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Abstract

Stock-market crashes tend to follow run-ups in prices. These episodes look
like bubbles that gradually inflate and then suddenly burst. We show that
such bubbles can form in a Zeira-Rob type of model in which demand size is
uncertain. Two conditions are sufficient for this to happen: A declining hazard
rate in the prior distribution over market size and a positively sloped supply
of capital to the industry. For the period 1971-2001 we fit the model to the
Telecom sector.

1 Introduction

Stock-market crashes tend to follow run-ups in prices. The NYSE index rose in the
late 1920s, and then crashed in October 1929, and the Nasdaq rose steadily through
the 80’s and 90’s and crashed after March 2000. These episodes therefore look like
bubbles that gradually inflate and then suddenly burst.

In a learning model of the Zeira-Rob type we study the possibility of bubble-like
behavior of stock prices, but driven by fundamentals. We add to Rob (1991) a rising
adjustment cost for the growth of industry capacity and a declining hazard rate in
the prior distribution over market size. In that form, the model generates a crash
when an irreversible creation of capacity overshoots demand.

We fit the model to the Telecom sector which, in the year 2000, crashed more
spectacularly than most others. Figure 1 portrays the 30-year history of the Nasdaq
Telecom index. The NYSE index in the first panel shows that the Telecom crash was
not an isolated event. The second panel shows two indexes of real activity along with
the Nasdaq Telecom index. Evidently the real and financial indicators all fell sharply
in 2000. We seek to explain this link — the slow rise in these indexes followed by their
sharp decline.

∗We thank M. Ebell, M. Kato, and D. Ray for comments and the NSF for support.
†University of Chicago
‡NYU and University of Chicago
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Figure 1: Financial indexes and two real series

The link between real and financial indexes exists in other sectors too, particularly
around the time of the 2000 crash. Figure 2 reports the March 2000-to-March 2001
changes in prices and in fundamentals. Sectors that experienced greater drops in
value also experienced larger declines in sales. Telecom underwent one of the sharpest
declines.

Our explanation of the pre-crash run-up is of the “Peso Problem” type. Krasker
(1980) used this term to describe rationally changing beliefs about an event that is not
realized within the sample period. Until the year 2000, optimism was on the rise. Two
conditions that could produce such a rise are: (i) A declining hazard rate in the prior
distribution over market size and (ii) A rising cost of investment. The decreasing-
hazard assumption delivers a rising optimism: As the market grows, further growth
looks ever more feasible, and the likelihood of a crash ever more remote.
Two other properties of the model are noteworthy. First, optimism and the price-

earnings ratio rationally rise even though earnings remain flat so that to someone who
predicts earnings by extrapolating from the past, the behavior of the stock market
would seem irrational. And second, along the equilibrium path the crash hazard
declines, so that older markets are more likely to survive.
Contrary to popular opinion about the 90’s, we find that capacity expansion was

not too fast but too slow. Our model states that in light of what was known at
the time, Telecom capacity should have expanded more rapidly and its the crash
should have happened earlier. This is because expanding capacity entails a positive
informational externality that a competitive firm ignores when choosing how much
to invest.

Many of the ideas in our paper are also in Zeira (1987, 1999), Caplin and Leahy
(1994) and in Horvath, Schivardi and Woywode (2001). Models in which a new tech-
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Figure 2: (March 2000-March 2001) Size of crash vs. changes in sales
(panel 1) and changes in capacity (panel 2)

nology devalues an existing technology are Boldrin and Levine (2000), Greenwood
and Jovanovic (1999), and Jovanovic and MacDonald (1994). Mazzucato and Semm-
ler (1999) who find that in the automobile industry stock prices were the most volatile
during the period 1918-1928 when market shares were the most unstable.

2 Model

The model is one of an industry in which market size is unknown. Investing in this
market is risky because capacity may exceed market size. Firms continually update
their beliefs about market size and create new capacity based on these beliefs. When
capacity outstrips demand, the price falls and further growth stops. We study the
dynamics leading up to the crash.

Demand.–As a function of quantity, Q, supplied to the market, price is

P (Q, z) =

½
p if Q ≤ z
0 if Q > z

Willingness to pay, p, is known, but z is unknown. We think of z as the number of new
consumers, each demanding one unit of good per unit time. The parameter z does
not change over time. It is a random variable drawn at time t = 0 from a distribution
F (z); Figure 3 shows a family of demand curves indexed by various values of z, and
highlights the demand curve that would occur if z = z2. The distribution F (z) is
common knowledge among the potential entrants at t = 0. It is the common prior
distribution which is updated in light of experience.
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Figure 3: Typical demand curve P (Q, z2)

Production.–Firms are infinitessimal and of indeterminate size. Production cost
is zero, and the salvage value of production capacity is negligible. As long the price
is positive, industry output is the same as the industry’s capacity to produce it.
Let k denote the industry’s capacity and let n denote new capacity, i.e., aggregate
investment. Capacity does not depreciate, and until the crash comes it evolves as
follows:

kt+1 = kt + nt. (1)

Initial capacity, k0 ≥ 0 is given.
Investment.–Adjustment costs of investment are rising at the industry level, but

constant at the level of an individual firm. The unit cost, c, of adding capacity rises
with aggregate investment:

c = C (n) ,

where C 0 (n) ≥ 0. In other words, the industry faces a rising price of capital, but each
individual firm is a price taker.

Learning.–Firms share the common prior over z; the C.D.F. F (z). All firms
know the history of prices and industry outputs. Based on this they revise their
opinion about z. “Overshooting” happens at date T when k exceeds z for the first
time. Before date T , firms know only that z ≥ k. At date T , we assume that firms
learn z exactly.

To recapitulate, there are three distinct epochs:

1. Before date T .–Agents know only that k ≤ z.

2. At date T .–The first time that k > z, firms learn z, perhaps because spare
capacity kT − z becomes public information. This excess capacity is at once
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Figure 4: Scrappage at date T

scrapped for a unit return of s and equilibrium product price falls to (1− β) s.1

This is illustrated in Figure 4.2

3. After date T .–Product price remains for ever at (1− β) s, and the stock price
remains for ever at s. There are no further dynamics.

The unit value of capacity.–Before date T , agents know only that z exceeds k.
To simplify the algebra we assume that s = 0. Then the value of a unit of capacity
is the random variable

Vt =

½
vt if k ≤ z
0 if k > z,

(2)

where (vt)
T−1
0 is the sequence of unit values for k that are relevant to dates before T .

Now, T is a random variable that is possibly infinite. The probability that the market
will crash at some point is F (∞) ≤ 1. If the inequality is strict, the distribution is
“defective” and 1 − F (∞) is the probability that the market will never crash, in
which case we set T =∞. This all means that we must solve for the infinite sequence
(vt)

∞
0 of capital values that will obtain if z happens to be infinite. Until Section 4.1,

then, we shall be dealing with worlds in which z is unbounded.

1An example is the post-2000 collapse in the price of on-line advertising at sites such as Yahoo
and AOL — by a factor of three or more — and those of their competitors (Angwin 2002).

2Koeva (2000, Table 1) reports a 24-month time-to-build estimate for Telecom — roughly the
economy-wide average. This is for large projects. Other types of capacity expansion such as those
that entail the purchase of equipment are much shorter than that. We shall assume that time-to-
build is one year.
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2.1 Equilibrium

The dynamics that we now discuss is for dates t = 1, 2, ..., T − 1, i.e., for periods
during which kt < z. During this period strategies depend only on time. Firms are
of measure zero, so it does not matter whether capacity is created by incumbents or
by new entrants, and we do not have a theory of firm size, only a model of industry
size.

Stock prices.–All investors are rational.3 The Bellman equation in the region
k < z is stated for the value, vt, of a unit of capital: vt = p+ βEtVt+1 which, by (2),
can be written as

vt = p+ βvt+1 Pr {z ≥ kt+1 | z ≥ kt} .
Using Bayes Rule,

vt = p+ βvt+1
1− F (kt+1)

1− F (kt)
. (3)

Optimal investment.–We assume that C (0) = 0, and that C (n) is unbounded.
Then the marginal investment condition always holds with equality. It states that the
purchase price of capital should equal the expected present value of a unit of capital
in place:4

C (nt) = βvt+1
1− F (kt+1)

1− F (kt)
. (4)

Equation (4) holds only for k < z. But since z can take on any value up to zmax,
(4) must hold for all kt+1 ≤ zmax.

Definition 1 Equilibrium is a pair of positive sequences (vt)
∞
0 and (kt)

∞
0 that satisfy

(3) and (4).

We now reduce the two equilibrium conditions (3) and (4) to a single (second-
order) difference equation. For the three special cases, we shall prove the existence
and uniqueness of the equilibrium by showing that a unique solution exists to this
difference equation.5

Substituting from (4) into (3), the relation is

vt = p+ C (nt) . (5)

If n rises over time, C will rise and, by (5), so will v. That is, stock prices will rise
until date T .

3This distinguishes our model from many in the finance literature, e.g., Abreu and Brunnermeier
(2002).

4The model deals only with industry capacity, kt, and not how it is divided among firms.
5To obtain a unique solution to a second-order difference equation, we would need two boundary

conditions. But we have only one: k0, and in general a multiplicity of equilibria is a possibility.
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With (4), (5) implies

C(nt) = β (p+ C [nt+1])
1− F (kt+1)

1− F (kt)
, (6)

or, rearranged,

C (n0) = −p+ C (n)
1

β

1− F (k)

1− F (k + n)

= −p+ C (n)
1

β
exp

½Z k+n

k

h (s) ds

¾
(7)

≡ Φ (n, k)

where h (z) = f(z)
1−F (z) is the hazard rate, and where a prime refers to a one-period-

ahead value of a variable.

2.2 Two special cases

The two cornerstones of our model are C 0 > 0 and h0 < 0. Relaxing either of these
disables the model from generating rising stock prices. We shall now show this with
the help of two examples.

1. Constant-hazard.–Let F (z) = 1− e−λz. Then h (z) = λ and (7) collapses to

C (n0) = −p+ C (n)β−1eλn

The only admissible solution is a constant nt, which solves for n the equation

C (n) = βe−λn
p

1− βe−λn
all t. (8)

The LHS of (8) is increasing in n while the RHS is decreasing therefore the
solution is unique. (Moreover, any non-stationary solution (nt) would be ex-
plosive because β−1eλn > 1 for all n ≥ 0). Since n is constant, (5) tells us that
stock prices, vt, will be constant until date T , and iterations of (1) imply that
kt = k0 + nt for t ≤ T .

2. Constant C (n).–Let C (n) = c for all n. This is Rob’s (1991) case. Provided
that c < βp

1−β , (4) always holds a positive n. Then (5) implies that vt = p + c

for all t. I.e., stock prices are again constant. Finally, (6) reads

1 +
p

c
=
1

β

1− F (k)

1− F (k + n)
,

which, by c < βp
1−β , implies the existence of a unique investment function n =

ψ (k) > 0. Together with (1), this gives the sequence kt uniquely.

Evidently, we must relax both assumptions if we are to have any chance of recon-
ciling this model with the rising stock prices in Figure 1.
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3 The case of a decreasing h.

This section derives properties that an equilibrium must satisfy if h0 < 0 and C 0 > 0.
Then we shall show that a unique equilibrium exists when F is Pareto and when
C (n) = cn. We start with the general case.6

Assumptions on F .–Suppose that the support of F is [zmin,∞). Suppose fur-
thermore that h (z) > 0 for all z > zmin, and that h0 (z) < 0. That is, F has a
strictly decreasing hazard. Assume, moreover, that limz→∞ h (z) = 0.We relax these
assumptions in Section 4.2 where we impose a finite bound on z.
Analysis.–Let n̄ solve the equation

C (n̄) =
βp

1− β
. (9)

Lemma 1
lim
t→∞

nt = n̄

Proof. Since vt ≤ p/ (1− β), the RHS of (4) is at most equal to the RHS (9).
Therefore

nt < n̄.

Moreover, the conditional probability of the market surviving for another period is

ξ (k, n) ≡ 1− F (k + n)

1− F (k)
= exp

½
−
Z k+n

k

h (z) dz

¾
(10)

If h is decreasing, ξ is increasing in k and decreasing in n. Since kt is an increasing
sequence, we then must have

ξ (kt, nt) ≥ ξ (k0, n̄)

Therefore for any t, the return to a unit of incumbent capital is

vt =
∞X
j=t

βj−t
jY

τ=t

ξ (kτ , nτ) p

≥ p
∞X
j=t

[βξ (k0, n̄)]
j−t

≥ p

1− βξ (k0, n̄)

Therefore, for any t
nt ≥ nmin > 0,

6Prat (2003) provides a survivorship-bias type of rationale for why the hazard rate may be
declining, especially when the uncertainty over market types is large.
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where nmin solves

C (nmin) =
βξ (k0, n̄) p

1− βξ (k0, n̄)

But then kt ≥ tnmin, and so limt→∞ kt = ∞. Therefore the RHS of (7) converges to
−p+ C (n) /β. Rearranging, we get (9).
The next proposition contains the result we need. The algebra simplifies if we

re-state the difference equation (7) as a difference equation in c = C (n). Assume
that C is a one-to one increasing map from R+ → R+ and that its range is all of R+
so that n (c) ≡ C−1 (c) is uniquely defined for all c ≥ 0. Then write (7) as

c0 = −p+ c

β
exp

(Z k+n(c)

k

h (z) dz

)
(11)

≡ φ (c, k) .

This difference equation is easier to work with

Proposition 1 Before the crash (i.e., for t < T ),

nt+1 > nt.

Proof. Since n (c) is strictly increasing, φ (c, k) is strictly increasing in c. Since
h (z) is a decreasing function, φ (c, k) is strictly decreasing in k. Suppose, contrary
to the claim, that nt+1 ≤ nt. Then ct+1 ≤ ct. Since C (0) = 0 and vt ≥ p > 0, (4)
implies nt+1 > 0. But then kt+1 > kt, and therefore

ct+2 = φ (ct+1, kt+1) < φ (ct, kt) = ct+1.

Iterating this argument leads to the conclusion that

nt ≥ nt+1 =⇒ nt+1 > nt+2 > .... ≥ nmin

And since the initial value nt < n̄, we conclude that limt nt < n̄. But kt ≥ tnmin and
once again limt→∞ kt = ∞, and therefore (9) must hold, and this is a contradiction.

Since a bounded monotone sequence must have a limit, we conclude that (nt)
indeed does have a limit and that this unique limit solves (9).

Lemma 2 If h is decreasing in z, φ is decreasing in k.

Proof. Differentiating,

∂φ

∂k
=
£
h
¡
k + C−1 [c]

¢− h (k)
¤ c
β
exp

(Z k+C−1(c)

k

h (z) dz

)
< 0
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Figure 5: Behavior of the solution, ct, to the difference equation (11).

because h is decreasing, whereas C−1 (c) > 0.
Since φ decreases with k, the mode of convergence will therefore be as shown in

Figure 5.
Older markets are less likely to crash–We now show that the probability of sur-

vival for one more period rises along the equilibrium path. From (7) and (10) the
conditional survival probability is

ξ (kt, nt) =
1

β

·
p

C (nt)
+

C (nt+1)

C (nt)

¸−1
By Proposition 1 C is increasing with t and C(nt+1)

C(nt)
> 1 on the transition path,

converging to unity. The survival probability therefore rises from 1
β

h
p

C(n0)
+ C(n1)

C(n0)

i−1
to 1

β

h
p

C(n̄)
+ 1
i−1
, but we cannot show that the increase is monotonic.

3.1 Simulated example: Pareto F

We simulate the equilibrium of a special case of a decreasing hazard distribution, the
Pareto distribution:

F (z) = 1−
µ

z

zmin

¶−ρ
.

Its hazard rate is ρ
z
. Although we have no evidence on the distribution of market

sizes, the Pareto distribution has been found to fit well the distribution of city sizes,
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and the distribution of firm sizes (Axtell 2002) so that perhaps it is a natural one to
analyze here.

We shall show that a unique equilibrium exists in this case, and we shall solve for
it explicitly. Now (6) reads

C (n) = β (p+ C [n0])
µ
k

k0

¶ρ

Then, since k0 = k + n, this equation reads

C (n) = β (p+ C [n0])
µ

1

1 + n
k

¶ρ

which we can rearrange this into the difference equation

C (n0) = −p+ C (n)
1

β

³
1 +

n

k

´ρ
(12)

This is the specific form depicted in Figure 5.

Assume that
C (n) = cn

Then (12) reads

n0 = −p
c
+
1

β
n
³
1 +

n

k

´ρ
(13)

The second difference equation is

k0 = k + n (14)

The Appendix proves the existence and uniqueness of the solution to (13), (14) for
the sequence (kt) . It also describes in detail the algorithm used to find the simulated
solution to the second-order difference equation implied by (13) and (14):

kt+2 = kt+1 +
1

β
(kt+1 − kt)

µ
kt+1
kt

¶ρ

− p

c
.

The simulation in Figure 5A is based on the following parameter values:

parameter p c ρ β
chosen value 15.49 0.007 .57 0.9

The parameter β was chosen to reflect the high earnings risk of the Telecom
industry. The other three parameters were chosen so that the model would fit (i) the
mean Telecom price-earnings ratio of almost 18, (ii) The average growth rate of the
Nasdaq Telecom index of about six percent, and (iii) The average growth of real
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telecom sales. We describe the procedure in Appendix A. The Figure portrays the
simulated time paths of nt and kt against their observed proxies: the actual Telecom
sales series used as the proxy for k and the fist difference of sales as the proxy for nt.

The model overpredicts the initial growth of two of the three the series, and
underpredicts each series’s growth in the late 90’s, but otherwise fits well. To fine
tune the model to fit these series better, we would need to deviate from the Pareto
assumption. The parameter T is the year 2000. We omit the years 2001 and beyond
because we have set the scrap value of capital, s, to zero, so as to allow us to solve
the model analytically. But s is also the post-crash stock-market value of capital,
and so the model predicts that stock prices would remain at zero for ever after the
year 2000.

4 Three extensions

The first extension shows that the results we obtained for the Pareto F extend to a
situation in which z is bounded. The second extension models C (n) as the supply
price in the capital-goods industry and traces out the implications there of a crash in
the downstream industry. The third extension reports results for increasing hazard
rates.

4.1 An upper bound on z

This subsection shows that if we start with the Pareto-distributed z of Section 3.1,
and impose a finite limit, Z, on market size z, (thereby making the hazard rate non-
monotonic, rising sharply at z = Z) the equilibrium does not change much as long as
Z is large. Let

θ ≡ F (Z) ,

and define the CDF of the new truncated distribution of z as

G (z, θ) =

½
1
θ
F (z) for z ≤ F−1 (θ)

1 for z > F−1 (θ)

Let
¡
kθt
¢∞
t=0

be an equilibrium sequence for the distribution G (z, θ), so that (k1t )
∞
0 is

the equilibrium sequence of Section 2. In this subsection we shall show that for each
t,

lim
θ→1

kθt = k1t .

In this sense, a large finite world in which z ≤ Z approximates the infinite world of
the Pareto prior over z. The general idea is portrayed in Figure 6.
Substituting G for F in (7), it reads

C (n0) = −p+ C (n)
1

β

1−G (k, θ)

1−G (k + n, θ)

13
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Figure 6: Finite (dashed) vs. infinite (solid) equilibrium

When F is Pareto with ρ = 1,

G (z, θ) =
1

θ

"
1−

µ
z

zmin

¶−1#
for z < Z, where

Z =
zmin
1− θ

.

Then (7) reads

k00 = k0 +
(k0 − k)

β

θ − 1 +
³

k
zmin

´−ρ
θ − 1 +

³
k0
zmin

´−ρ
− p

c
≡ ψ (k0, k, θ) (15)

Then if
¡
kθt
¢∞
t=0
is an equilibrium sequence, it must be obtainable by iterating ψ from

the pair
¡
k0, k

θ
1

¢
. Note that

lim
θ→1

ψ (k0, k, θ) = k0 +
(k0 − k)

β

µ
k0

k

¶ρ

− p

c
(16)

Lemma 3 For θ sufficiently close to unity,

∂

∂k0

µ
k00

k0

¶
> 0.
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Proof. At θ = 1,
k00

k0
= 1 +

¡
1− k

k0
¢

β

µ
k0

k

¶ρ

− p

k0c

so that ∂
∂k0
¡
k00
k0
¢
> 0 at θ = 1. But ∂2ψ/∂k0∂θ exists in the neighborhood of θ = 1

and the claim follows.
Then if k0 rises (thereby raising k00/k0 as well), it turns out that k000/k00 will rise

too:

Lemma 4 For θ sufficiently close to unity, ∂
∂k0
¡
k00
k0
¢
> 0 implies that

∂

∂k0

µ
k000

k00

¶
> 0.

Proof. At θ = 1,
k000

k00
= 1 +

¡
1− k0

k00
¢

β

µ
k00

k0

¶ρ

− p

k00c

so that ∂
∂k0
¡
k000
k00
¢
> 0 at θ = 1. Since the cross-partial derivatives exist in the neigh-

borhood of θ = 1, the claim follows.

Corollary 1 For θ sufficiently close to unity,

∂kθt
∂k1

> 0

Proof. For any t, Lemmas 3 and 4 imply that a simultaneous rise in k1 will raise
k2/k1 which, in turn, implies a rise in k3/k2 and so on. This proves the claim.

Proposition 2 For each t,
lim
θ→1

kθt = k1t .

Proof. The proof is in four steps.
(i) ψ is continuous on the set Aθ = {(k, k0) | k ≤ k0 and F (k0) < θ.}.
(ii) If (k, k0) are continuous in θ, so is k00. This follows from (i)
(iii) If n0 is continuous in θ, so is kt for any t, as long (kt−1, kt) ∈ Aθ. This is

because k0 is fixed, and because we can iterate the result in (ii) using ψ.
(iv) nθ0 is continuous in θ at θ = 1. Suppose not. Then nθ0 would jump at θ = 1.

Suppose the jump was positive. Then k1/k0 would jump up. Then by Lemmas 3 and
4 and Corollary 1, kt would jump up for each t. But then (4) (which must hold at
θ = 1) would fail to hold at some θ < 1. To see why re-write it as

cnθ0 = p
∞X
t=0

βt

Ã
1−G

¡
kθt , θ

¢
1−G

¡
kθ0, θ

¢! (17)
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The LHS of (17) would jump up. But the RHS is continuous in θ and, as the entire
(kt) sequence jumps up, the RHS would exhibit a downward jump, a contradiction.
Similar logic works if nθ0 has a negative jump.
Putting (i)− (iv) together proves the claim.
Via (5), this result implies that stock prices, vt, and industry output, kt, also

converge to the equilibrium we described in Section 3.1. Thus the main thrust of the
results of Section 3 holds up in finite worlds in which the demand hazard eventually
starts to rise.

4.2 An upstream industry

This section serves a dual purpose. First, it shows how the external effect implied
by the presence of n in the unit-cost function C (n) can be a purely pecuniary effect.
In this case the welfare statement made in the introduction — that investment is too
slow and the crash comes too late — is correct. And, second, it shows how the crash
can be contagious across sectors.
We have so far modelled a single industry and applied it to the Telecom sector. The

Telecom sector is a part of the Nasdaq, yet the entire Nasdaq crashed. This section
shows how a crash in one sector can spread to an upstream sector. Assume that k is
produced competitively by a fixed number µ of firms in the upstream industry. For
a given capital-goods firm the cost of producing x units of capital is g (x) , where
g0 > 0 and g00 > 0. Consider the symmetric situation in which every capital-goods
firm produces the same amount, x. Suppose that k is purchased only by one industry.
That is, the only downstream buyers of k are in the industry we have modelled in
the previous sections. Equilibrium then requires that

n = µx.

The price per unit of capital is C (n), where n is investment in the downstream
industry. The first-order condition for optimal production of k is

C (n) = g0
µ
n

µ

¶
Therefore the market value of each capital-good producer is

Vk,t =
∞X
τ=t

βτ−t
·
C (nτ)− g

µ
nτ
µ

¶¸
.

and the value of the industry is µVk,t. Now C (n) − g
³
n
µ

´
= g0

³
n
µ

´
− g

³
n
µ

´
is

increasing in n.
Simultaneous crashes upstream and downstream.–As n rises, so does Vk,t. When

the downstream industry crashes, so does the upstream industry. When nt perma-
nently falls to zero, Vk,t does too. If the industry supplies capital to more than one
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final-good industry, then the equilibrium condition changes; Vk,t would still fall, but
not to zero.

4.3 Increasing hazard rates

Although increasing hazards do not generate rising stock prices, it is easier to prove
general results for that case. This subsection displays those results.

Existence and uniqueness of the equilibrium. Let nt (n0, k0) be the t’th iterate of
Φ from (n0, k0). That is,

n1 (n0, k0) = Φ (n0, k0) , n2 (n0, k0) = Φ (n1 [n0, k0] , k0 + n1 [n0, k0]) ,

etc. Let kt (n0, k0) =
P

τ<t nτ (n0, k0).

Lemma 5 If h is increasing, nt (n0, k0) and kt (n0, k0) are strictly increasing in n0.

Proof. We first show that Φ (·) is increasing in both arguments. By assumption,
C 0 > 0. Since h ≥ 0, R k+n

k
h (s) ds is increasing in n. This shows that Φ is increasing

in n. Next, d
dk

R k+n
k

h (s) ds = h (k + n)−h (k) ≥ 0 because h is increasing and because
n ≥ 0. Therefore Φ is also increasing in k.

Since C is increasing, so is C−1, and so it suffices to show that C (nt) rises with
n0 for all t. But this is equivalent to showing that the t’th iterate of Φ is increasing
in n0. Since kt+1 = kt + C−1 [Φ (nt, kt)] , the feedback effect on Φ that a rise in nt−1
induces on kt is positive. Since Φ is increasing in both arguments we are done.
We pause in order to observe that an increasing-hazard distribution cannot be

defective — F (∞) = 1.

Proposition 3 If h is increasing, a unique equilibrium exists.

Proof. Choose n0 > 0. Since k0 is given, this conjecture gives rise to the pair
of sequences nt (n0, k0) and kt (n0, k0). By construction, the sequences nt (n0, k0) and
kt (n0, k0) satisfy (5) and (6). The only remaining question is finding the right n0. If
we can find that n0 at which the cost, C (n0), equals the the expected present value
of a unit of capital at date 1, we will be done. Now, the expected value of a unit of
capital is the discounted sum of expected future profits stemming from that unit:

v0 (n0) = p
∞X
t=1

βt
µ
1− F (kt [n0, k0])

1− F (k0)

¶
Now by Lemma 5, v is decreasing in n0. Since k1 (0, k0) = k0, v0 (0) ≥ βp, and
v0 (∞) = 0. On the other hand, C (n0) is strictly increasing with C (0) = 0. Therefore
a unique n0 exists at which v0 (n0) = C (n0). Call this value n∗0. Then the equilibrium
capital sequence is kt (n∗0, k0).
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Intuitively, equilibrium is unique because when h is increasing, the likelihood of
a crash rises with industry capacity. The more is invested, the less attractive the
market looks to future investors conditional on its survival. When h is decreasing
that may no longer be so. Equilibrium may still be unique, as in the Pareto example,
but Φ may not be increasing in k so that the argument, as stated in Lemma 5, fails.

5 Conclusion

This paper has linked the phenomenon of market crashes and excess capacity. As
Figure 2 shows, Telecom is not the only industry where stock prices and output both
fell suddenly. Other markets, including the market for PC, unexpectedly became
“saturated” making further investment unprofitable (Wall Street Journal 2000, and
Angwin 2002). Yet these were the very markets where, prior to the crash, there was
a stock-price run-up.

The driving force behind the price run-up was, we argue, a rational rise in opti-
mism in the face of flat earnings. The argument holds if the supply of capital to the
industry in question was upward sloping, and if prior beliefs over market size had a
decreasing hazard. The latter is reasonable if the distribution of market sizes for new
products is skewed to the right. Axtell and others have found that such distributions
arise with city sizes and firm sizes, and we conjecture that they also fit the actual dis-
tribution of market sizes. Our work on this question will be the subject of a separate
paper.
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6 Appendix A: Data and simulation details

6.1 The data

Definition of TELECOM industry - We download from COMPUSTAT data8
and data12 for all COMPUSTAT firms with SIC code in the range 4812-4899. Such
range is defined by the Census Bureau as the "Communications Sector" and the table
below describes what it refers to.
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1987 1997
SIC NAICS
48 Communications

4812@ Radiotelephone Communications
. Paging Carriers 513321 Paging
. Cellular Carriers 513322 Cellular and Other Wireless Telecommunications (pt)
. Paging and Cellular Resellers 51333 Telecommunications Resellers (pt)

4813@ Telephone Communications, Except Radiotelephone
. Except Resellers 51331 Wired Telecommunications Carriers (pt)
. Wired Resellers 51333 Telecommunications Resellers (pt)
. Satellite Resellers 51334 Satellite Telecommunications (pt)

4822@ Telegraph and Other Message Communications 51331 Wired Telecommunications Carriers (pt)
4832 Radio Broadcasting Stations

. Networks 513111 Radio Networks

. Stations 513112 Radio Stations
4833 Television Broadcasting Stations 51312 Television Broadcasting
4841 Cable and Other Pay Television Services

. Cable Networks 51321 Cable Networks

. Except Cable Networks 51322 Cable and Other Program Distribution
4899 Communications Services, NEC

. Taxi Cab Dispatch 48531 Taxi Service (pt)

. Ship-to-Shore Broadcasting Communications 513322 Cellular and Other Wireless Telecommunications (pt)

. Satellite Communications 51334 Satellite Telecommunications (pt)

. Except Taxi Cab Dispatch Ship-to-Shore Communications and Satellite 
Communications

51339 Other Telecommunications

1987 U.S. SIC Description 1997 NAICS U.S. Description

Such micro-data set should be representative of the TELECOM sector at large. It
includes all companies listed on any stock exchange in the US from 1971 on, and in
the TELECOM sector7.

Consumer Price Index - Found on http://data.bls.gov/cgi-bin/surveymost?cu
by clicking on the box: "U.S. All Items, 1967=100 - CUUR0000AA0" it has the id
CUUR0000AA0. It has been re-normalized to 2000=1 by us generating our variable
CPI_annual_norm. Documentation on how the index is computed can be found on
the web-site above.

Definition of NASDAQTelecommunications Index - The NASDAQTelecom-
munications Index contains all types of telecommunications companies, including
point-to-point communication services and radio and television broadcast, and com-
panies that manufacture communication equipment and accessories (SIC Nos. 4812-
4899). On November 1, 1993, the NASDAQ Utility Index was renamed the NASDAQ
Telecommunications Index. The former NASDAQ Utility Index was reset to a base
of 200.00, using a factor of 5.74805. We take care of this in the preparation of the
data.

Sources for the Definition of other NASDAQ Indexes - The definitions of
the other NASDAQ Indexes used in Figure 1 can be found on the web-site:

http://www.nasdaq.com/reference/IndexDescriptions.stm

or

http://www.marketdata.nasdaq.com/mr4a.html

7As usual there is some selection bias since COMPUSTAT contains only listed companies. Still
we know that listed companies account for the majority of the value of the economy.
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Computation of NASDAQ Indexes - Some definitions first:

• The market capitalization is obtained by multiplying the number of shares
in issue by the mid price.

• The mid price of a security is obtained by taking the average between the
best bid price and the best offer price available on the market during normal
business hours.

• The number of shares outstanding are used to calculate the market capital-
ization for each component of the index. These shares represent capital invested
by the firm’s shareholders and owners, and may be all or only a portion of the
number of shares authorized8.

• Constituent is any firm listed on NASDAQ

The Nasdaq Composite Index is weighted arithmetically where the weights are
the market capitalizations of its constituents. The index is the summation of the
market values (or capitalizations) of all companies within the index and each con-
stituent company is weighted by its market value (shares in issue multiplied by the
mid price). The formula used for calculating the index is straightforward. However,
determining the capitalization of each constituent company and calculating the capi-
talization adjustments to the index are more complex. The index value itself is simply
a number which represents the total market value of all companies within the index
at a particular point in time compared to a comparable calculation at the starting
point. The daily index value is calculated by dividing the total market value of all
constituent companies by a number called the divisor. The divisor is then adjusted
when changes in capitalization occur to the constituents of the index (see Revision
of the Divisor) allowing the index value to remain comparable over time.

It = I0
total market valuet

divisort
= I0

PNt

i=1 PitSit
Dt

where t is the date at which we want to calculate the index I, t = 0 is a reference
date or base date we start with (like February 1971 for the composite index which is
set to 100) Pit is the price of a share of company i at date t, Sit is the total number
of shares outstanding for company i at date t and Dt is a divisor, introduced to make

8Shares that have been issued and subsequently repurchased by the company for cancellation are
called treasury shares, because they are held in the corporate treasury pending reissue or retirement.
Treasury shares are legally issued but are not considered outstanding for purposes of voting, divi-
dends, or earnings per share calculation. Shares authorised but not yet issued are called un-issued
shares. Most companies show the amount of authorised, issued and outstanding, and treasury shares
in the capital section of their annual reports. It is possible to back out the total number of out-
standing shares of each company from the balance sheet. In COMPUSTAT it is possible to obtain
market capitalization by using the following DATA items: (DATA6+DATA199*DATA25-DATA60)
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the index comparable over time (basically keeps track of changing in the pool of firms
or their share policies and allows the composite index only to track growth rates over
periods) and defined below:

Dt =
N0X
i=1

Pi0Si0 +
tX

j=1

Gj−1
I0
Ij−1

where Gj−1 is net new money raised at time j−1 through the issue of new companies,
new shares, rights issues, capital reorganizations or even capital repayments. This
figure may be negative. If G is zero between periods the index boils down to:

It =
total market valuet
totalmarket value0

I0 = I0

NtX
i=1

PitSitPN0
i=1 Pi0Si0

(18)

Again, all these adjustment are made by NASDAQ analysts, including all the neces-
sary adjustments if a company is discarded from the index. The resulting variables,
deflated by CPI_annual_norm are NASDAQ_composite_real and NYSE_telecom_real.

Real Variables - In the model there is variable kt which represents productive
capital. We decide to proxy it with two distinct variables: sales and property plant
and equipment.
The Variables have been extracted from the COMPUSTAT data set for all firms

with SIC code in the range 4812-4899 for each year. Such data derived from COM-
PUSTAT are accessible with user login on the web-site

http://wrds.wharton.upenn.edu/

The two variables extracted are

• data12 - Sales (Net): This item represents gross sales (the amount of actual
billings to customers for regular sales completed during the period) reduced by
cash discounts, trade discounts, and returned sales and allowances for which
credit is given to customers. The result is the amount of money received from
the normal operations of the business (i.e., those expected to generate revenue
for the life of the company)9.

• data8 - Property, Plant, and Equipment — Total (Net): represents the cost,
of tangible fixed property used in the production of revenue, less accumulated
depreciation10.

9See the DATA Manual in Compustat for a list of items included and excluded in this data
variable.
10In COMPUSTAT there is the availability of data7 which is the same as data8 without amor-

tization and depreciation. Even if the model does not include depreciation for simplicity we prefer
to include it in the empirical part. Amortization expresses (in theory) the real usage per period of
capital and (again in theory) we are willing to include it in our proxy.
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Then these variables are aggregated by simple sum to industry level and then
deflated. We deflate the sales series by the Telecom price index and the property
plant and equipment series by CPI to produce our real_property_plant_equip
and real_sales_total.

Construction of Figure 1 - Panel 1: NASDAQ_telecom_index deflated by
CPI and NYSE_composite index deflated by CPI. Panel 2: NASDAQ_telecom_index
deflated by CPI, real_property_plant and_equipment and real_sales.

6.2 Simulation and Calibration Details

The simulation exercise is an extra check on the validity of our theoretical results, a
better understanding of the dynamics of the model and, since we use the analysis of
the Pareto case, a grasp on how well the Pareto case captures the dynamics of the
real data11.

Calibration of the Prior - From (3) we have

ct = vt+1β
1− Ft+1

1− Ft

and from (5) we have
vt = p+ c (nt) .

We interpret vt
p
as the price-earning ratio that is

¡
P
E

¢
t
and (assuming ct = c (nt))

ct = vt

µ
1−

µ
E

P

¶
t

¶
.

Equating the two and dividing by vt we obtainµ
1−

µ
E

P

¶
t

¶
=

vt+1
vt

β
1− Ft+1

1− Ft
(19)

Let (1 + g) ≡ 1
T

TX
t=1

vt+1
vt
be the average growth factor of vt, let

¡
E
P

¢
be the sample

average of
¡
E
P

¢
t
. Replacing these variables in (19) by their sample averages and

rearranging we have

1− Ft+1

1− Ft
=

³
1− ¡E

P

¢´
(1 + g)β

≡ R. (20)

Let St ≡ 1− Ft be the survivor function. Then (20) implies

St+1 = RSt =⇒ St = S0R
t (21)

We compute R by:
11This last point is presented in the main body of the paper.
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• setting β = 0.90,

• computing (1 + g) = 1
T

TX
t=1

vt+1
vt
= 1.06 using the Nasdaq TELECOM index for

vt,

• computing a ¡E
P

¢
= 0.056 constructed by first taking the average earning-price

ratio across firms in each year and then taking its time-series average.

Plugging these into (20) the result is R = 0.96. Then picking the natural12 initial
condition S0 = 1 (21) gives us the predicted value for St ofbSt = (0.96)t
We call such sequence the calibrated bSt sequence.
Estimation of Pareto Prior - We have calibrated the implied non-parametric

sequence of survivor probabilities given our time-series averages. Now, from these
calibrated survivor probabilities we need to generate a predicted kt sequence. To do
this, we shall need a specific functional form for S. As in the paper, we shall assume
that St comes from a Pareto distribution and estimate its parameters. Since the
Pareto survivor function is S (z) =

¡
zmin
z

¢ρ
,

St =

µ
kmin
kt

¶ρ

(22)

We now seek that value of ρ such that the calibrated bSt sequence delivers a capital
series that resembles most to the observed sequence kt. By taking logs in (22) we get

log bSt = ρ log kmin − ρ log kt

We estimate ρ by fitting bSt to the observed capital series kt via OLS in the equation
log bSt = ρ log kmin − ρ log kt + εt,

where ε is approximation/fitting error. This yields the estimates

data set used bρ \ρ log kmin
COMPUSTAT .57 6.78

That implies a ln (kmin) = 11.8 or kmin = 133291. We could have set the parameter
kmin = k0 the first observation of data12_real (or data8_real) and then proceed
to find the ρ that matches the implied path for St. Since data12_real0 = 239821.08
(and data8_real0 = 162517) we were not too far off the mark. Now it is possible to
back out the corresponding hazard since the Pareto hazard is bρ

kt
.
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Figure 7: Actual and fitted St

Simulated Capital and Value Series - It is also possible to find out the implied
kt sequence from the calibrated bSt sequence and our estimation of ρ. In fact

kt =
dkmin³bSt´ 1bρ

Figure 7 plots such sequence.

Then it is possible to back out implied vt and nt sequences. The nt sequence
simply as

nt = bkt+1 − bkt
For the vt sequence we assume linearity of the cost function like in the Pareto example
in the text and calibrate the values of c and p with the following calibration strategy.
We use again the conditions

vt = p+ cnt
v

p
= 1 +

c

p
nt

to form
1

T

X
vt = p+ c

1

T

X
nt

and
1

T

X vt
pt
= 1 + c

1

T

X
nt

12The condition S0 = 1 implies S (k0) = 1 that is the market before beginning its life has proba-
bility of surviving the crash =1 since has not crashed at date 0.
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so that
v = p+ cn

and µ
P

E

¶
= 1 +

c

p
n

delivering

bp = v¡
P
E

¢ and bc = v − v

(PE )

n

then we can compute the implied series

bvt = p+ c
³bkt+1 − bkt´

7 Appendix B: Existence, uniqueness and simula-
tion of solutions to (13), (14)

The pair of difference equations [(13), (1)] in (n, k) has no finite steady state for k.
In order to be able to linearize around a steady state, we change variables from k,
the level of capacity, to its rate of growth

x =
n

k
.

We shall now analyze the evolution of the pair (n, x). The change of variables trans-
forms the pair (13) and (1) into the following pair of difference equations

n0 = −p
c
+ n

1

β
(1 + x)ρ , (23)

x0 =
x

(1 + x)

·
− p

cn
+
1

β
(1 + x)ρ

¸
. (24)

Lemma 6 (13) and (1) are equivalent to (23) and (24).

Proof. In the law of motion for k,

k0 = k + n,

divide by n0 to obtain

k0

n0
=

k

n0
+

n

n0

=
k

n

n

n0
+

n

n0

=

µ
1 +

k

n

¶
n

n0
.
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Inverting both sides,

n0

k0
=

n0

n

1¡
1 + k

n

¢
=

1¡
1 + k

n

¢
n

·
−p
c
+ n

1

β

³
1 +

n

k

´ρ¸
=

1¡
1 + k

n

¢ ·− p

cn
+
1

β

³
1 +

n

k

´ρ¸
=

x

(1 + x)

·
− p

cn
+
1

β
(1 + x)ρ

¸
Therefore (13) and (1) are equivalent to (23) and (24).
These equations have the unique steady state. Now the steady state of the system

is µ
n
x

¶
=

µ βp
(1−β)c
0

¶
So let us linearize around it. The Jacobian evaluated at the steady state is· 1

β
pρ

(1−β)c
0 1

¸
The characteristic roots are

³
1
β
, 1
´
. As is standard we set n0 = n and x0 = x to find

two curves crossing in the steady state

n0 = n =⇒ n =
p

c

µ
β

[1 + x]ρ − β

¶
≡ Φ (x)

x0 = x =⇒ n =
pβ

c

µ
1

[1 + x]ρ − β (1 + x)

¶
≡ Ψ (x)

Ψ0 (x) = − 1
((x+1)ρ−xβ−β)2

¡
ρ (x+ 1)ρ−1 − β

¢
. These are the two demarcation curves in

the phase diagram. The schedule Φ (x) is downward sloping, whereas Ψ (x) may or
may not be, depending on x and ρ. What matters, however, is that

Ψ (x)

Φ (x)
=

[1 + x]ρ − β

[1 + x]ρ − β − βx
=

½
= 1 if x = 0
> 1 if x > 0

.

So, Ψ (x) is more positively sloped than Φ (x), and the two curves cross at x = 0, as
shown in Figure 8.13

The area where either n < 0 or x < 0 is not relevant for the pre-overshooting
stage of the game, hence it is shaded.

13Mathematica was used to draw the stable manifold.
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0 x

n

stable manifold

Φ(x)

Ψ(x)

Figure 8: Phase diagram for n and x = n
k
.

To be able to draw the typical arrows on the phase diagram rewrite the system as

n0 = −p
c
+ n

1

β
(1 + x)ρ ≡ A (x, n) ,

x0 =
x

(1 + x)

·
− p

cn
+
1

β
(1 + x)ρ

¸
≡ B (x, n) .

Then,
A (x,Φ [x]) = n (25)

and
B (x,Ψ [x]) = x (26)

The vertical arrows.–First we show that if n > Φ (x), we move even higher. And
the opposite if n < Φ (x). That is,

Claim 1
n ≷ Φ (x) =⇒ A (x, n) ≷ n.

Proof. The relevant portion of the phase diagram is that for x ≥ 0. For all such
x,

∂A (x, n)

∂n
≥ 1

β
> 1

Together with (25) the claim follows.
The horizontal arrows.–Next we show that if n > Ψ (x), we move to the right.

And if n < Ψ (x), we move to the left. That is,
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Claim 2
n ≷ Ψ (x) =⇒ B (x, n) ≷ x.

Proof. We have
∂B (x, n)

∂n
=

x

(1 + x)

p

cn2
> 0

if x > 0. Together with (26) the claim follows.
These two claims pin down the arrows that are displayed in Figure 8 along with

the saddle path. The evolution of n and x is valid only before the overshooting date.
The shaded area is not admissible because x cannot be negative.

7.0.1 Simulating the Model

In the figure below we plot the time path for n. This figure shows in greater detail
what would happen to the trajectory if it did not start on the saddle path.

Equilibrium time path for nt as it approaches n∞

We now describe the algorithm we used to simulate the model:

1. Choose an initial condition for k0

2. Posit a rather coarse initial grid for initial values n0

3. For each n0 from the grid simulate the system equations to generate values for
the sequences {n, k}t for many periods

4. Discard any n0 for which the nt sequence either explodes, or is not not monotone
increasing
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5. Once all the n0 in the initial grid are tried we choose the n0 with the longest
number of observations (before explosion or violation of monotonicity cut off
the simulation) and make up a finer grid around it

6. The process starts over at point 3 up to the point we can find an initial condition
that can generate a monotone sequence for “enough” periods.

The simulations portrayed in Section 3.1 plot the time-paths simulated nt and kt
against their observed proxies: the actual Telecom sales series used as a proxy for
capital (sales_total) and the fist difference of sales_total (a proxy for nt).
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