoff

between choosing volatility dynamics that are more consistent with one role or the other. For the

data set we investigate, and with no parameter restrictions imposed, that tradeoff is heavily tilted

towards explaining the cross section.10

We emphasize that our findings may have implications beyond the affine class of models. In-

deed, using model-insensitive proxies for interest rate level, slope, curvature, and a GARCH es-

timate for volatility, we find that these four series are (unconditionally, anyway) weakly related,

suggesting that there may be no three-factor model that can simultaneously capture these four fea-

tures of the term structure.11 Our results may therefore explain Ahn, Dittmar, and Gallant’s (2001)

finding that three-factor quadratic term structure models also have difficulty reproducing yield curve

volatility patterns.

Given that standard affine models fail at producing a time series for the variance state variable

that even roughly coincides with the quadratic variation of the spot rate, we also empirically in-

vestigate three and four-factor models that exhibit unspanned stochastic volatility, as defined by

Collin-Dufresne and Goldstein (CDG, 2002). These models are constructed to break the tension

between the time series and cross sectional features that most stochastic volatility affine models
9Note that since the volatility structure is invariant under transformation from the historical measure to the risk-neutral

measure, proposing a more general risk-premia specification will not overcome this problem as it did in Duffee (2002).
10Bikbov and Chernov (2004) also investigate three-factor affine models. They find that the estimated model dynamics

are highly dependent on whether or not they use options data (in addition to yields) to fit their models. When both options
and yield data are used, we suspect that the variance state variable will be more closely related to interest rate variance
and less to the shape of the yield curve. These results, however, are unrelated to our findings that interest rate volatility
is weakly correlated with the level, slope and curvature of the yield curve. As such, we suspect that their variance state
vector still will not be able to play the dual role that affine models predict.

11We note that Brandt and Chapman (2004) report an estimate of a three-factor quadratic Gaussian model that performs
very well with respect to the moments they choose to capture. However, they do not attempt to match, for example, the
correlation between variance and curvature.
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possess. In particular, these models impose parameter constraints so that the variance cannot be de-

termined from a linear combination of yields. Note that an immediate consequence of these models

is that the one-to-one mapping assumed by DK (1996) between yields and factors does not hold.

This in turn implies that some standard estimation techniques, which rely on the ‘invertibility’ of

the term structure with respect to the latent factors, cannot be implemented. Instead, we write term

structure dynamics in nonlinear state space form and estimate the parameters of the models using

Bayesian Markov chain Monte Carlo.

We find that of the models investigated, only the A1(4) USV model is able to generate both good

cross sectional and time series fits of yields. Indeed, in addition to the A1(3) model generating poor

estimates for interest rate variance, it also produces out-of-sample cross sectional errors that are

about twice the size as those of the A1(4) USV model. An implication of our findings is that any

strategy that attempts to hedge the volatility risk inherent in fixed income derivatives (if feasible

at all) must be substantially more complex than the convexity-based ‘butterfly’ positions discussed

by Litterman, Scheinkman, and Weiss (1991). Indeed, our results suggest that implied spot rate

volatility measures extracted from the cross-section of the yield curve are likely to be bad estimates

of actual volatility.12 Further, given the sensitivity of option prices to the specification of volatility

dynamics, realistically captured only by the USV models, we speculate that explicitly imposing

USV conditions may be useful for pricing such derivatives.

The rest of the paper is as follows. In Section 2 we provide a general approach for deriving

maximal affine models with observable state variables. In Section 3 we characterize the maximal

A1(3) and A1(4) models exhibiting USV. In Section 4 we describe an estimation methodology that

remains valid under USV, while Section 5 includes all empirical results. We conclude in Section 6.

2 Maximal affine models with ‘theoretically observable’ state vari-
ables

For what follows, it is important to distinguish between several related concepts: identification,

identifiability, and maximality.13 In the applied literature, the concept of ‘identification’ deals with

the issue of whether the state vector and parameter vector can be inferred from a particular data

set. In contrast, below we will use the concept of ‘identifiability’ to deal with the issue of whether

the state vector and parameter vector can be inferred from observing all conceivable financial data.

(i.e., all possible securities, as frequently as necessary). A ‘maximal’ model, as defined by DS, is

the most general model (within a class) that is identifiable given sufficiently informative data. We

emphasize that maximality is a theoretical concept in that DS determine maximality by considering

a series of invariant rotations that leave unaffected the fundamental PDE that security prices satisfy
12This contrasts with results from the equity literature which show that implied volatility estimates backed out from a

cross-section of option prices are in general good predictors of spot volatility. We speculate that the difference is due to
the difference between bond and option payoffs. The latter are more non-linear.

13We thank the referee for making us aware of the distinction between these concepts.
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without ever discussing what securities are available to the econometrician. Below, we follow their

lead and interpret identifiability and maximality in a theoretical sense. That is, we identify which

parameters are identifiable if the prices of all fixed income securities were observed as often as

necessary.

It is also helpful to introduce the concept of theoretical observable (as opposed to ‘latent’)

variable. In most econometrics, latent variables are considered to be those that are unobserved by

the econometrician, regardless of the interpretation of those variables. In this paper, we instead

define a latent variable to be a variable which has no intrinsic economic meaning. That is, it has no

physical interpretation independent of the values of other state variables and/or parameters of the

model. In contrast, a theoretically observable state variable is one that would be directly observable,

without using a model, if all conceivable fixed income securities data were available. As such,

theoretically observable variables possess an economic meaning independent of the model or its

parameter values. Two important examples of variables which are theoretically observable (and not

latent) are the spot rate and its volatility.

Possibly the most dangerous aspect of latent variables is that researchers sometimes attempt to

attribute to them an economic interpretation when in fact they have none. A very elegant example

illustrating this concern, due to Babbs and Nowman (BN, 1999), is the following. Consider the two

factor Gaussian (‘maximal’ A0(2) in DS taxonomy) model:

drt = κr (θt − rt) dt + σr dzr(t) (1)

dθt = κ
θ

(
θ − θt

)
dt + σ

θ
dz

θ
(t), (2)

with dzr dz
θ

= ρ dt. BN show that one can find an invariant transformation of the model by defining

another latent variable θ∗
t

by:

θ∗
t

=
(

1− κr

κ
θ

)
rt +

κr

κ
θ

θt (3)

so that the dynamics of the system become:

drt = κ
θ

(
θ∗

t
− rt

)
dt + σr dzr(t) (4)

dθ∗
t

= κr

(
θ − θ∗

t

)
dt + σ

θ∗ dz
θ∗ (t). (5)

Hence, even though the model is maximal in the sense of DS, two empirical researchers could esti-

mate different parameters and state variables using the exact same data set. In particular, one cannot

distinguish the short rate reverting to θ with speed κr from the short rate reverting to θ∗ with speed

κ
θ
. This duplicity is especially problematic when one wants to give economic meaning to θ. For ex-

ample, this variable has been previously interpreted as a long-run target rate set by the central bank

(e.g., Jegadeesh and Pennacchi (1996), Backus et al. (1994)). Admittedly, complete identification

can be obtained by imposing additional inequality constraints on the {κ}. We emphasize, how-

ever, that such constraints do not change the fact that the state variable θ has no economic meaning.
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Indeed, such constraints only serve to make it more likely that some economic interpretation be

incorrectly attributed to θ!

In the parlance of econometric theory (e.g. Rothenberg (1971)), maximal latent variable models

are only locally and not globally identifiable. We emphasize that the insights of BN are not just

relevant for Gaussian models. Indeed, the same transformation can be applied to the maximal

A1(3) model of DS (2000) in its Ar() representation (equation (23), pg. 1951), to show that the

‘central tendency’ defined by DS is not uniquely determined. Further, the same issue also arises for

the canonical AY representation of DS (pg. 1948).14

The example above is particularly salient because it emphasizes the difference between latent

and theoretically observable state variables. In particular, the state variable r is by definition the

short end of the term structure, and is therefore theoretically observable in that it cannot be changed

without necessarily changing the values of some fixed income securities (in particular, those with

very short, but finite maturities). In contrast, because θ is latent, its value can be replaced by θ∗

and, provided the parameters are adjusted appropriately (e.g., κ
θ
↔ κr . . . ), the prices of all fixed

income securities remain unchanged.

With these concerns in mind, we now search for a tractable affine framework where the state

vector has a clear economic interpretation. Mostly following the notation of DK and DS, the risk-

neutral dynamics of a Markov state vector X within an affine framework can be specified by as:

dX(t) = KQ
(
Θ

Q −X(t)
)

dt + Σ
√

S(t) dZ
Q
(t) , (9)

where Z
Q

is a vector of N independent Brownian Motions, KQ
and Σ are (N ×N) matrices, and

S is a diagonal matrix with components

Sii(t) = αi + β>
i

X(t) . (10)

The spot rate is an affine function of X:

r(t) = δ0 + δ>
x

X(t) , (11)

where δx is an N dimensional vector. Assuming the system is admissible (i.e., that the stochastic

differential equation admits a unique strong solution15), then zero coupon bond prices take the form:

P (t, τ) = eA(τ)−B(τ)>X(t), (12)
14The AY canonical A0(2) model of DS is given by:

r(t) = r + σ1X1(t) + σ2X2(t) (6)

dX1(t) = −κ11X1(t) dt + dz1(t) (7)

dX2(t) = −(κ21X1(t) + κ22X2)dt + dz2(t). (8)

It is straightforward to show that the BN model given in equations (1) and (2) is an invariant transformation of the
canonical AY model above, where, in particular, we have the relation κ11 = κr and κ22 = κθ . But, following the
argument leading to the equivalent representation in (4) and (5) there is an equivalent AY representation with κ22 = κr

and κ11 = κθ . This shows that the AY canonical representation is not globally identifiable.
15Sufficient conditions are given in Duffie and Kan (1996).
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where τ ≡ T − t and where A(τ) and B(τ) satisfy the ODEs:

dA(τ)
dτ

= −ΘQ>KQ>B(τ) +
1
2

N∑

i=1

[
Σ>B(τ)

]2

i

αi − δ0 (13)

dB(τ)
dτ

= −KQ>B(τ)− 1
2

N∑

i=1

[
Σ>B(τ)

]2

i

βi + δx , (14)

and the initial conditions:

A(0) = 0, B(0) = 0. (15)

Defining bond yields Y (t, τ) via P (t, τ) = e−τY (t,τ), we see from equation (12) that yields are

affine in the state variables:

Y (t, τ) = −A(τ)
τ

+
B(τ)>

τ
X(t). (16)

DK use this observation to suggest the possibility of rotating the system from a latent state

vector X to observable yields Y (with N arbitrary finite maturities). Unfortunately, such a rotation

is not tractable because it involves the functions A(·), B(·) which are, in general, not known in

closed form. Further, in those cases where the model exhibits USV, such a rotation is not possible

because the state variables cannot be backed out from yields alone.

Instead, we propose an alternative to DK’s approach to obtain a representation in terms of the-

oretically observable state variables. In particular, we perform a Taylor series expansions of both

the yield curve and the time-dependent coefficients A(τ) and B(τ) given in equation (16) around

τ = 0:16

Y (t, τ) = Y (t, 0) + τ ∂τ=0 Y (t, τ) +
(

τ2

2!

)
∂2

τ=0
Y (t, τ) + . . . (17)

A(τ) = A(0) + τ ∂τ=0 A(τ) +
(

τ2

2!

)
∂2

τ=0
A(τ) + . . . (18)

B(τ) = B(0) + τ ∂τ=0 B(τ) +
(

τ2

2!

)
∂2

τ=0
B(τ) + . . . . (19)

Using the initial conditions in equation (15), and collecting terms of the same order τ , we find from

equation (16) the following relation between the terms of the expansions:

Yn(t) ≡ ∂n
τ=0

Y (t, τ)

=
1

n + 1

(
−∂n+1

τ=0
A(τ) +

N∑

i=1

∂n+1
τ=0

Bi(τ)Xi(t)

)
∀n = 0, 1, 2 . . . (20)

Equation (20) implies that the {Yn} variables, representing the derivatives of the yield curve at

τ = 0, are linear in the original latent state vector X . Further, as we illustrate below, all the

coefficients in the transformation from the vector X = {X1, X2, . . .} to Y = {Y0 , Y1 , . . .} can be

16To simplify notation, we define ∂n
τ=c

f(t, τ) := ∂n

∂τn f(t, τ)
˛̨
˛
τ=c

for any function f(t, τ).
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found explicitly by a recursion obtained by differentiating repeatedly the system of ODE’s given in

equations (13) and (14), and making use of the boundary conditions in equation (15).

For illustration, we provide the expression for the loadings in the definition of {Y0 , Y1 , Y2}.

From equations (13) to (15), we have:

∂τ=0A(τ) = −δ0 (21)

∂τ=0B(τ) = δx (22)

∂2
τ=0

A(τ) = −ΘQ>KQ>δx (23)

∂2
τ=0

B(τ) = −KQ>δx (24)

∂3
τ=0

A(τ) = ΘQ>KQ>KQ>δx +
N∑

i=1

[Σ>δx ]2
i
αi (25)

∂3
τ=0

B(τ) = KQ>KQ>δx −
N∑

i=1

[Σ>δx ]2
i
βi . (26)

Plugging these into equation (20) and identifying the terms we find:

Y0(t) = δ0 + δ>
x

X(t)

≡ r(t) (27)

Y1(t) =
1
2
δ>

x
KQ

(
Θ

Q −X(t)
)

=
1

2 dt
E

Q

t

[
dr(t)

]

≡ 1
2
µQ(t) (28)

Y2(t) =
1
3

(
−δ>

x
KQKQ

(Θ
Q −X(t))−

N∑

i=1

[Σ>δx ]2
i
(αi + β>

i
X(t))

)

=
1

3 dt

(
E

Q

t

[
dµQ(t)

]− (dr(t))2
)

≡ 1
3

(
1
dt

E
Q

t
[dµQ(t)]− V (t)

)
. (29)

Hence, the level (Y (t, 0)), slope (∂τ=0Y (t, τ)), and curvature (∂2
τ=0

Y (t, τ)) are intimately related

to the short rate, its risk-neutral drift, and the expected change in the drift minus the short rate’s

variance. In Appendix A1, we show that this relationship holds even outside of the affine framework.

The above suggests a natural transformation from the latent variables X to the theoretically

observable state vector Y (or a subset of it). We emphasize that the latter is only theoretically

observable because it is the vector of Taylor expansion coefficients of the term structure at zero.

That is, the state vector consists of yields and sums of yields of infinitesimal maturity. Of course,

in practice only a finite maturity bonds are actually observable. However, from the point of view

of theoretical identification, this is not an issue. In fact, this is similar to DK where continuously

9



compounded yields on zero-coupon bonds may not be observable in practice either, but instead must

be estimated using some interpolation scheme from coupon bonds or from swap quotes.

A key advantage of this representation is that by construction it is globally identifiable. In

particular, given the prices of all fixed income securities, all state variables and their risk-neutral

parameters are uniquely identified. Hence, this model does not possess multiple solutions as do the

latent variable representations. Furthermore, our simulation results in the next section show that it is

possible to get very accurate estimates of the Y state variables that are extremely insensitive to the

model used to extract them. This suggests the rotation may have practical advantages in addition to

the property of being globally identifiable.17

We emphasize that the choice of representation is not unique. Any invariant transformation from

a maximal latent variable model to a theoretically observable model will yield a globally identifiable

model. In particular, for the investigation of stochastic volatility models which we pursue below, we

find it useful to combine elements of the state vector Y and a subset of the quadratic (co-)variations

of some of the Y state variables (which we call V), rather than to choose the entire state vector

from Y alone. Because of the properties of the quadratic-covariation process in continuous time,

this preserves the observability of the state vector. We can thus provide a definition of an observable

representation:

Definition 1 A theoretically observable Q-Representation is an invariant transformation18 of the

latent state vector X given in equation (9) to a N -dimensional state vector H ≡ [Ŷ, V̂] that

combines elements of Y and V and contains the short rate Y0 = r.

Let us note a few characteristics of our observable Q-representation:

• By definition of the vectors Y and V, the state variables in this representation are theoret-

ically observable in that they have physical interpretations independent of the choice of the

parameter vector.

• Since Y0(t) ≡ r(t), this definition insures that this system of observable state variables cap-

tures the dynamics of the entire term structure as well as fixed-income derivatives.19

• Since H is an invariant transformation of X it has jointly Markov affine dynamics.

• The representation is not unique: there are many ‘invariant transformations’ that preserve

‘observability.’
17One could think of working directly with the model-independent estimates of the state variables. This could be

especially useful for econometric work involving physical measure dynamics, such as forecasting or hedging. We leave
this for future research.

18The notion of invariant transformation is defined in DS (2000). See also footnote 3.
19Knowledge of the risk-neutral short rate process is sufficient to describe prices of all fixed-income derivatives. See,

e.g., Glasserman and Jin (2001).
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• The representation is independent of the risk-premium structure. Hence, this representation

emphasizes that theoretical observability is intimately tied to the risk-neutral dynamics of the

state variables.

To illustrate our proposed representation, consider the A0(3) sub-family of models. Note that

the covariance matrix of state vector dynamics is constant for this family. As such, all the state

variables of our proposed representation must come from Y (i.e., from the Taylor series expansion

of the yield curve) and not from V. An appropriate state vector for this class of models would

thus consist of (Y0(t), Y1(t), Y2(t)), or equivalently, H(t) = (r(t), µQ(t), θQ(t)), where θQ(t) ≡
EQ[dµQ(t)]/dt is the expected change in the drift of the short rate. The equivalence between the

two representations follows from the definitions of Y0(t), Y1(t), Y2(t) given in (27)-(29) above and

the fact that V (t) is constant in Gaussian models. We consider another Gaussian case in more detail

in Section 2.1 below.

As an alternative example, consider the A1(3) sub-family of models, where one state variable

drives V (t) = 1
dt(dY0(t))

2 ≡ 1
dt(dr(t))2. For that case, it may be convenient to rotate the state

vector from H(t) = (r(t), µQ(t), θQ(t)) to H = (r, µQ , V ), as we demonstrate in Section 3.1

below. Note that the variance state variable is theoretically observable as well in that it has a physical

interpretation independent of the model’s parameter values, and in particular, can be estimated from

the quadratic variation of the time series of the short rate.

2.1 Relation to Duffie and Kan’s ‘yield-factor model’

Conceptually, the rotation of the state vector to theoretically observable variables is similar to the

original idea of DK (1996), who rotate a latent state vector to an observable state vector defined

in terms of yields of finite maturities. However, there are several cases for which their approach

is difficult or even impossible to implement. First, for the subset of models exhibiting USV, the

rotation proposed by DS fails since not all state variables can be written as linear combination of

yields. Second, even for non-USV models where the rotation is in principle possible, the identifica-

tion restrictions take the form of restrictions on the solution of the Riccatti equations, which are not

generally known in closed-form.

To illustrate the difficulties in implementing the DK approach, here we consider a two-factor

Gaussian (i.e., non-USV) model of the short rate r and a latent variable x:

drt = (αr + βrr rt + βrx xt) dt + σr dZQ
r (t) (30)

dxt = (αx + βxr rt + βxx xt) dt + σx dZQ
x (t), (31)

where dZQ
r (t) dZQ

x (t) = ρr,xdt. This model has a total of 9 risk-neutral parameters. We emphasize

that if one could observe the risk-neutral trajectories of the two state variables, then one could

estimate all 9 parameters from observing fixed income securities. However, in practice only data on

yields and other fixed-income securities are available. Consistent with the insights of DS and DK,

11



we show below that only 6 risk-neutral parameters can be identified from observing fixed income

derivatives data. We emphasize that this result depends solely on the risk-neutral dynamics of the

state vector and is independent of the physical measure dynamics (which depends on a particular

choice of risk-premia).

Since yields of arbitrary maturities are linear in r and x we have

Y (t, τ) = −A(τ)
τ

+
Br(τ)

τ
rt +

Bx(τ)
τ

xt.

We can thus rotate from the latent state vector (r, x) to the observable state vector (r, Y (t, τ̂)) for

some specific choice of τ̂ > 0. As shown by DK, the dynamics of this state vector must be affine,

i.e.:

drt =
(
α̂r + β̂rr rt + β̂ry Y (t, τ̂)

)
dt + σr dZQ

r,t (32)

dY (t, τ̂) =
(
α̂y + β̂yr rt + β̂yy Y (t, τ̂)

)
dt + σy dZQ

y,t, (33)

and yields are still affine in both state variables, i.e.:

∀τ Y (t, τ) = −Â(τ)
τ

+
B̂r(τ)

τ
rt +

B̂y(τ)
τ

Y (t, τ̂).

In particular, this must hold for the special case τ = τ̂ , which introduces three additional constraints,

namely:

Â(τ̂) = 0, B̂r(τ̂) = 0 and B̂y(τ̂) = τ̂ . (34)

Although these constraints are non-linear, one would (correctly) suspect that they will lead three

restrictions on the parameters in equations (32)-(33). Hence, while the latent state vector represen-

tation (equations (30) and (31)) seems to suggest that there are nine free risk-neutral parameters,

by rotating to an observable vector, we see that there are only six. Unfortunately, this ‘yield-based’

approach proposed by Duffie and Kan (1996) is often intractable, because the coefficients A(τ) and

B(τ) are generally not known in closed-form20, making it difficult to impose the constraints implied

in equation (34).

In contrast, our proposed representation circumvents the practical issues associated with DK’s

choice of finite maturity yields by choosing a different set of observable state variables, namely

yields with infinitesimal maturity, or equivalently the derivatives of the term structure at zero {Y0 , Y1 . . .}.

Indeed, our approach only involves the solution of these Ricatti equations and their higher order

derivatives at zero, all of which are known functions of the parameters. In the example above,

our representation would rotate from (r, x) to (r, µQ) which (as discussed above) is equivalent to

(Y0 , Y1). Using the definition of µQ and equation (30), we find µQ = αr + βrr rt + βrx xt. Hence,

the dynamics of the system become:

dr(t) = µQ(t)dt + σr dZQ
r (t) (35)

dµQ(t) = (β0 + β1 rt + β2 µQ(t))dt + σm dZQ
m(t), (36)

20We note that for the particular A0(2) model at hand, we do have analytic solutions for A(τ) and B(τ). But this does
not affect the general point we are trying to make.
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where σmdZQ
m(t) = βrxσxdZQ

x (t) + βrrσrdZ
Q
r (t) and we have the following relation between

parameters:

β0 = βrxαx − βxxαr (37)

β1 = βrxβxr − βxxβrr (38)

β2 = βrr + βxx (39)

σ2
m = β2

rxσ2
x + β2

rrσ
2
r + 2ρr,xβrxσxβrrσr (40)

ρr,mσmσr = ρr,xβrxσrσx + βrrσ
2
r . (41)

Note that with ‘no effort’ our representation demonstrates that only 6 risk-neutral parameters are

identifiable (σr, β0, β1, β2, σm, ρr,m). Indeed, any choice of parameters in model (30)-(31) that

leaves the left hand side of equations (37)-(41) unchanged generates a short rate process which is

path-by-path identical to that of model (35)-(36). Consequently, both models are observationally

equivalent conditional on observing all possible fixed-income securities. In other words, only the

left hand side of equations (37)-(41) are separately identifiable from fixed-income derivatives data.

2.2 A constructive proof showing that a theoretically identifiable state vector guar-
antees parameter identification

DS consider a set of invariant rotations that reduce the number of parameters while not affecting the

prices of fixed income securities. Further, they conjecture, but do not prove, that no additional in-

variant rotations exist. Our representation in terms of theoretical observables demonstrates that their

conjecture is correct. Indeed, we can isolate a set of infinitesimal-maturity fixed income securities

whose prices will uniquely identify both the state vector and all risk-neutral parameters.

In order to demonstrate that a theoretical observable state vector guarantees risk-neutral pa-

rameter identification, here we consider the example in equations (30)-(36) above. As noted in

equations (27)-(28), the state vector {r, µQ} is identifiable from observation of the yield curve at

infinitesimal maturities. Further, since all agents agree on these variables, contracts could, in theory,

be written on the short rate, its volatility, on the slope of the yield curve, and on its volatility. If such

contracts were traded, then agents could observe the following ‘futures prices’ with infinitesimal

maturities: EQ
t

[
(∆rt)

2
]
, EQ

t

[(
∆µQ

t

)2
]
, EQ

t

[
∆rt ∆µQ

t

]
. These contracts would directly identify

σr, σm , ρr,m . Finally, the futures prices

F (t, ∆) = EQ
t [∆µQ(t)]

=
(
β0 + β1r(t) + β2µQ(t)

)
∆t (42)

from three sets of (distinct) observations F̂ ≡ {F (t1), F (t2), F (t3)} allow us to infer the parame-

ters (β0 , β1 , β2).
21

21We emphasize that there is no time series information here. In particular, we do not need to know the temporal
ordering of these three observations.
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Of course, both the availability of derivative data and observability of the state variables are

crucial to our argument. The specific claims (i.e., the infinitesimal maturity futures prices), whose

existence we postulate, help make the argument transparent. In practice, we find that finite maturity

bonds alone are sufficient for identifying all risk-neutral parameters when the model does not exhibit

USV. When the model exhibits USV, bonds and simple fixed income derivatives such as caps are

sufficient.

Note further that our discussion is valid irrespective of the risk-premium specification chosen.

Starting from such an observable representation, any risk-premium specification that is ‘reasonable’

in the sense that it leads to a P -measure state variable process identifiable based on its observed

time series data (e.g., using vector auto-regression if the P -dynamics are affine as well), will lead

to a model that is maximal in the sense of DS (2000). Therefore, our approach can also be used

for models with more general, non-affine, risk-premium specifications (e.g., Duarte (2004)) or for

the case of models with jump diffusion. In contrast, the DS approach to identification is based on

the idea that a model is identifiable when the Jacobian of the likelihood function is non-singular.

That is, when the likelihood function possesses local maxima. It is thus seems inherently tied to the

risk-premium specification.

The next section documents via simulation that the model-independent ‘observability’ of our

state variables may also be of practical interest.

2.3 Model-insensitive estimation of the state variables

When a model is specified in terms of latent state variables, estimates of the state vector depend on

the assumed values of the parameters, which are not initially available. In contrast, as demonstrated

above, the two state variables (r, µQ) in our representation are proportional to the level and slope

of the term structure at zero. In theory, this suggests that it should be possible to obtain model-

insensitive estimates of these state variables simply by observing the yield curve. Such estimates can

be quite valuable. For example, they can be used to obtain reasonable estimates of the parameters,

which in turn can be used as first guesses for a full-fledged estimation. This should be especially

useful for multi-factor models with more than three factors.

In practice, however, we rarely observe the entire (continuous) term structure of zero-coupon

yields. Rather, we only observe discrete points along the curve. Further, there may be some noise

resulting from, e.g., bid-ask spread and non-synchronous trading. To investigate how this would

affect the model-independent recovery of the state variables, we perform the following experiment.

We simulate a two factor A2(2) model using the estimates of Duffie and Singleton (1997). We

sample 10 years of weekly data and use a set of maturities typical of those used in the term structure

literature, namely {0.5, 1, 2, 5, 7, 10} years. Then we add i.i.d. noise with either 2bp or 5bp standard

deviations to account for potential ‘measurement errors.’ We estimate the level and slope at zero

of the term structure by using two types of polynomials (quadratic and cubic). From our previous

results the two state variables r and µQ can be estimated as, respectively, the level and twice the
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first derivative at zero. We then regress the estimates obtained from the polynomial fits on the true

value of the simulation, i.e., we perform the following regressions:

true rt = α
r
+ β

r × estimated rt + ε
r

t

true µQ
t

= α
µ

+ β
µ × estimated µQ

t
+ ε

µ

t
,

where rt is the instantaneous short rate and µQ
t is its drift under the risk-neutral measure. If the

model-independent estimates are unbiased and accurate, we expect to find coefficients β
r

and β
µ

close to one, along with high R2 values. The results reported in Table 1 are encouraging. They

show that the estimate of r is unbiased and accurate even given a high level of noise. Further, the

estimate of r is insensitive to the type of polynomial used. The results for µQ are also quite good, but

accuracy tends to diminish faster as noise increases. The R2 drops as low as 89% in the high noise

case for the less efficient cubic polynomial. Further, the order of the polynomial seems to matter for

the estimate of the first derivative. For example, the quadratic spline seems to systematically bias

the estimate (β
µ ≈ 1.6) of the second derivative. However, it is extremely highly correlated with

the state variable (R2 ≈ 0.98).

We emphasize that we have made no particular effort to find an appropriate interpolation proce-

dure. Rather, we have used the simplest available procedures, and did not try any others. These first

results thus seem very promising. The first state variable can be recovered very accurately without

much effort from available data. The second state variable can be recovered quite accurately with an

appropriate interpolation/extrapolation procedure.22 Below we demonstrate that similar accuracy is

apparently obtained using actual data, since we find our model-insensitive estimates to be extremely

highly correlated with estimates from full-fledged estimation procedures.

3 Stochastic volatility

Below we focus on three and four factor models of the term structure which have only one factor

driving stochastic volatility. This seems natural for two reasons. First, in their study of three factor

models DS (2000) have shown that the A1(3) model is the least misspecified at fitting various

moments of the term structure. Second, Duffee (2002) shows that among three-factor models,

Gaussian models perform best at capturing predictability regressions and for out of sample forecasts.

However, there is also clear evidence that the conditional variance of the short rate is time-varying

(e.g., Andersen, Benzoni and Lund (2003)). Thus it seems natural to allow for only one factor to

drive conditional variances. Finally, as we will see below the results of our investigation of three

factor models call for the addition of a fourth factor.
22We conjecture that a more sophisticated procedure based on either a term structure model (such as a two-factor

Gaussian model) or a Nelson-Siegel-type spline would provide a more robust method for recovering r and µQ , even in
the presence of substantial noise.
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3.1 Observable A1(3) model

Consider the A1(3) model in the terminology of Dai and Singleton (2000). It is defined by 3 state

variables, one of which follows a square-root process. One of the latent variable representations

under the risk-neutral measure has 19 parameters:

dv = (γv − κvv) dt + σv

√
v dZ

Q

3
(43)

dθ = [γ
θ
− κ

θ
θ − κ

θr
r − κ

θv
v] dt + σ

θr

√
αr + αvv dZ

Q

1
+

√
β

θ
+ βvv dZ

Q

2
+ σ

θv

√
v dZ

Q

3
(44)

dr = [γr − κrr − κ
rθ

θ − κrvv] dt +
√

αr + αvv dZ
Q

1
+ σ

rθ

√
β

θ
+ βvv dZ

Q

2
+ σrv

√
v dZ

Q

3
. (45)

Further, since we are interested in models where the short rate displays stochastic volatility we

assume that at least one of the terms (αv , σ2
rθ

βv , σ2
rv

) is positive. DS demonstrate that this model

is not identifiable, and thus econometric analysis cannot determine all of the parameters. Following

the approach proposed in the previous section, we rotate the A1(3) model from a latent state vector

(r, θ, v) to the theoretically observable state vector (r, µQ , V ) defined by:23

µQ = γr − κrr − κ
rθ

θ − κrvv (46)

V = αr + σ2
rθ

β
θ
+ (αv + σ2

rθ
βv + σ2

rv
)v (47)

This rotation takes a model with 19 parameters, not all of which are identifiable, to a maximal model

with 14 identifiable parameters inherent in its dynamics. Indeed, it is a matter of straightforward

(but tedious) verification, combining the definitions in equations (46) and (47) with the original

dynamics of (43)-(45), to obtain:

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (48)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
σ2

2
Vt − ψ2 dZ

Q

2
(t) +

√
σ2

3
Vt − ψ3 dZ

Q

3
(t) (49)

dµQ
t

= (m0 + mrrt + mµµQ
t

+ mV Vt)dt

+ν1

√
Vt − ψ1 dZ

Q

1
(t) + ν2

√
σ2

2
Vt − ψ2 dZ

Q

2
(t) + ν3

√
σ2

3
Vt − ψ3 dZ

Q

3
(t), (50)

where by definition of Vt we have:

σ2
1

+ σ2
2

+ σ2
3

= 1 (51)

σ2
1
ψ1 + ψ2 + ψ3 = 0. (52)

The model is admissible if24

γV ≥ κV ψ1 (53)

ψ1 ≥ max
(

ψ2

σ2
2

,
ψ3

σ2
3

)
. (54)

23Since we have restricted ourselves to model where the short rate displays stochastic volatility (i.e., at least one of
(αv , σ2

rθ
βv , σ2

rv
) is positive), such a rotation is always feasible. More generally, if one wanted to avoid this restriction,

then a Q-maximal representation of the model would involve four state variables (r, µQ , θQ, V ) (which would reduce to
three when volatility is constant). For simplicity and given our focus on SV models we choose to impose the parameter
restriction.

24Note that as a practical matter it may be simpler to verify admissibility by using v ≡ (V − ψ1) as a state variable,
since in this case zero is a natural lower boundary.
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Note that all the parameters in equations (48)-(50) above can be expressed as combinations of

parameters appearing in equations (43)-(45) above that are not separately identifiable. For example,

for the volatility dynamics we have:25

ψ1 = αr + β
θ
σ2

rθ
(55)

γV = (αr + β
θ
σ2

rθ
)κv + (αv + βvσ

2
rθ

+ σ2
rv

)γv (56)

κV = κv (57)

σV = σv

√
αv + βvσ

2
rθ

+ σ2
rv

. (58)

In addition to the advantages mentioned in the previous section, our proposed Q-representation

is especially valuable for affine models that exhibit unspanned stochastic volatility (USV), because

it isolates those parameters which are not identifiable from bond prices alone. Furthermore, this

rotation allows us to express the parameter restrictions needed to generate USV in a much simpler

form, in turn facilitating empirical investigation.

The A1(3) model is written above in equations (48)-(50). Alternatively, and for future refer-

ence, we can express the restrictions imposed by the maximality condition on the drift vector and

instantaneous covariance matrix in the following form:



1
dtE

Q
[dr]

1
dtE

Q
[dµQ ]

1
dtE

Q
[dV ]


 =




µQ

m0 + mrr + mµµQ + mV V

γV − κV V


 (59)

Σ2 =




V c0 + cV V σ1σV (V − ψ1)

c0 + cV V σµ
0

+ σµ
V
V ν1σV (V − ψ1)

σ1σV (V − ψ1) ν1σV (V − ψ1) σ2
V

( V − ψ1)


 , (60)

where, by definition

cV = σ1ν1 + σ2
2
ν2 + σ2

3
ν3 (61)

σ
µ

V
= ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3
(62)

σµ
0

= −(ν2
1
ψ1 + ν2

2
ψ2 + ν2

3
ψ3) (63)

c0 = −(σ1ν1ψ1 + ν2ψ2 + ν3ψ3). (64)

We note that while the SDE notation of equations (48)-(50) is useful, from an economic point of

view only the left hand side of equations (61)-(64) are truly separately identifiable. For example,

ν2 and ν3 are perfectly symmetric. This simply emphasizes that only the instantaneous variance co-

variance matrix is ‘theoretically observable,’ i.e., has economic meaning independent of the model.

We note that in total 14 risk-neutral parameters are identifiable: six from the drift and eight

from the variance-covariance matrix. Below, we will use both of these representations to simplify

the notation.
25We omit similar identities for the other parameters for the sake of brevity.
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3.2 USV in the observable A1(3) model

In this section we propose a full characterization of the ‘observable’ A1(3) model exhibiting USV.

Recall that by definition a model exhibits USV if state variables driving volatility risk cannot be

hedged by trading in bond prices alone. Collin-Dufresne and Goldstein (2002a, proposition 6)

provide six necessary and sufficient conditions for a three-factor affine model to exhibit USV. In

applying these conditions to the particular A1(3) framework, however, only one state variable enters

the conditional covariance matrix, forcing two of the conditions to be satisfied automatically. The

remaining conditions are:

mr = −2c2
V

(65)

mµ = 3cV (66)

mV = 1 (67)

σµ
V

= c2
V
. (68)

Interestingly, note that our representation leads naturally to the condition in equation (67). Indeed,

equation (29) shows that mV = 1 is a necessary condition for Y2 to be independent of V , which in

turn is a necessary condition for the entire yield curve to be independent of V .

Since the maximal A1(3) model has 14 risk-neutral parameters and USV imposes 4 restrictions,

the A1(3) USV model has at most ten free risk-neutral parameters (3 from the drift and 7 from the

variance-covariance matrix) to estimate. However, we demonstrate below that once admissibility

is enforced, the number gets reduced further to nine. Indeed, admissibility requires that the model

satisfy both the USV conditions given in equations (65)-(68) and the admissibility conditions given

in equations (53) and (54).

Combining the USV conditions (66) and (68) we see that to obtain stationary model under the

Q measure (which requires that mµ < 0), the parameters must satisfy:

cV = −
√

σµ

V
.

Hence, from the definitions in equations (61) and (62), it follows that the parameters must satisfy

the following system of equations:
{

σ1ν1 + σ2
2
ν2 + σ2

3
ν3 = −√

ν2
1

+ ν2
2
σ2

2
+ ν2

3
σ2

3

σ2
1

+ σ2
2

+ σ2
3

= 1.
(69)

If we can find parameters that satisfy these equations, then the three USV conditions (65)-(67) can be

satisfied by appropriately choosing the parameter values for mr , mµ , mV . Further, the admissibility

conditions (53) and (54) can be satisfied by appropriately choosing values for {ψ1 , ψ2 , ψ3}.

To show there exists a solution to the system in equations (69), note that if we define the two

vectors {u, v} in <3 by their coordinates u = [σ1 , σ2 , σ3 ] and v = [ν1 , ν2σ2 , ν3σ3 ], then the

system can be rewritten as: { ||u|| = 1
u · v

||v|| = −1.
(70)
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The geometric interpretation is straightforward: The solution must satisfy u = − v
||v|| , or equiva-

lently:

σ1 = − ν1√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

(71)

σ2 = − ν2σ2√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

(72)

σ3 = − ν3σ3√
ν2

1
+ ν2

2
σ2

2
+ ν2

3
σ2

3

. (73)

There are three possible solutions to this system:

• Case 1: σ2 , σ3 6= 0

• Case 2: σ3 = 0

• Case 3: σ2 = σ3 = 0.

It can be shown that Case 1 is a degenerate case that reduces to a two-factor model, and that Case 3

is nested in Case 2. Hence, we focus our attention on Case 2.

In this case equation (73) holds for any value of ν3 . Equations (71) and (72) further imply that

ν1 = σ1cV (74)

ν2 = cV . (75)

Thus the system of equations becomes:

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (76)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 dZ

Q

2
(t) +

√
−ψ3 dZ

Q

3
(t) (77)

dµQ
t

= (m0 − 2c2
V
rt + 3cV µQ

t
+ Vt) dt

+cV

(
σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 dZ

Q

2
(t)

)
+ ν3

√
−ψ3 dZ

Q

3
(t), (78)

with the following conditions:

κV > 0 for stationarity (79)

cV < 0 for stationarity (80)

γV − κV ψ1 > 0 for admissibility (81)

−ψ3 > 0 for admissibility (82)

1 > σ2
1

for admissibility (83)

ψ1 + ψ3 > 0 for admissibility. (84)

Thus the model has 9 parameters under the Q measure:

γV , κV , σV , ψ1 , σ1 , cV , ψ3 , m0 , ν3 .

Finally, we verify that the short rate process given by equations (76)-(78) above exhibits USV in

that the zero-coupon bond price is not a function of the volatility state variable Vt :
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Proposition 1 If the short rate process follows the three-factor Markov process given by equations

(76), (77) and (78), where the parameters satisfy the admissibility conditions (79)-(84), then zero-

coupon bond prices are given by:

P (t, T ) = exp
(
A(T − t)−Br(T − t)rt −Bµ(T − t)µQ

t

)
, (85)

where the deterministic functions A(·), Br(·) and Bµ(·) are given by:

Br(τ) =
−3 + 4ec

V
τ − e2c

V
τ

2cV

(86)

Bµ(τ) =
(1− ec

V
τ )2

2c2
V

(87)

A(τ) =
∫ τ

0

(
1
2
σµ

0
B2

µ
(s)−m0Bµ(s) + c0Br(s)Bµ(s)

)
ds (88)

and where the parameters c0 and σµ
0

can be written as

c0 = ψ3 (cV − ν3) (89)

σµ
0

= ψ3

(
c2

V
− ν2

3

)
. (90)

Proof See Appendix A 2

From equations (86)-(88) it is clear that only four parameters, {m0 , ψ3 , ν3 , cV }, are identifiable

from the cross-section of bond prices. Further, from observing a time series of bond prices we can

determine both the volatility state variable and the three diffusion parameters {σV , σ1 , ψ1}. How-

ever, using only panel data on bond prices, we cannot determine the risk-neutral drift parameters

(γV , κV ) of V .26 Rather, prices of other fixed income derivatives (e.g., caps) must be used to infer

these risk-neutral parameters.

Note that bond prices would retain their exponential-affine form in the above model for any

specification of the process for Vt . Indeed, the proof of Proposition 1 does not depend in on the

specific process followed by the variance of the short rate.27 In other words, bond prices can be

exponential-affine even if the state vector is not! This could prove helpful in estimating more general

models for the volatility dynamics while retaining the analytical tractability of affine models for

bond prices. Interestingly, the expression obtained for the term structure displays strong similarities

to that of two-factor Gaussian model (such as that of Jegadeesh and Pennacchi (1996) for example)

despite the fact that the short rate has stochastic volatility. Finally, we note that the integral in

equation (88) has an analytic solution, but to simplify notation we leave it in integral form.
26This statement assumes that the risk premia are general enough so that the risk-neutral parameters (γV , κV ) are

distinct from their physical-measure counterparts.
27The only condition is that the volatility process be sufficiently regular for the stochastic integral in equation (A.20)

to be a martingale.
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3.3 Observable A1(4) USV model

In this section we identify an A1(4) model which exhibits USV. For identification purposes, we see

from equation (29) that is natural to use {Y0 , Y1 , Y2 , V }, or equivalently {rt , µ
Q
t , θ

Q

t
, Vt} as the state

vector, where θ
Q

t
is defined by θ

Q

t
≡ 3Y2,t =

(
1
dtE

Q

t
[dµQ

t ]− Vt

)
. The maximal A1(4) model is

given by:

dVt = (γV − κV Vt) dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (91)

drt = µQ
t
dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

√
σ2

i
Vt − ψi dZ

Q

i
(t) (92)

dµQ
t

= (θ
Q

t
+ Vt)dt + ν1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

νi

√
σ2

i
Vt − ψi dZ

Q

i
(t) (93)

dθ
Q

t
= (a0 + arrt + aµµQ

t
+ a

θ
θ

Q
+ aV Vt)dt

+η1

√
Vt − ψ1 dZ

Q

1
(t) +

4∑

i=2

ηi

√
σ2

i
Vt − ψi dZ

Q

i
(t), (94)

where by definition of Vt we have:

σ2
1

+ σ2
2

+ σ2
3

+ σ2
4

= 1 (95)

σ2
1
ψ1 + ψ2 + ψ3 + ψ4 = 0. (96)

The model is admissible if

γV ≥ κV ψ1 (97)

ψ1 ≥ max
ψi

σ2
i

∀ i = 2, 3, 4 s.t. σi 6= 0. (98)

Note that the maximal unrestricted A1(4) model has a total of 22 free risk-neutral parameters(
γV , κV , σV , {ψi , νi , ηi , σi}|4i=1 , a0 , ar , aθ

, aµ , aV

)
, and two restrictions from equations (95)-

(96).

For the A1(4) model to display USV, the model must satisfy certain restrictions. To identify

these restrictions, we define the vectors

σ ≡ (σ1 , σ2 , σ3 , σ4) (99)

ν ≡ (ν1 , ν2σ2 , ν3σ3 , ν4σ4) (100)

η ≡ (η1 , η2σ2 , η3σ3 , η4σ4). (101)

As for the A1(3) USV model, it is convenient to introduce a representation for the instantaneous

variance covariance matrix of the state variables (rt , µ
Q
t , θt):

Σ2 =




V crµV + c
0

rµ
c

rθ
V + c

0

rθ

crµV + c
0

rµ
σ2

µ
V + σ0

µ
c

µθ
V + c

0

µθ

c
rθ

V + c
0

rθ
c

µθ
V + c

0

µθ
σ2

θ
V + σ0

θ




, (102)
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where, by definition

crµ ≡ σ · ν (103)

c
rθ

≡ σ · η (104)

c
µθ

≡ ν · η (105)

σ2
θ
≡ ‖η‖2 (106)

σ2
µ

≡ ‖ν‖2. (107)

Following the approach of CDG we find that the A1(4) model exhibits USV if the following restric-

tions are imposed:

ar = −2c2
rµ

(3crµ − a
θ
) (108)

aµ = 7c2
rµ
− 3crµa

θ
(109)

aV = 3crµ (110)

σµ = −crµ (111)

σ
θ

= c
rθ

(112)

c
rθ

= c2
rµ

(113)

c
µθ

= c3
rµ

. (114)

Analogous to the A1(3) USV model, there is a natural geometric interpretation for the restric-

tions on the variance covariance matrix. For example, equations (95), (103), (107), and (111)

imply that the vectors σ and ν are collinear but pointing in opposite directions. Similarly, equa-

tions (95), (104), (106) and (112) imply that the vectors σ and η are collinear and pointing in the

same direction. Combining these results with the implications from equations (103), (104) and (113)

we conclude that

σ =
η

‖η‖ = − ν

‖ν‖ (115)

‖η‖ = ‖ν‖2. (116)

In order to identify the set of parameters that satisfy these restrictions, we investigate a few distinct

cases.

• Case 1: σ2 , σ3 , σ4 6= 0. We claim that this case reduces to a two-factor model. Indeed,

equation (115) implies that η2 = η3 = η4 and ν2 = ν3 = ν4 . Therefore, we can define

the Brownian motion B
Q

t
by

√
σ2V − ψ dB

Q
(t) ≡ ∑4

i=2

√
σ2

i
V − ψi dZ

Q

i
(t), where σ2 =

∑4
i=2 σ2

i
and ψ =

∑4
i=2 ψi . It follows that the dynamics of the state vector is then adapted

to the natural filtration generated by the two Brownian motions (Z
Q

1
, B

Q
). That is, this case

reduces to a two-factor model as claimed.
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• Case 2: σi = 0 for some i ∈ [2, 3, 4] and σj 6= 0 for all j ∈ [2, 3, 4] such that j 6= i.

Analogous to the previous case, we can show that this case reduces to a three factor model.

• Case 3: σj = σi = 0 for some i 6= j ∈ [2, 3, 4]. Without loss of generality, assume

σ3 = σ4 = 0. Then equations (115) and (116) imply:

ν1 = crµσ1 (117)

ν2 = crµ (118)

η1 = c2
rµ

σ1 (119)

η2 = c2
rµ

. (120)

Further, from equations (95) and (96) we have:

σ2
1

+ σ2
2

= 1 (121)

σ2
1
ψ1 + ψ2 + ψ3 + ψ4 = 0. (122)

Combining all of these results, we obtain the following representation for the A1(4) USV

model.

dVt = (γV − κV Vt)dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (123)

drt = µQ
t

dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+
√
−ψ3 dZ

Q

3
(t) +

√
−ψ4 dZ

Q

4
(t) (124)

dµQ
t

= (θ
Q

t
+ Vt) dt + crµσ1

√
Vt − ψ1 dZ

Q

1
(t) + crµ

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+ν3

√
−ψ3 dZ

Q

3
(t) + ν4

√
−ψ4 dZ

Q

4
(t) (125)

dθ
Q

t
=

(
a0 − 2c2

rµ
(3crµ − a

θ
) rt + (7c2

rµ
− 3crµa

θ
) µQ

t
+ a

θ
θ

Q
+ 3crµ Vt

)
dt

+c2
rµ

σ1

√
Vt − ψ1 dZ

Q

1
(t) + c2

rµ

√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(t)

+η3

√
−ψ3 dZ

Q

3
(t) + η4

√
−ψ4 dZ

Q

4
(t). (126)

Note that the A1(4) model exhibiting USV has a total of 14 risk-neutral parameters (γV , κV , σV ,

ψ1 , ψ3 , ψ4 , ν3 , ν4 , η3 , η4 , σ1 , a0 , crµ , a
θ
), as opposed to 22 for the unrestricted model.28

The admissibility restrictions are:

κV > 0 for stationarity (127)

crµ < 0 for stationarity: see equation (111) (128)

28Note that the two restrictions σ3 = σ4 = 0 makes one of the seven restrictions from equations (108)-(114) redundant,
leading to eight total restrictions, and thus 22 - 8 = 14 parameters.
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a
θ
− 3crµ < 0 for stationarity: see, for example, equation (135) (129)

γV − κV ψ1 > 0 for admissibility (130)

ψ3 , ψ4 < 0 for admissibility (131)

1 > σ2
1

for admissibility: see equation (121) (132)

ψ1 + ψ3 + ψ4 > 0 for admissibility. (133)

Note that this model nests the A1(3) USV model which may be obtained by setting ψ4 =

ν4 = η4 = 0 and a
θ

= 3crµ and η3 = −2c2
rµ

+ 3crµν3 (this can be readily verified by an

appropriate change of variable in the previous model).

The following proposition verifies that the proposed model exhibits USV and provides the

closed-form solution for bond prices.

Proposition 2 If the short rate process follows a four-factor Markov process given by equations

(123)-(126) where the parameters satisfy the admissibility conditions (127)-(133) then zero-coupon

bond prices are given by:

P (t, T ) = exp
(

A(T − t)−Br(T − t) rt −Bµ(T − t) µQ
t
−B

θ
(T − t) θ

Q

t

)
, (134)

where the deterministic functions A(τ), Br(τ), Bµ(τ), and B
θ
(τ) are given by:

Br(τ) =
ecrµ τ

(
6 crµ − 2 a

θ

)

4 crµ
2 − crµ a

θ

+
e2 crµ τ

(
3 crµ − a

θ

)

−10 crµ
2 + 2 crµ a

θ

+
7 crµ − 3 a

θ

−6 crµ
2 + 2 crµ a

θ

− 2 crµ
2 e(−3 crµ+a

θ) τ

Γ
(135)

Bµ(τ) =
a

θ

2 crµ
2

(−3 crµ + a
θ

) +
e2 crµ τ

(
2 crµ − a

θ

)

10 crµ
3 − 2 crµ

2 a
θ

+
ecrµ τ

(
crµ − a

θ

)

−4 crµ
3 + crµ

2 a
θ

+
3 crµ e(−3 crµ+a

θ) τ

Γ
(136)

B
θ
(τ) =

ecrµ τ

crµ
2

(−4 crµ + a
θ

) +
1

6 crµ
3 − 2 crµ

2 a
θ

+
e2 crµ τ

10 crµ
3 − 2 crµ

2 a
θ

− e(−3 crµ+a
θ) τ

Γ
(137)

A(τ) =
∫ τ

0

(
σ0

µ

2
Bµ(s)2 +

σ0
θ

2
B

θ
(s)2 + Br(s)Bµ(s)c0

rµ
+ Br(s)Bθ

(s)c0
rθ

+ B
θ
(s)Bµ(s)c0

µθ
−B

θ
(s)a0

)
ds,

(138)

and where

Γ =
(
3 crµ − a

θ

) (
4 crµ − a

θ

) (
5 crµ − a

θ

)
. (139)

Proof See Appendix A 2

As before, we note that the integral in (138) has an analytic expression, but to simplify notation

we leave it in integral form. We now turn to the estimation of three and four-factor SV and USV

models.
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4 Empirical approach

Of primary empirical interest is whether standard affine models can simultaneously explain both

the cross-sectional and time series properties of bond prices. In this section, we use data on USD

swap rates to estimate a variety of maximal two-, three-, and four-factor affine models both with

and without USV.

As discussed in the previous section, the volatility state variable does not enter into the bond

price formulas for those models which exhibit USV. As such, the A1(3) USV model is effectively a

two-factor model in the cross-sectional sense and therefore bears some resemblance to both the un-

restricted A1(2) and A1(3) models. The latter model, with three factors in the yield curve, motivates

examination of the A1(4) USV specification, which also has three factors in yields but which has an

additional volatility factor that is free to explain time series patterns.

While USV seems desirable from evidence on derivatives-pricing (CDG (2002), Heiddari and

Wu (2003)), it remains to be seen whether USV is too restrictive of an assumption for bond prices

themselves. We begin by discussing the specification of risk-premia and the implied dynamics under

the historical measure. We then discuss the data and empirical methodology. Finally, the results are

presented.

4.1 Model specifications to be estimated

In Section 3 we introduced a representation of the A1(3) model to establish Q-maximality. Note

that this was accomplished even though we specified only the risk-neutral dynamics. To complete

the model, however, we also need to specify the risk-premia {λ}, which link the Brownian motions

under the historical measure and risk-neutral measure via:

dZP
i

(t) = dZ
Q

i
(t)− λi(t) dt, ∀ i = 1, 2, 3, (140)

We specify the λi(t) as:

λ1(t) =
λ10 + λ13Vt√

Vt − ψ1

(141)

λ2(t) =
λ20 + λ21rt + λ22µ

Q
t + λ23Vt√

σ2
2
Vt − ψ2

(142)

λ3(t) =
λ30 + λ31rt + λ32µ

Q
t + λ33Vt√

σ2
3
Vt − ψ3

. (143)

By including a term in eq. (141) proportional to 1/
√

Vt − ψ1 , we are in fact generalizing Duffee’s

(2002) essentially affine specification. While, the Novikov condition may not be satisfied, a simple

application of Theorem 7.19 in Liptser and Shiryaev (1974, p. 294) shows that if zero is not ac-

cessible by Vt − ψ1 under both measures then the two measures implicitly defined by the market

price of risks above are equivalent.29 We therefore impose the Feller condition for both measures
29Cheridito, Filipovic, and Kimmel (2004) recently offer an alternative proof of this result in the context of affine

models. Liptser and Shiryaev’s result applies to any process of the ‘diffusion type’ (see their definition 7 p. 118).
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as a constraint in our analysis.30 Combined with condition (54), the Feller condition implies that

the Radon-Nikodym density defined by the risk-premia specification in eq. (140) above integrates

to one.

The flexibility of this specification of risk-premia allows for every drift parameter in the r, µQ ,

and V processes be adjusted when changing measures. For simplicity of exposition we use the

following notation: we denote by λxy the adjustment in the drift of x to the loading on y, where

x ∈ {r, µQ , V } and y ∈ {0, r, µQ , V } (where 0 denotes a constant). The dynamics of the state

vector for the unrestricted A1(3) under the P measure are:

dVt =
(
γV + λV 0 − (κV − λV V ) Vt

)
dt + σV

√
Vt − ψ1 dZ1(t) (144)

drt =
(
λr0 + λrrrt + (1 + λrµ)µQ

t
+ λrV Vt

)
dt

+σ1

√
Vt − ψ1 dZ1(t) +

√
σ2

2
Vt − ψ2 dZ2(t) +

√
σ2

3
Vt − ψ3 dZ3(t) (145)

dµQ
t

=
(
m0 + λµ0 + (mr + λµr)rt + (mµ + λµµ)µQ

t
+ (mV + λµV ) Vt

)
dt

+ν1

√
Vt − ψ1 dZ1(t) + ν2

√
σ2

2
Vt − ψ2 dZ2(t) + ν3

√
σ2

3
Vt − ψ3 dZ3(t). (146)

With this specification, the unrestricted A1(3) model has a total of 24 parameters (14 risk neutral

and 10 risk-premium parameters). The USV model, on the other hand, has a only 17 parameters

that can be estimated from bond prices (9 risk-neutral and 10 risk-premium parameters, but the two

volatility risk premia parameters are not identifiable from bond prices alone).

For the A1(4) USV model, essentially affine risk premia are defined similarly:

λ1(t) =
λ10 + λ13Vt√

Vt − ψ1

(147)

λ2(t) =
λ20 + λ21rt + λ22µ

Q
t

+ λ23Vt + λ24θt√
(1− σ2

1
)Vt + σ2

1
ψ1 + ψ3 + ψ4

(148)

λ3(t) =
λ30 + λ31rt + λ32µ

Q
t

+ λ33Vt + λ34θt√−ψ3

(149)

λ4(t) =
λ40 + λ41rt + λ42µ

Q
t

+ λ43Vt + λ44θt√−ψ4

. (150)

Note, however, that λ10 and λ13 are not identifiable because of USV, so that only 15 of the 17 risk

premia parameters can be identified (along with 14 risk-neutral parameters).

The unrestricted A1(2) model is the last specification considered. Its representation under the

Q-measure is given by

dVt = (γV − κV Vt) dt + σV

√
Vt − ψ1 dZ

Q

1
(t) (151)

drt = (γr − κrrrt − κrV Vt) dt + σ1

√
Vt − ψ1 dZ

Q

1
(t) +

√
(1− σ2

1
)V + σ2

1
ψ1 dZ

Q

2
(t). (152)

30The Feller condition for the Q-measure parameters of the process V −ψ1 is simply 2(γV −κV ψ1) > σ2
V

. A similar
condition applies for the P -measure parameters.
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Generalized essentially affine risk premia for this model are

λ1(t) =
λ10 + λ12Vt√

Vt − ψ1

(153)

λ2(t) =
λ20 + λ21rt + λ22Vt√

(1− σ2
1
)Vt + σ2

1
ψ1

, (154)

yielding a total of 13 parameters (8 risk neutral plus 5 risk premia).

4.2 Data

We use weekly LIBOR and swap rate data from Datastream from January 6, 1988, to December

29, 2004. On each day in the sample, zero coupon yield curves are bootstrapped from all available

swap rates and the six-month LIBOR rate. For dates before January 1997, when the one-year swap

rate first became available, we also use the one-year LIBOR rate. Swap rates are converted to zero-

coupon rates assuming that they can be valued as par bond rates.31 Following Bliss (1997), we use

the extended Nelson-Siegel method for bootstrapping.

A complication arises from the use of LIBOR rates because the swap rates used in our sample

are quoted roughly nine hours later.32 To overcome this problem, following Jones (2003a), we

estimate the ‘synchronized’ values of the LIBOR rates. The procedure is essentially a smoothing

algorithm that exploits the extremely high correlations between changes in LIBOR and swap rates

of similar maturities. Jones (2003a) shows that the errors of the procedure are typically on the order

of one basis point, or roughly one third the magnitude of the errors one would make by using either

the same morning’s LIBOR quote, the next morning’s quote, or the average of the two.

From the bootstrapped yield curves we extract yields with maturities of 0.5, 1, 2, 3, 4, 5, 7,

and 10 years. We choose these eight maturities because on each day in the sample there is some

underlying yield quote for each one. We therefore expect the bootstrapped yields to be particularly

accurate for these maturities.

Ideally, we would fit the model to the data in their original form, without modification via tem-

poral smoothing or bootstrapping. Our decision to ‘pre-process’ the raw data is for convenience

only, as it linearizes the relation between observables (the yields) and unobservables (rt , µQ
t , etc.).

Using the raw swap and LIBOR rates would complicate an estimation procedure that is already com-

putationally demanding due to the presence of unobserved (but theoretically observable) variables.

We proceed with these methodological caveats in place.
31If swap were free of default risk, this would directly follow from absence of arbitrage. In the presence of credit-risk,

this assumption is warranted if there is homogeneous credit quality across swap and LIBOR market. In that case, the
zero-coupon curve corresponds to a risk-adjusted corporate curve for issuers with refreshed AA credit quality (see Duffie
and Singleton (1997), Collin-Dufresne and Solnik (2001), Johannes and Sundaresan (2002)).

32LIBOR rates are quoted by the British Bankers’ Association at 11:00am London time, while our swap rates are
recorded at 5:00pm New York time.

27



4.3 Posterior sampler

We estimate all models using a Bayesian approach that combines elements of Jones (2003b), Lam-

oureaux and Witte (2002), Bester (2004), Sanford and Martin (2003), and Polson, Stroud, and

Müller (2001). In each of these papers, data augmentation and a Gibbs-like posterior sampler

are used to simplify the computation of posterior distributions of the model parameters. As in

all Bayesian analysis, we seek to describe the posterior density of the model parameters conditional

on the yield data, which is decomposed using Bayes rule as the product of the likelihood function

and the prior. As is common in continuous time finance models, evaluating the likelihood function

is difficult because of the presence of imperfectly observed state variables and the fact that transition

densities are not usually known in closed form.

Data augmentation and the Gibbs sampler are attractive because they solve both of these prob-

lems. As in Jones (2003b), Eraker (2001), and Elerian, Chib, and Shephard (2001), augmenting

with unobservable high frequency data enables the use of the Euler approximation, providing a

Gaussian transition density that is easy to work with. Data augmentation also allows us to aug-

ment the observed yield data with the “theoretically observable” term structure factors (i.e., the

X’s) themselves. While the latter use of data augmentation is critical for our analysis, augmenting

with high frequency data turns out to be inconsequential, as a simple Euler approximation applied

directly to our weekly data does not appear to inject bias into our results. Nevertheless, our ability

to implement more accurate likelihood approximations is still valuable in that it enables us to assess

the validity of a simpler approach.

As in Pennacchi (1991), Brandt and He (2002), and Bester (2004), we assume that all yields

are observed with error, thereby avoiding the arbitrariness of assuming that some yields (or linear

combinations of yields) are measured with error, while some are not. Somewhat differently from

these papers, however, we treat the principal components of yields, rather than yields themselves, as

our raw data. We do so because it is unlikely that the yield errors are cross-sectionally uncorrelated,

yet specifying a completely flexible covariance matrix of yield errors creates a rather large number

of additional parameters to estimate (e.g. 36 parameters for 8 yields). Using principal components,

which are by construction unconditionally orthogonal, should lead to model errors that are approx-

imately uncorrelated, allowing us to use a more parsimonious diagonal error covariance matrix.33

The principal component loadings and percentages of variance explained appear in Table 2. As in

Litterman and Scheinkman (1991), the first three principal components explain most variation in

yields, and can roughly be interpreted as level, slope, and curvature.

While the posterior simulator is described in much more detail in Appendix B, we briefly outline

our approach here and compare it to others in the literature. Letting P = {P1 ,P2 , ...,PT } denote

the time series of principal component vectors and φ the vector of model parameters, we seek to
33An appealing alternative approach Brandt and He (2002) is to parameterize the covariances as parsimonious functions

of bond maturities and a few free parameters.
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compute

p(φ|P) ∝ p(P|φ)p(φ),

where the first term on the right is the likelihood and the second is the prior. The intractability of

the likelihood makes a direct calculation of the posterior impossible, so we proceed using several

techniques from the Markov chain-Monte Carlo literature.

Following earlier approaches, we augment the observable data P with the term structure factor

data X = {X1 , X2 , ..., XT }. While these factors are theoretically observable in the sense that they

have interpretations independent of the model being considered, they are not directly observed in

practice given the availability of only finite maturity yields. We therefore integrate out the uncer-

tainty in these state variables using a Gibbs-like posterior simulator that alternates between perform-

ing draws from p(φ|P, X) and p(X|P, φ). Under very weak conditions, the resulting sequence of

draws of φ converges in distribution to our target, the posterior distribution p(φ|P).

Unlike Lamoureaux and Witte (2002) and Bester (2005), we approximate the true dynamics,

dXt = K (Θ−Xt) dt + Σ
√

St dZt , (155)

using the Euler scheme

Xt+h −Xt = hK (Θ−Xt) +
√

hΣ
√

St εt+h , (156)

where εt+h ∼ N (0, I). Thus we do not use the true noncentral chi-squared distribution for the

square root factors,34 but instead choose h to be small enough to approximate that distribution.

The likelihood function is completed by specifying the relation between the data and the state

vector. Given the linearity of bond yields in state variables (16) and the linear relation between

principal components and yields,

Pt = PC loadings× Yt,

it is easy to see that there is a linear relation between principal components and state variables.

Adding a Gaussian error vector et ∼ N(0, Ω) results in

Pt = K + LXt + et, (157)

our “measurement equation”.

Similar to Bester (2004), we find it efficient to further break up the parameter vector into three

components, φQ, φλ, and φΩ, where φQ contains all parameters that affect the dynamics of the

state vector under the Q measure. Risk premia parameters comprise φλ, while φΩ includes the

measurement error standard deviations. Both of the latter draws are made from closed form densi-

ties, with the distribution of φλ following directly from the linear Gaussian structure of the Euler

approximation.
34Further, note that the transition density is only known in closed form for one (i.e., volatility) of the three state

variables.
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Building on Polson, Stroud, and Müller (2001), we decompose the state vector as

Xt =
[

Vt

Xo
t

]
, (158)

where Xo includes all state variables other than V (i.e. r and if applicable, µQ and θQ). The reason

for doing so is that only Vt affects the factor covariance matrix, and once we condition on the entire

path of V we may write the dynamics of Xo
t and Pt in linear Gaussian state space form. This

enables us to draw the entire multivariate time series Xo at once in closed form using the simulation

smoother of de Jong and Shephard (1995). This means that only the draws of V must be made using

a relatively inefficient approach involving a separate draw for each t.

By far the most difficult component of the algorithm is the draw of φQ ≡ {KQ
, Θ

Q
, Σ, α, and

β}, the parameters that drive state variable dynamics under Q. If we were to follow the standard

recipe for a Gibbs sampler, we would attempt to draw φQ conditional on the data and all the other

unknowns in the model, i.e. from

p(φQ|P, Xo, V, φΩ, φλ). (159)

The problem is that φQ influences bond prices in a highly nonlinear manner, in part through a

differential equation whose solution is often not known analytically. Direct sampling from this

density is therefore impossible.

Even more numerical methods, such as the Metropolis-Hastings algorithm, are difficult to apply.

This is because the success of Metropolis-Hastings requires finding a distribution of φQ (the “can-

didate generator”) that is at least roughly consistent with both P and Xo (in addition to the other

conditioning arguments). The problem is that the link between yield data, represented by P , and

latent factors such as Xo is extremely tight, highly nonlinear, and completely parameter-dependent.

For these reasons it is very hard to find a density that comes close to approximating (159).

We therefore find relatively large gains in efficiency from performing the draws of φQ and Xo

jointly from

p(φQ, Xo|P, V, φΩ, φλ) = p(φQ|P, V, φΩ, φλ)p(Xo|φQ,P, V, φΩ, φλ). (160)

To satisfy this density, a candidate φQ must be consistent with P only, which is a much easier

criterion. The result is a Metropolis-Hastings algorithm that traverses the parameter space much

more quickly than one based on (159). Furthermore, evaluating this density, at least up to a con-

stant of proportionality, is feasible because of the linear Gaussian state space representation that

holds after conditioning on V . This enables the use of the textbook Kalman filter35 to compute

p(φQ|P, V, φΩ, φλ). The second component, p(Xo|φQ,P, V, φΩ, φλ), can also be computed in

closed form. More importantly, as noted above, the draw of Xo, consisting of all state variables
35The time variation in means and covariances requires a version of the Kalman filter that is more general than some

simple versions. See de Jong and Shephard (1995) for one implementation.
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save V over all time periods, can be made in a single “block” using the simulation smoother of de

Jong and Shephard (1995). These features distinguish our algorithm from prior work.

Our use of the Kalman filter is significantly different from that of other studies. Pennacchi

(1991), Duan and Simonato (1999), and de Jong (2000) apply the Kalman filter to affine models in

a more straightforward manner by including all term structure factors in the state equation, including

those that follow square root processes and that impact conditional volatilities. While the Kalman

filter is very naturally applied in homoskedastic Gaussian models, as in Pennacchi (1991), its va-

lidity is not as straightforward when covariances are state dependent. In short, the problem with

conventional linear filters is that filtered estimates of the state variables are simple projections on

the observed yields and do not take into account, for example, the quadratic variation in those yields.

Thus, when the state vector includes variables that drive yield volatility, a substantial amount of the

relevant information in the data is ignored. The result, as Lund (1997) and de Jong (2000) argue, is

an incorrect specification of conditional variances, which in turn leads to inconsistent estimates.

Interestingly, however, these studies, as well as that of Duffee and Stanton (2002), have found

that methods based on the Kalman filter perform well in simulated samples, with minimal biases

and relatively high accuracy. A natural explanation of this result is that the models that they consider

are all models with spanned stochastic volatility. In that case, the levels of yields may be sufficient

to infer all state variables with high accuracy, including those that drive conditional volatilities, and

ignoring information in quadratic variation (as well as other nonlinearities) is therefore likely to be

innocuous.

In the USV case, however, this result cannot hold since the levels of yields carry no information

whatsoever about the volatility state variable, making the inconsistency identified by Lund (1997)

and de Jong (2000) particularly severe. Our approach, like that of Polson, Stroud, and Müller

(2001), is immune to this criticism because the Kalman filter is only applied as a computational

device to evaluate the likelihood conditional on a given path of V . This means that the only state

variable uncertainty is among Gaussian elements of the state vector (the Xo
t ), which do not impact

covariances. This avoids the source of inconsistency for linear filters.

Finally, as in all Bayesian analysis we must specify prior distributions. In all of our analysis,

priors are completely flat, or exactly proportional to a constant, with three exceptions. First, the

prior density for each measurement error standard deviation
√

Ωi,i is proportional to 1/
√

Ωi,i, as

is standard. Second, all regions of the parameter space in which the model is nonstationary, inad-

missible, or in which the Feller condition does not hold are assumed to have zero prior probability.

This means that any parameter draw that violates any of these conditions is immediately rejected.

Finally, all parameter draws that generate covariance degeneracies are assumed to have zero proba-

bility. This means, for instance, that the Σ matrix must have full rank and that each Ωi,i is positive.
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4.4 Point estimates and confidence intervals

For each parameter, we report point estimates along with 95% confidence intervals computed from

the 2.5 and 97.5 percentiles of the MCMC draws from the posterior distribution. Let φi denote the

ith MCMC draw of the parameter vector from its posterior distribution and φ̃i be the same vector

normalized by the posterior standard deviations. We then find the draw i that minimizes

∑

j

∣∣∣φ̃j − φ̃i

∣∣∣ .

The resulting φi is the L1 center of the normalized posterior distribution, a version of the multivari-

ate posterior median, and is taken as our vector of point estimates.

Raftery (1996) reports that the unnormalized version often provides an accurate approximation

of the posterior mode. Because of the vastly different scales of some of the model parameters, we

felt that normalization would be more natural. Using multivariate rather than univariate medians or

means is appropriate because univariate medians or means are not necessarily located in regions of

high posterior probability.36

From MCMC output, it is possible to compute posteriors of functions of parameters in addition

to the parameters themselves. We therefore report posterior statistics on restricted parameters, such

as the parameter σ2 in the A1(3) USV model, which is restricted to equal
√

1− σ2
1 . As before,

confidence intervals are calculated from the 2.5 and 97.5 percentiles of the posterior draws, while

the restricted point estimates are computed directly from the point estimates of the unrestricted

parameters.37

In some cases, point estimates are quite far from the midpoint of the 95% confidence interval.

Figure 1 gives a preview of a few univariate posterior distributions for the A1(3) USV model. The

first panel illustrates a case in which the posterior is approximately Gaussian, the multivariate pos-

terior median (the solid vertical line) is at the univariate mode, and the 95% confidence interval

(the two dashed vertical lines) are symmetric about the mode. The second panel is much different,

as the posterior of ψ1 is seen to be highly non-Gaussian with a posterior mode at zero, the lowest

admissible value. In this case, the multivariate posterior median of .134 × 10−5 (the solid line) is

somewhat higher than the univariate median of .106 × 10−5, and the 95% confidence interval is

highly skewed. Finally, the third panel shows that multivariate posterior medians may differ from

univariate modes even for parameters with relatively Gaussian posteriors, though these differences

tend to be minor.
36As an extreme example, consider a hypothetical posterior distribution for x and y in which x ∼ U[−5, 5] and

y = x2 + u, where u ∼ U[−1, 1]. In this case the posterior means of x and y are zero and 8.3, respectively, yet the pair
{x = 0, y = 8.3} is not even in the support of the joint distribution since y has a maximum value of 1 when x = 0.

37In one atypical case below there is a restricted parameter whose point estimate is outside its 95% confidence interval.
To see how this can happen, consider the case in which x ∼ U[−1, 1] is the only free parameter and y =

√
1− x2 is a

restricted parameter. The mean and median of x are both clearly 0, which would imply a point estimate of 0 for x and√
1− 02 = 1 for y. Yet, y = 1 is clearly above the 97.5 percentile of the distribution of y.
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5 Empirical results

5.1 Posterior summaries

Tables 3A and 3B present posterior distributions of the parameters of four models: unrestricted

A1(2), A1(3) with USV restrictions, unrestricted A1(3), and A1(4) with USV restrictions. All mod-

els were estimated using weekly data from January 1988 to December 2002, thus leaving data from

2003-2004 for out-of-sample analysis. Finally, posteriors were computed by setting the discretiza-

tion parameter h equal to 1, as posteriors under h = .2 (summarized in Appendix B) resulted in no

appreciable differences but considerably greater computational effort.

We report parameters for the risk neutral process in addition to those of the risk premia, so P -

measure drift parameters are implied. The exceptions are the risk-neutral parameters γV and κV ,

which are not reported since they are not identifiable under USV. Instead, we report their P -measure

counterparts γP
V
≡ γV + λV 0 and κP

V
≡ κV − λV V .

The complexity of term structure models sometimes makes interpretation of the parameter es-

timates difficult. Our rotation of the state vector reduces this difficulty, because by pinning down

the interpretation of the state vector it is much easier to compare parameter values across different

specifications. For instance, in all four specifications the parameter ψ1 alone determines the lower

bound of the short rate variance, and the covariance between shocks to the short rate and its variance

is always equal to σ1σV (Vt−ψ1). While it is entirely feasible to quantify these moments under the

Dai and Singleton (2000) rotation, we emphasize that they are not nearly as obvious. The reason is

that in the DS rotation the short rate variance is not a state variable, and so to compute any moment

involving the short rate variance we must first compute the relation between that variance and the the

state vector, a mapping that is different for each specification. This is straightforward but represents

an additional step that is not necessary in our analysis.

It is therefore easy to see from the κV row of Table 3A that a major difference between USV

and non-USV specifications is that the speed of mean reversion in short rate volatility, determined

by κP
V , is much faster under the two USV specifications. Presumably, this is to offset the fact that

short rate volatility is substantially more volatile under USV, as evidenced by the higher values of

σV . A typical short rate volatility can be calculated by taking the square root of the long-run mean

of short rate variance, or
√

γP
V /κP

V , which results in a fairly reasonable range of .0077 (for A1(4)

USV) to .0133 (for unrestricted A1(3)) per year, where .01 would indicate a yield volatility of one

percentage point per year.

In comparing the unrestricted A1(3) model with the restricted USV version, we see numerous

other differences. Covariance parameters (the ηi and ψi) bear little resemblance across the two

specifications, and the parameters that govern the drift of µ
Q

(m0, mV , mr, and mµ) are also

different. In particular, the USV restriction that mV = 1 is strongly violated by the unrestricted

model posterior, a finding that suggests misspecification of the A1(3) USV model. However, our

results below suggest that both versions of the A1(3) model are deeply misspecified, making this
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finding somewhat difficult to interpret.

These two specifications also imply vastly different risk premia, as seen in Table 3B. In fact, one

of the only similarities in the table is that the risk premia parameters that are common to the two USV

models show substantial agreement in sign and approximate magnitude. Furthermore, most of the

additional risk premia parameters introduced in the four factor specification are indistinguishable

from zero, indicating that the generalized essentially affine risk premia are likely overparameter-

ized for this model. Again, we emphasize that comparing parameters across specifications is only

feasible when the interpretation of the state vector is fixed.

5.2 Specification analysis

As in Eraker (2001), specification analysis can be conducted by looking at the residuals of the Euler

approximation. Given each posterior draw of the parameter vector and the term structure factors, we

may use (156) to “invert” a time series of residuals for each of the state variables. These residuals,

constructed by subtracting the conditional mean and dividing by the conditional standard deviation,

will be i.i.d. standard normals under a correct specification. Since these residuals will be different

for each posterior draw, we form posterior distributions of functions of these residuals by evaluating

the functions at each step of the sampler. For the purpose of model diagnostics, these functions will

consist of the sample mean, standard deviation, skewness, kurtosis, as well as autocorrelations in

levels, absolute values, and squares. Table 4 contains posterior medians of each of these statistics. If

more than 95% of the posterior mass is above or below zero, the statistic is marked with an asterisk.

While it is immediately clear from the table that all four models display failings, several general

patterns emerge. First, only the A1(4) USV model appears to capture the mean, standard deviation,

and skewness of each of the state variables. Second, positive excess residual kurtosis is apparent in

almost every case, though both USV specifications do markedly better since the degree of kurtosis

in the short rate residuals is substantially lower. Finally, the non-USV specifications display large

autocorrelations in the absolute values and squares of the residuals of the short rate factor. While the

A1(4) USV model gets short rate dynamics mostly correct, it suffers from nonzero autocorrelations

for the µ
Q

and θ
Q

factor errors.

For the two non-USV models, the combination of positive autocorrelation in squared and abso-

lute residuals and the high degree of kurtosis in the short-rate residuals suggest a simple explanation,

which will be supported by further analysis. Specifically, the conditional short rate volatility of both

these models must be severely misspecified. This explanation also accounts for the negative skew-

ness in the short rate factor residuals for the same models. Over our sample period, most of the

unconditional skewness in short-term yield changes comes from the Federal Reserve’s sudden pro-

vision of liquidity in response to the terrorist attacks of September 2001. This happened to be a

period of high conditional volatility, however, so the normalized residual for that observation would

not be particularly negative for a model with a correctly specified volatility. In contrast, that single

observation would have far more impact if that period was incorrectly characterized as having a low
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or even average level of volatility.

5.3 Yield curve fit

Rather than relying only on statistical evaluations, the appraisal of a term structure model must also

account for that model’s abilities in valuation and forecasting. In Table 5 we examine the accuracy

of the models’ in-sample fits of the yield curve, both in terms of bias and root mean squared error.

Below, we also investigate out-of-sample performance.

In this section and those that follow, we evaluate model performance using the point estimates

from Table 3. While it would be preferable to integrate over the entire posterior distribution, this

turns out to be very computationally demanding for most of the analyses we perform. For computing

fitted yields, we therefore re-run our posterior sampler where only the state variables are sampled

and the parameter values are held fixed. In a few places, such as Table 5, where we can compute

results both by integrating over the posterior and by conditioning on the multivariate medians in

Table 3, we find extremely minor differences.

Statistical tests for biases in fitted yields are relatively standard. Errors are defined as actual

yields minus fitted yields, where fitted yields are computed via eq. (16). T-statistics are based on

Newey-West (1987) standard errors. For ease of comparison, all standard errors in a given panel

are calculated using the same lag length, which in the case of the top panel of Table 5 was 21.

This lag length is chosen by calculating the optimal lag length for each series individually using the

method of Newey and West (1994), and then averaging those optimal lags across series. The same

procedure is repeated in Tables 6, 8, 9, 10, 11, and 12. Absolute values in excess of 1.96 and 2.56

are taken to imply significance at the 5% and 1% levels, respectively. Estimated biases with these

levels of significance are marked with one or two stars.

Statistical evaluation of RMSE is somewhat more complicated. Because there is no well-defined

null hypothesis for the RMSE of a given model, the best we can do is to compare the RMSEs of

two models to see if one is significantly higher than the other. In order to reduce the number of

pairwise comparisons made, however, we report only those comparisons that we find interesting ex

ante. These are:

• A1(2) versus A1(3) USV: Both of these models ‘explain’ the cross-section of yields with only

two factors, so it is not obvious which model will out-perform the other.

• A1(3) USV versus unrestricted A1(3) : Do the USV restrictions substantially affect the ability

of the model to fit the yield curve cross section and time-series?

• Unrestricted A1(3) versus A1(4) USV: Does the addition of a ‘free’ volatility state variable

allow the remaining three factors to better explain yields?

For each maturity, these three pairwise comparisons are made using the method of Diebold and

Mariano (1995). For each model, we compute forecast errors, say ê1,t and ê2,t , and calculate t-
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statistics for the difference in squared forecast errors

ê2
1,t
− ê2

2,t
. (161)

In this case, a significantly positive mean would indicate the superiority of model 2 over model 1.

Standard errors are again calculated using the method of Newey and West (1987, 1994) with 21

lags. If two RMSEs are significantly different, they are separated by an inequality sign signifying

the direction of the rejection of the null, along with either one or two stars signifying the level of

significance.

Table 5 reveals that all models other than A1(3) USV imply reasonably unbiased fits of indi-

vidual yields with no rejections of zero mean errors, while the A1(3) USV model displays some

clear failings. Root mean squared errors are clear in their preference for models with three factors

in the yield curve (A1(3) and A1(4) USV) rather than two (A1(2) and A1(3) USV). Between the

unrestricted A1(3) and the A1(4) USV model, the former offers modest but significant reductions in

RMSE. Finally, the errors from all four models are highly autocorrelated, an indication that all the

models are misspecified.

Given the superior performance of the unrestricted A1(3) model in sample relative to the A1(4) USV

model, it is surprising that the reverse holds in Table 6, which reports out-of-sample yield fits using

data from January 2003 to December 2004. While both models display significant biases, they are

far smaller for the A1(4) USV specification. In addition, these deviations are much larger in terms

of RMSE for A1(3) than they are for A1(4) USV. In some cases, the unrestricted A1(3) model un-

dereperforms its USV version as well, while the A1(3) USV model is clearly superior to A1(2). The

dramatic out-of-sample breakdown of the unrestricted A1(3) model is consistent with some type of

serious misspecification, the form of which we identify below.

In contrast, the reason for the high RMSEs of the A1(2) and A1(3) USV models, both in and out

of sample, is obvious. Figure 2 plots time series of actual and model-implied curvature of yields,

where curvature here is defined as Y10y − 2Y3y + Y6m. A vertical dotted line denotes the end of the

estimation period. It is perhaps not too surprising that actual curvature is virtually indistinguishable

from that implied by the A1(4) USV model, since that model’s θ
Q

variable is essentially a curvature

factor. While the unrestricted A1(3) model has also three factors that affect yields, none of those

factors explicitly determines curvature, so the performance of that model was somewhat less pre-

dictable. In contrast, the A1(2) and A1(3) USV models, with only two cross-sectional factors, can-

not generate fluctuations in curvature of a realistic magnitude. Given Litterman and Scheinkman’s

(1991) finding that curvature essentially represents the third principal component in yields, it should

be expected that the inability of our two simplest models to match actual curvature has substantial

consequences.
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5.4 Properties of model-implied time series

We now examine some properties of the model-implied state variables and other time series, where

state variables are again estimated by running the posterior sampler with parameters held fixed at

the point estimates from Table 3. The resulting draws of the state variables are then averaged to get

smoothed estimates.

Figure 3 shows the resulting time series of E[Vt |P, φ̂] for each specification along with 30-day

trailing-window volatilities estimated from daily changes in the 6-month yield. A vertical dotted

line again denotes the end of the estimation period. For both USV specifications, the model-implied

and trailing-window volatilities track each other closely, but for the non-USV specifications there

appears to be little or no relation and hardly any movement at all.

Table 7 reports a variety of correlations between observed time-series and related model-implied

variables over the full estimation period and two subsamples. Over all three periods, we see that

every model is capable of matching both the average yield (defined as the average of the 0.5, 1, 2,

5, 7, and 10-year yields) and the slope of the yield curve (defined as Y10y −Y6m). As shown earlier,

actual and model-implied curvature are also extremely close for the A1(3) and A1(4) USV models,

but not so for A1(2) and A1(3) USV.

Model-implied volatilities for both USV specifications are highly related to volatilities estimated

both using trailing windows and Bollerslev’s (1986) GARCH(1,1) model fitted to demeaned daily

changes in the 6-month yield. Volatility from the unrestricted A1(3) and A1(2) models are actually

negatively correlated with both the trailing-window and GARCH volatilities over the full sample

period.

The bottom panel Table 7 also reports correlations of model volatilities with one-year at-the-

money cap/floor option-implied volatilities, which are available from DataStream after 1995. Since

by convention implied volatilities are determined assuming LIBOR rates follow a geometric Brow-

nian motion, this volatility may be interpreted as the volatility of proportional changes in (or log-

arithms of) forward LIBOR rates. As such, we report correlations with the product of implied

volatility and the level of the one-year rate. Under reasonable assumptions, this will approximate

the volatility of the level of the one-year rate, making it more comparable to the other volatility

proxies included.

We find that volatilities from both USV specifications are positively correlated with implied

volatility, and also that implied volatility is about as closely related to the trailing window and

GARCH series. On the other hand, Table 7 shows that volatilities from the non-USV specifications

are negatively correlated to the option-implied series. As such, we speculate that the USV models

would therefore be much more successful in pricing such derivatives.

The table also reports correlations between various volatility measures and the actual curvature

in yields, as defined in Figure 2. In general, this relationship is weak for the USV specifications and

for the GARCH and implied volatilities as well. For the A1(2) and A1(3) models, the relationship
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is stronger and positive, which is surprising given the negative correlation between volatility and

curvature that Litterman, Scheinkman, and Weiss (1991) find more theoretically plausible.

Finally, Table 7 reports correlations between model-implied estimates of the state variables

underlying yields and the values obtained from the ‘interpolation’ scheme of section 2.3. In general,

interpolated state variables are highly related to the values obtained through estimation of the model.

For the A1(4) USV model, in particular, these correlations are all above .97 in each of the three

sample periods. We take this as strong empirical evidence of the practical, not just theoretical,

observability of the state vector under our model rotations.

These results highlight the dual role that volatility plays in an unrestricted affine model, as it

affects both the cross section of bond prices as well as the time series properties of the short rate.

The estimation of such a model therefore presents a tradeoff between choosing volatility dynamics

that are more consistent with either role, and in the present data set it seems that the tradeoff is

heavily tilted towards explaining the cross section. The result is that volatilities imputed from the

two models without USV restrictions are essentially nonsensical, being unrelated to most other

volatility proxies. Instead, both models use the variance process to provide a better fit of the cross

section, as evidenced by a relation between Vt and curvature that holds only for these two models.

The A1(3) USV model, meanwhile, generates reasonable volatility dynamics but cannot match

curvature, which simply reinforces Litterman and Scheinkman’s (1991) finding that three factors

are required to drive the yield curve. Only the A1(4) USV model has enough flexibility to both fit

the yield curve and generate realistic volatility dynamics.

We interpret these findings as evidence that three state variables cannot simultaneously describe

the yield curve level, slope, curvature, and volatility. That is, volatility is unable to play the dual role

that the unrestricted A1(3) model predicts that it does. Less formally, volatility cannot reasonably be

‘inverted’ from the yield curve, at least for the models we consider. Conversely, our results suggest

that the dynamics of stochastic volatility, as proxied, say, by a GARCH estimate using the implied

short rate series, are not able to capture adequately movements in the third principal component of

yields.

5.5 Forecasting performance

To reinforce these results we examine the forecasting performance of the same four models, both

for evidence of misspecification and for assessing their potential usefulness in securities pricing

and hedging. Because our sample size is relatively short, we focus on short horizon (one-week)

forecasts of changes in yields and of two different volatility proxies. All forecasts are constructed

using the parameter estimates reported in Table 3, so the bulk of our forecasts are in-sample. After

using two years of data to initialize the forecasts, we are left with a 677-week in-sample period.

With our hold-out sample from 2003 and 2004, we perform a 104-week out-of-sample validation of

those results.

To construct a forecast, we first estimate the value of the current state variables. These are
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computed identically to the previous section, except that only data observed up until time t are

used to infer state variables at t (though for in-sample forecasting the parameter estimates are based

on data subsequent to t as well). Given estimates of the current values of the state variables, we

simulate ten thousand paths of the model and form a forecast distribution of the state variables one

week ahead (time t+1), from which we then compute a distribution for each yield.

Results for in-sample forecasts of yield changes are reported in Table 8. Out-of-sample forecasts

appear in Table 9. In both tables, forecast errors are defined as the actual yield change minus

Et [Yt+1 ]− Ŷt , where Et [Yt+1 ] is the model-implied expectation and Ŷt is the model’s current fitted

value. The statistical significance of biases, which are averages of these errors, is assessed using

Newey-West standard errors. Pairwise comparison tests for root mean squared errors are tested with

the method of Diebold and Mariano (1995), also with Newey-West standard errors. The Newey-

West lag length selection, following the procedure outlined for Tables 5 and 6, results in lags of 12

and 4 for the two panels of Table 8. For Table 9, 5 lags are used for both panels.

Unfortunately, yield forecasts fail to clearly distinguish the models, most likely because our

sample is too short to evaluate forecasts of a relatively unpredictable time series. Out of sample

forecasts are slightly more informative, perhaps because misspecified models tend to break down,

and Table 9 shows small but significant advantages of A1(4) USV over A1(3) in forecasting short

term yields, though all models display bias.

For volatility forecasting, we consider two alternative proxies for realized volatility. The first is

simply the absolute one-week change in the yield of each maturity. Our second proxy is a volatility

measure constructed using daily data, which are not used elsewhere in the paper. For a given week

with N days (typically, N = 5), this is defined as

σ̂t,τ ≡

√√√√
N∑

i=1

∆Y (t, i, τ)2, (162)

where Y (t, i, τ) is the τ -maturity yield observed on the ith day following observation t. The forecast

of each volatility proxy is constructed simply by averaging over the Monte Carlo simulations of that

proxy. Thus, under the null hypothesis that the model and parameter values are correct, every

forecast should be unbiased.

In-sample results on forecasted volatility are reported in Table 10. Newey-West lag lengths for

the four panels of the table are 9, 12, 16, and 17, in that order. Throughout the table, the best

performance, in terms of RMSE, is generally registered by the A1(4) USV model, though even that

model displays a significant bias in its forecasts of the daily realized volatility of the six-month yield.

While the two USV specifications are roughly equivalent in their ability to forecast the volatility at

the short end of the term structure, the A1(3) USV model clearly fails to describe the volatilities of

longer yields. This may be an artifact of having a bad cross-sectional fit.

In the out of sample results, reported in Table 11, A1(4) USV continues to perform well in fore-

casting volatilities on short-maturity yields, though its long yield volatilities are somewhat biased.

39



The A1(3) USV model performs even worse out of sample in predicting long yield volatility and is

dominated by the unrestricted A1(3) model.

This particular sucess of the A1(3) model is revealing of a more generally positive aspect of

that model, namely the ability to match the term structure of unconditional yield volatility. In

their review article, Dai and Singleton (2003) identify several empirical observations that have each

proven somewhat of a challenge for affine term structure models. One of them is the fact that there

is a “hump” in the plot of unconditional volatility as a function of maturity. Figure 4 displays

the relation between maturity and the unconditional volatility of four-week yield changes. Results

from actual data over the 1988-2002 sample are again displayed as a thick grey line. Means and

95% confidence intervals of model-implied sampling distributions are depicted by solid and dashed

black lines, respectively.

The top two panels of Figure 4 reveal separate failures of the A1(2) and A1(3) USV models

in explaining the volatility hump, which at least in part explains some of their poor performance

in Tables 10 and 11. Both models come close to matching short rate volatilities but fail to match

anything else – the hump generated by the A1(2) model is inverted and the model-implied volatilities

for the A1(3) USV model are essentially flat. In contrast, both the unrestricted A1(3) and A1(4) USV

models generate the right shape, at least approximately.

5.6 A closer look at short rate volatilities

Because of the special position occupied by the short rate in our model, we provide further evidence

on the optimality of short rate volatility forecasts and the relation between that volatility and the

shape of the yield curve. Specifically, we ask whether there is any possibility that short rate volatility

is spanned by the yield curve, and more generally whether it is information from the cross section

or the time series that is more useful in predicting volatility.

Table 12 contains the results of a variety of forecasting regressions. In the upper panel, the

dependent variable is the absolute weekly difference in the six-month yield. In the lower panel,

it is the realized volatility of the six-month yield, constructed from daily data. Both measures are

the same as those used in previous tables. The forecasting variables include the first three principal

components of the yield curve, a GARCH(1,1) volatility computed, as before, from daily six-month

yield changes, and the same model forecasts from the unrestricted A1(3) and A1(4) USV models

that were used previously. Because of deficiencies already identified, we exclude the A1(2) and

A1(3) USV forecasts. Newey-West standard errors are reported throughout the table using six lags

for the top panel and 11 for the bottom. Finally, in unreported results we have used raw yields

instead of principal components, and the results are virtually identical.

In the first specification in the top panel, levels of the three principal components are used to

forecast absolute yield changes. The result is an adjusted R-squared of 0.09, with the second and

third principal components both displaying statistically significant slope coefficients. Thus, there

appears to be information in the yield curve that is relevant for future volatility. The analogous
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regression in the bottom panel results in the same finding, except that the adjusted R-squared of

realized volatility is somewhat higher, at around 0.15.

We emphasize that these empirical results, namely, that cross sectional information has predic-

tive power for volatility, is perfectly consistent with USV models. In particular, USV does not imply

that changes in volatility are independent of changes in yields.38 The correlation between shocks

to the short rate and its variance is unrestricted in both the A1(3) USV and A1(4) USV models. We

investigate this correlation structure in table 13, which contains two sets of regression estimates.

In both cases, the dependent variable is the variance of the short rate and the explanatory variables

are levels of the first three principal components of the yield curve. The first set of coefficients are

implied by the posterior distribution of the parameters of the A1(4) USV model. This model, be-

cause it is stationary, implies an unconditional covariance matrix of the state vector. Since principal

components are linear functions of the state vector we may therefore derive the joint covariance

matrix of Vt and the first three principal components. This unconditional covariance matrix im-

plies a set of “betas” in the regression of Vt on those principal components. Since the covariance

matrix is parameter-dependent, we compute it for the A1(4) USV point estimates reported in Ta-

ble 3 and for all other draws from the posterior distribution. Using the other draws we are able to

calculate posterior standard deviations of these model-implied regression coefficients. The second

set of regression coefficients come from a simpler “model-free” approach. Here we simply regress

a GARCH(1,1) proxy of Vt on the three principal components observed in the sample. The table

reports OLS coefficient estimates and Newey-West standard errors using 20 lags. Though we know

of no statistically valid method to formally compare the two sets of coefficients, they are broadly

consistent. Under the A1(4) USV model, volatility is weakly positively related to the first principal

component, strongly negatively related to the second, and indeterminately related to the third. Using

GARCH variance and the sample PCs, the relation between short rate variance and the third prin-

cipal component is positive, but it has a magnitude that is consistent with the posterior distribution

of the A1(4) USV model. Returning to Table 12, we see the same patterns. It is therefore consis-

tent with the A1(4) USV model that the shape of the yield curve alone can be useful in forecasting

volatility, as regressions 1 and 1′ both show.

For absolute yield changes, GARCH-based forecasts are about as informative as PC-based fore-

casts, but for predicting realized daily volatility GARCH is far superior. Presumably, this has some-

thing to do with the fact that the GARCH forecasts, like the realized volatilities, are based on daily

data. Combining GARCH and the three principal components, regression 3 shows that there is little

incremental value in including both predictors. The coefficients on the second and third principal

components decline in magnitude but remain significant, while the coefficient on GARCH volatil-

ity also declines but maintains a t-statistic of around 4.6. Stronger results obtain for the realized

volatility regression 3′, where the inclusion of the three PCs offers little benefit over the GARCH
38USV models only predict that changes in volatility cannot be perfectly hedged by changes in yields – a property

which is inconsistent with non-USV models.
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measure alone.

Embedding forecasts from the unrestricted A1(3) model into the regression models 4, 5, 4′, and

5′ of table 12 results in strikingly negative coefficients, whether or not principal component levels

are also included in the regression. These coefficients, which should equal one if the forecasts

are conditionally unbiased, are instead significantly negative, providing further evidence on the

misspecification of the model. This result is clearly related to the finding in Table 7 of a negative

correlation between GARCH volatility and the volatility inferred under the A1(3) model.

Finally, forecasts from the A1(4) USV model perform similarly to those from the GARCH

model. This is actually quite striking given that the A1(4) USV model was estimated from weekly

data, while the GARCH model has the advantage of being fitted from daily data. In fact, the

A1(4) USV forecasts of volatility are even stronger than GARCH in the sense that they drive out

the significance of the information in the cross-section of the yield curve, i.e., in the three principal

components, in 7′. On the other hand, even for the best performing A1(4) USV model the coefficient

is in the predictive regression is 0.655 and statistically different from one, which indicates that the

forecast is not unbiased.39

The similarities between GARCH and USV volatilities highlight the importance of inferring

volatility from time series and not cross sectional information, since only time series information

can be used to compute volatility under USV, as it is with GARCH models.

Overall, the results in Table 12 demonstrate that time series-based volatility proxies contain

the vast majority of information relevant for predicting future volatilities, and that the information

contained in the yield curve alone is insufficient for producing accurate forecasts. It seems therefore

unambiguous that short rate volatility is not “spanned” by the yield curve.

6 Conclusion

We have proposed a representation for affine term structure models in terms of the derivatives of

the term structure at zero and their quadratic co-variations. These state variables have simple phys-

ical interpretation such as level, slope, and curvature. They are by construction observable from

the cross-section of the yield curve, and it is straightforward to show that our representation is

‘maximal’ (i.e., econometrically identifiable). Further, model-insensitive estimates of the process

of the state variable are readily available, which simplifies the empirical estimation of the model

and makes direct comparisons of parameters and state variables across models and data sets.

We apply this representation to two-, three-, and four-factor affine stochastic volatility models.

We find that the unrestricted A1(3) model implies a volatility time series that is essentially unre-

lated to the actual volatility of the short rate process. This surprising result is a consequence of the
39We note that there are at least two possibilities for this. First, as shown in Ahn et al (2003) multiple volatility factors

might actually be necessary for explaining different dynamics in short and long maturity yield volatilities. Second, the
forecasts from the A1(4) USV model were constructed sub-optimally. Specifically, we constructed forecasts by condi-
tioning on the point estimates in Table 3 rather than integrating across the entire posterior distribution. Unfortunately, the
alternative is computationally unfeasible, and we see no way to measure the potential impact of this simplification.
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dual role played by the volatility state variable in the unrestricted affine model: it is both a linear

combination of yields (i.e., it affects the cross-section of the term structure) and the quadratic vari-

ation of the short rate (i.e., it impacts the time series of the term structure). Bayesian estimation

results in more weight placed on the first role at the expense of the second. We then investigate

two ‘unspanned stochastic volatility’ models, where volatility does not enter the cross-section of

bond prices. The three-factor USV model, which is nested within the unrestricted A1(3) model,

dramatically improves the estimates of volatility at the expense of an inadequate cross-sectional fit.

A four-factor USV specification allows the model to fit level, slope, and curvature while simultane-

ously producing a volatility process that is highly correlated with both GARCH and option-implied

volatility series. It does so by explicitly introducing variation in curvature that is unrelated to volatil-

ity, a straightforward generalization within the new representation introduced in this paper.

While our results confirm the findings of Litterman and Scheinkman (1991) that at least three

factors are needed to explain the cross sectional features of the yield curve, it further demonstrates

that these factors are an inadequate description of the state space, as they are incapable of replicating

observed patterns of conditional volatility. However, we find that the A1(4) USV model is able to

provide both a good cross-sectional fit and a good description of yield volatility.
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A Proofs

A.1: Proof of Generality of equations (27), (28) and (29)

Consider a Markov state vector {X(t)} of length N with general (i.e., non-affine) risk-neutral

dynamics

dXi = mQ
i

({X}, t) dt +
N∑

k=1

σ
ik

({X}, t) dzQ
k

. (A.1)

Further, assume the spot rate is some arbitrary function of the state vector: r = r ({X}, t). Using

the shorthand notations ri ≡ ∂r
∂Xi

, mQ
i

= mQ
i

({X}, t) and σ
ik

= σ
ik

({X}, t), we obtain from

Ito’s lemma the dynamics for r:

dr = rt dt +
N∑

i=1

ri

[
mQ

i
dt +

N∑

k=1

σ
ik

dzQ
k

]
+

1
2

N∑

i,j,k=1

rijσik
σ

jk
dt. (A.2)

Note that this allows us to define

µQ(t) ≡ 1
dt

EQ
t

[dr]

≡ rt +
N∑

i=1

ri mQ
i

+
1
2

N∑

i,j,k=1

rijσik
σ

jk
. (A.3)

V (t) ≡ 1
dt

VarQ
t

[dr]

≡
N∑

i,j,k=1

ri rj σ
ik

σ
jk

. (A.4)

Finally, from Ito’s lemma we have

EQ
t

[
dµQ(t)

]
= µQ

t
dt +

N∑

i=1

µQ
i

mQ
i

dt +
1
2

N∑

i, j, k=1

µQ
ij

σ
ik

σ
jk

dt. (A.5)

Using the relationship between yield to maturity and bond prices

P (t, ({X}) , T ) ≡ e−(T−t) Y (t,{X},T ), (A.6)

and similar notations as above, we find (assuming sufficient differentiability of the yield curve)

Pt = [Y − (T − t) Yt ] P (A.7)

Pi = [−(T − t)Yi ] P (A.8)

Pij =
[
(T − t)2 Yi Yj − (T − t) Yij

]
P (A.9)

Bond prices satisfy the PDE

rP = Pt +
N∑

i=1

Pi mQ
i

+
1
2

N∑

ijk=1

Pijσik
σ

jk
(A.10)
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Plugging in equations (A.7)-(A.9), we find

r = [Y − (T − t) Yt ]−(T−t)
N∑

i=1

Yi mQ
i

+
1
2

N∑

ijk=1

[
(T − t)2 Yi Yj − (T − t) Yij

]
σ

ik
σ

jk
. (A.11)

Now we use a Taylor series expansion to write yields as

Y (t, {X}, T ) = Y (t, {X}, T = t) + (T − t)YT (t, {X}, T = t) +
1
2
(T − t)2 YTT (t, {X}, T = t) + . . .

≡ Y 0(t, {X}) + (T − t) Y 1(t, {X}) +
1
2

(T − t)2 Y 2(t, {X}) + . . .

Plugging this Taylor expansion into equation (A.11), and collecting terms of different orders of

(T − t), we find

(T − t)0 : Y 0(t, {X}) = r(t, {X}) (A.12)

(T − t)1 : Y 1(t, {X}) =
1
2
µQ(t) (A.13)

(T − t)2 : Y 2(t, {X}) =
1
3

[
1
dt

EQ
t

[
dµQ

]− V (t)
]

, (A.14)

which is what we wished to prove. 2

A.2: Proof of Proposition 1

To prove the proposition note that it is sufficient to show that e−
R t
0 rsdsP (t, T ) is a Q-martingale for

P as defined in equation (85). Indeed, in that case we have e−
R t
0 rsdsP (t, T ) = E

Q

t

[
e−
R T
0 rsdsP (T, T )

]
,

which implies

P (t, T ) = E
Q

t

[
e−
R T
0 rsds

]
,

since equations (85)-(88) imply P (T, T ) = 1. To show that e−
R t
0 rsdsP (t, T ) is a Q-martingale we

apply Itô’s lemma to equation (85). Using the fact that the functions A(·), Br(·) and Bµ(·) satisfy

the system of ODE:

B′
r

= −2(cV )2Bµ + 1 (A.15)

B′
µ

= Br + 3cV Bµ (A.16)

A′ =
1
2
B2

µ
σµ

0
−Bµm0 + BrBµc0 , (A.17)

and that, in particular, we have:

Br = −cV Bµ +
√

2Bµ , (A.18)

we find that

E
Q

[dP (t, T )− rtP (t, T )] = 0 (A.19)

Thus,

e−
R t
0 rsdsP (t, T ) = −

∫ t

0

√
2Bµ(s)

(
σ1

√
Vs − ψ1 dZ

Q

1
(s) +

√
(1− σ2

1
)Vs + σ2

1
ψ1 + ψ3 dZ

Q

2
(s)

)

−
∫ t

0

(
Br(s) + ν3Bµ(s)

) √
−ψ3 dZ

Q

3
(s). (A.20)
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This shows that e−
R t
0 rsdsP (t, T ) is indeed a Q-martingale.

2

A.3: Proof of Proposition 2

To prove the proposition it is sufficient to show that e−
R t
0 rsdsP (t, T ) is a Q-martingale for P as

defined in equation (85). Indeed, in that case we have e−
R t
0 rsdsP (t, T ) = E

Q

t

[
e−
R T
0 rsdsP (T, T )

]
,

which implies

P (t, T ) = E
Q

t

[
e−
R T
0 rsds

]
,

since equations (134)-(138) imply P (T, T ) = 1. To show that e−
R t
0 rsdsP (t, T ) is a Q-martingale,

we apply Itô’s lemma to equation (134). Using the fact that the functions A(·), Br(·) and Bµ(·)
satisfy the system of ODE:

B′
r

= arBµ + 1 (A.21)

B′
µ

= Br + aµB
θ

(A.22)

B′
θ

= Bµ + a
θ
B

θ
(A.23)

A′ =
σ0

µ

2
B2

µ
+

σ0
θ

2
B2

θ
+ BrBµc0

rµ
+ BrBθ

c0
rθ

+ B
θ
Bµc0

µθ
−B

θ
, (A.24)

and that, in particular, because of the restrictions on ar , aµ given in equations (108) and (109), we

have:

Br = −crµ(Bµ + crµB
θ
) +

√
2Bµ + 6crµB

θ
, (A.25)

we find that

E
Q

[dP (t, T )− rtP (t, T )] = 0. (A.26)

Therefore,

e−
R t
0 rsds P (t, T ) = (A.27)

−
∫ t

0

√
2Bµ(s) + 6crµB

θ
(s)

(
σ1

√
Vs − ψ1 dZ

Q

1
(s) +

√
(1− σ2

1
)Vs + σ2

1
ψ1 + ψ3 + ψ4 dZ

Q

2
(s)

)

−
∫ t

0

(
Br(s) + ν3Bµ(s) + η3Bθ

(s)
) √

−ψ3 dZ
Q

3
(s)−

∫ t

0

(
Br(s) + ν4Bµ(s) + η4Bθ

(s)
)√

−ψ4 dZ
Q

4
(s).

This shows that e−
R t
0 rsdsP (t, T ) is indeed a Q-martingale.

2

Note that the function A(τ) can be obtained in closed-form since it is composed of integrals of

exponential functions of time. But for conciseness, we leave it in integral form.

B Details of the MCMC procedure

As summarized in the text, our MCMC algorithm is similar to a Gibbs sampler that alternates

between drawing unobservable state variables and model parameters. We further decompose the
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parameter vector into three blocks, φλ, φΩ, and φQ, where φλ includes all risk premia parameters,

φΩ includes measurement error standard deviations, and φQ includes all parameters that drive factor

dynamics under the Q measure. The block for φQ will also include the draw of Xo, the state

variables other than V . Finally, the draws of Vt are performed, as in Jones (2003b) or Jacquier,

Polson, and Rossi (1994), separately for each t ∈ {1, 1 + h, 1 + 2h, ..., T}, a set of (T − 1)/h + 1

blocks. Thus, there are a total of (T − 1)/h + 4 separate blocks:

• p(Vt|P, V1, ..., Vt−h, Vt+h, ..., VT , Xo, φ) for each t ∈ {1, 1 + h, 1 + 2h, ..., T}.

• p(φΩ|P, V, Xo, φλ, φQ)

• p(φλ|P, V, Xo, φΩ, φQ)

• p(φQ, Xo|P, V, φΩ, φλ)

In all blocks, draws are rejected if they violate stationarity, admissibility, or Feller conditions, or if

they imply degenerate covariance matrices.

B.1: The linear state space representation

In all the models we consider, only Vt enters the conditional variance of the state vector Xt+h, so

we may rewrite (156) as

Xt+h ∼ N
(
hKΘ + (I − hK) Xt, Ut

)
, (B.28)

where Ut = hΣ StΣ′ is a function of Vt only. Partitioning the state vector as

Xt =
[

Vt

Xo
t

]
, (B.29)

standard properties of the multivariate normal distribution imply that the mean of Xo
t+h is linear in

Xo
t with a variance that is time-varying but only as a function of Vt. Thus, the conditional dynamics

of Xo
t given the full path of V (the “state equation”) are both linear and Gaussian (at a time horizon

of length h).

At the same time, the observed data are linear in the unobserved vector Xo
t . Since the affine

structure implies that yields are linear in state variables, and because principal components are

simple linear combinations of yields, there exist a vector K and a matrix L such that in the absense

of measurement error we would have

Pt = K + LXt (B.30)

After adding a Gaussian error vector et ∼ N(0,Ω) and breaking up Xt, we are left with a Gaussian

“measurement equation” that is linear in Xo
t ,

Pt = K + LvVt + LoXo
t + et, (B.31)

where Lv denotes the first column of L and Lo the remaining columns.
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Thus, conditional on the path of V , we have both state and measurement equations that are

Gaussian and linear in the state variable Xo
t . This enables the use of the standard Kalman filter to

compute p(P|φ, V ). One small complication is that our state equation defines transitions over a

unit of time of length h, while the measurement equation is only applicable for observation times

t ∈ {1, 2, ..., T}. To resolve this asymmetry, consider the equivalent situation where yields were

instead observed at every length-h interval, but that the measurement error variance for non-integer

t was infinitely large. For non-integer t, the Kalman “gain” matrix is then zero, meaning that

the observed data has no effect on the conditional distribution of the state vector. Thus, we can

apply the Kalman filter in its textbook form simply by zeroing out the Kalman gain matrix when

t /∈ {1, 2, ..., T}.

B.2: Drawing Vt

For t ∈ {1, 2, ..., T}, the target density can be decomposed using the model’s Markov structure as

p(Vt|P, V1, ..., Vt−h, Vt+h, ..., VT , Xo, φ)

∝ p(Vt|Pt , Vt−h, Vt+h, Xo
t−h, Xo

t , Xo
t+h, φ)

∝ p(Vt+h, Xo
t+h|Pt , Vt−h, Vt, X

o
t−h, Xo

t , φ)p(Vt|Pt , Vt−h, Xo
t−h, Xo

t , φ)

∝ p(Vt+h, Xo
t+h|Vt, X

o
t , φ)p(Vt|Pt , Vt−h, Xo

t−h, Xo
t , φ)

The first and third steps both use the Markov property along with the fact that Ps is an irrelevant

conditioning variable when we are also conditioning on Xs. The middle step simply uses Bayes

rule.

Note that p(Vt|Pt , Vt−h, Xo
t−h, Xo

t , φ) is a Gaussian density for Vt. This is because the joint

density of {Vt, X
o
t ,Pt} given {Vt−h, Xo

t−h} is multivariate Gaussian (from the Euler approximation

and the Gaussian measurement errors), and p(Vt|Pt , Vt−h, Xo
t−h, Xo

t , φ) is simply a conditional

version of that density. Unfortunately, this is not our target density, as it ignores information from

time t + h. We therefore use this density as the candidate generator for a Metropolis-Hastings

draw, forming the acceptance factor from the omitted component of the target density. We therefore

replace the current draw Vt with the candidate V ∗
t with probability

min

{
p(Vt+h, Xo

t+h|V ∗
t , Xo

t , φ)
p(Vt+h, Xo

t+h|Vt, Xo
t , φ)

, 1

}
.

This acceptance probability, as the ratio of multivariate Gaussians, is straightforward to evaluate.

This produces a draw from the target density, p(Vt|P, V1, ..., Vt−h, Vt+h, ..., VT , Xo, φ), as desired.

For t /∈ {1, 2, ..., T}, the draw is almost identical, but the target density is instead

p(Vt+h, Xo
t+h|Vt, X

o
t , φ)p(Vt|Vt−h, Xo

t−h, Xo
t , φ).

The second component is a slightly different Gaussian candidate generating density for Vt, and the

Metropolis-Hastings acceptance probability is unchanged from before.
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B.3: Drawing φΩ

Given φQ and X = {V, Xo}, we may compute fitted principal components as K + LXt and

construct a time series of measurement errors et = Pt − K − LXt, where it was assumed that

et ∼ N(0,Ω). Since Ω was assumed diagonal (measurement errors are cross-sectionally uncor-

related), we may consider the error for each principal component separately. With a flat prior on

each measurment error standard deviation (i.e. p(
√

Ωi,i) ∝ 1/
√

Ωi,i), we have the standard result

that
√

Ωi,i has an inverted gamma distribution with T degrees of freedom and a location parameter

equal to the root mean squared measurement error of the ith principal component.

B.4: Drawing φλ

To draw φλ we write the Euler approximation (156) as

Xt+h −Xt = h (a + bXt) +
√

hΣ
√

St εt+h.

Since the drift is linear and the covariance matrix is known (as a function of V and φQ), we can

directly apply the seeming unrelated regression approach of Chib and Greenberg (1996) to draw

the a vector and the b matrix. Since we are using the ‘generalized essentially affine’ risk premia of

Cheridito et al (2004), each nonzero element of a and b is effectively a free parameter (subject to

stationarity and admissibility conditions). Thus, no linkage between the P and Q drift parameters

need be imposed and we can simply back out risk premia according to

λ0 + λ1Xt = a + bXt − aQ − bQXt,

where aQ and bQ are Q measure parameters analogous to a and b.

B.5: Drawing φQ and Xo

In this block we seek a draw from p(φQ, Xo|P, V, φΩ, φλ), which we decompose as

p(φQ|P, V, φΩ, φλ)p(Xo|P, V, φQ, φΩ, φλ).

Because our prior on φQ is completely flat and independent of φΩ and φλ, we have

p(φQ|P, V, φΩ, φλ) ∝ p(P, V |φQ, φΩ, φλ)

∝ p(P|V, φQ, φΩ, φλ)p(V |φQ, φΩ, φλ)

The second term, p(V |φQ, φΩ, φλ), is easily evaluated because V is a univariate Markov process

whose dynamics are fully described by the Euler approximation. The first term, p(P|V, φQ, φΩ, φλ),

is evaluated using the Kalman filter. As noted above, once we condition on the entire path of V , we

may write the dynamics of Xo
t and Pt in linear Gaussian state space form.
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We use a random walk Metropolis chain to draw a candidate value φQ∗ for replacing the current

value φQ. The acceptance factor, in this case, is just the ratio of the target densities, so that we

accept φQ∗ over φQ with probability

min
{

p(P|V, φQ∗, φΩ, φλ)p(V |φQ∗, φΩ, φλ)
p(P|V, φQ, φΩ, φλ)p(V |φQ, φΩ, φλ)

, 1
}

,

which we are now able to compute. Given the resulting draw of φQ, we may invoke the simulation

smoother of de Jong and Shephard to draw the entire multivariate time series Xo all at once from

the density p(Xo|P, V, φ).

Following Bester (2004), we alternate between usually drawing the entire φQ vector at once

using a multivariate candidate generator and occasionally (once every ten iterations) drawing each

element of φQ individually. The covariance matrix of the candidate generator is chosen by running

a long preliminary chain and computing the sample covariance matrix of the draws of φQ from the

chain. A second chain is run in which a scaling parameter is chosen adaptively to set the Metropolis

acceptance rate approximately equal to .4. A final third chain is run to generate the posteriors

reported.

B.6: Sensitivity to the choice of h

The results of Jones (2003b) and Eraker (2001) suggest that even nonlinear term structure models

do not suffer from appreciable discretization bias when the discretization interval is set equal to one

day. Given our use of weekly data, this suggests that at a minimum we should investigate values of

h as small as .2 (one fifth of the weekly observation interval). In this section we compare the results

presented in the paper, which were computed using h = 1, to the case in which h = .2. To reduce

computation time, we calculated results only for the A1(3) USV model.

Figure B1 displays posterior histograms for the two cases. In each pair of histograms, the top

panel represents the h = 1 case while the bottom case represents h = .2. Differences between the

two are indistinguishable with the exception of η2, whose posterior shape (though not location or

dispersion) is slightly different between the two panels. Figure B2 overlays the fitted state variables

that result from the two procedures. Very small differences are noticeable for estimated short rate

volatility
√

Vt , but not for rt or µ
Q

t . Finally, Table B1 reports in- and out-of-sample yield fits.

Again, differences are very minor and are clearly insufficient to change any of the conclusions of

the paper.
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Table 1: Observability of state variables
The table contains output from the regressions

true rt = α
r

+ β
r × estimated rt + ε

r

t

true µQ
t = α

µ

+ β
µ × estimated µQ

t + ε
µ

t
,

where rt is the instantaneous short rate and µQ
t is its drift under the risk-neutral measure. Ten-year

samples of weekly short rate data are simulated from the two-factor CIR model dxi,t = κi(θi −
xi,t)dt+σi

√
xi,tdzi,t , rt = x1,t +x2,t , with parameter values from Table I of Duffie and Singleton

(1997). Zero coupon yields with maturities τ = {.5, 1, 2, 5, 7, 10} years are computed under the
risk-neutralized process dxi,t =

ˆ
κi(θi − xi,t)− λixi,t

˜
dt + σi

√
xi,tdzQ

i,t
, and then modified by

adding i.i.d. measurement errors with standard deviations of either 2 or 5 basis points. Quadratic and
cubic polynomials in τ are used to fit these yields by OLS. The value of the polynomial at zero and
twice the value of it’s slope at zero are taken as estimates of rt and µQ

t , respectively. Numbers in the
table are means and standard deviations (in parentheses) from 5000 simulated data samples.

2 b.p. measurement error 5 b.p. measurement error
quadratic cubic quadratic cubic

Instantaneous Short Rate
α

r × 100 -0.303 -0.074 -0.299 -0.064
(0.292) (0.069) (0.286) (0.059)

β
r

1.033 1.008 1.032 1.005
(0.017) (0.004) (0.017) (0.005)

R2 0.999 0.999 0.998 0.997
(0.001) (0.000) (0.002) (0.002)

Short Rate Drift
α

µ × 100 -0.042 0.024 -0.013 0.155
(0.008) (0.020) (0.023) (0.088)

β
µ

1.631 1.129 1.599 1.026
(0.006) (0.014) (0.022) (0.058)

R2 0.996 0.980 0.976 0.890
(0.002) (0.010) (0.012) (0.049)
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Table 2: Principal component loadings
The table contains the eigenvectors corresponding to the eigenvalues of the covariance
matrix of changes in bootstrapped zero coupon yields from January 1988 to December
2002. They represent the loadings on yields of different maturities used to construct the
principal components. The table also reports the percent of the total variance explained
by each of the principal components.

Principal Component
1 2 3 4 5 6

6-month 0.08 2.37 1.98 14.08 15.35 216.68
1-year 0.11 1.93 0.06 -16.81 -37.29 -696.92
2-year 0.14 0.99 -1.26 -11.12 20.30 1231.63
3-year 0.14 0.19 -1.15 4.12 22.47 -387.75
4-year 0.14 -0.42 -0.72 11.72 1.23 -878.34
5-year 0.14 -0.87 -0.22 12.53 -18.09 -274.75
7-year 0.13 -1.42 0.69 3.49 -26.74 1351.94
10-year 0.12 -1.77 1.61 -17.01 23.77 -561.48

% explained 64.82 17.74 8.04 5.37 2.73 1.04

Total % explained by first six principal components: 99.73
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Table 3A: Posterior distributions of model parameters
Posterior distributions are calculated from weekly bootstrapped yields from January 1988 to December 2002. Both
free parameters and restricted parameters are included, where restricted parameters are functions of the free pa-
rameters and are displayed in italics. For free parameters, the point estimates displayed are multivariate posterior
medians. Point estimates for restricted parameters are computed as functions of the free parameter point estimates.
Confidence interval bounds, in parentheses, are equal to the 2.5 and 97.5 percentiles of the posterior distibution.

A1(2) A1(3) USV A1(3) A1(4) USV

σ1 0.007 0.062 -0.248 0.176
(-0.039, 0.029) (-0.109, 0.316) (-0.330, -0.144) (0.019, 0.377)

σ2 0.998 0.955 0.984
(0.949, 1.000) (0.939, 0.987) (0.926, 1.000)

σ3 0.000 0.164 0.000
(0.012, 0.155)

ν1 -0.008 -0.687 0.001
(-0.039, 0.014) (-1.264, -0.316) (0.000, 0.003)

ν2 -0.123 -4.412 0.008
(-0.129, -0.119) (-5.067, -3.817) (0.007, 0.009)

ν3 -30.613 5.581 0.016
(-42.621, -13.160) (3.081, 9.525) (0.009, 0.021)

ν4 0.011
(0.000, 0.018)

σV × 103 0.076 1.196 0.195 1.094
(0.036, 0.111) (0.894, 1.525) (0.172, 0.210) (0.923, 1.356)

ψ1 × 105 6.520 0.134 2.162 0.192
(0.094, 8.327) (0.007, 0.502) (1.251, 3.128) (0.095, 0.428)

ψ2 × 105 0.001 1.254 0.178
(-0.022, 0.009) (0.650, 2.439) (0.067, 0.362)

ψ3 × 105 -0.002 -1.388 -0.142
(-0.011, -0.001) (-2.630, -0.769) (-0.251, -0.015)

ψ4 × 105 -0.042
(-0.238, -0.015)

κP
V

0.301 1.003 0.297 1.134
(0.062, 0.537) (0.352, 2.332) (0.057, 0.746) (0.267, 1.886)

γP
V
× 104 0.294 0.835 0.526 0.668

(0.072, 0.502) (0.407, 1.603) (0.145, 1.064) (0.350, 1.016)

m0 × 102 0.256 20.008
(0.240, 0.281) (18.382, 22.782)

mV 1.000 -765.952
(-934.757, -683.993)

mr -0.030 -1.270
(-0.033, -0.028) (-1.381, -1.166)

mµ -0.370 -2.827
(-0.386, -0.358) (-2.949, -2.646)

Additional parameters for the A1(2) model

γr κrr κrV

0.167 0.501 1383.344
(0.112, 0.296) (0.486, 0.523) (775.024, 2825.008)

Additional parameters for the A1(4) USV model

a0 × 103 aθ η3 η4 crµ

1.364 -1.443 -0.020 -0.019 -0.089
(1.147, 1.696) (-1.639, -1.316) (-0.031, -0.009) (-0.029, -0.003) (-0.093, -0.084)
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Table 3B: Posterior distributions of risk premia parameters
Posterior distributions are calculated from weekly bootstrapped yields from January 1988 to December 2002. Point
estimates displayed are multivariate posterior medians. Confidence interval bounds, in parentheses, are equal to the
2.5 and 97.5 percentiles of the posterior distibution.

A1(2) A1(3) USV A1(3) A1(4) USV

λV 0 × 104 0.264 0.500
(0.040, 0.469) (0.121, 1.040)

λV V -0.264 -0.260
(-0.496, -0.022) (-0.711, -0.021)

λr0 -0.097 -0.040 0.002 -0.031
(-0.195, 0.020) (-0.059, -0.017) (-0.055, 0.050) (-0.051, -0.007)

λrV × 10−2 6.674 -3.238 -0.887 -2.024
(-5.468, 17.139) (-4.444, -1.487) (-3.390, 2.248) (-2.821, -0.754)

λrr 0.399 0.672 0.023 0.458
(0.141, 0.497) (0.314, 1.009) (-0.343, 0.347) (0.084, 0.767)

λrµ 1.618 -0.357 0.700
(0.400, 2.722) (-0.603, -0.135) (-1.144, 1.736)

λrθ 0.588
(-0.817, 1.277)

λµ0 0.024 -0.096 0.080
(0.015, 0.040) (-0.339, 0.099) (0.019, 0.165)

λµV × 10−2 1.761 4.390 3.454
(1.050, 2.454) (-6.335, 18.414) (0.709, 6.503)

λµr -0.444 0.329 -1.462
(-0.715, -0.302) (-0.866, 1.898) (-2.630, -0.447)

λµµ -1.307 1.030 -2.265
(-2.160, -0.760) (-0.200, 1.902) (-8.472, 1.773)

λµθ -0.796
(-5.468, 1.956)

λθ0 -0.080
(-0.204, 0.005)

λθV × 10−2 -3.324
(-8.069, 0.360)

λθr 1.544
(0.129, 3.288)

λθµ 0.869
(-4.557, 10.022)

λθθ -0.596
(-4.216, 6.229)
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Table 5: In-sample yield fits
This table contains statistics on the in-sample fits of zero coupon yields (Y ). For each model, fitted yields (Ŷt )
are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table examines the bias, root mean squared error,
and autocorrelation of êt = Yt − Ŷt , where Ŷt denotes the model fitted value. ∗ and ∗∗ denote statistical significe
at the 5% and 1% levels, respectively, where standard errors are calculated using the method of Newey and West
(1987) with 21 lags. For biases, statistical significance relates to the null hypothesis that the bias is zero. For
RMSE, the statistical significance of the pairwise comparison of two models is reported, along with an inequality
sign that reflects the direction of the rejection. The sample size is 782 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

mean ê (basis points)

6-month -0.01 -5.24∗∗ -0.18 0.69
1-year 0.01 -1.04 0.24 -0.75
2-year 0.03 3.28∗∗ 0.09 -0.74
3-year 0.04 4.20∗∗ -0.06 0.17
4-year -0.02 3.27∗∗ -0.12 0.70
5-year -0.08 1.53∗ -0.11 0.76
7-year -0.11 -2.22∗∗ -0.04 0.10
10-year 0.15 -5.62∗∗ 0.19 -0.90

RMSE (basis points)

6-month 14.44 14.61 >∗∗ 3.42 <∗∗ 4.82
1-year 6.53 6.58 >∗∗ 4.51 <∗∗ 6.01
2-year 11.27 10.36 >∗∗ 2.56 <∗∗ 3.71
3-year 9.84 10.05 >∗∗ 1.54 1.67
4-year 7.40 7.95 >∗∗ 2.64 <∗∗ 3.84
5-year 5.55 5.50 >∗∗ 2.93 <∗∗ 4.27
7-year 5.80 5.55 >∗∗ 1.65 1.88
10-year 11.08 14.11 >∗∗ 4.03 <∗∗ 5.89

autocorrelation of ê

6-month 0.94 0.96 0.91 0.95
1-year 0.49 0.72 0.89 0.95
2-year 0.74 0.80 0.81 0.93
3-year 0.67 0.79 0.69 0.90
4-year 0.46 0.71 0.84 0.95
5-year 0.11 0.53 0.85 0.95
7-year 0.27 0.57 0.66 0.88
10-year 0.80 0.92 0.89 0.95
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Table 6: Out-of-sample yield fits
This table contains statistics on the in-sample fits of zero coupon yields (Y ). For each model, fitted yields (Ŷt )
are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table examines the bias, root mean squared
error, and autocorrelation of êt = Yt − Ŷt , where Ŷt denotes the model fitted value. ∗ and ∗∗ denote statistical
significe at the 5% and 1% levels, respectively, where standard errors are calculated using the method of Newey
and West (1987) with 8 lags for bias tests and 7 for RMSE tests. For biases, statistical significance relates to the
null hypothesis that the bias is zero. For RMSE, the statistical significance of the pairwise comparison of two
models is reported, along with an inequality sign that reflects the direction of the rejection. The sample size is
104 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

mean ê (basis points)

6-month 13.56∗∗ -2.74 -5.98∗∗ 1.43∗∗

1-year 2.50∗∗ -2.13∗∗ 6.57∗∗ -1.60∗

2-year -7.53∗∗ 1.29 5.67∗∗ -1.14∗∗

3-year -10.60∗∗ 2.74 -1.22∗∗ 0.11
4-year -9.62∗∗ 2.81∗ -5.38∗∗ 1.02∗∗

5-year -6.24∗∗ 2.11∗∗ -6.32∗∗ 1.49∗∗

7-year 3.59∗∗ -0.51 -2.19∗∗ 1.14∗∗

10-year 17.99∗∗ -6.27∗ 8.35∗∗ -2.34∗∗

RMSE (basis points)

6-month 18.72 12.48 >∗∗ 6.44 >∗∗ 2.69
1-year 4.59 4.25 <∗∗ 7.09 >∗∗ 3.41
2-year 12.05 8.87 >∗ 6.12 >∗∗ 1.88
3-year 14.23 >∗ 9.00 >∗∗ 1.46 >∗∗ 0.85
4-year 12.26 >∗∗ 7.20 5.83 >∗∗ 1.96
5-year 8.19 >∗∗ 4.99 <∗ 6.82 >∗∗ 2.32
7-year 5.93 4.58 >∗∗ 2.44 >∗∗ 1.29
10-year 21.07 >∗ 11.39 8.94 >∗∗ 3.41

autocorrelation of ê

6-month 0.96 0.96 0.76 0.78
1-year 0.15 0.21 0.77 0.82
2-year 0.73 0.71 0.84 0.67
3-year 0.72 0.68 0.43 0.84
4-year 0.59 0.52 0.73 0.73
5-year 0.27 0.17 0.75 0.71
7-year 0.41 0.55 0.56 0.75
10-year 0.92 0.92 0.82 0.73
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Table 7: Correlations of observed and model-implied time series
This table reports correlations between actual and model-implied series. Average yield is simply the average of the .5, 1, 2, 3,
4, 5, 7, and 10-year zero yields. Slope is defined as the 10-year yield minus the 6-month yield. Curvature is defined using the
3-year yield in addition. Rolling 30-day window and GARCH(1,1) volatilities are calculated from demeaned changes in the
six-month rate. Interpolated r, µQ , and θ are calculated using a third-order polynomial regression of yields on maturity. The
Implied Volatility series, obtained from one-year cap and floor contracts, is an average of Black-Scholes implied volatilities
on the logorithm of the one-year LIBOR rate times the level of the one-year rate. Note that the Implied Volatility series is
available only starting in 1995.

A1(2) A1(3) A1(3) A1(4) Other volatility measures
USV USV Rolling GARCH Implied

Full Sample (1988 to 2002)

Actual vs. model average yield 1.000 1.000 1.000 1.000
Actual vs. model slope 0.998 0.997 0.998 0.998
Actual vs. model curvature 0.332 0.379 0.998 0.997
Rolling vs. model volatility -0.573 0.758 -0.595 0.777
GARCH vs. model volatility -0.558 0.749 -0.580 0.773 0.949
Interpolated vs. model r 0.996 0.996 0.981 0.998
Interpolated vs. model µQ 0.880 0.513 0.974
Interpolated vs. model θ 0.976
Actual curvature vs. model volatility 0.415 -0.077 0.275 -0.102 -0.058 -0.050
Actual curvature vs. model variance 0.419 -0.065 0.287 -0.088 -0.028 -0.019

1988 to 1994

Actual vs. model average yield 1.000 1.000 1.000 1.000
Actual vs. model slope 0.998 0.998 0.998 0.998
Actual vs. model curvature 0.262 0.401 0.998 0.997
Rolling vs. model volatility -0.465 0.583 -0.460 0.633
GARCH vs. model volatility -0.455 0.566 -0.451 0.626 0.935
Interpolated vs. model r 0.997 0.997 0.985 0.999
Interpolated vs. model µQ 0.862 0.454 0.975
Interpolated vs. model θ 0.979
Actual curvature vs. model volatility 0.457 -0.151 0.276 -0.246 -0.126 -0.132
Actual curvature vs. model variance 0.458 -0.093 0.282 -0.176 -0.048 -0.057

1995 to 2002

Actual vs. model average yield 0.999 1.000 1.000 1.000
Actual vs. model slope 0.998 0.997 0.998 0.998
Actual vs. model curvature 0.634 0.478 0.999 0.998
Rolling vs. model volatility 0.006 0.726 -0.027 0.719
GARCH vs. model volatility 0.030 0.739 -0.004 0.736 0.920
Implied vs. model volatility -0.192 0.340 -0.289 0.309 0.546 0.490
Interpolated vs. model r 0.996 0.995 0.975 0.997
Interpolated vs. model µQ 0.922 0.665 0.985
Interpolated vs. model θ 0.992
Actual curvature vs. model volatility 0.798 0.023 0.657 0.055 0.064 0.094 0.105
Actual curvature vs. model variance 0.798 0.008 0.657 0.052 0.063 0.096 0.102
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Table 8: In-sample yield forecasts
This table contains statistics on the in-sample one-week forecasts of zero coupon yield changes. For each model,
expected yield changes are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities as differences between the
model expectations of future yields and the currend model fitted values. The table examines the bias, root mean
squared error, and autocorrelation of êt+1 = (Yt+1 − Yt) − (Et [Yt+1 ] − Ŷt), where Et [Yt+1 ] is the model-
implied expectation and Ŷt is the model fitted value. ∗ and ∗∗ denote statistical significe at the 5% and 1% levels,
respectively, where standard errors are calculated using the method of Newey and West (1987) with 12 lags for
bias tests and 5 for RMSE tests. For biases, statistical significance relates to the null hypothesis that the bias is
zero. For RMSE, the statistical significance of the pairwise comparison of two models is reported, along with an
inequality sign that reflects the direction of the rejection. Forecasts begin at the beginning of 1990, allowing for
a sample size of 677 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

mean ê (basis points)

6-month -0.55 0.18 -0.34 -0.25
1-year -0.54 0.15 -0.18 -0.10
2-year -0.49 0.11 0.01 0.09
3-year -0.44 0.08 0.11 0.18
4-year -0.39 0.06 0.19 0.23
5-year -0.35 0.04 0.24 0.26
7-year -0.29 0.02 0.33 0.28
10-year -0.20 -0.01 0.41 0.28

RMSE (basis points)

6-month 11.08 >∗∗ 10.84 10.96 10.90
1-year 13.37 13.26 13.34 13.33
2-year 14.97 14.93 14.96 14.99
3-year 15.04 15.02 15.04 15.07
4-year 14.87 14.86 14.87 14.91
5-year 14.71 14.69 14.71 14.74
7-year 14.44 14.44 14.45 14.46
10-year 14.24 14.24 14.24 14.25

autocorrelation of ê

6-month 0.04 -0.02 0.01 0.00
1-year -0.01 -0.04 -0.02 -0.01
2-year -0.01 -0.02 -0.01 0.00
3-year -0.02 -0.02 -0.02 0.00
4-year -0.04 -0.04 -0.04 -0.02
5-year -0.06 -0.06 -0.06 -0.04
7-year -0.08 -0.08 -0.08 -0.07
10-year -0.10 -0.10 -0.10 -0.09
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Table 9: Out-of-sample yield forecasts
This table contains statistics on the in-sample one-week forecasts of zero coupon yield changes. For each model,
expected yield changes are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities as differences between the
model expectations of future yields and the currend model fitted values. The table examines the bias, root mean
squared error, and autocorrelation of êt+1 = (Yt+1 − Yt) − (Et [Yt+1 ] − Ŷt), where Et [Yt+1 ] is the model-
implied expectation and Ŷt is the model fitted value. ∗ and ∗∗ denote statistical significe at the 5% and 1%
levels, respectively, where standard errors are calculated using the method of Newey and West (1987) with 5 lags.
For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the statistical
significance of the pairwise comparison of two models is reported, along with an inequality sign that reflects the
direction of the rejection. The sample size is 104 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

mean ê (basis points)

6-month 2.05∗∗ 2.51∗∗ 3.93∗∗ 1.65∗∗

1-year 2.04∗ 2.49∗ 3.06∗∗ 0.90
2-year 1.67 2.08 2.12 -0.19
3-year 1.29 1.65 1.66 -0.76
4-year 0.97 1.28 1.35 -1.06
5-year 0.70 0.96 1.13 -1.22
7-year 0.29 0.46 0.79 -1.35
10-year -0.11 -0.02 0.46 -1.34

RMSE (basis points)

6-month 5.63 5.98 6.34 >∗∗ 5.43
1-year 8.83 9.08 9.16 >∗ 8.67
2-year 12.75 <∗ 12.89 12.86 12.61
3-year 14.63 14.72 14.71 14.52
4-year 15.65 15.71 15.71 15.56
5-year 16.10 16.13 16.15 16.02
7-year 16.08 16.08 16.12 16.01
10-year 15.35 15.33 15.38 15.29

autocorrelation of ê

6-month 0.18 0.24 0.07 0.16
1-year 0.07 0.09 0.04 0.07
2-year 0.07 0.07 0.06 0.08
3-year 0.09 0.09 0.09 0.10
4-year 0.11 0.11 0.11 0.12
5-year 0.13 0.13 0.13 0.13
7-year 0.14 0.14 0.14 0.15
10-year 0.14 0.14 0.14 0.15
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Table 10: In-sample volatility forecasts
This table contains statistics on in-sample one-week forecasts of different volatility proxies. For each model, expected
absolute yield changes (E [|∆Y |]) and expected “realized volatility” (E [σ̂]) are calculated for .5, 1, 2, 3, 4, 5, 7, and
10-year maturities. Realized volatility is defined by σ̂2

t, τ
=
P5

i=1 ∆Y (t, i, τ)2 and is calculated using daily data. The
table examines the forecast bias (actual minus forecast) and root mean squared error of |∆Y | and σ̂, where all yields
are expressed in basis points. ∗ and ∗∗ denote statistical significance at the 5% and 1% levels, where standard errors
are calculated using the method of Newey and West (1987) with 9, 13, 16, and 17 lags, respectively, for the four panels
of the table. For biases, statistical significance relates to the null hypothesis that the bias is zero. For RMSE, the
statistical significance of the pairwise comparison of two models is reported, along with an inequality sign that reflects
the direction of the rejection. Forecasts begin at the beginning of 1990, allowing for a sample size of 677 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

bias in weekly |∆Y |
6-month -2.26∗∗ -0.72∗ -2.95∗∗ -0.51
1-year 1.03∗ 1.82∗∗ -1.63∗∗ 0.62∗

2-year 3.35∗∗ 3.22∗∗ -1.00∗ 0.45
3-year 3.57∗∗ 3.04∗∗ -0.80 -0.07
4-year 3.29∗∗ 2.63∗∗ -0.71 -0.31
5-year 2.93∗∗ 2.27∗∗ -0.70 -0.36
7-year 2.34∗∗ 1.86∗∗ -0.73 -0.25
10-year 2.02∗∗ 1.98∗∗ -0.61 0.17

RMSE of weekly |∆Y |
6-month 8.68 >∗∗ 7.97 <∗∗ 8.93 >∗∗ 7.84
1-year 9.16 8.96 9.29 >∗∗ 8.74
2-year 10.25 9.99 9.80 >∗∗ 9.45
3-year 10.29 >∗ 9.98 9.76 >∗ 9.50
4-year 10.11 >∗ 9.82 9.64 9.46
5-year 9.91 >∗ 9.68 9.55 9.41
7-year 9.61 9.49 9.40 9.31
10-year 9.29 9.24 9.14 9.03

bias in σ̂

6-month -3.61∗∗ -1.79∗∗ -4.45∗∗ -1.53∗∗

1-year 0.20 1.14∗∗ -2.96∗∗ -0.29
2-year 3.24∗∗ 3.08∗∗ -1.95∗∗ -0.22
3-year 3.73∗∗ 3.10∗∗ -1.47∗∗ -0.61
4-year 3.56∗∗ 2.77∗∗ -1.22∗ -0.74
5-year 3.25∗∗ 2.47∗∗ -1.08∗ -0.68
7-year 2.70∗∗ 2.12∗∗ -0.97∗ -0.40
10-year 2.28∗∗ 2.24∗∗ -0.85 0.07

RMSE of σ̂

6-month 6.63 >∗∗ 5.29 <∗∗ 7.18 >∗∗ 5.18
1-year 6.18 5.90 <∗∗ 6.91 >∗∗ 5.82
2-year 7.61 7.38 7.23 6.74
3-year 7.79 7.46 7.06 6.84
4-year 7.54 7.22 6.82 6.74
5-year 7.24 6.96 6.62 6.58
7-year 6.78 6.59 6.36 6.30
10-year 6.47 6.37 6.20 6.01
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Table 11: Out-of-sample volatility forecasts
This table contains statistics on in-sample one-week forecasts of different volatility proxies. For each model, expected absolute
yield changes (E [|∆Y |]) and expected “realized volatility” (E [σ̂]) are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities.
Realized volatility is defined by σ̂2

t, τ
=
P5

i=1 ∆Y (t, i, τ)2 and is calculated using daily data. The table examines the forecast
bias (actual minus forecast) and root mean squared error of ∆Y 2 and σ̂, where all yields are expressed in basis points. ∗ and
∗∗ denote statistical significance at the 5% and 1% levels, where standard errors are calculated using the method of Newey and
West (1987) with 3, 4, 4, and 4 lags, respectively, for the four panels of the table. For biases, statistical significance relates to the
null hypothesis that the bias is zero. For RMSE, the statistical significance of the pairwise comparison of two models is reported,
along with an inequality sign that reflects the direction of the rejection. The sample size is 104 weeks.

A1(2) A1(3) USV A1(3) A1(4) USV

bias in weekly |∆Y |
6-month -5.93∗∗ -0.85∗ -6.78∗∗ -1.67∗∗

1-year -2.33∗∗ 1.84∗∗ -5.17∗∗ -0.50
2-year 1.38∗ 4.35∗∗ -3.33∗∗ 0.50
3-year 2.93∗∗ 5.31∗∗ -1.81∗ 1.32
4-year 3.54∗∗ 5.64∗∗ -0.82 2.00∗

5-year 3.65∗∗ 5.62∗∗ -0.33 2.43∗

7-year 3.10∗∗ 5.04∗∗ -0.29 2.59∗∗

10-year 2.00∗ 4.16∗∗ -0.92 2.17∗

RMSE of weekly |∆Y |
6-month 6.90 >∗∗ 3.65 <∗∗ 7.65 >∗∗ 4.05
1-year 5.69 5.62 <∗∗ 7.34 >∗∗ 5.33
2-year 7.81 <∗∗ 8.96 8.39 >∗ 7.79
3-year 9.22 <∗∗ 10.32 >∗ 8.94 8.91
4-year 9.92 <∗∗ 10.93 >∗∗ 9.33 9.53
5-year 10.15 <∗∗ 11.08 >∗∗ 9.51 9.82
7-year 10.00 <∗∗ 10.82 >∗ 9.54 9.88
10-year 9.49 <∗∗ 10.22 9.34 9.55

bias in σ̂

6-month -7.25∗∗ -1.19∗∗ -8.27∗∗ -2.17∗∗

1-year -2.70∗∗ 2.27∗∗ -6.09∗∗ -0.52
2-year 2.15∗∗ 5.69∗∗ -3.46∗∗ 1.11∗

3-year 3.88∗∗ 6.71∗∗ -1.77∗∗ 1.95∗∗

4-year 4.48∗∗ 6.97∗∗ -0.73 2.63∗∗

5-year 4.50∗∗ 6.85∗∗ -0.24 3.06∗∗

7-year 3.92∗∗ 6.23∗∗ -0.13 3.31∗∗

10-year 2.91∗∗ 5.48∗∗ -0.57 3.10∗∗

RMSE of σ̂

6-month 7.80 >∗∗ 3.30 <∗∗ 8.76 >∗∗ 3.82
1-year 4.72 4.64 <∗∗ 7.23 >∗∗ 4.03
2-year 6.01 <∗∗ 8.04 >∗ 6.62 >∗ 5.76
3-year 7.55 <∗∗ 9.35 >∗∗ 6.76 6.78
4-year 8.21 <∗∗ 9.81 >∗∗ 6.98 7.36
5-year 8.37 <∗∗ 9.84 >∗∗ 7.12 7.67
7-year 8.02 <∗∗ 9.37 >∗∗ 7.06 7.71
10-year 7.19 <∗∗ 8.57 >∗∗ 6.67 7.24
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Table 12: Short rate volatility forecast regressions
This table contains coefficients and standard errors from regressions of two volatility proxies computed from six-month
yield changes on different forecasting variables. Newey-West standard errors are calculated using 6 lags for the top panel
and 11 lags for the bottom. Realized volatility (σ̂) is defined by σ̂2

t, τ
=
P5

i=1 ∆Y (t, i, τ)2 and is calculated using daily
data. GARCH volatilities are the same fitted values used in Table 7, while the A1(3) and A1(4) USV forecasts are the
same as those used in Table 10. Regressions are estimated using data from 1990 to 2002, allowing for a sample size of 677
weeks.

Specification Intercept∗ GARCH A1(3) A1(4) USV 1st 2nd 3rd Adjusted
Number volatility forecast forecast PC∗ PC∗ PC∗ R-Squared

dependent variable: |∆Y |
1 -0.084 0.740 -0.479 1.686 0.090

(0.026) (0.496) (0.077) (0.589)

2 0.000 0.623 0.086
(0.000) (0.090)

3 -0.072 0.403 0.322 -0.299 1.353 0.115
(0.022) (0.086) (0.409) (0.076) (0.503)

4 0.006 -5.567 0.077
(0.001) (0.982)

5 8.913 -69.606 -20.227 3.973 -5.751 0.093
(4.640) (35.921) (10.822) (2.304) (3.852)

6 0.000 0.835 0.115
(0.000) (0.093)

7 -0.032 0.710 -0.495 -0.099 1.249 0.122
(0.022) (0.116) (0.485) (0.090) (0.493)

dependent variable: σ̂

1’ -0.053 0.799 -0.417 1.233 0.153
(0.022) (0.504) (0.074) (0.539)

2’ 0.000 0.676 0.240
(0.000) (0.076)

3’ -0.037 0.545 0.233 -0.174 0.783 0.263
(0.012) (0.083) (0.323) (0.062) (0.306)

4’ 0.006 -3.991 0.132
(0.001) (0.714)

5’ 4.992 -32.729 -10.958 2.079 -2.937 0.154
(4.205) (27.284) (9.820) (2.097) (3.509)

6’ 0.000 0.655 0.237
(0.000) (0.067)

7’ 0.003 0.641 -0.533 -0.008 0.763 0.243
(0.017) (0.098) (0.468) (0.094) (0.398)

∗ denotes a coefficient that has been multiplied by 100
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Table 13: The relation between short rate volatility and the yield curve
This table contains the results of regressing the short rate variance on the first three principal components.
The first set of coefficients are indirect estimates implied by the estimated parameters of the A1(4) USV
model. These are computed from the covariance matrix of the state vector using the fact that the principal
components are linear in that vector. Point estimates are implied by the parameter values in Table 3, while
numbers in parentheses denote posterior standard deviations. The second set of regression coefficients come
regressing the GARCH(1,1) variance computed from six-month yields on the three principal components
over the 1988-2002 sample. The values in parentheses are Newey-West standard errors calculated using 20
lags.

Intercept 1st 2nd 3rd R-Squared
PC∗ PC∗ PC∗

A1(4) USV model-implied population regression coefficients

Point Estimate -0.125 2.738 -0.789 0.563 0.397
Posterior Std. Dev. (0.065) (1.509) (0.259) (1.417) (0.190)

regression coefficients from GARCH and sample principal components

OLS Estimate -0.137 0.933 -0.277 2.106 0.262
Newey-West Std. Err. (0.039) (0.593) (0.135) (0.811)

∗ denotes a coefficient that has been multiplied by 1000
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Table B1: Yield fits for A1(3)USV with and without high frequency data augmentation
This table contains statistics on the in-sample fits of zero coupon yields (Y ). For each model, fitted yields (Ŷt )
are calculated for .5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table examines the bias, root mean squared error,
and autocorrelation of êt = Yt − Ŷt , where Ŷt denotes the model fitted value. The sample size is 782 weeks for
in-sample statistics and 104 weeks for out-of-sample statistics.

In sample Out of sample

Without With Without With
HFDA HFDA HFDA HFDA

mean ê (basis points)

6-month -5.24 -5.41 -2.74 -2.94
1-year -1.04 -1.10 -2.13 -2.20
2-year 3.28 3.33 1.29 1.38
3-year 4.20 4.31 2.74 2.90
4-year 3.27 3.37 2.81 2.96
5-year 1.53 1.59 2.11 2.21
7-year -2.22 -2.28 -0.51 -0.56
10-year -5.62 -5.87 -6.27 -6.59

RMSE (basis points)

6-month 14.61 14.69 12.48 12.57
1-year 6.58 6.43 4.25 4.07
2-year 10.36 10.21 8.87 8.64
3-year 10.05 9.93 9.00 8.77
4-year 7.95 7.81 7.20 6.95
5-year 5.50 5.32 4.99 4.68
7-year 5.55 5.45 4.58 4.44
10-year 14.11 14.17 11.39 11.58

autocorrelation of ê

6-month 0.96 0.96 0.96 0.97
1-year 0.72 0.76 0.21 0.23
2-year 0.80 0.83 0.71 0.74
3-year 0.79 0.82 0.68 0.71
4-year 0.71 0.75 0.52 0.55
5-year 0.53 0.60 0.17 0.17
7-year 0.57 0.66 0.55 0.62
10-year 0.92 0.94 0.92 0.93
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Figure 1

Posterior histograms of the A1(3)USV model

This figure depicts histograms of the MCMC draws from the posterior distribution of several parameters
of the A1(3) USV model. Solid vertical lines denote the multivariate posterior median reported in Table
3, while dashed lines denote 2.5 and 97.5 percentiles of the posterior.
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Figure 2

Actual and model-implied curvature

Actual curvature, depicted by the solid black line, is defined as Y10y − 2Y3y + Y6m. Model implied
curvature is calculated using smoothed estimates of the model state variables. For the A1(3) and A1(4)
USV models, fitted curvatures are almost indistinguishable from the actual. The vertical dotted line
denotes the end of the estimation period.
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Figure 3

Rolling window and model-implied short rate volatility

In each panel, the solid line depicts the fitted path of the volatility of the 6-month yield that constructed from rolling
30-day windows. The dashed lines correspond to smoothed estimates of instantaneous volatility implied by each of
the affine specifications considered. The vertical dotted lines denote the end of the estimation period.
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Figure 4

The maturity/volatility relation

In each panel, the thick grey line depicts the sample standard deviation of monthly changes in yields as a function
of maturity. Distributions of model-implied sample standard deviations were calculated by simulation under the
parameter values given in Table 3. The means and 95% confidence intervals of these distributions are depicted by
solid and dashed black lines, respectively.
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Figure B2

Smoothed state variables for A1(3)USV with and without high frequency data augmentation
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