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ABSTRACT

Do urban hospital closures affect health care access or health outcomes? We study closures in Los

Angeles County between 1997 and 2003, through their effect on distance to the nearest hospital. We

find that increased distance to the nearest hospital shifts regular care away from emergency rooms

and outpatient clinics to doctor's offices. While most residents are otherwise unaffected by closures,

lower-income residents report more difficulty accessing care, working age residents are less likely

to receive HIV tests, and seniors less likely to receive flu shots. We also find some evidence that

increased distance raises infant mortality rates and stronger evidence that it increases deaths from

unintentional injuries and heart attacks.
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Introduction 
 

Just prior to the November 2002 elections, Los Angeles County announced that 

without a $350 million bailout it would be forced to close several area hospitals and 

clinics.  High on the list of proposed closures were Harbor-UCLA and Olive View-

UCLA Medical Centers, hospitals that serve a disproportionate share of the county’s 

Medi-Cal and uninsured populations.  Since Harbor-UCLA is a Trauma I center, its 

closure would mean the loss of significant trauma and emergency care services in the Los 

Angeles area.  The passage of a ballot initiative (Measure B) that increased tax funding 

for emergency rooms and trauma centers has reduced pressure on the county’s health care 

system though, even with this additional funding, the system is still projected to face a 

deficit of between $300 and $600 million over the next 3 years.  Thus, the possibility of 

imminent hospital closures remains real.    

 The proposed closures are part of an ongoing trend in Southern California.  

Between 1997 and 2002, Los Angeles County lost roughly 10 percent of its initial 133 

hospitals (see Table 1).  Since 2002, Tenet Healthcare Corporation, an owner of several 

of these hospitals, has announced additional closures in the area (Hymon 2004, Vrana 

2003).  Although considerable media attention has focused on the potential deleterious 

effects of hospital closures on access to care and health outcomes in Los Angeles County, 

surprisingly little is known about the impact of urban hospital closures on patients.  The 

bulk of the literature on urban closures focuses on the supply-side of the market: the 

determinants of closure (see Lindrooth et al. 2003 for a good summary) and the operating 

efficiency of hospitals remaining in the market (Lindrooth et al. 2003).1   

                                                 
1 Scheffler et al. (2001) specifically studies the causes of hospital closures in California between 1995 and 
2000.  Not surprisingly, poor financial performance is a key predictor of closure.    
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Research on the impact of closures on access to care and health more generally 

has focused largely on rural hospitals (Bindman et al. 1990, Mullner et al. 1989, 

Rosenbach and Dayhoff 1995, Succi et al. 1997, US GAO 1991).  For obvious reasons, 

such studies have, at best, limited implications for considering the consequences of 

hospital closures in urban areas such as Los Angeles County.  A notable exception, 

Vigdor (1999), examines the effect of changes in the density of hospitals in Los Angeles 

County between 1984 and 1995 on rates of avoidable hospitalizations and deaths in the 

hospital from heart attacks and motor vehicle accidents.  As pointed out by the author, 

however, by focusing solely on hospital discharges, Vigdor (1999) cannot assess the 

effect of closures on the health of people who never make it to the hospital in an 

emergency or on people who rely on hospital-based outpatient facilities.   

In this paper, we address the gap in the literature by assessing the impact of 

hospital closures in the Los Angeles Region on perceived access to care, actual health 

care utilization, and health outcomes.  We consider closures through their effect on 

distance from a resident’s home to the nearest hospital.  Past work shows that patients 

typically choose both providers and hospitals, particularly for acute conditions, based on 

proximity and reduced travel time (McGuirk and Porell 1984, Cohen and Lee 1985, 

Dranove et al. 1993, McClellan et al. 1994).  Thus, increased distance may translate to 

reduced access to care.  While patients affected by a closure in urban areas often have 

other hospitals nearby, the reduction in hospital supply may lead to increased crowding at 

and reduced access to the facilities remaining in the market.2  As a result, some may 

forgo or delay care when obtaining it becomes more of a hassle. 

                                                 
2 One recent study reports that in 90 percent of urban communities that experienced a closure between 1990 
and 2000, emergency and inpatient care were still available within 10 miles of the closed facility 
(Department of Health and Human Services, Office of the Inspector General 2003).   
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On the other hand, it is possible that closures may have beneficial effects on 

patients who are directly affected.  Since closed hospitals are typically low-volume, poor-

performers, health care outcomes might improve as residents are forced to choose among 

the remaining higher volume hospitals.  Similarly, closures may shift some patients’ 

usual source of care from a hospital to physician offices or community clinics, which are 

generally viewed as more appropriate sources of primary care. 

To the extent that closures affect access and utilization, the effects are likely to 

vary with patient characteristics. We expect the effect of closures to be greatest on 

seniors, who travel shorter distances to the hospital (Vigdor 1999) and low-income 

patients, who are both less likely to travel far and more likely to use the hospital as their 

“regular” source of care (Weissman and Epstein 1994).3  Indeed, in a study of hospital 

choice for maternal delivery in the San Francisco Bay Area, Phibbs et al. (1993) find that 

Medi-Cal women rely more heavily on public transportation than privately insured 

women and are therefore more sensitive to distance.  Given the higher likelihood among 

Medi-Cal women of delivering at hospitals lacking specialized neonatal care and with 

worse perinatal outcomes, the authors interpret distance as a barrier to effective care for 

the poor.  Similarly, in a study using national data, Currie and Reagan (2003) find that 

central-city black children living further from a hospital are less likely to have had a 

check-up, regardless of their insurance status.  Both studies suggest that to the extent that 

closures force nearby residents to travel further for care, poor women and children may 

be particularly adversely affected. 4   

                                                 
3 Among children with a regular source of care in 1993, only 5 percent of the privately insured rely on a 
clinic or emergency room whereas 35 percent of publicly insured and 20 percent of uninsured do so (Bloom 
1997a).  The breakdown by insurance status is similar for working-age adults (Bloom 1997b). 
4 Patients whose choice of hospital is determined largely by proximity may be vulnerable in other, less 
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There may also be important differences with respect to health conditions.  Even 

if the closure of weaker, poorer performing hospitals improves the average quality of 

hospitals, closures may have negative consequences for certain types of patients.  In 

particular, outcomes for patients experiencing health events requiring fast attention, such 

as injuries sustained in an accident or a heart attack (AMI) may be affected by small 

changes in travel distance (Herlitz et al. 1993).  In contrast, we would not expect urban 

hospital closures to affect mortality from conditions like cancer, where immediate 

emergency care is less relevant.   

Our analysis is based on two distinct sources of health data: household surveys 

conducted by the Los Angeles County Department of Health Services (LACDHS) 

between 1997 and 2002, the period when most of the recent closures were occurring, and 

annual administrative zip code level mortality data from the California Department of 

Health Services.  The survey data, which provide information on residential location, 

allow us to assess the impact of changes in hospital proximity on perceived health care 

access and reported health care utilization.  The administrative data give us an 

independent source of information on health outcomes, not subject to self-reporting bias.     

We find that increased distance to the nearest hospital is associated with a lower 

probability of identifying an emergency room or an outpatient hospital clinic as a usual 

source of care.  It is also associated with an increase in the probability of respondents’ 

reporting a doctor’s office as the place they go when sick or in need of health care advice.  

Distance has little effect on perceived access to care in the population generally, though it 

                                                                                                                                                 
easily measured ways.   For example, several studies indicate that within the same medical center, patients 
who travel farther to receive elective care or even cancer treatment have better outcomes than similar 
patients with the same disease and receiving the same treatment, but who live nearby  (Ballard et al. 1994, 
Goodman et al. 1997, Lamont et al. 2003).     
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is negatively related to perceived access for lower-income residents who tend to rely 

more on hospitals.  This effect is partially offset by insurance.  Among the elderly, 

distance is negatively related to the probability of receiving an influenza vaccine.  In 

contrast, we find that hospital closures are associated with an increase in the probability 

that those with health insurance receive colon cancer screening, possibly reflecting a 

switch among residents to higher quality hospitals or their increased use of office-based 

physician care, where referrals for such screening are common.   

Increased distance to the nearest hospital is also associated with delays in the 

receipt of prenatal care and a rise in infant mortality rates, though the latter effect is 

sensitive to the empirical specification.  Finally, we find evidence that increased distance 

is associated with increased deaths from unintentional injuries and acute myocardial 

infarction, but not from other causes such as cancer or chronic heart disease, for which 

timely emergency care is less important.   

 

Data and Methods 

Data Sources   

We use several independent sources of data.  The first is household level data 

from the Los Angeles County Health Surveys (LACHS), which were conducted by the 

LACDHS in 1997, 1999/2000, and 2002/2003.  The LACHS, which surveys roughly 

8000 adults, depending on the year, asks several questions on perceived access to care 

and self-reported utilization.  Specifically, the survey asks whether the individual has a 

usual source of care (and where it is), how they perceive their access to care (very to 

somewhat difficult versus very to somewhat easy), and whether or not they have received 
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several different types of preventive care (colon cancer screening, vaccines, HIV tests).  

In addition, it has detailed information about a respondent’s health status, demographics, 

socio-economic status, and medical insurance status.  Importantly for this analysis, there 

is also information on the zip code of each respondent’s residence, which allows us to 

link respondents to measures of distance to the nearest hospital.5  

To examine the effect of distance to the nearest hospital on health outcomes, we 

use zip code level birth and death reports from California’s Department of Health 

Services.  Using the birth data, we assess the impact of distance to the nearest hospital on 

the receipt of prenatal care and infant mortality rates.  The expected effect is theoretically 

ambiguous.  On the one hand, previous studies have been shown maternal health care 

access, and thus infant health, to be sensitive to distance (Phibbs et al. 2003).  Moreover, 

the time it takes to get to an emergency room may be critical for an infant’s recovery 

from an accident or a serious acute illness occurring after discharge from the hospital.  

On the other hand, when smaller hospitals with less technically advanced facilities close, 

more births may occur at larger hospitals with better facilities (e.g., neo-natal intensive 

care units), which may lead to better birth outcomes.   

We use cause-specific mortality data from 1997-2001 to test for an effect of 

distance to the nearest hospital on mortality from conditions for which access to timely 

emergency care is likely to be an important determinant of survival.  Specifically, we 

examine the effect of distance on the count of deaths from heart attacks and unintentional 

injuries.  As a specification check, we also consider the relationship between distance on 

the number of deaths from colon and lung cancer and chronic ischemic heart disease, 

outcomes that should be not be sensitive to how long it takes to get to the nearest 
                                                 
5 Zip codes are stripped from the publicly available LACHS data.   
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hospital.  A finding that distance is related to these outcomes would most likely be 

spurious, which would then cast doubt on our research design. 

To calculate changes in travel distances from the center of each zip code in Los 

Angeles County to the address of the nearest hospital, we use data from the 1997-2001 

Office of Statewide Health Planning’s (OSHPD’s) Annual Utilization Report of Hospitals 

1997-2001, supplemented by OSHPD’s 2002 Hospital Facility Listing.  We consider 

hospitals in the entire Los Angeles Region, as the nearest hospital to certain County 

residents may lie in neighboring counties within the Region.  Since changes in proximity 

to the hospital for LA County residents came almost exclusively through closures, 

whereas residents from other parts of the region experience many changes due to 

openings as well as closures (see Table 1), we restrict our analysis to LA County.6     

 

Econometric Specification 

We use a quasi-experimental design to examine how changes in the travel 

distance from the population center of each zip code in Los Angeles County to the 

nearest hospital have affected perceived access, self-reported health care utilization, and 

actual health outcomes among residents in that zip code.7  Essentially we compare 

changes for individuals in areas where hospitals closed to otherwise similar individuals in 

areas where the availability of hospital services remained constant.  One set of 

regressions uses the individual-level data from the LACHS, while another uses annual 

                                                 
6 LA County residents were affected by 1 opening, a Kaiser facility in Baldwin Park.  Because it occurred 
just prior to the closing of another neighborhood facility, Santa Rosa Hospital, distance from the two 
affected zip centers to the nearest hospital was virtually unchanged.  Moreover, as Kaiser is technically 
open only to its enrollees, we are understating the true change in distance from the Santa Rosa closing.       
7 The zip center coordinates from http://www.oseda.missouri.edu/uic/zip.resources.html are essentially a 
population-weighted average of the coordinates for the census blocks in a zip code area.  They are virtually 
identical to the zip center coordinates given by both Yahoo!® Maps and MapQuest®. 
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utilization and mortality data aggregated to the level of the zip code.  For both types of 

data, the general form of the econometric specification is:  

 

(1) Yzt = αDistancezt + X’β + γt + δz + εzt, 

 

where the dependent variable, Y, includes the measures of access, utilization and health 

outcomes just described.  Control variables are represented by the vector X.  In the 

models estimated using the LACHS data the controls are individual characteristics that 

are likely to affect medical care utilization and perceived access, such as income, health 

insurance coverage and health status.  We also include some neighborhood characteristics 

such as the number of community health clinics in a zip code and city-level 

unemployment rates.8   

In the zip code level infant mortality models, the controls include the share of 

births delivered by race of mother (White, Hispanic, Black, Asian, Filipino, American 

Indian and unknown), share of births by weight category (under 1500g, 1500-2499g, over 

2500g and weight unknown) and share of births by mother’s age group (under 20, 20-29, 

30-34, 35 and over, and age unknown).  When we consider counts of infant deaths (in 

contrast to infant death rates), we include the total number of births in the zip code as an 

additional covariate.  The models of other mortality counts in a zip code include controls 

for total deaths, deaths by homicide (to proxy for the general risk of the neighborhood) 

                                                 
8 Annual unemployment rates are available for 125 cities and “census designated places” through the 
California Economic Development Department’s “Labor Force Data on Sub-County Areas in California.”  
For cities missing unemployment rates, we use the county-year average.  We also include an indicator for 
this substitution in the regressions.   Clinics, which are listed in OSHPD’s Primary Care Clinic Listings, 
open and close based on where there is greatest need (US GAO 1995).  Thus, we use counts of clinics in an 
area to proxy for the health care needs and status of a community.    
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and the age distribution of deaths (to proxy for the age structure of the neighborhood).  

Both the infant mortality and the mortality count models also control for the number of 

health clinics in the zip code. 

The terms γt and δz are fixed effects for time (i.e., year) and geographic area.  In 

all of the models we present, we include zip code fixed effects.  In these specifications, 

the effect of distance is identified by changes in mean distance induced by hospital 

closures.  The advantage of this approach is that we can account very completely for 

differences in demand that may exist across areas due to factors such as the 

socioeconomic characteristics of the population.  In the mortality regressions we also 

report specifications that include separate time trends for each zip code to account for 

demographic or economic shifts within a zip code that are not common across areas.  

Because we have only three years of survey data, however, we do not include zip code-

specific time trends in any of the models of individual health care access or use.  

Because hospital closures are quite rare, a possible disadvantage of this estimation 

strategy is that the model is identified by changes affecting a fairly small percentage of 

the population.  Therefore, as an alternative specification, we estimate models that 

replace the zip code dummy variables with city or “community” fixed effects.9  To the 

extent that these communities are relatively homogeneous with respect to demographics 

and other demand side variables, this specification exploits additional within-community 

differences in distance related to the location of all hospitals, not just those that closed or 

opened during the period of the analysis.   

                                                 
9 For areas outside of the city of Los Angeles we use the city as the geographic unit in this specification.  
Within Los Angeles we include separate fixed effects for distinct communities such as Brentwood, 
Hollywood, Encino and Boyle Heights.  These communities are geographically compact and relatively 
homogeneous in terms of economic and demographic characteristics. 
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Another possible limitation of (1) is that it assumes that the effect of distance is 

the same for all residents of an area, which clearly may not be the case.  To the extent 

that uninsured patients are more likely to use emergency departments and hospital-based 

clinics as a source of primary care, we would expect them to be more strongly affected by 

the distance to the nearest hospital.  Similarly, lower income people are likely to face 

higher transportation costs, which would translate to a larger effect of distance on access 

and utilization.  In the models using the LACHS data we test for these possible 

differential effects by estimating models in which the distance variable is interacted with 

insurance coverage.  We also estimate models on a sub-sample of individuals reporting 

an annual household income of less than $30,000. 10 

All of the outcomes from the LACHS are dichotomous: whether the usual source 

of care is an emergency room or hospital-based clinic, whether or not the respondent 

believes she has good access to care, and whether or not the person has received several 

types of preventive care or diagnostic tests.  For these outcomes we estimate probit 

models.  In our analysis of deaths (infant mortality as well as deaths of all residents by 

cause), we use negative binomial models, exploiting the nonnegative count nature of 

mortality data while using a more flexible functional form than the more common 

Poisson model.11   We do this to avoid introducing additional noise into the analysis, 

since in many zip code years there are few deaths of any given type.12  In all models we 

adjust standard errors to allow for correlation in the error terms at the zip code level.13 

                                                 
10 Median household income in Los Angeles County in 2000 is roughly $42,000. 
11 The Negative Binomial model is essentially a Poisson regression model with unobserved heterogeneity 
introduced by a gamma distributed error term.  This more flexible functional form allows for over-
dispersion.  Hausman et al. (1984) pioneered the approach; Long (1997) provides a good review.   
12 For example, in 30 percent of all zip code years there are no infant deaths and in 54 percent there are 
fewer than 5 deaths from unintentional injuries.   
13 Failure to account for this will cause the precision of our estimates to be overstated, leading to an over-
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Results 
 
 Descriptive Statistics: LACHS 
 

Table 2 presents summary statistics for LACHS respondents overall and 

separately according to whether they live in zip codes that experienced a change in 

distance to the closest hospital during the sample period.  For the full sample, the average 

driving distance to the nearest hospital is 2.64 miles.  The figures in the second and third 

columns show that the average distance is greater for individuals who faced an increase 

in distance due to a closure compared to individuals for whom the distance did not 

change.  This is also true before closures (not shown here): zip codes that experienced 

hospital closures during this period experienced an increase in driving distance to the 

nearest hospital by about a mile, from an average driving distance of just under 3 miles to 

almost 4 miles.  Within this group, the change in distance associated with a closure 

ranged from roughly a tenth of a mile to about 3.6 miles.   

Other differences between the two groups suggest the importance of controlling 

for individual characteristics and area fixed effects.  Those who faced a change were 

significantly more likely to be white (54 vs. 39 percent), U.S. citizens (84 vs. 77 percent), 

English-speaking (81 vs. 76 percent) and have a college or post-graduate degree (37 vs. 

30 percent).  Respondents in affected zip codes are also more likely to have private health 

insurance (58 vs. 51 percent), less likely to have Medi-Cal (4.5 vs. 8.3 percent) and less 

likely to rely on hospital for care (10 vs. 14 percent).  Those affected by closures also 

have better self-reported health and access to care.  These differences are not surprising 

given that several of the neighborhoods that lost hospitals (e.g. Beverly Hills, Burbank, 

                                                                                                                                                 
rejection of the hypothesis that changes in distance to the nearest hospital have no effect on access to care 
(Moulton 1986; Bertrand, Duflo and Mullainathan 2004).   
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and North Hollywood) are relatively affluent.  To the extent that our models do not fully 

capture this heterogeneity and that the group experiencing a change in distance is 

“healthier,” and of higher SES, we risk understating any negative effects of closure on 

vulnerable populations.  

The last part of Table 2 presents the outcomes we examine.  The measures of 

usual source of care and perceived access are defined for the full sample.  In contrast, the 

questions concerning the receipt of various types of preventive care were targeted to 

specific relevant populations—e.g., individuals over age 50 for colon cancer screening, 

individuals over age 65 for flu and pneumonia vaccines and women of different ages for 

Pap smears and mammograms.   

 

Probit Regression Results: Access to Care and Preventive Screening 

The probit regression results for these outcomes are reported in Table 3 (usual 

source of care and place of care), Table 4 (perceived access) and Table 5 (preventive 

care).  For all models, we report marginal effects (i.e., probability derivatives) computed 

at the sample means of the data rather than the raw coefficients.  Marginal effects of 

health-related controls are reported in Appendix Tables 1, 2 and 3.14  In all cases, the 

“marginal effect” of the interaction between insurance and distance is calculated as the 

cross-derivative of the standard normal cumulative distribution with respect to distance 

and insurance, evaluated at the sample means of the data (Ai and Norton 2003).   

Panel A of Table 3 looks at whether the respondent has a "particular regular 

                                                 
14 For sake of brevity, we do not discuss these covariates in the text though they are interesting in their own 
right.  For example, they confirm that more vulnerable patients (e.g. those with poor self-reported health 
status and diabetics) are more likely to use an ED or hospital based clinic as their regular source of care.  
Similarly, those with poor self-reported health status and arthritics (primarily seniors), report more 
difficulty accessing care. 
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source of care where he/she goes most often."  Columns (1) and (3) consider the main 

distance effect alone; columns (2) and (4) include the interaction between health 

insurance and distance.  In the full sample (columns (1) and (2)), hospital closures have 

little detectable effect on the probability of reporting a usual source of care.  Surprisingly, 

in the low-income sample, a one-mile increase in distance to the nearest hospital is 

associated with an almost 2 percent increase in the likelihood of reporting a particular 

place where care is sought.15   One possible explanation for this counter-intuitive result is 

that around the time of a closure, county or city authorities may have increased outreach 

efforts to encourage low-income patients who had relied on the hospital emergency room 

(but perhaps did not view it as a “usual” source of care) to find an alternative.  Similarly, 

low-income residents may have responded to the considerable media attention given to 

hospital closures by identifying an alternative source of care.  Finally, some physicians or 

clinics that serve low-income populations may have seen closures as a business 

opportunity and either moved into the area or marketed their services more aggressively.   

The results in Panels B and C suggest that in the full sample the zero effect on 

having a usual source of care masks an effect of closures on where patients receive care.  

Increased distance to the hospital is associated with a decrease in reliance on an ED or 

clinic when sick (Panel B).  Although these effects are not significant at conventional 

levels, if we exclude patients without a regular source of care (not shown here), the full 

sample results indicate that a one-mile increase in distance is associated with a 

statistically significant 1.3 percentage point decline in the probability of reporting an ED 

or clinic as the source of care (off a base of 17 percent).  This reduction coincides with an 

                                                 
15 The increased likelihood of having a regular place of care appears to be independent of health insurance 
(see col (4), Panel A) but further analysis using separate interactions for Medi-Cal, Medicare, and “private” 
insurance (not shown here), suggests that the increase is common to all but Medicare beneficiaries.   
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increased reliance on a physician’s office (Panel C).  In both the full and low-income 

samples, respondents report a 2 to 3 percentage point increase in the likelihood of going 

to a doctor’s office when sick.  This effect, which is independent of insurance status, is 

quite large for the low-income group, suggesting an almost 5 percent increase in 

reporting that a doctor’s office is the usual place of care.16  

Table 4 takes the analysis a step further by asking how closures and the 

subsequent shifting of sources of care affect perceived access.  Results are given 

separately for those with (Panel A) and without (Panel B) a regular source of care.  Not 

surprisingly, across all residents, increased distance appears to have little effect on 

perceived access to care.  For low-income respondents, however, a one-mile increase in 

the distance to the nearest hospital results in a roughly 3 percent decrease in ease of 

obtaining health care.  The effect is fully offset by health insurance, implying that low-

income uninsured residents, despite their increase in reporting a doctor’s office as their 

usual source of care, perceive more difficulty in accessing care after a hospital closure.  

Among low-income residents who report no regular source of care (Panel B) the effect is 

independent of insurance status and is quite large.  A one-mile increase in distance to the 

hospital is associated with a 7.1 percentage point decline in reported ease of access, 

which is nearly a 20 percent effect relative to the base of 38 percent.  Seniors also report 

decreased ease of access (not shown here), irrespective of insurance status.  Among those 

65 and over, a one-mile increase in distance is associated with a 5 percentage point 

decline in ease of access to care off of a base of 85 percent.   

 While reported source of care and perceived access are clearly important, we care 

                                                 
16 This effect is independent of health insurance status, although here again further analysis suggests the 
increase is common to all (uninsured, privately insured or Medi-Cal insured) but Medicare beneficiaries.    
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ultimately about the effect of hospital closures on the use of health care services and 

health outcomes.  The regressions reported in Table 5 examine the effect of changes in 

the distance to the nearest hospital on use of health care services.  Panel A considers 

colon cancer screenings (colonoscopy or sigmoidoscopy) in individuals over 50.17  In 

both the full sample and the low-income subsample, the simplest model suggests a 

negative though insignificant relationship between the probability of screening and 

increased distance.   When we include the insurance interaction, however, we find that 

for insured individuals there is a positive relationship between distance and the 

probability of screening, although the effect is not statistically significant for the low-

income group.  For insured people in the full sample, a one-mile increase in distance to 

the hospital is associated with a roughly 3 percentage point increase in the probability of 

colon cancer screening or an almost 7.5 percent increase. 18  Since doctors typically 

provide hospital referrals for this service, the increased screening may be attributable to 

the increase in regular care sought in a physician’s office.   

We also estimated the effect of distance on HIV tests for adults under age 65 

(Panel B).  The coefficients on distance and the interaction between distance and 

insurance status are all statistically insignificant.  When we use an alternative 

econometric specification, discussed in our sensitivity tests below, however, we find 

evidence suggesting that hospital closures may decrease the likelihood the residents get 

                                                 
17 The question was asked of those 40 and older in 1997 but only those 50 and older in subsequent surveys.    
18 The 1997 survey asks about tests in the last two years, whereas later surveys ask whether the respondent 
has ever had the test.  This change creates a bias toward finding a positive effect of distance as the 1997 
pre-closure rate of screening in a zip code is by definition less than (or equal to) the lifetime screening rate.  
Sensitivity tests limiting the sample to the 1999 and 2002 survey years yield results that are remarkably 
similar for the insured respondents, suggesting a roughly 3 percentage point increase in the probability of a 
screen with a one-mile increase in distance to the hospital.  If anything the results above, understate the 
negative effect on the uninsured.  The results from the 1999-2002 data suggest that the uninsured 
experience a 5-percentage point decline in colon cancer screens, significant at the 20 percent level. 
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screened for HIV.  

Panel C looks at flu shots in the past year and pneumonia vaccines (ever) for 

those 65 and over.  Because household income is less meaningful for this population, we 

limit this analysis to the full sample of seniors.  A one-mile increase in distance to the 

hospital lowers the probability of having a flu shot by about 3 percentage points for all 

seniors.  While this result may seem surprising given that flu shots need not be given in a 

hospital setting, it may reflect the fact that flu shot campaigns are often coordinated by a 

local hospital.  In addition, since hospitals are typically high-volume providers of flu 

shots, closures may increase congestion at other facilities offering shots and thereby 

decrease access to the vaccine.  In contrast to flu shots, we find no effect of distance on 

the probability of pneumonia vaccination.  The difference between the pneumonia 

vaccine and flu shot results, however, may be related to the fact that the pneumonia 

vaccine is given to seniors on a roughly 10-year basis whereas the flu shot is given 

yearly.  Thus, even if seniors are less likely to go to the hospital for a vaccination, this 

effect may only show up over a long time horizon.   

Finally, in models not reported, we examined the effect of distance on PAP smear 

tests for women 18 and over, and mammograms for women over 40, all within the last 

two years.  Compared to the other types of preventive screening, there is less reason to 

expect an effect of distance on these outcomes.  PAP smears can be administered 

anywhere and are commonly provided in physicians’ offices.  Similarly, mammograms 

are often given in dedicated, non-hospital based facilities.  It is not surprising, then, that 

for these outcomes we find no discernable effect of distance to the nearest hospital.   
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Sensitivity Tests 

As noted above, by controlling for geographic area effects at such a fine level, we 

are identifying the impact of hospital closures only as they affect those in the immediate 

surroundings of the hospital.  And, since closures are relatively rare, we capture changes 

in health of a fairly small percentage of the population.  As an alternative specification, 

we replace the zip code with community or neighborhood fixed effects.  To the extent 

that these communities are relatively homogeneous with respect to demographics and 

other demand side variables, this specification exploits additional within-community 

differences in distance to the location of all neighborhood hospitals, not just those that 

closed during the period of analysis.   

Results using this less restrictive model (see Appendix Table 4) are generally 

quite similar to those with zip code fixed effects.  The colon cancer screening results are 

virtually identical in magnitude but more precisely estimated.  In the case of HIV tests, 

this alternative specification indicates that an additional mile in distance to the nearest 

hospital is associated with a statistically significant 0.5 percentage point decline in 

probability of receiving screening.  The effect is also negative and of similar magnitude 

for low-income residents, although only significant at the 19 percent level.  In contrast 

the flu vaccine results are no longer statistically significant when we include 

neighborhood rather than zip code fixed effects.       

Another potential problem with our main analyses is that, as demonstrated by the 

descriptive statistics in Table 2, people in zip codes not affected by hospital closures are 

quite different from those in affected zip codes and thus do not necessarily make a good 

control group.  Since those who did experience an increase in distance to the hospital 
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were typically higher SES, however, any bias from the choice of control group is likely to 

understate deleterious effects of closures and overstate any positive effects.  

One way to more fully control for this heterogeneity is to restrict the analysis to 

respondents living in zip codes where there was a change in distance to the nearest 

hospital at some point during the sample period (see Appendix Table 5).  Restricting the 

sample in such a manner cuts the number of observations down by about 85 percent, from 

about 22,000 to almost 3,000 respondents, and typically, though not always, reduces the 

precision of the results.  In general, however, the results are qualitatively similar.  In a 

few cases, the results suggest that the estimated effects (both positive and negative) using 

the full sample are understated.  The increase in colon cancer screens among insured 

residents is still statistically significant at the 5 percent level and is about twice the 

magnitude, suggesting a one-mile increase in distance to the hospital increases the 

probability of being screened for colon cancer by about 6 percentage points.  Similarly, 

the probability of HIV screening among insured residents declines by 1.8 percentage 

points, implying a 6 percent reduction in screening that is statistically significant at the 2 

percent level.  The restricted sample results also suggest that the flu shot estimates from 

the full sample are understated.  The results from the restricted sample imply that a one-

mile increase in distance leads to nearly a 10-percentage point decline in testing (a 14 

percent effect relative to the sample mean), which is significant at the 10 percent level.  

Although the precise magnitude of the results vary somewhat across 

specifications or samples, the basic qualitative results are clear.  On net, the LACHS 

results suggest both positive and negative effects due to the closure of even poor 

performing hospitals.  Not surprisingly, the negative effects are largely concentrated in 
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vulnerable populations – lower income residents, the uninsured, and seniors.   

 

 Zip Code Level Analysis of Prenatal Care and Infant Mortality 

 We now turn to our analysis of mortality using zip code level administrative data.  

Table 6 summarizes the data that we use to analyze the effect of hospital closures on 

receipt of prenatal care and infant mortality.  As expected given the LACHS data, 

mothers in zip codes that faced closures are more likely to be white and less likely to be 

black or Hispanic.  They tend to be older and are also significantly more likely to have 

received prenatal care in their 1st trimester of pregnancy.  The birth weight distribution of 

their babies is not statistically significant different and the infant death rate is only 

slightly lower from that of mothers in zip codes that experienced no change in distance to 

the nearest hospital.   

 The first two columns of Table 7 consider early use of prenatal care services 

among women who eventually give birth.  With or without zip code time trends, we find 

a negative effect of increased distance on the share of births that received 1st trimester 

prenatal care.  The effect of distance is larger in the model that includes the zip code 

trends (-0.658 vs. -0.144), where it is statistically significant at the 6 percent level.  

However, even this effect is small in economic terms.  Relative to the mean of the 

dependent variable (864), the result in column 2 represents a 0.08% effect.      

 Next, we examine the effect of distance to the nearest hospital on infant deaths.  

In columns 3 and 4, the dependent variable is the infant mortality rate (deaths per 1000 

live births).  Columns 5 and 6 report results from negative binomial regressions in which 

the dependent variable is the total number of infant deaths; in this specification the total 
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number of births enters on the right hand side.  Overall, these models are suggestive of an 

effect of distance on infant deaths, though the results are sensitive to the specification.  In 

column 3, a one-mile increase in distance to the nearest hospital is associated with a .061 

increase in infant deaths per 1000 live births.  However, when zip code specific trends are 

included, the sign on the effect flips and is no longer statistically significant.  Similarly, 

the basic negative binomial model implies that a one-mile increase in distance to the 

nearest hospital is associated with a roughly 7 percent increase in the number of deaths in 

the first year of life, but the effect is smaller (4.7%) and not statistically significant (p-

value = 0.289) when we add separate time trends for each zip code.   

 

Zip Code Level Analysis of Mortality from Other Causes 

 Increased distance to the nearest hospital may affect survival probabilities of area 

residents experiencing acute conditions for which prompt medical attention is crucial.  To 

test for such effects we consider the effect of distance on mortality from acute myocardial 

infarction and unintentional injuries.  As a check on these results, we estimate similar 

models on outcomes where emergency care is much less important: chronic heart disease 

and cancer.  The summary statistics for the data used in this part of the analysis are 

reported in Table 819 and the key regression results are in Table 9.  

For AMI, the basic model indicates that a one-mile increase in distance leads to a 

nearly a 3% increase in the number of deaths (Table 9, column 1).  The magnitude of this 

effect more than doubles when we include zip code specific time trends (column 2).  We 

obtain similar results for deaths due to unintentional injuries: a one-mile increase in 

                                                 
19 Consistent with the differences in SES found in the other data sets, fewer residents in zip codes 
experiencing a change in distance die by homicide.  In contrast, there is no significant difference in the 
share of total deaths from heart attacks or unintentional injuries. 
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distance to the nearest hospital is associated with a roughly 4 to 6 percent increase in the 

number of deaths, with the larger effect coming from the model with the zip code specific 

time trends.   

In contrast, we find no significant relationship between changes in distance to the 

nearest hospital and deaths from chronic heart disease, colon cancer or lung cancer.  

Given our LACHS findings of increased colon cancer screenings among those with 

health insurance and the fact that colon cancer is highly curable if diagnosed and treated 

early (Tomeo 1999), we may have expected a consequent effect on colon cancer deaths.20  

Since we cannot infer insurance status from death records, however, any effect of early 

diagnosis on deaths from colon cancer may be masked in our data.  Moreover, five years 

may not provide a long enough time period to see any effect of increased diagnosis (and 

subsequent treatment) on colon cancer death rates.  Though not presented here for sake of 

brevity, this invariance to distance is also found for deaths from chronic pulmonary 

obstructive disorder (COPD), Alzheimer’s disease, and diabetes.  We take these null 

results as some confirmation that the heart attack and unintentional injury findings are 

picking up real effects of changes in distance to the nearest hospital rather than some 

unobserved factors affecting deaths more generally in these zip codes. 

 

Discussion   

While important, the finding that hospital closures in Los Angeles County may 

have reduced access and increased mortality does not necessarily imply that the closures 

were welfare-reducing.  It is necessary to weigh these costs against the benefits of 

                                                 
20 Unlike diagnostic tests for other forms of cancer or even many other diseases, colon cancer screenings 
are a “primary prevention” method because early detection of precancerous polyps can prevent the actual 
development of disease (Tomeo 1999). 
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closures, most importantly those benefits related to improved operating efficiency and 

lower costs.  While a full cost-benefit analysis of these closures is beyond the scope of 

this paper, we can conduct a rough assessment. 

 Scheffler et al. (2001) document that the California hospitals that closed during 

the period of our study were smaller than average and, prior to closing, had weaker 

financial performance than those that remained opened.  They calculate that statewide 

these closures reduced total inpatient capacity by between 3 and 4 percent.  Shifting care 

to more efficient hospitals and reducing excess capacity should have reduced system-

wide costs.  According to Lindrooth et al. (2003), urban hospital closures result in a 

roughly 3 percent reduction in costs per adjusted admission.  Applying this estimate to 

the average cost per adjusted admission in 1999 in Los Angeles County of $2346 and an 

annual figure of 5.5 million patient days (OSHPD 2001), implies that the closures in LA 

County in the late 1990s saved approximately $387 million per year.   

Our analysis suggests that the greatest cost of hospital closures is due to the 

increase in deaths from AMI and unintentional injuries.  In our data, the zip code level 

means for these outcomes are 14 deaths per year for AMI and 5 deaths per year for 

accidents.  Based on our estimates of the effect of a one-mile increase in distance, the 

mean increase associated with hospital closures in our sample, closures increased AMI 

deaths an average of 4.5 percent and deaths due to unintentional injuries an average of the 

4.85 percent.  Together, these estimates translate to an additional 0.873 deaths per year in 

affected zip codes.  Since 35 zip codes were affected, this implies that closures in LA 

County resulted in an average of 30.5 additional deaths per year.  Ignoring the fact that 

those who die from AMI are typically middle-aged and using standard value of life 
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estimates of between $1 and $5 million (Viscusi 1993), the mortality-related costs of 

hospital closures may be as high as $92 million, well below the estimated cost savings.   

Supplementing this rough cost-benefit calculation with the net costs of reduced 

HIV testing and influenza vaccinations as well as decreased access to care are unlikely to 

change this basic assessment.  This average calculation, however, masks specific, 

changes in health care use that may not have been cost-beneficial.  For example, consider 

the effect of closures on flu shots among the elderly, which numerous studies find to be 

very cost-effective (see Nichol 2003 for an extensive review).  One study of elderly 

members of a health maintenance organization found that influenza vaccines reduced 

direct medical costs by an average of $73 per person, largely by reducing hospitalizations 

(Nichol et al. 1998).  Our results imply that the hospital closures in LA County resulted in 

over 26,700 fewer seniors receiving vaccines.21  Combining these two estimates would 

imply that the reduced immunizations caused by the closures led to additional medical 

costs of over $1.8 million.  Flu vaccines have also been shown to reduce mortality among 

the elderly.  One meta-analysis cited in Nichol (2003) suggests that vaccinating seniors 

reduces deaths from all causes by about 50 percent.  With about 42,000 deaths per year 

among seniors in the County and a value of $25,000 per additional year of life lived and 5 

more years of life expected, the reduction implies a cost of almost $74 million (42,000 * 

.50 * .028 * $125,000) in years of life lost.22       

   

                                                 
21 Specifically, we find that closures reduced the probability of being immunized by 2.8 percentage points.  
This effect and a total senior population of 955,000 equal 26,740. 
22 Death figures are from http://www.dhs.ca.gov/hisp/chs/OHIR/vssdata/2001data/2001MCountyEX.htm 
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Conclusions 

Past work has shown that urban hospital closures improve the efficiency of the 

health care systems by shifting care to lower cost facilities (Lindrooth et al. 2003).  In a 

similar vein, we find that hospital closures shift care previously given in emergency 

rooms and outpatient clinics to doctor’s offices, a more appropriate and cost-effective 

source of regular care (Baker and Baker 1996).  Although these efficiency savings from 

hospital closures are extremely important, they tell only part of the story.   

We find that proximity to a hospital is an important determinant of access to care 

for the more vulnerable residents in Los Angeles County.  Lower-income residents and 

seniors, who tend to rely more on hospitals, report more difficulty accessing care as a 

result of closures, though this effect is partially offset by insurance.  Moreover, increased 

distance to the hospital lowers the probability that seniors receive flu shots, that younger 

residents get screened for HIV and the timeliness of prenatal care for pregnant women.  

Cause-specific mortality data suggests that urban hospital closures also have 

implications for the population more generally.  We find strong evidence that increased 

distance to the nearest hospital is associated with higher mortality counts from emergent 

conditions, such as heart attacks and unintentional injuries.  We also find some evidence 

that distance to the nearest hospital is positively related to infant mortality, though these 

results are less robust.  Overall, we conclude that the costs associated with these adverse 

outcomes are outweighed by the efficiency gains related to hospital closures.  Social 

welfare may be further increased, however, by promoting low-cost, non-hospital-based 

ways of treating emergent conditions after a local hospital closure.   
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Table 1.  Hospital Closures and Openings in the Los Angeles Region: 1998-2002 
 

  
Los Angeles County 

 

 
Neighboring Counties 

 
 
 
Year 

 
Open start 

of Year 

Closed 
During 
Year 

Opened 
During 
Year 

Open start 
of Year 

Closed 
During 
Year 

Opened 
During 
Year 

1997 133 5 0 89 2 0 
1998 128 5 1 87 2 0 
1999 124 1 0 85 1 2 
2000 123 1 0 86 2 2 
2001 122 3 0 86 0 1 
2002 119   87   
 
Source: OSHPD’s Annual Utilization Report of Hospitals, 1997-2001 and 2002 Hospital Facility Listing. 
 
Notes: The neighboring counties are Orange, Ventura, Riverside and San Bernardino.General Acute Care 
(GAC) hospitals are all nonfederal hospitals except psychiatric hospitals (acute or long term), chemical 
recovery hospitals, and state correctional facilities.  A GAC hospital is listed as having closed in 1998 if it 
appeared in the 1997 but not the 1998 or later years.  Some hospitals that were incorrectly not listed in 
certain years were added back to the data; a detailed list of the reporting errors is available on request.   
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Table 2. Los Angeles County Health Survey Summary Statistics 

  
 

Overall 

 
By Change in  

Distance to Closest Hospital 
 

Hospital Distance Variables  No Change Change 
Miles to closest hospital (driving) 2.64 

(.019) 
2.52 

(.020) 
 

3.48 
(.049) 

Miles to closest hospital (straight line) 1.78 
(.012) 

1.67 
(.013) 

2.45 
(.030) 

 
Change in driving distance to hospital 
 
 

.137 
(.003) 

-- 1.03 
(.015) 

Individual Characteristics    
Gender (male) 
 

.407 .407 .408 
 

Age 43 
(.11) 

42 
(.12) 

43 
(.27) 

 
Race    
     Hispanic .376 

 
.392 .294 

     White .411 
 

.386 
 

.535 

     Black .100 .112 
 

.042 
 

     Asian .094 
 

.091 
 

.106 

     Pacific Islander .008 .008 
 

.008 
 

     American Indian .005 
 

.007 
 

.007 
 

     Other .003 
 

.004 
 

.005 
 

Citizen .784 
 

.773 
 

.842 
 

Survey Taken in    
         English .770 .759 

 
.814 

 
          Spanish .200 

 
.213 

 
.141 

          Mandarin .010 .009 
 

.015 
 

          Cantonese .006 
 

.006 
 

.005 

          Korean .008 
 

.008 
 

.010 
 

          Vietnamese .005 .005 .004 
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Household Income     
     < $10000 .136 .126 .183 

  
     $10000-20000 .115 

 
.123 

 
.074 

 
     $20000-30000 .179 .187 .134 

 
     $30000-40000 .119 

 
.123 

 
.097 

 
     $40000-50000 .099 .099 .099 

 
     $50000-75000 .080 

 
.080 

 
.080 

 
     > $75000 .119 .115 .134 

 
Education Level     
     8th Grade or less .094 

 
.098 

 
.071 

 
     9-12th Grade .102 

 
.108 

 
.072 

 
     HS Graduate .213 

 
.216 

 
.198 

 
     Some College .278 

 
.277 

 
.281 

 
     College Grad .203 

 
.194 

 
.244 

 
     Post Grad Degree .110 

 
.105 

 
.134 

 
Working Status    
     Full-Time .463 

(.003) 
.462 

(.003) 
.474 

(.008) 
 

     Part-Time .109 .108 .115 
 

     Hours Unknown .005 
 

.005 
 

.006 
 

     Not Working .161 .164 .147 
 

     Retired .127 
 

.127 
 

.131 
 

     Homemaker .095 
 

.096 
 

.094 
 

Marital Status    
     Married .479 

 
.473 

 
.467 

 
     Co-habitating .072 

 
.076 

 
.054 

 
     Widowed .064 .064 .066 

 
     Divorced .100 .100 .099 
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     Separated .035 .036 .027 

 
     Never Married .250 

 
.252 

 
.240 

 
Household Size 3.09 3.12 2.94 

 
Health Status and Behaviors    
     BMI 24.0 

(.054) 
24.1 

(.059) 
23.6 

(.127) 
 

     Self-assessed health: 1=excellent,     
     5=poor 

2.50 2.52 2.37 
 

     Diabetes .063 
 

.063 
 

.062 
 

     Arthritis .173 .174 .168 
 

     Heart Disease 
 

.060 
 

.061 .059 

     Smoke Cigarettes .160 .162 .154 
 

Health Insurance Status .521 
 

.508 
 

.588 
 

Insured - Private, Empl, Military .077 
 

.083 
 

.045 
 

Medi-Cal, non-Medicare 
 

.122 
 

.121 
 

.127 
 

Medicare .122 .121 .127 
 

Outcome Variables    
Has regular source of care  .781 

 
.779 .792 

Source of care is ER or outpatient clinic .133 
 

.140 .099 

Colon Cancer Screen (age>50) .380 
 

.378 .391 

Received HIV Test (age<65) .358 
 

.367 .312 

Flu Shot (age≥65) .696 
 

.692 .715 

Pneumonia Vaccine (age≥65) .572 
 

.558 .636 

# of Observations 23503 20377 3126 
 
Notes: Standard errors for continuous variables are given in parenthesis.  With the exception of the hospital data which 
are from OSHPD, data are from the (adult) Los Angeles County Health Survey (LACHS) 1997, 1999/2000 and 
2002/2003.  Miles to closest hospital is defined as the MapQuest® driving distance from the population centroid or in 
some cases the physical center of a zip code to the closest hospital.  Insurance and health status questions refer to time 
of survey.  BMI is defined as weight in kilograms divided by the square of height in meters. Self-assessed health status 
ranges from excellent (1) to poor (5).   Colon cancer screens include colonoscopies and sigmoidoscopies among 
respondents 50 and over in their lifetime.  All other questions about diagnostic exams refer to the past two years.  The 
flu shot refers to this year while the pneumonia vaccine refers to the respondent’s lifetime.    
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Table 3: Marginal Effect of Distance to the Closest Hospital on Source of Care 
 
 Panel A: Have a Place Where Regular Care is Sought 
Sample Full HH Income<30,000 
Driving Distance to 
Hospital (miles) 

.006 
(0.93) 

.006 
(0.88) 

 

.016 
(1.78) 

.016 
(1.41) 

Miles * Insurance  
-- 

-.003 
(0.48) 

 

 
-- 

-.007 
(0.86) 

Insurance .241 
(35) 

 

.233 
(25) 

 

.261 
(28) 

.253 
(19) 

Observed Probability .784 .784 .714 .714 
# of Observations 22258 22258 11821 11821 
 
 Panel B: Respondent Goes to a Doctors Office if Care is Needed  
Sample Full HH Income<30,000 
Driving Distance to 
Hospital (miles) 

.018 
(2.44) 

.019 
(2.19) 

.025 
(2.81) 

 

.026 
(2.99) 

 
Miles * Insurance  

-- 
-.001 
(0.09) 

 
-- 
 

.011 
(0.34) 

 
Insurance .358 

(39) 
 

.344 
(27) 

 

.367 
(34) 

.348 
(22) 

Observed Prob. .619 .619 .486 .486 
# of Observations 22481 22481 11990 11990 
 
 Panel C: Respondent Goes to ED or Outpatient Clinic if Care is Needed 
Sample Full HH Income<30,000 
Driving Distance to 
Hospital (miles) 

-.008 
(1.40) 

 

-.009 
(0.54) 

 

-.002 
(0.22) 

-.003 
(0.23) 

Miles * Insurance  
-- 
 

-.010 
(0.38) 

 

 
-- 

-.005 
(0.76) 

Insurance -.048 
(9.53) 

 

-.037 
(5.96) 

 

-.056 
(6.99) 

-.041  
(3.87) 

Observed Prob. .133 .133 .197 .197 
# of Observations 21995 21995 11524 11524 
 
Notes: Standard errors are cluster-adjusted by zip code; absolute value of z-statistics are shown in 
parenthesis.  Regressions include survey year and zip code fixed effects.  They also control for age, age-
squared, gender, household size and its square, race (7 categories), citizenship, language the survey was 
taken in (6), household income (6), education (6), current employment status (6), and marital status (6).   
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Table 4. Marginal Effect of Distance to the Closest Hospital on  
Reported Ease of Access to Health Care Services 

 
 Panel A: All Respondents  
Sample Full HH Income<30,000 
Driving Distance to 
Hospital (miles) 

-.000 
(0.58) 

-.003 
(0.61) 

 

-.017 
(1.94) 

-.016 
(1.86) 

 
Miles * Insurance  

-- 
.004 

(1.30) 
 

 
-- 

.014 
(1.83) 

 
Insurance .296 

(40) 
 

.287 
(28) 

 

.330 
(30) 

 

.309 
(20) 

Observed Prob. .716 .716 .605 .605 
# of Observations 21848 21848 11532 11532 
 
 
 Panel B: Respondents Without a Regular Place of Care 
Sample Full HH Income<30,000 
Driving Distance 
(miles) to Hospital 

.001 
(0.08) 

.001 
(0.09) 

-.071 
(2.00) 

 

-.074 
(1.90) 

 
Miles * Insurance  

-- 
.008 

(1.15) 
 

-- 
 

-.001 
(0.12) 

 
Insurance .320 

(19) 
 

.303 
(13) 

 

.300 
(14) 

.257 
(9.11) 

Observed Prob. .463 .463 .379 .379 
# of Observations 4467 4467 3077 3077 
 
Notes: Standard errors are cluster-adjusted by zip code; absolute value of z-statistics  are shown in 
parenthesis.  Regressions include survey year and zip code fixed effects.  They also control for age, age-
squared, gender, household size and its square, race (7 categories), citizenship, language the survey was 
taken in (6), household income (6), education (6), current employment status (6), and marital status (6). 
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Table 5. Marginal Effect of Distance to the Closest Hospital on Diagnostic Care 
 
 Panel A: Colon Cancer Screening, age≥50 
 Full HH income<30,000 
Driving Distance (miles) 
to the Hospital 
 

-.005 
(0.45) 

-.007 
(0.54) 

-.003 
(0.15) 

-.005 
(0.22) 

Miles * Insurance -- .033 
(2.44) 

 

-- .035 
(1.49) 

 
Insurance .125 

(5.55) 
 

.047 
(1.44) 

 

.116 
(4.63) 

 

.037 
(1.05) 

 
Obs Prob .441 .441 .421 .421 
# of Obs 6959 6959 3677 3677 
 

 Panel B: HIV tests, age<65 
Sample   Full Sample HH Income<30000 

Driving Distance 
(miles) to the Hospital 
 

.002 
(0.21) 

.001 
(0.20) 

 

.007 
(0.80) 

 

.007 
(0.81) 

 
Miles * Insurance -- -.004 

(1.16) 
 

-- -.001 
(.0.23) 

 
Insurance .063 

(6.82) 
 

.074 
(6.27) 

 

.053 
(3.95) 

.083 
(5.45) 

 
Obs. Prob .360 .360 .390 .390 
# of Obs 20105 20105 10430 10430 
 
 Panel C: Preventative Care, age 65+ 
 Flu Shot Pneumonia Vaccine 
Driving Distance (miles) 
to the Hospital 
 

-.030 
(0.67) 

-.028 
(1.65) 

.009 
(0.11) 

.012 
(0.14) 

Miles * Insurance  
-- 

-.020 
(0.16) 

 

 
-- 

-.037 
(1.06) 

 
Insurance .313 

(4.65) 
 

.402 
(3.89) 

 

.280 
(3.84) 

 

.358 
(3.39) 

 
Obs Prob .678 .678 .573 .573 
# of Obs 1845 1845 1849 1849 
 
Notes: Standard errors are clustered by zip code; absolute value of z-statistics are shown in parenthesis.  All 
models include zip and year fixed effects and control for age, age-squared, gender, household size and its 
square, race (7 categories), citizenship, language the survey was taken in (6), household income (6), 
education (6), employment status (6), marital status (6), BMI, self-assessed health status, diabetes, arthritis, 
and whether the respondent smokes. 
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Table 6: Summary Statistics for Infant Mortality Data: Los Angles County, 1997-2001 
 
 Overall Distance to Closest Hospital 
 Mean No Change Change 
Miles to Closest Hospital 
(driving) 
 

2.81 
(.107) 

2.77 
(.120) 

3.09 
(.186) 

Change in Distance 
 

.054 
(.032) 

 

-- .513 
(.304) 

Driving Time to Closest 
Hospital (minutes)  
 

6.87 
(.148) 

6.67 
(.147) 

8.38 
(.605) 

# Clinics  .709 
(.028) 

 

.744 
(.030) 

.411 
(.055) 

Deaths <1 yr per 1000 live 
births 
 

4.00 
(.106) 

4.07 
(.113) 

3.41 
(.261) 

 
Neonatal Deaths (<28 days) 
per 1000 live births 
 

2.73 
(.085) 

2.77 
(.092) 

2.35 
(.195) 

Post-neonatal Deaths per 
1000 live births 
 

1.27 
(.051) 

1.30 
(.054) 

1.06 
(.035) 

Share Mothers, White 
 

.333 
 

.318 
 

.465 
 

Share Mothers, Hispanics 
 

.465 
 

.475 .385 

Share Mothers, Black 
 

.072 .077 .033 
 

Share Mothers, Asian 
 

.081 
 

.082 .068 
 

Share Mothers, Filipino 
 

.027 .026 .029 
 

Share Mothers under 20 087 
 

.089 
 

.066 
 

Share Mothers 20-29 
 

.455 
 

.458 .427 
 

Share Mothers 30-34 
 

.265 
 

.261 .295 
 

Share Mothers 35 & older .200 
 

.191 .212 
 

Share weigh<1500g .012 
 

.012 
 

.011 
 

Share weigh 1500-2499g .053 
 

.053 .051 

Share weigh 2500g + .935 
 

.934 
 

.937 
 

Prenatal Care in 1st trimester 864 861 893 
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Per 1000 live births (1.69) 
 

(1.80) (4.34) 

No prenatal care Per 1000 
live births 

5.20 
(.155) 

 

5.29 
(.168) 

4.39 
(.343) 

Zip-year Observations 1673 1498 175 
 
Source: California Department of Health Services, Birth and Death Statistical Master Files.   
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Table 7: Effect of Distance to the Closest Hospital and  
Prenatal Care and Infant Mortality 

 
 1st Trimester Prenatal 

per 1000 Live Births 
Infant Deaths Per 1000 

Live Births 
Infant Deaths 

 
Model Type: OLS OLS Negative Binomial 

Driving 
Distance (miles) 
to the Hospital 

-.144 
(0.99) 

-.658 
 (1.91) 

.061 
(2.24) 

-.022 
 (0.29) 

6.56 
(2.58) 

4.66 
 (1.06) 

Zip Trends No Yes No Yes No Yes 
Dep. Var. mean 864 864 4.00 4.00 2.59 2.59 
# Observation 1670 1670 1670 1670 1670 1670 
Adj R-sq .300 .287 .300 .287 -- -- 

 
Notes: Standard errors are clustered at the zip code level.  Absolute value of t-statistics are and shown in 
parenthesis for the OLS regression and of z-statistics for the negative binomial regression (NBR) models.  
The key independent variable is the driving distance from each zip code population center to the closest 
hospital in a given year.  All models also control for both the age and racial distribution of mothers, the 
weight distribution of babies, the number of community health clinics, zip code fixed effects and year fixed 
effects.  Where indicated, zip-code specific time trends are also included.  The NBR models also control for 
total births.  (Since the mean of the dependent variable in a binomial regression model is parameterized as 
µi = exp(Xi’β), the percentage change in expected deaths from a unit change in distance is given by 
100*[exp(βk)-1].  ) 
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Table 8. Summary Statistics for General Mortality Data, 1997-2001 
 

 Overall Distance to Closest Hospital 
 Mean No Change Change 
Miles to Closest Hospital 
(driving) 
 

3.01 
(.099) 

2.88 
(.097) 

4.15 
(.408) 

Driving Time to Closest 
Hospital (minutes)  
 

6.87 
(.148) 

6.67 
(.147) 

8.38 
(.605) 

Community Health Clinics 
 

.709 
(.028) 

 

.744 
(.030) 

.411 
(.055) 

Total Deaths 173 
(2.97) 

 

176 
(3.22) 

142 
(6.51) 

Unintentional Injury Deaths 5.17 
(.110) 

 

5.28 
(.120) 

4.03 
(.234) 

AMI Deaths 
 

13.9 
(2.72) 

 

14.2 
(.294) 

11.4 
(.664) 

Chronic Ischemic Heart 
Disease Deaths 
 

23.7 
(.433) 

24.1 
(.468) 

20.4 
(1.03) 

Lung Cancer Deaths 
 

9.44 
(.182) 

9.51 
(.195) 

8.84 
(.481) 

 
Colon Cancer Deaths 
 

3.31 
(.071) 

3.35 
(.076) 

3.02 
(.183) 

 
Homicides 2.96 

(.116) 
 

4.08 
(.160) 

1.12 
(.114) 

Share Deaths<1 year old .017 .017 .017 
 

Share Deaths, 1-4 year olds .004 
 

.003 
 

.004 

Share Deaths, 5-14 year olds .005 .005 
 

.003 
 

Share Deaths, 15-24 years olds .016 
 

.0161 
 

.018 
 

Share Deaths, 25-34 year olds .024 
 

.024 
 

.012 
 

Share Deaths, 35-44 year olds .047 
 

.048 
 

.043 

Share Deaths, 45-54 year olds .078 .078 
 

.076 
 

Share Deaths, 55-64 year olds .108 
 

.108 
 

.109 

Share Deaths, 65-74 year olds .183 .182 .179 
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Share Deaths, 75-84 year olds .272 

 
.270 .286 

Share Deaths, 85+ years olds .246 .247 
 

.244 
 

Zip-year Observations 1675 1500 175 
 
Source: California Department of Health Services, Death Statistical Master Files.   
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Table 9. Conditional Maximum Likelihood Negative Binomial Models: Percentage Change 
in Deaths Due to a Mile Increase in Distance to the Hospital in Los Angeles County 

 
 AMI Unintentional 

Injuries 
Chronic Heart 

Disease 
Lung Cancer Colon Cancer 

 
Miles 

 
2.93 

(1.56) 

 
6.04 

(2.37) 

 
3.63 

(2.20) 

 
6.14 

(2.56) 

 
-0.57 
(0.62) 

 
-0.73 
(0.34) 

 
1.71 

(1.51) 

 
1.87 

(1.00) 

 
-2.28 
(1.16) 

 

 
0.24 

(0.06) 
 

Zip 
Trends 

No Yes No Yes No Yes No Yes No Yes 

Mean 
Deaths 

14 14 5.3 5.3 24 24 9.4 9.4 3.3 3.3 

 
Notes: Standard errors are clustered at the zip code level; absolute value of z-statistics shown in parenthesis.  The key 
independent variable is the driving distance from each zip code population center to the closest hospital in a given year.  
All models also control for total deaths, deaths by homicide, the age distribution of deaths, number of community 
health clinics, zip code fixed effects and year fixed effects.  Where indicated, zip-code specific time trends are also 
included. (Since the mean of the dependent variable in a binomial regression model is parameterized as µi = exp(Xi’β), 
the percentage change in expected deaths from a unit change in distance is given by 100*[exp(βk)-1].  ) 
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Appendix Table 1. Marginal Effects of Health-Related Control Variables from  
Baseline Models of Regular Source of Care (Table 3) 

 
 Regular Care Care in doctor’s Office Care in ED or Clinic 

Sample Full Income< 
30,000 

Full Income< 
30,000 

Full Income< 
30,000 

Distance 
(miles) 

.006 
(0.93) 

.016 
(1.78) 

.018 
(2.44) 

.025 
(2.81) 

 

-.008 
(1.40) 

 

-.002 
(0.22) 

Insurance .241 
(35) 

 

.261 
(28) 

.358 
(39) 

 

.367 
(34) 

-.048 
(9.53) 

 

-.056 
(6.99) 

BMI .002 
(4.28) 

 

.002 
(2.81) 

 

.003 
(5.71) 

 

.003 
(4.90) 

 

.000 
(0.03) 

 

-.000 
(0.60) 

 
Self-assessed 
Health Status 

.001 
(0.39) 

 

.000 
(0.04) 

 

-.014 
(5.71) 

 

-.023 
(4.55) 

 

.010 
(4.28) 

.015 
(3.71) 

 
Diabetes .071 

(6.00) 
 

.092 
(5.08) 

 

.037 
(2.36) 

 

.036 
(1.73) 

 

.027 
(3.35) 

 

.050 
(3.64) 

 
Arthritis .032 

(3.59) 
 

.037 
(2.61) 

 

.020 
(1.93) 

 

.024 
(1.56) 

 

.006 
(1.02) 

 

  -.002 
(0.17) 

 
Smoke 
Cigarettes 

-.016 
(2.16) 

-.027 
(2.15) 

-.017 
(1.68) 

-.016 
(1.04) 

-.000 
(0.05) 

-.000 
(0.04) 

 
Observed Prob .784 .714 .619 .486 .133 .197 
Observations 22258 11821 22481 11990 21995 11524 
 
See notes to Table 3. 
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Appendix Table 2. Marginal Effect of Health-Related Control Variables from  
Baseline Models of Ease of Access to Health Care Services (Table 4) 

  
 All Respondents  Respondents Without a Regular 

Place of Care 
Sample Full HH 

Income<30,000 
Full HH 

Income<30,000 
Driving Distance to 
Hospital (miles) 

-.000 
(0.58) 

-.017 
(1.94) 

.001 
(0.08) 

-.071 
(2.00) 

 
Insurance .296 

(40) 
 

.330 
(30) 

 

.320 
(19) 

 

.300 
(14) 

BMI .001 
(1.93) 

 

.001 
(2.08) 

 

.003 
(2.16) 

 

.002 
(1.93) 

 
Self-assessed Health 
Status 

-.045 
(15) 

 

-.056 
(12) 

 

-.063 
(7.24) 

 

-.059 
(6.07) 

 
Diabetes .008 

(0.59) 
 

.028 
(1.53) 

 

.068 
(1.24) 

 

-.044 
(0.72) 

 
Arthritis -.027 

(2.71) 
 

-.045 
(2.93) 

 

-.047 
(1.27) 

 

-.050 
(1.23) 

 
Smoke Cigarettes -.023 

(2.53) 
.002 

(0.17) 
-.011 
(0.46) 

.024 
(0.92) 

Observed Prob. .716 .605 .463 .379 
# of Observations 21848 11532 4467 3077 
 
See notes to Table 4. 
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Appendix Table 3. Marginal Effects of Health-Related Control Variables from  
Baseline Models of Diagnostic and Preventative Care (Table 5) 

 
 Colon Cancer Screen HIV tests Vaccinations  
 Full 

Sample 
Income< 
30,000 

Full 
Sample 

Income< 
30,000 

Flu Shots, 
age≥65 

Pneumonia, 
age≥65 

Distance 
(miles) 

-.005 
(0.45) 

-.003 
(0.15) 

.002 
(0.21) 

.007 
(0.80) 

 

-.030 
(0.67) 

.009 
(0.11) 

Insurance .125 
(5.55) 

 

.116 
(4.63) 

 

.063 
(6.82) 

 

.053 
(3.95) 

.313 
(4.65) 

 

.280 
(3.84) 

 
BMI .003 

(2.47) 
.001 

(1.06) 
 

-.001 
(1.20) 

 

.000 
(0.03) 

 

-.003 
(1.19) 

 

.004 
(1.48) 

 
Self-assessed 
Health Status 

.013 
(1.98) 

 

.021 
(2.35) 

 

-.005 
(1.29) 

 

-.010 
(1.98) 

 

.014 
(1.09) 

.014 
(0.88) 

 
Diabetes -.007 

(0.32) 
 

.016 
(0.61) 

 

.048 
(2.76) 

 

.058 
(2.47) 

 

.104 
(3.10) 

 

.037 
(0.90) 

 
Arthritis .087 

(5.72) 
 

.071 
(3.41) 

 

.024 
(2.07) 

 

.014 
(0.82) 

 

.092 
(3.42) 

 

.104 
(3.52) 

 
Smoke 
Cigarettes 

-.111 
(6.13) 

-.093 
(3.47) 

.030 
(2.93) 

.047 
(3.39) 

-.201 
(4.17) 

-.148 
(3.04) 

 
Observed Prob .441 .421 .360 .390 .678 .573 
Observations 6959 3677 20105 10430 1845 1849 
 
See notes to Table 5. 
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Appendix Table 4.  Sensitivity Test: Neighborhood Fixed Effects 
 

 Colon Cancer Screens, age≥50 
Sample Full Sample HH Income<30000 
Driving Distance to the 
Hospital (miles) 
 

.001 
(0.49) 

-.000 
(0.20) 

-.002 
(0.45) 

-.005 
(0.94) 

 
Miles * Insurance  

-- 
.031 

(2.96) 
 

-- 
.031 

(2.08) 
# of Obs. 6934 6934 3682 3682 
Obs. Prob. .440 .440 .411 .411 
  

 HIV tests, age<65 
Sample Full Sample HH Income<30000 
Driving Distance to the 
Hospital (miles) 
 

-.004 
(1.63) 

-.004 
(1.35) 

-.006 
(1.30) 

-.005 
(1.13) 

 
Miles * Insurance  

-- 
-.005 
(1.84) 

 
-- 

-.003 
(0.63) 

# of Obs. 20067 20067 10364 10364 
Obs. Prob. .360 .360 .391 .391 
 

 Flu Shots, age≥65 Pneumonia Vaccine, age≥65 
Driving Distance to the 
Hospital 
 

-.004 
(0.54) 

 

-.003 
(0.44) 

-.002 
(0.25) 

-.002 
(0.22) 

Miles * Insurance  
-- 

-.037 
(1.24) 

 
-- 

-.016 
(0.65) 

# of Obs 1887 1887 1867 1867 
Obs. Prob .695 .695 .571 .571 
 
Notes: All regressions include neighborhood fixed effects.  For all other details see notes to Table 5. 
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Appendix Table 5. Sensitivity Test: Zip Codes Experiencing  
Changes in Distance to the Nearest Hospital 

 
 Colon Cancer Screens, age≥50 HIV Tests, age<65 

Driving Distance to the 
Hospital 
 

-.015 
(1.12) 

 

-.017 
(1.02) 

.002 
(0.32) 

.000 
(0.01) 

Miles * Insurance  .064 
(2.08) 

 

 -.018 
(2.37) 

# of Obs 982 982 2647 2647 
Obs. Prob .456 .456 .308 .308 
 

 Flu Shots, age≥65 Pneumonia Vaccine, age≥65 
Driving Distance to the 
Hospital 
 

-.098 
(1.63) 

 

.030 
(0.43) 

# of Obs 238 226 
Obs. Prob .710 .677 
 
See notes to table 5. 




