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ABSTRACT

We introduce a growth model of technology diffusion and endogenous Total Factor Productivity
(TFP) levels both at the sector and aggregate level. At the aggregate, the model behaves as the
Neoclassical growth model. Our goal is for this model to bridge the gap between the theoretical and
empirical studies of technology adoption and economic growth. We bridge this gap in three
important directions. 

First of all, we use our model to show how one unified theoretical framework is broadly consistent

with the observed dynamics of both economic growth as well as of many different measures of

technology adoption, like adoption rates, capital to output ratios, and output ratios. Secondly, we

estimate our model using a broad range of technological adoption measures, covering 17

technologies and 21 industrialized countries over the past 180 years. This allows us to show how

its predicted adoption patterns fit those observed in the data. Finally, we estimate the disparities in

sectoral productivity levels as well as aggregate TFP that can be attributed to the differences in the

range of technologies in use across countries. 

These disparities are almost completely determined by the quality of the worst technology in use,

rather than by the quality of the newest technology that has just been adopted or by the number of

technologies in use. Further, we find that the TFP component attributable to the range of

technologies used is highly correlated with overall sectoral TFP differences across countries, though

the variance is smaller.
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1. Introduction
Recent evidence, like Jerzmanowski (2002), Hall and Jones (1999) and Klenow and Rodríquez-Clare (1997),
suggests that the bulk of cross-country differences in levels of output per capita is due to differences in the level
of total factor productivity (TFP) rather than differences in the levels of factor inputs. These cross-country TFP
disparities can essentially be divided into two parts. The first part consists of the productivity differences due to
countries using different ranges of technologies. The second part is due to the different levels of efficiency with
which all technologies are operated.

There are several theories that propose mechanisms that might lead countries to adopt different sets of
available technologies. Among these are Basu and Weil (1998) and Parente and Prescott (1994) for example. The
problem with theories that claim that technology adoption lags, i.e. the first component of TFP disparities
described above, are an important factor part of TFP differences is that there is little or no empirical evidence to
this extend. There are two important reasons why the empirical growth literature trails the theoretical one in this
respect. 

First and foremost there used to be no data sets that would allow for an extensive analysis of cross-country
differences in the adoption patterns of several technologies. Because of this lack of data, most of the studies on
technology adoption differences focused on one particular technology, a small number of countries, and only a
few points in time. Recent examples of this approach are Saxonhouse and Wright (2000) and Caselli and
Coleman (2001). However, Comin and Hobijn (2004) introduced a historical cross-country data set on
technology adoption that covers not only a relatively broad sample of countries but also a broad range of
technologies as well as a very long time period.

The second reason for the gap between the empirical and theoretical literature on technology adoption is
that there are not many macroeconomic models that provide a mapping between their theoretical concept of
technological progress and variables that are actually measurable in the data. On the theoretical side, most
models provide predictions on the path of capital labor and capital output ratios. On the empirical side,
conventional measures of technology adoption, like the adoption shares analyzed in Griliches (1957), Mansfield
(1961), and Gort and Klepper (1982), are not directly interpretable in the context of these variables. They are also
harder to compute, since they require a measure of the number of potential adopters.

In this paper we introduce a growth model where different firms simultaneously produce intermediate goods
with various productivity levels. New intermediate goods are potentially more productive, but are initially
operated below their full-efficiency. The array of intermediate goods adopted for production is endogenous. At
the micro level, our model is a model of slow diffusion of technologies (embobied in new intermediate goods)
qualitatively consistent with the stylized facts: S-shaped diffusion curves and investment in old vintages. The
endogenous adoption of new technologies provides a theory of TFP both at the sector and aggregate level.
Further, the aggregate behavior of our model is identical to the Neoclassical growth model. 

The theoretical literature on growth and diffusion is quite thin. Chari and Hopenhayn (1991) present the
model that we believe comes closest to ours. There are several important differences between Chari and
Hopenhayn (1991) and our model: First, our model has capital. This is important because most of the
technologies that we measure are embodied. Chari and Hopenhayn instead model disembodied technologies.
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Second, our model aggregates to the Neoclassical growth model. This greatly simplifies the investigation of the
aggregate and sectoral behavior of our model along the transition path. But, beyond the independent interest of
our model, what is important for our purposes is that it is very well suited to bridge the existing gap between the
theory on growth and adoption and the data. 

In the tradition of the growth literature, our model provides predictions for the path of aggregate capital-
output ratios. It also has implications for the paths of technology specific capital-output and output ratios. It
shows how the latter can be used as measures of technology adoption and what growth theory predicts about
their dynamic behavior. It also shows how these measures map into the more conventional adoption shares,
which were used by Griliches (1957) and Mansfield (1961). The advantage of developing a theory in terms of
capital-output and output ratios is that these correspond directly to the cross-country measures of technology
adoption for which we have most data.

We use the Historical Cross-Country Adoption Data set (HCCTAD), introduced in Comin and Hobijn
(2004), to estimate our model. Specifically, we use data for 17 technologies in 21 industrialized countries
spanning 180 years. We show that the dynamics of technology adoption predicted by the model are qualitatively
and quantitatively consistent with the general patterns of technology adoption observed in the data for this broad
range of technologies and countries. Our results suggest that there are substantial differences in the rate at which
countries absorb new technologies and increase the efficiency level at which they use them.

Finally, we use the structural estimates that we obtain from our model to measure the productivity
differentials between countries that can be attributed to the disparities in the technology adoption patterns that
we observe. This component of productivity is determined mainly by the level of the least advanced  technology
in use. We call this margin capital dragging. We observe also that different countries tend to lead in the
productivity component associated with technology adoption for different technologies. 

These differences are, in general, significantly correlated with overall sectoral productivity disparities.
However, their variance is substantially smaller. Hence, our analysis still leaves a large part of sectoral
productivity differences to be explained by conventional TFP factors that affect all technologies that are used in
the same way. 

The structure of this paper is as follows. In the next section, we introduce our model. In Section 3 we derive
its equilibrium dynamics. Section 4 contains the main theoretical contribution of the paper. It explains what we
assume for the path of vintage specific technological progress in this model and what it implies for the adoption
of technologies. Section 5 is devoted to mapping our theoretical concept of technological change into variables
that are measured in the data. Section 6 contains a description of our estimation strategy, while Section 7
contains the results obtained by applying it to the data from Comin and Hobijn (2004). Section 8 concludes.

2. Model
Our aim is to model the interaction between economic growth and the adoption of several major technologies.
This is why we consider a multi-sector growth model in which each sector uses a major technology.
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Households

Households derive utility from a countably finite number of different final goods and services. These goods and
services are indexed by i=1,�,N. Consumption of each of these goods in period t is denoted by Cit. Overall
utility is derived from a CES composite of these individual goods. This composite equals

ρ
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=
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itt CC  where 0<ρ<1 (1)

The household maximizes the present discounted value of utility derived from its path of consumption
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and is maximized subject to the flow budget constraint

stststststststst CLWBrB ++++++++ −Ξ+Π++=& (3)

Here, Bt+s reflects the household�s bondholdings, rt+s is the real interest rate at time t+s, Wt+s is the real wage rate,
Π t+s are the aggregate real flow profits that are distributed to the households, and Ξt+s represents additional
payments that households receive from businesses. We abstract from employment fluctuations and assume that
the representative household inelastically supplies a unit measure of labor, such that Lt+s=1 for all s=[0,∞).

Note that we have written the budget constraint such that the consumption composite Ct is the numeraire
good, which by definition has a price equal to one in every period. Let Pit be the price of good i at time t and let
Pt=1 be the price of the consumption composite Ct. The CES structure that we have assumed implies that in that
case
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In terms of the consumption aggregate, this optimization problem yields an Euler equation of the form

[ ]βσ −= t
t

t r
C
C&

(5)

Demand for the individual goods is implied by the CES structure and determined by

titit CPC ρ−
−

= 1
`1

(6)

This is the consumption demand function that the final goods producers face.
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Final goods sectors

This economy has N final goods sectors, each of which produces a different final good or service indexed by i.
The sector that produces the final good of type i consists of a continuum of perfectly competitive firms that each
use a constant returns to scale CES production technology.

This allows us to represent the aggregate actions of these firms as if taken by a representative firm. The final
good of type i is produced using a continuum of intermediate goods. The continuum of intermediate goods that
is used for the production of final good i is denoted by the interval [ ]itit vv , . These intermediate goods are

combined to produce final good i, using the production function1
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The final good producers sell their output at price Pit and buy the intermediate good of type v at price Pivt.
This results in the demand functions for the intermediate inputs that read
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Where Pit is determined by the zero profit condition for this perfectly competitive sector and equals
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For simplicity, and to allow for aggregation of the various sectors, we will assume that the elasticity of
substitution between different intermediate goods, i.e. 1/(1-θ), is constant across the final goods sectors.

Intermediate goods sectors

Each intermediate good used in the production of the final good i is produced using capital goods of a particular
technology vintage. In particular, the output of intermediate good v for final good i at time t is assumed to be
produced using a Cobb-Douglas production technology of the form

αα −= 1
ivtivtivtivt LKZY (10)

                                                
1 Levhari (1968) provides a microfoundation of a CES production function in an environment where each producer faces a heterogeneous

level of productivity. Closer to our context, Anderson, de Palma, and Thisse (1993) introduced the microfoundations of CES
preferences. They show how they can be interpreted as the aggregate utility representation of a market consisting of a
continuum of heterogeneous agents each making a discrete choice among the goods available and then choosing how
much to consume of that good. This analysis can easily be extended to a production context where firms select which
intermediate goods to use. 
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Here, Zivt is the vintage specific productivity level, which potentially varies over time, and Kivt is the capital stock
that embodies technology vintage v for the production of i. Finally, Livt is the amount of labor inputs used in the
production of Yivt. 

The vintage specific productivity level is similar to that in classic vintage capital models like Johansen (1959)
and Solow (1960). What is different here from these models is that Zivt changes over time.

The intermediate goods producers are monopolistic competitors. The monopoly power that they possess is
due to their proprietary knowledge of how to convert a unit of the standardized investment good into a unit of
the capital good that embodies technology v for the production of good i.  This conversion is reversible so that it
also yields a unit of the standard investment good for every unit of Kivt disinvested.

Firms are assumed to take the input prices, i.e. the investment price and the real wage rate, as given. In each
period, the supplier of vintage v for good i makes flow profits equal to its revenue minus its capital and labor
expenses as well as minus a fixed cost of doing business in sector i in period t. Mathematically, these flow profits
can be written as

itivttivtivtivtivt LWIYP Ξ−−−=Π (11)

where Ξit represents the per period cost of operating in sector i in period t.
Each intermediate goods supplier is assumed to maximize the present discounted value of its flow profits

over the period that it is in business. Let ivt denote the time in which the supplier enters the market. Similarly, let

ivt denote the time the supplier exits the market. The supplier�s objective is to maximize

dte ivt

t

t

dsriv
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t

s

Π
∫
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−

0 (12)

subject to the technological constraint, (10), the demand function, (8), as well as the capital accumulation
equation

ivtivtivt KIK δ−=& (13)

Solving the above dynamic profit maximization of the producer of vintage v for good i yields the following
optimality condition for labor demand

( )
ivt

ivtivt
t L

YPW θα−= 1 (14)

where (1-α)θ is the labor elasticity of revenue. Similar to Jorgenson (1963), the dynamic optimality condition for
investment of this supplier is a form of the user cost equation of capital. It reads

( )
ivt

ivtivt
t K

YPr αθδ =+ (15)

Where (rt+δ) is the user cost of capital.
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So far, we have solved the problem for the supplier under the assumption that he was operating in the
market. Here we determine the conditions under which this is actually the case. That is, we derive what
determines ivt and ivt . 

The supplier of vintage v for good i will produce as long as its flow profits, excluding it capital expenditures,
exceed the user cost its incurs on its capital stock. That is, it will produce as long as

[ ] ( ) ivttitivttivtivt KrLWYP δ+≥Ξ−− (16)

Substituting in the optimality conditions that we derived above, we obtain that this implies that vintage suppliers
are in business as long as their revenue satisfies

θ−
Ξ≥

1
it

ivtivtYP (17)

Hence, suppliers that do not generate enough revenue to recoup the operating cost in their sector will exit the
market.

Investment goods sector

What remains to be defined is how the standardized investment good is produced. Throughout this paper, our
aim is to consider technological adoption in a model that is as similar as possible to the benchmark one good
neoclassical growth model. Because of this, we have chosen to specify the investment good producing sector in
such a way that the prices of the consumption and investment goods are equal at any point in time.

We do so by assuming that the investment good producing sector is perfectly competitive. Each competitor
in this market uses investment demand of each final good i, which we will denote by Iit, in a production function
that this similar to the preferences of the household. That is,
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where It is the total output of the standardized investment good.
 This choice of production function and the zero profit condition for this perfectly competitive market yield

that the price of the investment good has to equal
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which equals the consumption price level derived in (4), which, in turn, equals one by assumption.

3. Equilibrium and aggregation
Before we solve for the dynamic equilibrium path of this economy, it is worthwhile to first derive some
aggregation results that reduce the set of aggregates relevant for the equilibrium dynamics.
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Derivation of aggregates

The aggregate representation of the model economy that we develop is identical to that of the standard one-
sector neoclassical growth model. Hence, the aggregates that we derive will coincide with the equilibrium
variables of the neoclassical growth model. The important difference with the standard neoclassical growth
model is that the endogenous adoption of technologies provides a theory for endogenous TFP both at the sector
and aggregate level.

Under the optimality conditions derived above, output in each final goods sector can be represented as being
produced using a Cobb-Douglas production function of the form2

αα −= 1
ititit LKZY

it
(20)

where the labor input, Lit, is just the total amount of labor demanded by the producers in the sector. That is,

∫=
it

it

v

v ivtit dvLL . (21)

Writing the capital input in terms of units of the standardized investment good allows us to aggregate capital
across the various vintages as follows: 

∫=
it

it

v

v ivtit dvKK . (22)

The total factor productivity level is given by
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θ
θ
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1it

it
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v ivtit dvZZ . (23)

The theory of endogenous TFP that we present in this paper can be understood by looking at this expression.
Recall that, each intermediate good has a specific total factor productivity level  (Zivt). The TFP level in the sector
results from two mechanisms. First, an endogenous measure of intermediate goods (determined by the
interval [ ]itit vv , ) are used in production. Hence, the TFP level depends on the total factor productivity embodied

in the intermediate goods that enter in production.  Second, the CES aggregation of the intermediate goods
creates an externality from the variety of intermediate goods used in production. This externality shows up in the
TFP measure Zit.

What is important for our analysis is not only that the production functions aggregate to a simple
representation, but also that the optimality conditions for each sector can be aggregated. That is, as shown in
Appendix A, the optimality conditions, derived in the previous section, aggregate to

( )
it

itit
t L

YPW θα−= 1  and ( )
it

itit
t K

YPr αθδ =+ (26)

                                                
2 We leave the details of the derivation of these sectoral production functions for Appendix A.
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which implies, together with the derived sectoral production function, that the decentralized allocation of
resources in each sector is as if decided upon by a single representative firm which equates marginal revenue to
marginal cost.

Similar to the Cobb-Douglas vintage production functions aggregating to a Cobb-Douglas sectoral
production function, the Cobb-Douglas sectoral production functions aggregate to an aggregate Cobb-Douglas
production function. This production function reads

ttttt ICLKZY
t

+== −αα 1 (27)

and the corresponding total factor productivity level is defined as
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while the capital and labor aggregates equal
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As is shown in Appendix A, the optimality conditions also aggregate to the economy wide level. Just like the
sectoral input aggregates, the aggregates Kt and Lt satisfy

( )
t

t
t L

YW θα−= 1  and ( )
t

t
t K

Yr αθδ =+ (30)

The decisions of the continuum of different producers that are distributed over N sectors in this economy can
be represented as if made a by a representative firm using a Cobb-Douglas technology. Moreover, the aggregate
capital stock also satisfies the accumulation equation

ttt KIK δ−=& (31)

where aggregate gross investment is defined as

∑
=

=
N

i
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1
 and ∫=

it

it

v

v ivtit dvII (32)

Thus, at the aggregate level this economy is equivalent to that of the standard one-sector neoclassical growth
model. The only difference is that, because of the monopoly power of the intermediate goods suppliers in each
sector, factor payments to capital and labor only make up a fraction θ of nominal output. 

We will assume that the flow profits of the intermediate goods suppliers as well as the costs of doing
business these suppliers incur flow back to the households, in the form of Π t and Ξt respectively3. Here

                                                
3 The results in Caselli and Ventura (2000) imply that aggregate household behavior, given the CRRA preferences in our model, does not

depend on how the (lump-sum) payments of Πt and Ψt are distributed across households. Therefore, we do not make any specific
assumptions about to which households these payments are made.
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These two payments make up the remaining fraction, (1-θ), of nominal output.

Aggregate equilibrium dynamics

The preceding results imply that the dynamics of the aggregates in this model are determined by the following
two differential equations. The first is the equilibrium consumption Euler equation, which equals
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The second is the capital accumulation equation
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Apart from one exception, this system is identical to the one that determines the equilibrium dynamics of
consumption and capital in the standard one sector neoclassical growth model. The exception is the inefficiency
due to the wedge that the monopolistic competition between the intermediate goods suppliers drives between
the social and private marginal return to capital. This is reflected by the factor θ multiplying the social returns to
capital in (34).

Sectoral equilibrium dynamics

Underneath the aggregate dynamics of our economy are the sectoral dynamics. These determine the path of
technology adoption in each of the N final goods sectors. We explain the details of the derivation of these
equilibrium dynamics in Appendix A. The following ratio�s make up the gist of them and are what is relevant for
the rest of this paper.

First of all, the sectoral to total output ratio and the vintage to sectoral output ratio are given by
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respectively. Moreover, the resulting prices are given by
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Thus, this derivation allows us to write the sectoral and vintage specific equilibrium quantities in terms of the
underlying levels of total factor productivity.

Contrary to the standard neoclassical growth model, in which total factor productivity evolves exogenously,
the sectoral total factor productivity level in this economy is determined endogenously. Equation (23) implies
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that the sectoral total factor productivity level Zit is a function of the range of technology vintages that are
operated in period t. Thus, it depends on itv  and itv . These vintages are determined by the entry and exit

condition (17), which, using the equilibrium results above, can be written as

itit
itit

it
ivt ZZ

YP
Z =
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 Ξ
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(38)

Solving this equation requires making a set of additional assumptions about the paths of Zivt and Ξit. These
assumptions determine the shape and pattern of technological progress in our model. Since these assumptions
are one of the major contributions of this paper and, above all, are crucial to the adoption dynamics in our
model, we introduce them in detail in the next, separate, section.

4. Technological progress and adoption
In the previous section we derived the aggregate equilibrium dynamics of our model economy and showed that,
at the aggregate level, this economy is observationally equivalent to the standard neoclassical growth model. The
main focus of this paper is the integration of these aggregate dynamics with a theory of technology adoption of
various major technologies in the economy.

In this section we introduce our specification of technological progress and show what it implies for the
dynamics of technology adoption in our model economy. We do so in three steps. In the first step, we introduce
our assumption about the shape of technological progress in this economy. In the second step, we solve for the
implied values of itv  and itv  under these assumptions. In the third step, we solve for the theoretical measures of

technology adoption that result from this solution and that are of interest for our empirical analysis.

The shape of technological progress

The main difference between our model and the most commonly used vintage capital models is that we allow for
the vintage specific productivity level, Zivt, to vary over time. In fact, this variation will be crucial in what is to
follow.

For Zivt, we will assume that it satisfies

( )*
* ititivivt vvfZZ
it

−= (39)

This specification of the vintage specific productivity profile in itself does not provide us with a solution to our
model. However, it provides us with a framework to capture the shape of technological progress that we are
after.

In order to capture this shape, we make the following additional assumptions. The first is that
*

*
iti

it

vg
itiv
eaZ = (40)

Without loss of generality, we will also assume that tvv iit += *
0

* . This assumption allows us, in equilibrium, to

interpret gi as the rate of technological change in sector i. For the function Fi we assume that 
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( ) xg
i

iexF =  for x≤0, ( ) ii gxxF <∂∂ ln  and ( ) 0ln 22 <∂∂ xxFi  for x>0 , and ( ) 0lim =
→∞

xFix
(41)

The economic implications of this assumption are easiest discussed in the context of an example. For this
purpose, consider Figure 1. This figure plots a representative shape of the logarithm of the vintage technology
frontier at a particular point in time. 

The dashed line depicts the feasibility frontier for each vintage. This is the maximum productivity level that
each vintage will converge to as t goes to infinity. All vintages below *

itv  are operated at this maximum

productivity level and can be interpreted as fully matured technologies.
Vintages that are beyond *

itv  are operated below their long run potential. In fact, our assumptions on Fi are

such that vintages that are further beyond *
itv  are operated at a smaller fraction of their long-run maximum. We

assume that, in the limit, this fraction goes to zero when ( )*
itvv −  goes to infinity.

In principle, our specification of technological progress is rather mechanical and we prefer to interpret it as a
reduced form specification rather than a microfounded one. There are several papers, however, that provide
some insight in which economic processes might generate such a shape of the technological frontier. First of all,
the increasing fraction of maximum efficiency at which the technology is operated can be directly interpreted as a
learning curve. That is, evidence on learning by doing, as in Bahk and Gort (1993), Irwin and Klenow (1994), and
Jovanovic and Nyarko (1995), would generate a vintage productivity profile that is similar to that in Figure 1. 

Learning by doing is not the only mechanism that could be behind this pattern, though. If incumbent firms
lobby the political system to essentially tax newer entrepeneurs then one might also observe a pattern like this.
An example of a model where incumbents apply resources to lobbying to the detriment of their potential
competitors is Holmes and Schmitz (2001). 

Fernandes (2003) argues that new technologies might not be adopted because complementary financial
innovations might be needed to accommodate the risk associated with their use. Although her argument is not
directly applicable here, it does point out the fact that the productivity of newer technology vintages might
improve over time because markets as well as complimentary inventions adjust to them.

Entry and exit revisited

Our assumptions about the functional form for the shape of the technological frontier in each sector allow us to
write the sectoral total factor productivity level as

( ) θ
θ

θ
θ
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it
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d itivit dxxFZZ  where ( ) ( ) itititititit dvvvvd =−<−= ** (42)

Because the entry and exit condition (38) holds with equality for both itv  and itv , we know that
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In order for us to be able to solve this condition we need to make an assumption about the path of Ξit over
time. We will assume that the operating cost in a sector is proportional to the total revenue in that sector.
Mathematically

ititiit YPζ≡Ξ (44)

When this assumption is applied to the entry and exit condition above, we obtain that in every period itv  and

itv  are determined by the following two conditions

( ) ( ) ( ) θ
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d i
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itiiti dxxFdFdF  where ( ) ( ) itititititit dvvvvd =−<−= ** (45)

Note that this system does not depend on time. Thus, in equilibrium, itd  and itd are constant over time.

Because of this, we will denote them by id  and id in the rest of this paper. 

The above result also means that the width of the range of vintages used in each sector is constant over
time4 and moves because of the progress in v*it . In fact, we can use the solution for id  and id to calculate the

sectoral level of total factor productivity, which equals
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d

d itivit dxxFeadxxFZZ (46)

Since the integral term of this expression is constant over time, the growth rate of Zit equals gi. Hence, our set of
assumptions here implies that sectoral total factor productivity levels grow at a constant rate over time. 

Graphically, the underlying process of technological change in each sector boils down to Figure 2. In each
period the technological frontier moves parallel to the feasibility frontier. This shift makes the productivity level
of the set of implemented vintages grow at the rate at which the productivity of v*it grows. This causes the
sectoral TFP level to grow at the same rate as well.

Measures of technological adoption

Our main aim is to derive the path of technological adoption in each of the sectors in the economy. In order to
derive this path, we first have to define how we measure technological adoption. The measures that we are
interested in are ones that we subsequently are able to measure in the data. In this subsection we introduce the
theoretical counterparts of our empirical measures. The available empirical measures are discussed in Section 6.

There are two main measures of interest that we use in our empirical analysis. The first is the vintage output
to GDP ratio. Mathematically, this is defined as Yivt/Yt. The second is the vintage capital to GDP ratio, which
equals Kivt/Yt.

These two ratios are different from the measures that are most commonly considered in studies of
technological progress. Generally, studies of technological progress, like Grilliches (1957), Mansfield (1961) and
                                                
4 The constancy of this range is a result of equation (44). Other assumptions about the path of sector specific costs potentially lead to time

variation in this range, mainly because they could imply an interaction between sector i�s technology choice and macroeconomic
aggregates.
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Gort and Klepper (1982), for example, consider adoption shares and note that adoption share curves are
commonly S-shaped. 

As it turns out, our model also generates such curves. They can be derived from the two ratios considered
above. In order to show how our model is consistent with previous empirical work on adoption, we will present
our theoretical results in terms of the two ratios that we use in our empirical analysis as well as in terms of the
adoption shares. 

These adoption shares in our model5 will be the share of output of vintage v in total output of sector i and
the share of capital of vintage v in the capital stock of sector i. These equal, respectively,

 ∫
it

it

v

v iutivt duYY  and ∫
it

it

v

v iutivt duKK (47)

The above ratios, Yivt/Yt and Kivt/Kt, are perfectly well defined from a theoretical point of view. However, they
are not empirically viable yet, because they require measuring data on a continuum of vintages of technologies.
Such data are simply not available. Therefore, in order to make our theory empirically applicable, we need to map
the continuum of vintages into a countable number of technology vintages that is observed in the data.

5. From adoption in the model to adoption in the data
Where our model has a continuum of vintages for each sector i, we only observe a discrete number of
technology vintages in the data. This section explains the way we map this continuum of vintages into the
discrete number of vintages that we observe in the data. We will start off this explanation with an example and
then proceed to generalize from there. After explaining this mapping, we derive what our theory predicts for the
various observed measures of technological adoption.

Example: Merchant vessels

Merchant ships have historically been classified into three different categories: (i) sailships, (ii) steamships, and
(iii) motorships. Consider merchant shipping services as one of the sectors, i, in the model economy. Then our
theoretical setup considers a continuum of different technology vintages that are, have been, or potentially could
be used to provide shipping services. What we will assume is that the continuum of merchant shipping
technology vintages can be split into three intervals, as depicted in Figure 3. The first interval, (-∞,vsteam], is
assumed to be the set of vintages that are all sailships. The second, (vsteam,vmotor] is assumed to be the set of
steamship vintages. Finally, we will assume that (vmotor,∞) consists of motorships. For our empirical application,
the cut off vintages, vsteam and vmotor are both unknown parameters. We do have some historical information,
though, that allows us with approximate values for these parameters. The first steamboat was built in 1788 in
Philadelphia by Fitch. Hence, vsteam probably corresponds to date shortly after 1788. The diesel engine, which
propels most motorships, was introduced in 1892. Therefore, we list this as the approximate date for vmotor in the
figure.

                                                
5 In the empirical adoption literature, these share are generally defined in terms of the fraction of firms rather than the fraction of the

capital stock or output.
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Mapping into a discrete number of vintages

Our data cover several major technologies, which we group into technology groups, like merchant shipping in
the example above. For our empirical application we use these technology groups as the equivalent of our sectors
i. 

Within each group, we order the technologies sequentially; like sailships, steamships and motorships are
ordered in the example above. We denote these technologies within each group by the index τ. For each of these
observed technologies, we then assume that they correspond to a set of vintages, which we denote by Vi(τ), such
that
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V (48)

The adoption measures for the continuum of vintages that we considered before can be converted into measures
for the countably finite number of vintages that we have data for by integrating them over the above technology
sets, Vi(τ).

Predicted technology adoption patterns

Now that we have defined the theoretical equivalent of the observed technologies in our data set, we can derive
what our model predicts about the patterns of adoption of these technologies.

First of all, consider the output and capital to GDP ratios. For technology τ of group i, we will denote these
ratios by mi,Y,t(τ) and mi,K,t(τ) respectively. These ratios equal

( ) ( )
( )
∫=
τ

τ
iV

tivttYi dvYYm ,,  and ( ) ( )
( )
∫=
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τ
iV

tivttKi dvYKm ,, (49)

They map into the adoption shares that have been used in a broad number of studies in the following way
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The calculation of these shares in (50) requires having observations on all technology vintages used, while the
calculation of the ratios in (49) only requires data on one technology vintage and a measure of real GDP.

In appendix A we derive the path of the adoption measures as a function of time. This yields
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where
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and τiv~ is defined as the time gap between the time of the introduction of the τ technology and the efficient

vintage at time 0, i.e. ( )*
0ii vv −τ , and the integration limits in the ξ terms denote the vintages used that are

associated to the technology τ in sector i at time t.6

Adoption disparities and cross country per capita income differences

Our empirical goals in this paper are threefold. First of all, we aim to compare the theoretical adoption patterns
generated by our model with those observed in the data for a broad range of major technologies. Secondly, we
want to measure the TFP component that is associated with the adoption of new technologies and understand
what determines the observed cross-country variation in this component. Finally, we try to understand what part
of the productivity disparities across countries is the result of disparities in the rate at which they adopt new
technologies. 

To pursue these last two questions, it proves useful to decompose the sector level TFP (Zit) as follows:
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Throughout, we assume that long run growth in each sector is the same across countries, such that there is no
cross-country variation in gi. Furthermore, we assume that technologies across countries are identical, except for
ai, v*i0, and the function Fi(x). Hence, for our empirical analysis we impose that θ is also constant across
countries.7

These two assumptions imply that the percentage difference in sectoral productivity levels between two
countries can be approximated by
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The second part of this term is the part that is attributable to the differences in cross-country technology
adoption patterns, i.e. to the differences in the ranges of vintages of technologies that countries employ in
production.

                                                
6 See the appendix for the details on the integration limits. Here viτ=-∞ if the technology does not have a predecessor and viτ+1=∞ if it

does not have a successor (yet).

7 Equation (54) shows that our model implies that there are persistent cross-country disparities in sectoral productivity levels. This
implication is consistent with some of the evidence presented in Bernard and Jones (1996a, 1996b). They suggest that there is little
evidence of convergence in industry productivity levels, especially for manufacturing.
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For the interpretation of the results to follow, it is actually worthwhile to consider the interpretation of the
above decomposition. Figure 4 illustrates this decomposition graphically. The model implies a distribution of
capital for technology i, Kivt, over a time varying support of technology vintages, given by [ ]itit vv , . This

distribution is depicted in the figure. There are three aspects of this distribution that are directly reflected in the
TFP measure ln(Zit). 

These aspects are indicated by (I), (II), and (III) in the figure. They correspond to the following
decomposition
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Part (I) of this decomposition reflects specific TFP differences that are unrelated to the technology adoption
decision that is central to this paper. It essentially determines the height of the distribution and can thus be
interpreted as the determinant of capital deepening in this model. Parts (II) and (III) are related to the range of
technology vintages in use at each time. Part (II) reflects the width of the range of technologies in use, because of
this we refer to it as the capital widening part. Because of the CES structure of the production function in our
model, the marginal product of each capital vintage is infinite at zero. Therefore TFP is increasing in the degree
of diversification of production among different technology vintages. Finally, part (III) is determined by the
location of the range of vintages, which we identify by its lowerbound. Because this part is identified by the least
productive vintage used, we refer to it as capital dragging. That is, the less advanced the vintages that are dragged
along, the lower total factor productivity.

The capital deepening part, i.e. (I), on the one hand, corresponds closely to the traditional concept of TFP in
the neoclassical growth model. It contains all factors that which affect the productivity of all capital in place in
the same way. The capital widening and dragging parts, i.e. (II) and (III), on the other hand, are specifically
identified by the technology adoption structure with which we extended the model in this paper. It is exactly the
magnitude of the disparities in capital widening and dragging across countries that is our focus.

All the parameters that are necessary to calculate parts (II) and (III) of (55) can be estimated by fitting the
observed adoption patterns. Hence, our estimation results serve three purposes. First of all, they enable us to
consider how well our model fits the observed technology adoption patterns. Secondly, they allow us to infer the
sectoral productivity disparities due to technology adoption differences and to understand the role of capital
widening and capital dragging in this TFP component. Finally, they permit us to compare the implied measure of
TFP disparities due to technology adoption differences with the sector level cross-country productivity
differences.

6. Estimation
We estimate the parameters of our model separately for each of major technology categories / country
combination using the Generalized Method of Moments (GMM). Our estimation procedure is an application of
GMM with nonlinear deterministically trending variables, considered in Andrews and McDermott (1995). In this
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section we explain how we apply this procedure to our model. The resulting method is a hybrid of reduced form
and structural estimation. After calibrating a unique set of values for g, θ, and ζ across time, countries, and
technology groups, we only structurally estimate the parameters that are relevant for accounting for the
productivity differences due to adoption disparities. The other parameters are estimated in reduced form.

Functional form of F(.)

Since our estimation procedure is parametric, it requires us to make a specific assumption about the functional
form of the function F(.), which determines the vintage productivity profile. In principle, any functional form
that satisfies the properties described in (41) can be used.

In practice, however, it is important to choose a functional form that satisfies three main criteria. These are
(i) all relevant parameters needed for the accounting exercise of equation (54) are separately identified, (ii) the
functional form is flexible enough to fit the wide variety of adoption patterns in the data, (iii) the functional form
is parsimonious in its parameterization and all parameters have an economic interpretation.

There are many functional forms for F(.) that might fit this bill. The one that we will use for our analysis is
closely related to the logistic function and equals
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Here gi is the growth rate of Zi, while ψi determines the rate at which the productivity profile falls below the
feasibility frontier for x>0. This can be seen by considering the percentage change of F(.) with respect to x for
x>0. This growth rate equals
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Model specification

For each technology/country combination we observe a time series that reflects the technology adoption pattern
for the technology vintages in the particular country. The model that we estimate for each technology category /
country combination, indexed by i,j, thus has a panel data structure. Each cross-sectional observation is made up
of a technology vintage, indexed by τ.

Depending on whether we have data on the vintage output to GDP ratio or the vintage capital to output
ratio, the observed time series reflect mi,Y,j,t(τ) or mi,K,j,t(τ). Equation (51) implies that, in reduced form, we can
write

( ) ( )τξββτ ττ tjYijYijYitjYi tm ,,,,,,,1,,,,0,,, lnln ++= (58)

and

( ) ( )τξβββτ τττ tjKitjjKijKijKitjKi Ytm ,,,,,,,,2,,,,1,,,,0,,, lnlnln +++= (59)

These are the equations that we will estimate for each technology category.
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In principle, the reduced form coefficients, i.e. the β�s, depend on the structural parameters8. We will,
however, ignore this dependence and will focus our estimation efforts on obtaining estimates of the parameters
that determine the nonlinear deterministic trends lnξ i,Y,j,t(τ) and lnξ i,K,j,t(τ). These are the same parameters that are
needed to account for sectoral productivity disparities, following equation (54).

In particular, for each technology category / country combination, we will estimate the the time gap between
the time of the introduction of the first technology (in the category) and the efficient vintage at time 0
( τiv~ ≡ *

0,,1, jii vv − ) and the curvature of the function that determines the efficiency of each vintage (ψi,j). We do

so conditional on the calibrated values of the parameters θ, gi, and ζ i, as well as the transformed technology cut-
off vintages 1,, ii vv −τ  for the various technology vintages, τ>1.

The estimates of the parameters jid , , and jid ,  are implied by the restriction that equilibrium entry

condition holds. This restriction reads
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It defines ψi,j as an implicit function of θ, gi,  jid , , and jid , . We denote this function as

( )θψ ,;,, ijiji gDd =  and ( )θψ ,;,, ijiji gDd = (61) 

All of this together implies that the equations we estimate are of the form (58) and (59), where the nonlinear
deterministic parts equal9
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and
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8 The reduced form parameters β0 also depend on, among others, units of measurement. If, besides quality growth, one would also

include (constant) price declines of units of output and capital in the model (like models of investment specific technological change)
then β1 would also depend on the relative price declines/increases. In that case, gi is the combined growth rate of embodied and
investment specific technological change. Even though our model only includes embodied technological change, in our application we
will be agnostic about the relative importance of embodied versus investment specific technological change. Hence, we will not restrict
β1 based on our model.

9 The limits of the integrals in these two equations simplify because we only consider the case in which ξi,Y,j,t(τ) and ξi,M,j,t(τ) are strictly
positive. This is, by definition, the case for the observations in our data set.
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The estimation of this model requires the joint estimation of all the non-linear equations in the panel under
several cross equation restrictions. This is the case because both ψi,j and ( )*

0,,1, jii vv −    are constant for all

technology vintages in a technological group.10 

Moment conditions and estimation

For the estimation of our model we use GMM. Our model is one with a nonlinear deterministic trend in the
form of ξ i,Y,j,t(τ) and ξ i,K,j,t(τ). The properties of GMM in case of nonlinear deterministically trending variables are
derived in Andrews and McDermott (1995). They prove that, in this case, GMM parameter estimates are both
consistent as well as asymptotically normally distributed.

The application of GMM requires the choice of a set of moment conditions that are used to identify the
parameters. Since our model is fully deterministic, it does not contain any structural stochastic components that
can be used to define the conditions. Instead, we define the moment conditions in terms of the deviations of the
observed variables from their fitted values, i.e. the residuals of the equations. In this sense, our empirical
methodology amounts to advanced trend-fitting. It is very similar in nature to the empirical analysis in Laitner
and Stolyarov (2004).

Define the residuals ui,Y,j,t and ui,K,j,t, respectively, as

( ) ( ) ( )τξββττ ττ tjYijYijYitjYitjYi tmu ,,,,,,,1,,,,0,,,,,, lnln −−−= (64)

and

( ) ( ) ( )τξβββττ τττ tjKitjjKijKijKitjKitjKi Ytmu ,,,,,,,,2,,,,1,,,,0,,,,,, lnlnln −−−−= (65)

then, for each country, we assume the existence of a set of instruments z1,j,t,�, zr,j,t  for which

[ ] [ ] 0,,,,,,,,,, == tjstjMitjstjYi zuEzuE  for s=1,�,r (66)

One underlying assumption is important to note here. That is that our application of GMM is based on
assumption that ui,Y,j,t and ui,K,j,t are zero mean stationary processes. Since the logarithm of GDP per capita, i.e.
lnYj,t, is part of the equation for ln mi,K,j,t(τ) this means that we implicitly assume that the logarithm of GDP per
capita is trend stationary.

Our GMM estimates of the parameters are the values for ( )*
0,,1, jii vv − �s, and the curvature parameters ψi,j

that minimize a quadratic objective of the sample approximations of the moment conditions of equation (66).
The form of the GMM objective, the structure of the minimization problem, as well as the way in which the
results of Andrews and McDermott (1995) are applicable to this model, are explained in detail in Appendix B.

                                                
10 Note that ( )*

0,,1, jii vv −  is the actual component estimated because τjiv ,
~  can be decomposed in the following way

( ) ( )*
0,,1,1,,,

~
jiiiiji vvvvv −+−= ττ  where  ( )1,, ii vv −τ  denotes the number of years after the discretization point of the first

vintage the discretization point of the τ vintage falls and remember that we use information about the invention of the different
technologies to calibrate these terms. 
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Identification

Before we present the estimates of the structural parameters ψi and ( )*
0,,1, jii vv − , it is important to consider

which features of the data allow us to identify them. The inclusion of an intercept and trend in (58) and (59)
means that what is left for ψi and ( )*

0,,1, jii vv −  to explain is the common non-linear deterministic trend part in

the adoption curves of the technology vintages in each technology group. 
What the model and the data have in common is that the non-linearity of the adoption curves has two very

distinct features. These two features are best illustrated using an empirical example. For this reason, consider the
actual, as well as the fitted, adoption curves for telephones and telegrams in the U.S., which are depicted in Panel
B of Figure 5.

The first obvious property of these adoption curves is their curvature, both in the early adoption phase of a
technology vintage, like that for telephones, as well as in the phase in which a technology vintage declines, like
that for telegrams. This curvature is what determines our estimate of ψi. The second feature is where the
curvature starts in time. This is what determines the estimate of ( )*

0,,1, jii vv − . 

It is important to emphasize that both of these structural parameters (ψi and ( )*
0,,1, jii vv − ) are the same for

all adoption curves fitted within the same technology group. Hence, the fitted curvatures for the curves for both
telegrams, telephones, as well as cellphones, are all based on the same value of ψi.

7. Empirical results
This section is the culmination of this paper in the sense that we present estimates of the model introduced
obtained using an extensive historical dataset on the adoption of several major technologies across countries,
spanning almost two centuries. Our focus is on two particular aspects of the results. First of all, how well does
the model fit the adoption patterns for the broad range of technologies for which we have data? Does the model
capture the common parts of the adoption patterns observed in the data? Secondly, what does the model imply
for the productivity disparities across countries that are caused by them using different ranges of technology
vintages?

We present our results in four parts. In the first part we describe the data used for the estimation. In the
second part we focus on the first aspect of our results, namely the parameter estimates and the quality of the fit
of the model. In the third part we discuss what our results reveal about TFP disparities due to differences in the
types of technologies used across countries. Finally, in the fourth part we summarize what we consider the
bottom line of our results and some of their limitations.

Data

For our empirical analysis we use data from a unique data set, the Historical Cross-Country Technology
Adoption Data set, that we assembled and explained in detail in Comin and Hobijn (2003). The data that we use
here contain both aggregate measures of economic growth as well as measures of technology adoption for 17
major technologies. The data cover the period 1820-2000 and a sample of twenty-one of the World�s leading
industrialized countries. Table 1 lists the countries and technologies covered in the data.
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As can be seen from Table 1, we identify seven main technology categories, identified by i. These technology
categories range from textiles, for which we have data on the adoption of spindles, to telecommunications. Each
category contains two or more technology vintages, indexed by τ. The measures for these vintages range from
steel output, measured in tons, produced in certain types of steel furnaces, to the capital stock of passenger cars
in each country.

Besides the index τ and the description of the vintage, Table 1 contains two more pieces of information for
each vintage. It lists the �type� of the measure for the vintage. In the �type� column, K identifies a capital stock
measure and Y indicates an output measure. The (viτ-vi1) column denotes how many years after the discretization
point of the first vintage the discretization point of vintage τ falls. As described above, we keep these interval
lengths fixed across countries during our estimation. The way we have calibrated them is by setting them equal to
the difference between the invention dates of the relevant vintage and the first vintage. We used the invention
dates listed in Figure 4 of Comin and Hobijn (2004). For sailships we assume that they make up the whole
merchant fleet at the beginning of our sample and we do not have a vintage starting date.

Parameter estimates and fit

We start off the presentation of our parameter estimates with a discussion of the parameters that we actually do
not estimate. That is, the results that we present in the following are conditional on a set of calibrated
parameters, namely g, θ, and ζ. We hold these three parameters constant for all our estimates, across time,
countries, and technology groups.

We calibrate g to equal 1.4% annually, which is the growth rate of TFP consistent with a long-run average
growth rate of real GDP per capita of 2% and is also approximately equal to the average post-war growth rate of
aggregate TFP for the U.S. economy.

Calibration of the parameters θ and ζ is not as straightforward. Our results here are based on the choice of
θ=0.9 and ζ=0.5. The combination of these two parameter choices implies an aggregate profit margin, net of
fixed operating costs, equal to 5%. This is roughly consistent with the average operating margin reported for
publicly traded firms in the U.S. over the last three decades. A sensitivity analysis of our results suggests that they
do not change dramatically for θ between 0.8 and 0.95. For operating costs higher than 5% of nominal output,
i.e. ζ>0.5, we found that the model would predict much shorter technology lifecycles than we observe in the
data.

The gist of what the actual data looks like and how closely the model fit the data is contained in Figure 5. It
displays the fit and actual adoption curves for steel in the U.S. (panel A.), telephones and telegrams in the U.S.
(panel B), and passenger transportation for the U.S. and the U.K. (panels C. and D.). The fit depicted for the
four examples in Figure 5 is actually very representative for that of the other country / technology group
combinations.

 As can be seen from this figure, the model seems to fit quite well the adoption patterns of a broad range of
technologies well. Given the �one size fits all� nature of our estimation in which we apply our one model to a
wide variety of technology groups, this consistent quality of fit implies that our structural model manages to
successfully replicate the common general historical adoption patterns of major technologies. Further, the fact
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that we obtain a good fit despite all the restrictions imposed (both in the functional forms and in the calibrated
parameter values) means that these restrictions cannot be rejected in a statistical sense.

So what are the parameter estimates that yield such a fit, and do they make economic sense? To answer this
question, consider Table 2. This table lists the estimates of ψi and ( )*

0,,1, jii vv −  as well as the associated standard

errors for all country / technology group combinations. 
The parameter estimates confirm the general implications of the model. That is, for technology groups

where the adoption of new vintages took relatively long, like the shipping and the other two transportation
technologies, we obtain low estimates of ψi, generally between 0.3 and 0.6. Technologies with more rapid
adoption of vintages, like mass communication and steel, yield much higher estimates of ψi, generally between 1
and 1.5. For �early� technologies, like textiles, we obtain low estimates of ( )*

0,,1, jii vv − , presumably in large part

because vi,1 in that case is much smaller than for �later� technologies, like telecommunications and transportation.
A notable exception is shipping, where the steamboat was invented in the early part of our sample but our
estimates of ( )*

0,,1, jii vv −  are relatively large. Combined with the associated low estimates of ψi this suggests that

it takes a very long time of shipping technologies to fully mature.
It turns out that our parameter estimates are not particularly sensitive with respect to the technologies

included in the technology groups. That is, where the grouping of the technologies for textiles, steel, and
shipping is fairly uncontroversial, the grouping of the technologies in the other categories is less so. However,
eliminating cell phones from the telecommunications group or dropping air transportation from the two
transportation categories does not really influence the result. This is because the parameters are mainly identified
by the curvature in the adoption patterns of the other technology vintages.

The standard errors of the estimates are revealing. Andrews� and McDermott�s (1995) GMM method is very
unforgiving in terms of the implied standard errors. In cases where the model does not yield a good fit to the
data, the standard errors are a factor ten higher than in case of a satisfactory fit. As the standard errors show the
�one size fits all� character of our empirical analysis yields results that are best characterized as �one size fits
many�.

For most country / technology combinations we obtain fairly reliable parameter estimates. However, in
some cases the data do not allow us to allow for accurate inference on ψi and ( )*

0,,1, jii vv − . Further analysis of

our data reveals that there are basically four reasons why this might be the case.
The first is simply a lack of data. This is the case for steel in Greece, Ireland, and Portugal, where we do not

have data on open-hearth steel. There might be two reasons for this lack of data. On the one hand, they might
simply not have been collected. On the other, because of the relatively small size of the steel manufacturing
industries in these countries, open hearth steel might actually not have been produced.

The second reason relates to the latter point above. Sometimes data is available but based on a very small
sample. This is the case for Danish steel production, which shows several kinks in the adoption curve of steel.
These kinks presumably correspond to new furnaces coming online. The indivisibility of investment in such
furnaces, combined with the small size of the Danish steel producing sector, thus leads to a failure of our model
to fit the observed steel adoption pattern.
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The third reason is that some of our data is so noisy that the noise dominates the second order curvature
that identifies our structural parameters. This seems to be the case, for example, for the communications data for
Greece.

Finally, the annual frequency of observation also implies that we have a hard time estimating the curvature
parameter ψi in case of a relatively rapid adoption of a technology. If a technology is adopted rapidly then the
curvature only spans very few annual observations. Consequently, very few observations contribute to the
identification of ψi. It turns out that in those cases the estimation method tends to ignore these observations and
veers towards fitting a flat adoption curve where ψi is small. This seems to be the case for tele- and mass
communications in Canada.

However, in spite of the limited number of cases where we do not obtain reliable estimates of the structural
parameters, the gist of our results seems to be that for the vast majority of country / technology group
combinations in our data set we are able to obtain fairly reliable estimates of ψi and ( )*

0,,1, jii vv − .

Productivity disparities

The estimates of the structural parameters also allow us to calculate estimates of the part of TFP determined by
the adoption of technologies, i.e. ln(Zpij), as well as the range of technologies used, i.e. [ ]ijtijt vv , .11 Table 3 lists the

implied values of [ ]ijtijt vv ,  for each of the country / technology group combinations. Table 4 contains the

associated levels of ln(Zpij) and their standard errors.
In order for our analysis of the productivity estimates to not be influenced by large estimation errors, we

have chosen to focus on the ones that are relatively reliably estimated. The criterion we use is a standard error of
ln(Zpij) of 0.1 or less12. The parameter estimates for which this is the case are shaded gray in Table 4.

The columns labeled ln(Zpij) in Table 5 contain the two main descriptive statistics for our productivity
measure, namely the number of countries for which we obtain a reliable estimate, i.e. N, and the standard
deviation of ln(Zpij) across these countries. The standard deviation of ln(Zpij) turns out to be between 9%, for the
limited number of countries for which we have estimates for shipping, and 25%, for the 13 countries for which
we have estimates for mass communications. The 1990 standard deviation of the levels of log real GDP per
capita for the corresponding countries varies from 9% to 19%, depending on the technology group. In this
sense, we find that technology adoption induced disparities in TFP are of a magnitude similar to the disparities in
real GDP per capita.

A more careful investigation of the rankings of the technology adoption component of TFP yields a second
interesting observation: there is no uniformity in the country that leads in this component across technologies.
The US leads in textiles and mass communications. France leads in shipping and steel where has the same
adoption component of TFP as Italy. In telecommunications both Australia and Portugal are ahead in the
adoption component of TFP, while Italy and Belgium are the leaders in cargo and passenger transportation,
respectively. 

                                                
11 The estimates of ln(Zpij) are very robust to the calibration of g.

12 Changing this cut-off point to 0.2 does change some of the details of the results here but not the nature of their implications.
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After this descriptive analysis of ln(Zpij), one may wonder what forces drive cross-country disparities in the
adoption component of TFP. To address this question, consider the following decomposition of ln(Zpij) into
capital widening and dragging based on (55):
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This decomposition is closely related to the technology usage intervals [ ]ijtijt vv , , listed in Table 3.

What we find, for all technologies in our dataset, is that there is a virtually perfect correlation between the
lower bound of the vintages used in production, ijtv , and the adoption component of TFP (ln(Zpij)). Since

differences between ijtv  across countries reflect differences in capital dragging, what seems to matter most for

ln(Zpij) is not when a country starts using a technology but when it actually stops using it. Why is this the case in
our model? The are two main reasons that it is mostly capital dragging that determines ln(Zpij) and not capital
widening.

First of all, the widths of the technology ranges in use are not that different across countries. To see this,
consider Table 3. This table shows that there tend to be fairly large variations in ijtv  and ijtv , both within and

between technology groups. In spite of the large differences in ijtv  and ijtv  across countries, the variation in the

widths of [ ]ijtijt vv ,  across countries is a lot less. For those countries for which we have reliable estimates, the

average duration of use of a technology vintage is 81 years for textiles, 71 years for steel, 155 years for shipping,
120 years for telecommunications, 61 years for mass communication, and 120 and 126 years for cargo and
passenger transportation13.

Secondly, because of our calibration of θ=0.9, the CES aggregate of the capital widening part does not
depend a lot on the tails. Instead, it mainly depends on the highest values of the function being aggregated.
These values turn out to be almost constant across countries and thus so is the capital widening part. Lower
values of θ would yield more variations in the capital widening parts. However, they would also imply
unrealistically high markups and distortions.

Finally, the last important question that remains to be addressed is about the relevance of the adoption
component of TFP estimated for understanding sectoral differences in TFP across countries. To answer this
question, we compare our estimates of the sectoral adoption component of TFP (ln(Zpij)) with the 1985 measures

                                                
13 It is important here to emphasize that these are technology vintage lifecycle lengths. For example, the 61 years for mass communication

implies that 61 years after the first type of black and white television was first used, no one will use that type of black and white TV
anymore. This is a very different concept from the average age of these black and white televisions. This is because the vintage specific
capital stock, Kivt, changes over time.

14 Correlations between our estimates of ln(Zpij) and the estimates of aggregate 1985 TFP levels calculated in Klenow and Rodríquez-Clare
(1997) yield results very similar to those presented for real GDP per capita here. This is because the aggregate TFP levels and real GDP
per capita are highly correlated.
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of sectoral TFP computed by Bernard and Jones (1996a) from the International Sectoral Data Base (ISDB). We
will refer to these measures as ln(Zij1985).

The results of this comparison are in Table 5. Even though the sectors in the data set used by Bernard and
Jones (1996a) do not match up perfectly with ours and even though some of the capital goods that we include in
our analysis, like passenger cars, are used mostly for home production, we find some remarkably high
correlations between the estimates of ln(Zpij) and ln(Zij1985). For shipping, cargo and passenger transportation
technologies we find correlations of 0.65 and higher. In spite of the fact that the spindle technology only
constitutes a small fraction of the production technology for textiles, we find a 0.36 correlation between its ln(Zpij)
and ln(Zij1985) for the textiles sector. Surprisingly, we find a small negative correlation between ln(Zpij) and ln(Zij1985)
for steel. For the communications sectors we do not find much of a correlation. However, for those sectors we
measure the adoption of capital vintages by users rather than by the providers of the services. Hence, in those
cases Bernard and Jones� (1996a) sectoral TFP levels might not be such a great proxy for ln(Zijt) in our model. 

What the ln(Zpij) and ln(Zij1985) have in common across technologies is that the cross-country variation in the
ISBD measures of TFP (ln(Zij1985)) for all technologies are substantially higher than for adoption component of
TFP estimated in this paper. The ratio in the cross-country standard deviations ranges from 1.25 for shipping to
11 for telecommunications. This difference in the variance between the adoption component and the ISBD
measures of TFP is probably due to the combination of two factors. First, the ISBD data is quite noisy. One of
the sources of this noise is that, due to data limitations, the same PPP adjustment is applied to the capital stock
in all sectors, irrespective of the capital composition. As a result, the estimate of the variance of sectoral TFP that
results is biased upwards and, presumably, the correlation between ln(Zpij) and ln(Zij1985) that we report in Table 5
is biased downward. Secondly, at a sectoral level there seems to be a positive correlation between capital
deepening on the one hand and capital widening and dragging on the other.

Bottom line

After diving into the detailed results, there are three main conclusions that we can take away from them. First
and foremost, our theoretical framework seems to be able to replicate the general common characteristics of the
adoption patterns of several major technologies over the past two centuries. Secondly, what matters most for the
influence of technology adoption on TFP is actually not when a technology is first used but when it is last used.
That is, how many old technology vintages are being dragged along. Finally, the technology adoption component
of TFP tends to be positively correlated to sectoral TFP levels in the cross-country dimension, though its
variance is substantially smaller. 
It is important to bear in mind, though, that these results are obtained using structural estimation and historical
data for a limited set of advanced industrialized economies.

The application of structural estimation here allows us to empirically identify the capital widening and
dragging concepts that provide us with a new insight into how technology adoption affects TFP. The structure
that we imposed, however, in large part guides our results. Further analysis of what restrictions on the structure
                                                
15 It is important here to emphasize that these are technology vintage lifecycle lengths. For example, the 61 years for mass communication

implies that 61 years after the first type of black and white television was first used no one will use that type of black and white TV
anymore. This is a very different concept from the average age of these black and white televisions. That is, the capital stock, Kivt,
changes over time.
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can be relaxed without affecting the identification of capital widening and dragging will allow us to verify the
theoretical robustness of our results. 

By limiting our analysis to the set of, relatively similar, leading industrialized economies, we have biased our
results to finding little differences in adoption patterns and disparities across countries. In this sense, our analysis
here is subject to the same criticism that DeLong (1988) had against Baumol (1986). An extension of our
analysis, to more countries and technologies, requires the use of data that has not been collected yet. When they
become available, combining such data with the model and estimation method introduced here would allow us
get more insight into the technological gap between developing and industrialized economies. Some of the
theories on technology adoption disparities, like Basu and Weil�s (1998) theory of appropriate technologies, seem
to be especially aimed at explaining this supposed gap. In this respect, it is interesting to note that, at the
beginning of our sample, some of the, ex-post, industrialized countries in our sample were actually in a similar
stage of economic development as many developing economies now. However, even for the technologies
adopted in the early part of our sample, like railroads and textiles, we do not find large adoption disparities.

8. Conclusion
In this paper, we introduced a growth model where different firms simultaneously produce intermediate goods
with varying productivity levels. New intermediate goods are potentially more productive but are, initially
operated below their full-efficiency. The array of intermediate goods adopted for production is endogenous. The
combination of these simple elements yields large returns: At the micro level, our model is a model of slow
diffusion of technologies (embobied in new intermediate goods) qualitatively consistent with the stylized facts: S-
shaped diffusion curves and investment in old vintages. The model responds to Prescott (1997)�s demand:
�Needed: A Theory of TFP�. The endogenous adoption of new technologies and the variety externalities
provide a theory of TFP both at the sector and aggregate level. Further, our model does all this within a well-
known context because at the aggregate level our model is observationally equivalent to the Neoclassical growth
model.

By combining this model with the Historical Cross-Country Data set introduced in Comin and Hobijn
(2004) we are able to bridge an endemic disconnect between theory and data in the technology diffusion
literature. The estimation of the structural parameters that determine the adoption patters, yields three main
insights. Most importantly, cross-country adoption patterns of major technologies over the past two centuries
exhibit very general common characteristics that can be explained very well by a model that at the aggregate
mimics the standard neoclassical growth model. Secondly, the effect of technology adoption on TFP seems to be
mainly determined by a concept that we call capital dragging. Countries that still use older technologies seem to
have lower productivity levels attributable to technology adoption. On the other hand, the width of the range of
technologies in use and the most modern technology in use seem to be a lot less important determinants of
productivity disparities. Finally, cross-country TFP disparities due to differences in technology adoption patterns
are positively correlated with overall sectoral TFP levels. However, they seem to be substantially smaller. If this
large variance in the TFP measures of Bernard and Jones (1996a) is real, this suggests that the majority of
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sectoral TFP disparities is due to factors, like regulations and institutions, that affect all technology vintages in
the same way. 

We leave for future work understanding the channels by which regulations and institutions affect TFP. The
determinants of the estimated shape of the efficiency function (ψi) will also be studied in subsequent work.
Finally, the scope of the theoretical and empirical contributions of this paper far exceed the set of technologies
and countries that they are applied to in this paper. They can potentially provide insights into technology
adoption patterns and disparities for many more technologies as well as a broader set of countries and regions.
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A. Mathematical details
Derivation of equations (20) through (26):
Each individual intermediate goods supplier equates the marginal revenue of labor to the real wage rate. For the
particular production function and demand function that we use, this boils down to the optimality condition

( ) θθθα ivtititivtt YYPLW −−= 11 (69)

Similarly, each firm also equates the marginal revenue of capital to its user cost. This means that

( ) θθαθδ ivtititivtt YYPKr −=+ 1 (70)

When we integrate both of these optimality conditions over the firms in the market, we obtain
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as well as

( ) itititt YPKr αθδ =+ (72)

The above two equations are the sectoral optimality conditions introduced in (26).
By dividing the optimality conditions for the individual intermediate goods suppliers by those of the whole

sector, we obtain that
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Substituting this into the production function of the intermediate goods suppliers, we obtain that
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Integrating this expression over all suppliers in the market yields that
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Solving for Yit, this equation simplifies to the sectoral production function (20).
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Derivation of equations (27) through (30):
The derivation of equations (27) through (30) is mathematically identical to that of (20) through (26). So, we will
only show how to derive the initial optimality conditions that are similar to (69) and (70). This can be derived by
substituting the final goods demand functions

ρρ
ittitit YYYP −= 1 (76)

into equation (26). This yields that the factor demands for each sector satisfy

( ) ρρθα ittitt YYLW −−= 11  and ( ) ρραθδ ittitt YYKr −=+ 1 (77)

which are equivalent to (69) and (70).
The rest of the equations and results follow in the same way as above.

Derivation of equations (36) and (37): 
We will derive the second parts of equations (36) and (37) here. The first parts can be derived in a very similar
manner. Their derivation just involves the same results, but then one level up the nested CES structure of our
model.

Combining the production function, i.e. equation (10), and result (73) we obtain that

( )θαααα
itivtititivtivtivtivtivt YYLKZLKZY −− == 11 (78)

Dividing both sides of this equation by Yit, we obtain that

( )( )θitivtitivtivt YYZZY = (79)

which can be rewritten as the second part of equation (36). That is

( ) ( ) θ−= 1
1

itivtitivt ZZYY (80)

The second part of equation (37) follows from applying the above result to the demand function, i.e.
equation (8). Doing so yields
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Derivation of equations (51) and (52):
We will limit ourselves to showing the derivation of mi,K,t(τ), because that one turns out to be the most

difficult of the two. The adoption measure mi,K,t(τ) is defined as

( )
( )
∫=
τ

τ
iV t

ivt
tKi dv

Y
Km ,,  (82)

From the user cost equation, (70), and the user cost aggregation result, (30), we obtain that
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Because the equilibrium labor supply equals one, i.e. Lt=1 for all t, we can manipulate the aggregate Cobb-
Douglas production function, i.e. (27), to obtain the aggregate capital output ratio in equilibrium
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Combining the above two results with the normalization that Pt=1 for all t, gives
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Applying equations (20) through (26) as well as (39) allows us to write this as
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At time t, Kivt>0 only for v∈ Vituse, where

{ }iitiit
use
it dvvdvvV +<<+= ** (87)

Hence, for the calculation of mi,K,t(τ), we only have to integrate over Vi(τ)∩Vituse. This intersection is given by the
condition

( ) { }{ } { }{ }( )iiiiiiit dtvtvdtvtvvv ,~min,~max,,~max,~min 11
* −−−−∈− ++ ττττ (88)

which corresponds to the set over which we integrate in equation (52).
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B. Econometric details
 In this appendix we derive the GMM objective function and illustrate how we minimize it with respect to the
parameters of the model. We also show what the results of Andrews and McDermott (1995) imply for the
statistical properties of our estimates.

In this appendix, we will limit ourselves to the description of the estimation of the model for the case in
which the technology adoption measures used are the vintage capital to output ratios. The estimation of the
model in case the measures are output ratios or a mix of both output ratios and capital-output ratios involves the
same method as described here and is just a simple generalization.

Before we describe the details of the estimation, we first introduce a bit of notation. We will denote the
vector with structural parameters that are estimated as

( )[ ]′−= ijiiij vv ψ*
01θ (89)

It turns out that the estimation is most easily explained in terms of matrix notation. For this reason, we
introduce the following matrices

[ ]′= TjKijKiji mm ,,,,1,,,,,, lnln τττ Km , ( ) ( )[ ]′= τξτξτ TjKijKiji ,,,1,,,,, lnln Kξ (90)
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and

[ ]jKijKijKiji ,,,,2,,,,1,,,,0,, ττττ βββ=β (92)

Using this notation, we can write equation (59) for all time series observations, i.e. t=1,�,T, for the cross-
sectional observation τ,j as

jijijiji ,,,,,,,, ττττ ξβXm += (93)

The finite sample approximation of the r moment conditions, (66), that forms the identifying backbone of our
analysis can be written as

( ) 0ξβXmZµ =−−′= jijijijijiji T ,,,,,,,,,,,,
1

ττττττ (94)

The problem is that we need to evaluate these sample moment conditions for all cross-sectional observations, i.e.
all τ=1,�,q for which there is data, jointly. For this purpose, it is easiest to stack the individual equations (93) in
a way that essentially yields a Seemingly Unrelated Regressions representation of the model.

Doing so requires the definition of yet another set of matrices. These are
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[ ]′′′= jqijiji ,,,1,, mmm K , [ ]′′′= jqijiji ,,,1,, ξξξ K , [ ]′′′= jqijiji ,,,1,, βββ K (95)
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These matrices allow us to jointly write all the moment conditions associated with our panel data model as

( )( ) 0βXξmZµ =−−′= jijijijijiji T ,,,,,,
1

(97)

Estimation of the model requires both the estimation of the reduced form parameters that we have captured
in the vector βi,j as well as the structural parameters in the vector θi,j. The estimates of both of these parameter
vectors are the values ji,

�β  and ji,
�θ  that minimize the GMM objective function, Qi,j, which is defined as

( )( ) ( )( )jijijijijijijijijijijiji T
Q ,,,,,,,,,,,2,

1 βXξmZWZβXξm −−′′−−= (98)

where the matrix Wi,j is the moment weighting matrix. The weighting matrix that we use is

( ) 1
,,,

−′= jijiji ZZW (99)

which would be optimal if the errors to the equation are uncorrelated and homoskedastic. In practice, however,
the weighting matrix does not matter much for our estimation results. Results using an identity weighting matrix
are very similar to the ones presented in this paper.

To facilitate the numerical minimization of Qi,j with respect to the elements of θi, it is convenient to
concentrate the reduced form parameters βi,j out of the objective function. This can be done by realizing that,
conditional on the parameter vector θi,j, the ji,

�β  that minimizes Qi,j equals

( ) ( )jijijijijijijijijijijiji ,,,,,,
1

,,,,,,
� ξm'ZWZ'XX'ZWZ'Xβ −= − (100)

Substituting this solution back into the objective function Qi,j yields the concentrated objective function

( ) ( )jijijijijiji T
Q ,,,,,2,

~1~ ξmWξm −′−= (101)

where
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such that jiQ ,
~

 only depends on the structural parameters that are to be estimated. That is, jiQ ,
~

depends on θi,j

through ξ i,j. Consequently, the GMM estimate ji,
�θ  is obtained by minimizing jiQ ,

~
 with respect to θi,j.
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Andrews and McDermott (1995) show that the standard errors of the GMM parameter estimates in this case
can be calculated in the same way as under standard non-linear GMM estimation that does not contain any
deterministic trends in the moment conditions.

If we define the gradient of the moment condition ji,µ as
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then the asymptotic covariance matrix of the parameter estimates [ ]jiji ,,
�� βθ ′′  can be consistently estimated by

( ) ( ) 1

,,,,

1

,
�������� −−

′′′=
ijijijijijij jijijijiji µµµµµµ DWDDWSWDDWDV (104)

where ji,
�S  is a consistent estimator of [ ]jijiji TE ,,, µµS ′= . In this version of our estimation, ji,

�S  is estimated

under the assumption that ui,K,j,t(τ) ∼  IID(0,σijτ2).
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Table 1. Countries and technology measures covered in the data.

j Country i τ viτ-vi1 type Technology group/vintage

1. Australia 1 TEXTILES
2. Austria 1 0 K Number of mule spindles
3. Belgium 2 49 K Number of ring spindles
4. Canada 2 STEEL
5. Denmark 1 0 Y Steel tonnage produced using Open Hearth furnaces
6. Finland 2 55 Y Steel tonnage produced using Blast Oxygen and Electric Arc furnaces
7. France 3 SHIPPING
8. Germany 1 - K Tonnage of sailships in merchant fleet
9. Greece 2 0 K Tonnage of steamships in merchant fleet
10. Ireland 3 96 K Tonnage of motorships in merchant fleet
11. Italy 4 TELECOMMUNICATIONS
12. Japan 1 0 Y Telegrams sent
13. Netherlands 2 41 K Number of mainline telephones
14. New Zealand 3 112 K Number of mobile telephones
15. Norway 5 MASS COMMUNICATIONS
16. Portugal 1 0 K Number of radios
17. Spain 2 30 K Number of televisions
18. Sweden 6 TRANSPORTATION - CARGO
19. Switzerland 1 0 Y Freight traffic on railways (TKMs)
20. United Kingdom 2 51 K Number of commercial trucks
21. United States 3 78 Y Aviation cargo (TKMs)

7 TRANSPORTATION � PASSENGERS
1 0 Y Passenger traffic on railways (PKMs)
2 51 K Number of passenger cars
3 78 Y Aviation passengers (PKMs)
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Table 2. Parameter estimates

technology Textiles Steel Shipping
value std.err. value std.err. value std.err.

( )*
01 iji vv −

Australia 95.23 3.03 293.33 242.86
Austria 150.88 214.69 93.63 2.64 190.75 87.86
Belgium 77.18 2.42 92.29 3.09 142.32 2.46
Canada 74.00 4.67 95.05 7.41 308.33 171.39
Denmark 132.81 329.21 297.80 139.82
Finland 208.33 3690.66 103.44 3.60 158.40 18.36
France 84.27 1.13 91.43 1.39 155.03 19.13
Germany 68.05 0.69 99.48 1.31 147.67 1.19
Greece 93.85 13403.08
Ireland 91.85 4289.95
Italy 71.00 0.78 95.63 2.10 308.33 104.12
Japan 68.66 2.67 93.33 1.47 184.80 5984.64
Netherlands 85.34 1.11 87.16 17.91 305.83 355.15
New Zealand 132.03 364.89 154.94 4.63
Norway 99.58 269.38 97.21 6877.00 143.54 15.07
Portugal 98.55 1165.61
Spain 157.60 168.61 97.02 2.41
Sweden 121.70 300.82 99.63 2.32 181.11 28.77
Switzerland 72.89 1.36 76.59 245.77
United Kingdom 98.05 6.66 94.69 1.61 191.05 16.30
United States 61.91 4.73 91.76 0.91 152.91 12.05

ψij
Australia 1.97 0.47 0.16 0.28
Austria 0.09 0.34 1.31 0.08 0.16 0.13
Belgium 1.02 0.02 1.16 0.09 0.37 0.09
Canada 1.01 0.07 2.71 2.00 0.07 0.08
Denmark 0.17 1.03 0.10 0.09
Finland 0.27 8.64 1.30 0.08 0.26 0.09
France 0.98 0.02 0.63 0.06 0.20 0.07
Germany 0.84 0.05 1.12 0.16 0.45 0.01
Greece 3.83 1194.14
Ireland 3.83 175.45
Italy 0.74 0.04 0.49 0.06 0.13 0.10
Japan 1.02 0.09 2.91 0.15 0.52 34.19
Netherlands 1.49 0.05 0.63 0.78 0.11 0.27
New Zealand 2.60 42.52 0.51 0.03
Norway 0.17 0.82 1.33 60.12 0.32 0.04
Portugal 3.00 453.38
Spain 0.09 0.27 1.18 0.07
Sweden 0.15 0.79 1.02 0.03 0.38 0.11
Switzerland 0.83 0.04 1.86 8.65
United Kingdom 0.69 0.08 1.31 0.06 0.23 0.03
United States 1.32 0.06 3.53 0.15 0.26 0.06
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Table 2 (continued). Parameter estimates

technology Tele-
communications

Mass
communications

Transport -
cargo

Transport �
passengers

Value std.err. value std.err. value std.err. value std.err.

( )*
01 iji vv −

Australia 121.41 0.76 242.75 28.20 212.58 12.12 149.90 14.25
Austria 149.29 3.58 145.32 1.21 312.50 94.82 230.25 17.41
Belgium 130.22 1.37 139.31 1.23 230.34 30.70 113.11 1.17
Canada 219.95 41.43 211.25 101.67 164.76 23.30 132.16 3.63
Denmark 124.02 0.56 126.96 3.56 159.91 4.65 164.31 9.55
Finland 132.76 2.55 189.59 9.02 146.34 2.50 140.45 3.16
France 136.00 1.76 163.23 8.87 144.44 8.72 165.63 4.19
Germany 129.86 1.86 155.13 25.01 155.85 3.89 143.78 3.46
Greece 168.51 11.12
Ireland 131.55 4.14 193.76 35.62
Italy 135.39 1.46 125.33 1.23 156.08 3.29 145.03 3.74
Japan 114.78 1.34 130.32 5.77 108.23 1.16 120.16 1.21
Netherlands 120.97 0.92 149.98 1.63 165.54 3.37 164.40 5.05
New Zealand 122.81 0.67 168.26 116.95 166.13 6.01 304.51 251.31
Norway 119.86 0.36 120.64 4.91 159.71 3.33 201.93 14.64
Portugal 121.22 0.67 115.90 5.24
Spain 131.70 1.73 166.97 39.43
Sweden 120.04 0.26 151.80 4.09 223.58 14.83 160.19 4.90
Switzerland 149.00 4.06 152.54 11.06 289.21 43.25 223.79 14.42
United Kingdom 130.98 1.72 309.12 136.30 147.68 2.91 159.58 8.88
United States 131.21 1.66 113.75 7.40 159.47 6.27 136.21 2.45

ψij
Australia 0.42 0.03 0.36 0.10 0.28 0.03 0.45 0.07
Austria 0.41 0.02 1.58 0.05 0.09 0.07 0.22 0.03
Belgium 0.54 0.01 1.83 0.07 0.24 0.06 0.64 0.01
Canada 0.05 0.04 0.08 0.15 0.37 0.08 0.54 0.02
Denmark 0.43 0.02 1.78 0.13 0.45 0.02 0.38 0.04
Finland 0.57 0.02 0.70 0.09 0.53 0.01 0.49 0.02
France 0.49 0.01 1.05 0.18 0.34 0.05 0.35 0.01
Germany 0.53 0.01 1.14 0.58 0.41 0.02 0.43 0.01
Greece 0.48 0.05
Ireland 0.72 0.04 0.66 0.31
Italy 0.34 0.03 2.28 0.11 0.53 0.02 0.42 0.02
Japan 0.67 0.01 2.63 0.28 0.84 0.02 0.62 0.01
Netherlands 0.55 0.02 1.38 0.05 0.44 0.02 0.38 0.02
New Zealand 0.55 0.01 1.00 2.10 0.27 0.10 0.13 0.23
Norway 0.55 0.02 2.76 0.14 0.45 0.02 0.28 0.04
Portugal 0.42 0.05 3.71 0.79
Spain 0.65 0.02 1.01 0.72
Sweden 0.57 0.00 1.24 0.07 0.25 0.03 0.40 0.02
Switzerland 0.28 0.02 1.18 0.27 0.14 0.05 0.22 0.03
United Kingdom 0.56 0.01 0.18 0.20 0.46 0.01 0.39 0.03
United States 0.46 0.01 3.40 1.47 0.41 0.03 0.51 0.01
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Table 3. Estimated ranges of technologies in use (in years)

technology Textiles Steel Shipping
v v v v v v

Australia -46 10 -281 -75
Austria -68 181 -42 26 -179 25
Belgium -80 -3 -39 33 -168 -27
Canada -77 1 -47 2 -248 22
Denmark -32 167 -257 -13
Finland -190 -22 -51 17 -174 -1
France -87 -8 -31 72 -156 33
Germany -69 17 -46 27 -176 -49
Greece -48 -3
Ireland -46 -1
Italy -70 24 -31 89 -287 -68
Japan -72 6 -46 2 -216 -100
Netherlands -92 -28 -26 76 -272 -39
New Zealand -84 -35 -186 -69
Norway -55 145 -45 22 -166 -10
Portugal -52 -4
Spain -75 174 -44 27
Sweden -68 142 -45 32 -207 -69
Switzerland -73 14 -27 30
United Kingdom -96 1 -43 25 -200 -20
United States -67 0 -46 0 -170 0

technology Tele-
communications

Mass
communications

Transport -
cargo

Transport �
passengers

v v v v v v v v
Australia -114 18 -151 -7 -179 -11 -129 -4
Austria -141 -8 -73 -12 -217 29 -188 -6
Belgium -127 -13 -68 -11 -190 -14 -98 3
Canada -104 195 -42 219 -137 5 -115 -2
Denmark -117 12 -56 2 -135 -10 -141 -2
Finland -130 -21 -109 -13 -125 -11 -121 -1
France -131 -10 -88 -12 -115 33 -140 7
Germany -126 -12 -80 -8 -130 3 -122 8
Greece -163 -42
Ireland -132 -38 -112 -13
Italy -123 27 -56 -3 -134 -20 -123 8
Japan -115 -16 -61 -12 -93 -7 -105 -1
Netherlands -118 -6 -77 -11 -141 -14 -141 -2
New Zealand -119 -8 -92 -14 -132 36 -230 -8
Norway -117 -6 -52 -3 -135 -10 -172 -7
Portugal -113 18 -49 -4
Spain -131 -30 -91 -13
Sweden -117 -8 -78 -9 -185 -12 -137 -1
Switzerland -133 34 -78 -7 -218 -6 -180 3
United Kingdom -128 -18 -190 5 -123 2 -136 2
United States -125 0 -46 0 -133 0 -117 0

Note: v =0 for the USA is the normalization
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Table 4. Productivity estimates

technology Textiles Steel Shipping
ln(Zpij) Value std.err. value std.err. value std.err.

Australia -0.01 0.01 -1.82 2.46
Austria -0.62 1.30 0.06 0.03 -0.39 0.86
Belgium -0.18 0.03 0.09 0.04 0.06 0.23
Canada -0.13 0.07 -0.03 0.00 -1.83 2.24
Denmark -0.04 1.46 -1.76 1.52
Finland -1.72 34.99 -0.08 0.03 -0.07 0.07
France -0.27 0.01 0.21 0.01 0.05 0.08
Germany -0.02 0.01 0.00 0.02 -0.06 0.01
Greece -0.03 159.37
Ireland 0.00 55.99
Italy -0.04 0.01 0.21 0.02 -1.99 1.08
Japan -0.06 0.04 -0.01 0.01 -0.62 54.37
Netherlands -0.34 0.01 0.27 0.24 -1.90 3.80
New Zealand -0.55 2.92 -0.20 0.04
Norway -0.06 1.22 0.00 85.51 0.08 0.14
Portugal -0.09 1.47
Spain -0.72 1.01 0.02 0.03
Sweden -0.34 1.45 0.01 0.02 -0.50 0.26
Switzerland -0.08 0.02 0.26 2.67
United Kingdom -0.40 0.08 0.04 0.02 -0.49 0.16
United States 0.00 0.06 0.00 0.00 0.00 0.05

technology Tele-
communications

Mass
communications

Transport -
cargo

Transport �
passengers

ln(Zpij) Value std.err. value std.err. value std.err. value Std.err.

Australia 0.16 0.04 -1.47 0.26 -0.64 0.11 -0.17 0.13
Austria -0.23 0.03 -0.38 0.01 -1.75 1.23 -1.10 0.17
Belgium -0.02 0.02 -0.31 0.01 -0.85 0.29 0.27 0.01
Canada -0.69 0.33 -0.63 0.64 -0.05 0.22 0.04 0.03
Denmark 0.11 0.03 -0.14 0.04 -0.03 0.04 -0.33 0.09
Finland -0.07 0.04 -0.88 0.08 0.12 0.03 -0.05 0.03
France -0.08 0.02 -0.58 0.08 0.26 0.20 -0.32 0.04
Germany -0.02 0.02 -0.48 0.22 0.05 0.04 -0.07 0.04
Greece -0.53 0.12
Ireland -0.11 0.04 -0.93 0.32
Italy 0.02 0.05 -0.14 0.02 -0.01 0.03 -0.08 0.05
Japan 0.14 0.01 -0.22 0.07 0.56 0.02 0.18 0.01
Netherlands 0.10 0.02 -0.43 0.01 -0.11 0.03 -0.33 0.05
New Zealand 0.08 0.01 -0.65 1.01 0.01 0.18 -1.99 2.63
Norway 0.11 0.01 -0.08 0.07 -0.03 0.03 -0.77 0.14
Portugal 0.16 0.05 -0.03 0.06
Spain -0.09 0.03 -0.63 0.34
Sweden 0.11 0.00 -0.45 0.05 -0.77 0.14 -0.28 0.04
Switzerland -0.12 0.07 -0.45 0.10 -1.53 0.44 -1.00 0.14
United Kingdom -0.05 0.02 -2.22 1.34 0.14 0.03 -0.26 0.08
United States 0.00 0.02 0.00 0.06 0.00 0.06 0.00 0.02

Note: Shaded estimates are the ones with a standard error smaller than 0.1.
Numbers are reported in deviation from U.S. level

Standard errors are computed taking as fixed the level of productivity for the US.
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Table 5. Comparison with sectoral TFP levels

technology Textiles Steel Shipping
ln(Zpij) ln(Zij) ln(Zpij) ln(Zij) ln(Zpij) ln(Zij)

N 10 11 13 11 5 13
std.dev. 0.14 0.59 0.09 0.75 0.09 0.74
N in common 8 9 4
std.dev in common 0.14 0.64 0.09 0.84 0.06 0.08
correlation 0.36 -0.20 0.66

technology Tele-
communications

Mass
communications

Transport -
cargo

Transport �
passengers

ln(Zpij) ln(Zij) ln(Zpij) ln(Zij) ln(Zpij) ln(Zij) ln(Zpij) ln(Zij)

N 19 6 13 6 9 13 12 13
std.dev. 0.11 1.14 0.25 1.14 0.20 0.74 0.20 0.74
N in common 6 5 8 11
std.dev in common 0.09 1.14 0.21 1.26 0.20 0.93 0.20 0.74
correlation 0.00 0.23 0.83 0.65

Note: Our measures of sectoral TFP levels, i.e. ln(Zij), are taken from Bernard and Jones (1996a).
Our technology groups are matched with the 1985 TFP levels of the following sectors from their data set respectively:

Textiles (TEX), Basic metal products (BMI), Transportation and communication (TRS), Communication (COM),
Communication (COM), Transportation and communication (TRS), and Transportation and communication (TRS).

Explanation: N  total number countries for which observations, std.dev is based on all observations,
�N in common�  is number of countries for which observations for both ln(Zpij) and ln(Zij),

�std.dev. in common� is based on the common observations, so is the correlation.
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Figure 1. Shape of the vintage technology frontier

Figure 2. Sectoral technological progress
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Figure 3. discretization of continuum of vintages for merchant shipping

Figure 4. Capital deepening versus capital widening and dragging
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Figure 5. Fit of adoption curves for three technologies for the U.S. and one for the U.K.




