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Simple Estimators for the Parameters of Discrete Dynamic Games.
Ariel Pakes, Michael Ostrovsky, and Steve Berry.

This paper develops estimation strategies based on the structure of discrete dynamic
games. For ease of exposition, we present all our results in the context of one example: a
dynamic game of entry and exit. In addition to its importance to industrial organization,
the entry/exit example illustrates rather well just why we need these estimation strategies
and the major problems that arise in developing them.

In particular, though the sunk costs of entry and the sell off values (or costs) associ-
ated with exit are key determinants of the dynamics of market adjustments to policy and
environmental changes, data on these sunk costs are much harder to find than data on the
determinants of current profits?. As a result we have to infer the extent of sunk costs from
other variables whose behavior depends on them. The variable that is most directly related
to the costs of entry is entry itself. To use the connection between actual entry and the costs
of entry in estimation we need a framework which allows us to compute the value of entering
(similarly, to make use of the relationship between sell off values and exit, we need to be able
to calculate the value of continuing). Though such frameworks have been available for some
time (e.g., Ericson and Pakes, 1995), their implications can not be used directly in estima-
tion without encountering substantial computational problems (with current computational
abilities these problems are often insurmountable) .

As a consequence the models that have been used to analyze entry and exit decisions
in the past have all been two-period models; see Bresnahan and Reiss (1987 and 1991),
Berry (1992), and more recently, Mazzeo (2002) and Seim (2002). Two-period models are
essentially static and assume away sunk costs. Partly as a result the empirical work in
these papers stayed away from examining the impacts of policy or environmental changes
on the structure of a given industry over time, focusing instead on providing a framework
for characterizing differences in the number of active firms across a cross section of markets.
More detailed analysis of environmental or policy issues, say of the likely effects of a merger
on subsequent entry or of a change in pension or health care rules on exit, required more
detail on sunk costs and how firms react to them.

2The decision of a firm on whether to exit is determined by whether its continuation value is greater than
its sell off value, and the latter is often associated with factors as hard to measure as “goodwill”, the value of
the firm’s building and equipment in its “second best” alternative employment, and/or clean-up costs. The
potential entrants’ sunk costs can be largely determined by the time and effort required to formulate ideas,
test markets, and access both startup capital and the requisite permissions.



The early frameworks for the analysis of entry and exit were also the first papers to
explicitly consider the estimation issues that arise when the model used to structure the
data does not generate a unique equilibrium. The uniqueness issue had been emphasized in
the theoretical literature on entry, and both Bresnahan and Reiss (1991b) and Berry (1992)
considered its impact on estimation in models where sunk costs could vary among agents.
When models do not have a unique solution it is, in general, not possible to determine
the probability of a given outcome conditional on observables and the value of a parameter
vector. This rules out many standard estimators. The uniqueness issue became even more
important once we allowed for the realism of continuation values which differed across agents,
for then the number of possible equilibria increased markedly. The original analysis here,
due to Mazzeo (2002) and Seim (2002), allowed continuation values to differ with “location”
and began investigating extensions which are crucial to the study of many retail and service
sectors.

Our goal here is to make the transition from the two period setting to truly dynamic
models of entry and exit. To do so we will provide a set of assumptions under which there
is only one set of equilibrium policies that are consistent with the data generating process.
We will then show how some simple ideas, ideas that can be viewed as extensions of Muth’s
(1961) original work, can be used to deliver estimators that are both easy to compute and
grounded in what actually happened.

The Underlying Idea.

To determine whether a potential entrant (an incumbent) should enter (continue) we need
the expected discounted value of future net cash flows should the firm enter (continue). The
potential entrant will enter if this entry value is greater then the entry fee (similarly, an
incumbent will continue if the continuation value is greater than the sell-off value). Our
measure of the entry values from a particular state is an average of the discounted value
of net cash flows actually earned by entrants who did enter at that state. Similarly, our
measure of the continuation values from that state is the actual discounted value of net cash
flows earned by incumbents who did continue from that state. These measures of entry and
continuation values make the relationship between the model and the data transparent, a
fact, which together with the estimator’s computational ease, simplifies robustness analysis
greatly.

Once we have consistent estimates of entry and continuation values, the rest of the
estimation problem is simple. We obtain a consistent estimate of the probability of entry
conditional on the parameters of the model as the probability of an entrant drawing an
entry fee less than the estimated entry value. Similarly, the probability of an incumbent
exiting is the probability of drawing a sell-off value greater then the continuation value.



We then find the value of the model’s parameters that make its predictions for entry and
exit rates “as close as possible” to the rates observed in the data. Alternative metrics for
closeness produce alternative (root-n) consistent and asymptotically normal estimators, and
we provide an extensive discussion of the differences in their computational and statistical
properties.

Our use of the average of realized future values as an estimator for the expected discounted
future values that decisions are based upon turns our problem into a semi-parametric esti-
mation problem. The first stage provides a non (or semi) parametric estimate of the entry
and continuation values. The second stage treats these estimates as true values in a para-
metric estimation problem. We provide assumptions under which the first stage need only
be done once. That is we do not need to compute a complicated fixed point or matrix inverse
each time we evaluate the objective function at different values of the parameter vector. As
a result, the computational burden of this estimator is, if anything, less than that of the
estimators for the simple static entry models.

The paper begins with the simplest entry/exit model, a model with one entry location and
a fixed number of potential entrants in every period. We then show how to generalize to allow
for multiple entry locations and a random number of potential entrants. Once conceptual
issues are clarified, a number of modifications that lead to alternative estimators suggest
themselves. The alternatives have different computational and distributional properties,
and so are worth considering.

As a result, we provide fairly detailed Monte Carlo results on two examples: one with a
single location, and the other with two locations. The Monte Carlo results, when combined
with an analytic discussion of why they occur, end up being extremely informative. Among
the alternatives we consider only one, perhaps two, should be considered by researchers, and
the best performing alternatives are also the least computationally burdensome. Moreover,
the computational burden of these estimators is small enough to think that the effective
limitation to the empirical analysis of entry and exit costs will become the richness of the
data, rather than computational feasibility.

As we will point out our procedures carry costs both in terms of assumptions, and in terms
of the ability to use the results in subsequent analysis. We conclude with a discussion of the
robustness of our estimator with respect to assumptions that are likely to be problematic.

Related Literature

Before proceeding to the details, a word on the related literature is in order. It is our
ability to form nonparametric estimates of the entry and continuation values that enables
us to circumvent the computational problems that have hindered the empirical analysis of
dynamic models of markets. Hotz and Miller (1993) were the first to use semi-parametrics to



simplify computational burdens in a dynamic problem; they use semi-parametric estimates
of the choice of discrete controls to simplify their estimation algorithm. The Hotz and Miller
paper deals with a single agent problem, while a subsequent paper by Olley and Pakes (1996)
uses semi-parametrics estimates of the choice of discrete and continuous to simplify estimates
of a multiple agent dynamic game.

There are also a number of papers currently “in process”, all written independently,
that present related results. The closest to our paper is a paper by Aguirregabiria and
Mira (2003) which introduces one of the alternative estimators considered in our extensions.
Aguirregabiria and Mira (2003) focus on a model with “logit” (extreme value) errors and
emphasize, contrary to our conclusions, the efficiency advantages of a maximum likelihood
estimator. Pesendorfer and Schmidt-Denglar(2003) make an i.i.d. probit assumption and
implement the empirical analog of the identification argument in Magnac and Thesmar
(2002). Their approach to sampling error is different than that in the other papers as they
place a tight restriction on the distribution of endogenous outcomes, rather than taking
the traditional approach of restricting primitives and working out the implications of those
restrictions on the endogenous quantities of interest. Bajari, Benkard and Levin (2004)
consider mixed continuous discrete controls, but also have an entry exit example with logit
errors. Their approach is different in that they first non-parametrically estimate how the
controls are determined by the state variables of the problem (as in Hotz and Miller,1993
and Olley and Pakes,1996), and then use those estimates to simulate continuation values?.

All these estimators could be used to estimate the parameters of the variable profit
function, as well as the distribution of entry and exit fees. Throughout, however, we focus on
estimating the distribution of entry and exit fees as it is these parameters that are difficult
to estimate without using the structure of a dynamic game. This leads us to avoid i.i.d.
extreme value or i.i.d. normal disturbances. Those assumptions imply that the entry costs a
given potential entrant faces in different locations in the same market are independent of one
another and have full support, and these implications can be quite unrealistic. Also, at least
in special cases, our simple analytic solutions do not require the Hotz-Miller inversion or value
function iterations. Finally, we present extensive Monte Carlo results on the moderately
sized samples that Industrial Organization researchers face. Then the first stage requires
non-parametrics estimates at a number of states that is potentially larger then the number
of underlying observations on markets. We show that our simpler methods work quite well in
this case and explain why, while the other methods we consider, including estimators based

3The continuous control case is also considered by Berry and Pakes (2002) and Pakes, Porter and Wolfram
(2003) who use “Muthian” ideas similar to those used in this paper to develop an estimator based on first
order conditions for a dynamic game and for (multi-unit) auctions, respectively. Einav (2003) provides
assumptions which enable one to obtain estimates from the second stage of a timing game, the first stage of
which determines the order of entry.



on likelihood functions, do not.

1 A Simple Entry/Exit Model.

We begin with a Markov Perfect Equilibrium (Maskin and Tirole, 1988) for the model with
only one entry location and the same number of potential entrants in each period. The
generalization to multiple entry locations and a random number of potential entrants is a
straightforward extension considered later.

Let n; be the number of agents active at the beginning of each period, z; be a vector
of exogenous profit shifters which evolve as a finite state Markov process, and assume that
there is a one-period profit function that is determined by these variables, say 7 (n,z;6),
where 6 is a parameter vector to be estimated.

An incumbent chooses to exit if current profits plus the discounted sell off value is greater
than profits plus the discounted continuation value. So if ¢ is the sell off (or exit) value and
0 < 0 < 1 is the discount rate, the “Bellman” equation for the value of an incumbent is

V(n,z;0,0) = max{n(n, z;0) + 6¢,n(n, z;0) + 6VC(n, z;0)}, (1)

where V' C(-) is the continuation value. If the max is the first term inside the curly brackets,
the incumbent exits.

If e is the number of entrants,  is the number of exitors (both of which are unknown at the
time the incumbents’ decisions are made), and p(-) is notation for a probability distribution,
then VC(-) is just the expectation (over the possible numbers of exitors, entrants and values
of the profit shifters) of the next period’s realization of the value function, V'(-), or

VC(n,z;0) = (2)
> / Vin+e—uxz2,¢50)p(dd'|0)p(e, z|n, z, x = 1)p(Z'|2).

1P
€,L,2
Note that to form this expectation we need to form the incumbent’s perceptions of the likely
number of entrants and exitors conditional on the incumbent itself continuing, perceptions
that we write as the probability distribution

pc(€7 ‘,L‘|n’ z’ X = 1)
where x = 1 is notation for the incumbent continuing. We need these perceptions because
the incumbent cannot estimate his returns to continuing without an idea of how many other
firms will be active. It is the requirement that these perceptions be consistent with behavior
that will generate our equilibrium conditions.



Analogously, we assume that the entrant must commit to entering one period before it
earns any profit, so the value of entry is

VE(n,z0) = (3)
> /¢' Vin+e—uxz2,¢")p(dd'|0)pc (e, z|n, z, x°* = 1)p('|2),
where
pe(e’ $|n, Z’ Xe = 1)

provides the potential entrant’s perceptions of the likely number of entrants and exitors
conditional on it entering, or conditional on x°¢ = 1.
The potential entrant enters if

SVE(n,z0) >k

where & is its sunk cost of entry®.
We now list our assumptions and then turn to a detailed explanation of their implications.

Assumption 1 We will assume that entry and exit decisions are made simultaneously at
the beginning of the period, and that

1. There are a fized number of potential entrants in each period (denoted by &), and the
distribution over
e the sunk costs of entry, say F*(r|f), which has a lower bound of k > 0, and
e the returns to eziting, say F?(-|0), which are assumed nonnegative,
are i.1.d. over time and across markets. Incumbents and entrants know these distribu-

tion and their own realizations, but do not know the realizations of their competitors
(so there is asymmetric information, as in Seim, 2001).

4Note that we are not giving the potential entrant the possibility of waiting and then entering in the next
period with the same setup costs. To do so we would have to keep track of the value of a potential entrant,
say VPE(n, z, k), which would be the maximum of V E(n, z) — k and the expected value of being a potential
entrant with sunk cost x in the next period. The analysis would then proceed much the same way as we
do below, except that now we would have to keep track of the likely distribution of the potential entrants’
k’s (it will depend on the value of entry in prior periods). How this is done depends on the assumption
governing the evolution of a potential entrant’s x over time. Ours is the extreme case in which if a potential
entrant does not enter when the entry possibility appears, that possibility disappears.



2. Entrants’ and incumbents’ perceptions of the probabilities of exit and entry by their
competitors in period t depend only on (ng, z;) (the publicly available information at
that time).

3. The evolution of the profit shifters, z, is governed by the Markov chain P, = {p(-|z),Vz €
Z =[0,1,...,2]}, lim,_0om(n,2) <0 for every z € Z, and m(-) is bounded®.

We come back to a more detailed discussion of the restrictions implied by these assumptions
directly after explaining the assumptions’ implications.

This model is a special case of the model in Ericson and Pakes (1995) and so has a
Markov perfect equilibrium, but there may be more than one of them (see Doraszelski and
Satterthwaite, 2003). Each equilibrium generates a finite state Markov chain in (n, z) couples.
L.e. the distribution of possible (n, z)’s in the next period depends only on the current (n, z)
(and not on either prior history or time itself), and there is an 7 such that, provided the
current n is lower than it, we will never observe an n > 7. The market is simply not profitable
enough to induce entry if there are 7 or more incumbents.

Indeed, one can go a bit further. For any equilibrium, every possible sequence of {(n, 2;)}
will eventually wander into a recurrent subset of the possible (n,z) couples, say R, and
once (ng,2;) is in the set R it will stay in it forever (Freedman, 1983). All states in R
“communicate” with each other, and will eventually be visited many timesS.

It is important to note that though our assumptions do not guarantee a unique equi-
librium, they do insure that there is only one equilibrium that is consistent with a given
data generating process. As a result, we will be able to use the data itself to “pick out” the
equilibrium that is played, and at least for large enough samples, we will pick out the correct
one. This is all we require to develop consistent estimators for the parameters of the model.

To see that the data can be used to pick out the equilibrium, note that: (i) the agents only
condition their perceptions on the behavior of their competitors on the publicly available
information (on (n, z)), and (ii) precisely the same information is available to the econome-
trician. Moreover, in equilibrium the realized distribution of entrants and exitors from each
state must be consistent with these perceived distributions (Starr and Ho, 1969).

SFor simplicity, throughout we will assume that there are no unknown parameters in the 7(-) function,
and focus on estimating the parameters determining the entry and exit distributions; see the introduction.

6“Communicate” here simply means that the probability of transiting from one state to another (in
any number of periods) is positive. If, in addition, the distribution of exit and entry fees have unbounded
supports, and all 2’s communicate with each other (so P, is ergodic), then there is exactly one recurrent
class for each equilibrium, and it is of the form R = {(n,2) : 0 <n <7,z € Z}. To prove this assertion it
suffices to note that any (n, z) communicates with (0, z) for some z € Z and z itself is ergodic. This implies
that all points in any recurrent class communicate with each other.



Now recall that the data will eventually wander into the recurrent subset of points (R),
and once in R will visit each point in it repeatedly. As the sample gets large, we obtain
an empirical distribution of entrants and exitors from each (n,z) € R, and by the law of
large numbers that distribution will converge to the distribution which generated it (almost
surely). As noted this must be the distribution the agents use to form their perceptions, so
we have just identified the perceived distributions needed for agents to make their decisions.

Given those perceived distributions, equations (1) and (2) generate a unique best response
for each incumbent and potential entrant. This is just the familiar statement that reaction
functions are generically unique, and can be proven using Blackwell’s theorem for single
agent dynamic programs. Since there is only one policy that is consistent with both the data
and our equilibrium assumptions at each (n,z) € R, and once we are in the set R we stay
there forever, there is a unique equilibrium for any subgame starting from any (n, z) couple
in R (a set which can be identified from the data) 7.

We now come back to the limitations of our assumptions. Part 2 of Assumption 1
implies that there are no state variables that the agents condition their perceptions on,
but the econometrician does not observe. In this context we should note that 7(n,z) can
represent erpected profits conditional on the information available at the beginning of the
period. Actual profits could have additional idiosyncratic and/or common components that
are not observed by the econometrician; indeed nothing in this paper changes if expected
profits have an unobserved component that was independent over time. However, if this
component were serially correlated, or if there were an i.i.d unobserved component that
changed equilibrium perceptions (a sunspot, for example), then we would have to condition
continuation and entry values on unobserved shocks, and the simple techniques introduced
below to estimate those values can not do this conditioning. Related assumptions have been
extensively used and discussed in the context of estimating single agent dynamic models (see
Pakes, 1994, and the literature cited there).

One more point on Assumption 1.2. We show that this assumption enables us to identify
the equilibrium chosen in the past, thus “solving” the estimation problem generated by the
possibility of multiple equilibria. It does not, however, enable us to use the results to evaluate
policy changes or other changes in the environment. Once we change the environment a new
equilibrium will be chosen, so predictions cannot be made without a more detailed analysis

"There is a detail missing here. Though points in R can only communicate with other points in R if
optimal policies are followed, there are some points, “boundary points” in the terminology of Pakes and
McGuire (2001), that could communicate with points outside of R if feasible but suboptimal policies were
followed. To fully analyze equilibria for subgames in R, boundary points need to be treated separately (see
Pakes and McGuire, 2001). In our case the only decisions that involve boundary points are the decisions of
entrants at the maximum n observed for any given z; thus we can easily isolate them, and not use them in
the estimation algorithm.



of the relationship between the equilibria chosen in the past and those that are likely to
prevail in the future, a topic which, though important, is beyond the scope of this paper.

1.1 Equilibrium Behavior.

We now characterize equilibrium behavior, beginning with that of incumbents, and then
moving to that of potential entrants.

Since entry and exit decisions are simultaneous and incumbents (potential entrants) are
identical up to the draw on exit (entry) fees, for an incumbent’s behavior to be based
on equilibrium perceptions it must perceive all competing incumbents to have the same
probability of exit, that probability being the probability that the random draw on the exit
fee is greater than the value of continuing. I.e. the perceptions needed to form continuation
values are formed as

pile,xz|n,z,x =1) = b°(x,n — 1|n, z,0)p°(e|n, z, x = 1) (4)
where for r > z
b(z,7|n, 2,0) = () F*{VC(n, 2,0)[0}) " [L - F*{VC(n, 20)0}]"

and
p(eln,z,x = 1)
is consistent with the behavior of entrants.

Equilibrium requires that all potential entrants have the same probability of entering,
that probability being the probability that the random draw on the entry fee is less than
the value of entry. Consequently, in equilibrium the perceptions required to calculate entry
values satisfy

(e, z|n, 2, x° = 1) = b°(z, n|n, z, O)p°(e|n, z, x° = 1),

where b®(x,n|n, z,0) is defined as in equation (4), and
pileln,z,x* =1) =b%(e — 1,€ — 1|n, 2, 0), (5)
where VR > e
b(e, Rln, 2,0) = (&) F* {6V E(n, 2,0)|0}° [1 — F* {3V E(n, z,0)[0}]*°.
Note that this implies that for incumbents

pileln, z,x = 1) = p(e|n, z,0) = b%(e, En, 2, 0).

10



2 Equilibrium Perceptions and Estimation.

In equilibrium the perceptions of potential entrants and incumbents must be consistent with
what is actually observed. This fact leads directly to a number of alternative two-step semi-
parametric estimators for the parameters of the model, and we begin with the simplest of
them. Its first step computes averages of the realized continuation (entry) values of all firms
who did continue (enter) at alternative values of (n,z). Since agents’ expectations must
be consistent with average realizations, these averages will converge to the true expected
continuation (entry) values we are after. The second step of the estimation procedure treats
these estimates of continuation (entry) values as the actual continuation (entry) values,
and estimates the model’s parameters by fitting the model’s predictions for entry and exit
conditional on alternative parameter values to the data on entry and exit rates.

Conditional on our estimates of entry and continuation, there are closed form expressions
for the entry and exit rates predicted by the model. Moreover, at least under convenient
specification for the distribution of exit values (and regardless of the assumption on the dis-
tribution of entry values), our estimates of VC(-) and V E(+) are linear functions of variables
that can be constructed directly from the data and held fixed for the entire estimation run.
Thus though our estimator is a two step estimator, it is not a nested fixed point estimator
(the data transformation which is required to obtain the estimates of V' C(-) and V E(-) need
not be redone every time we evaluate the objective function at a different value of the pa-
rameter vector). This is the reason the estimator does not have a significant computational
burden.

We start with the only detailed calculation of the paper—that required to compute
our estimates of VC(-) and VE(-). We then come back to the intuition underlying these
estimators and a discussion of their implications for the estimation algorithm.

2.1 Estimates of VC(:) and VE(.).

Consider an incumbent in a market with n — 1 other incumbents and particular value of
z; i.e. the market is in state (n,z). If the incumbent decides to continue, his (expected)
continuation value is equal to

VC(n,z0) = E; [m(n', 2") + 0Ey [max{VC(n', 2';0), ¢'}|n', 2']], (6)
where

e n' and 2’ are the next period’s values of (n,z) and ¢’ is the incumbent’s draw on the
exit value in that period, and

11



e Er, ,(-) takes the expectation of the future state conditional on the incumbent itself
continuing.

Given a realization of (n/, z’) the incumbent will exit if ¢’ > VC(n', 2;0), so the expec-
tation of the continuation value from a realization of (n’, ') is given by

Eymax{VC(n',z';0),¢'}n',z'] = (7)
Pr{¢p <VC(n',2;0)}VC(n',2';0) + Pr{¢ > VC(n',2';0)}E[¢'|¢' > VC(n',2;0)].
To simplify this expression let
p*(n',2") = Pr{i¢ > VC(n', 2;0)}

be the exit probability (this is an object we can estimate), and initially assume that ¢
distributes exponentially (F(¢) = 1 — e~(1/9)?) so that

El[plo > VC(n',2;0) =VC(n', 2;0) + o,

(we generalize on this assumption below). Substituting these values into (7), and the result
into (6) we get

VC(n,20)=Ey, ,[r(n,2') +6 (1 —p°(n, ")) VC(n',2;0) + op*(n/, 2') (VC (0, 2'; 0) + 0)]

= Ey [r(n',2) +0VC(n, 2 0) + 6p™(n', 2')a] . (8)

We now need some matrix notation. Arrange VC(n,z;6) into the vector VC(6), exit
probabilities into the vector p*, and incumbents’ perceived transition probabilities into the
matrix M,. Then

VO (0) = M r + 6VC(0) + 6op®] = M [r + dop”™] + M.V C(6). 9)

Equation (9) computes VC(-) as the sum of expected current returns and itself (where
now current returns include the expected excess returns from the possibility of exit). To
solve for V'C(#)) substitute the expression for VC(f) in (9) into the right hand side of that
same equation and iterate to get

VC(0) = M, [ + Sop™] + 6 M2 [1 + 60p®| + M2V C(0) = (10)
=Y 0"M][r + 60p®| = [I — 6M.|"" M,[r + d0p”],
=1

the continuation value in terms of the expected discounted value of current returns.

12



That is continuation values can be computed by taking the expectation over the dis-
counted future returns that the firm could earn over alternative possible future sample paths.
This implies that we can obtain a consistent estimate of the continuation value by averag-
ing over the discounted “future” returns actually earned by the firms who continued from
state (n, z). More precisely we will compute consistent estimates of the transition and exit
probabilities, i.e. of M, and p®, and substitute them into (10). By the continuous mapping
theorem this will generate a consistent estimate of VC.

Let

T(n,z)={t: (ng,2) =(n,2)}
be the set of periods with the same (n, z). Then, by the Markov property,

,.,z( ) 1 Z Ty
nz)=-— —m—— —_—
p ’ #T(TL’ Z) teT(n,z) n

is a sum of (conditionally) independent draws on the exit probability and converges to
p®(n, z) provided #7T'(n, z) — oo.

Let M, (5 z),n',»ry be an incumbent’s probability of transiting (in the next period) to state
(n', 2"), conditional on not exiting in state (n, z), i.e. the element of matrix M, in the row
corresponding to state (n,z) and column corresponding to state (n',z’). Then, provided
#T(n,z) — oo, we can obtain consistent estimate of this probability as the fraction of
incumbents not exiting in state (n, z) who transit to state (n’, 2’) in the next period, that is

ZtET(n,z) (n - mt)l[(nt+1,zt+1)=(n’ 2')]
Yter(n,y (N — Tt)

Mc,(n,z),(n’,z’) = ’
where 1j,. . 2.1)=(n',»y 18 the indicator function which takes on the value of one when
(ngy1,2e01) = (n',2') and zero elsewhere. Note that, to account for the fact that the in-
cumbents condition their calculations on themselves continuing, we weight the transitions
from (n, z) in the different periods by the number of incumbents who actually continue in
those periods®.

Substituting these estimates into equation (10), we get our consistent estimate of VC' as

Vo) = i 8" M + 60p%] = [I — 6 M, M, [x + 6o (11)

=1

8There are alternative ways to get to this formula. From our equilibrium assumptions the unweighted
transitions from (n, z) are generated by b(z;n,2) X b(e;n, z). The incumbent computes continuation values
conditional on itself continuing, so it averages with b(x;ns — 1,2;) X b(e;ng, 2¢). As a result to obtain an
unbiased estimate of the continuation values used by incumbents when they make their decisions we need to
multiply each realization with b(x;ny — 1, 2;)/b(x; e, 2¢) = [1 — (x¢/n4)]/[1 — pf] which is the weight above
once we substitute pf = > ) Tt/ 2ter(n,z) ™t for Pf.
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2.2 Implications and Generalizations.

Note first that our estimates of continuation values are just the averages of the discounted
values of the returns of the incumbents who did continue (adjusted to account for the fact that
the incumbent conditions on itself continuing). This is the sense in which our estimator makes
the relationship between the data and the model transparent, thus simplifying robustness
analysis. It is also the reason we expect our estimates to make empirical sense. Unless
incumbents have perceptions that are systematically biased, the actual average of realized
continuation values should be close to the expected continuation values used by the agents
in making their decisions.

Second, note how easy it is to compute our estimates of continuation values, or Ve (9). If
d is known (and we usually think that the prior information we have on § is likely to swamp
the information on ¢ available from estimating an entry model), then

VC(9) = An + do (12)

for A = [I — 6M,'M, and @ = 6[I — 6M,]"'p,. Both A and @ are independent of the
parameter vector and can therefore be computed once at the beginning of the estimation
routine and held in memory thereafter. So if profits were linear functions of 6, the first stage
estimates of continuation values are also.
An analogous calculation produces consistent first stage estimates of entry values. For a
potential entrant, the expected value of entry in state (n, z) is
VE(n,z0)=E

n',z’

[r(n',2") + 6V C(n, 25 0) + dop™(n', 2')]

or, in matrix notation,

VE(0) = M.(m+6VC(0) + 0p°0), (13)

where the elements of the matrix M., say M, () "), Provide a potential entrant’s proba-
bility of starting operations at state (n', 2’) conditional on it entering in state (n, z).

Consistent estimates of these probabilities are obtained as the fraction of those who enter
in state (n, z) who then begin operations state (n’, z’), that is by®

M I ZteT(n,z)(et)1[(nt+1,zt+1):(""zl)]
e,(n,z2),(n',2") EteT(n,Z) (ex)

9The weights are derived from the ratio of probabilities used by the potential entrant to form its
expected entry value (these condition on the entrant entering) to the observed entry probabilities or
[e:/€]

b¢(e—1,E—-1)/b%(e, £), which can be written as m ZteT(n,Z) ml[(mﬂ’nﬂ):(n,,z,)], where j¢(n, z) =

1 e
#T(n,z) EtET(n,z) ?t .
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Accordingly we obtain our consistent estimate of V E as

VE(9) = Br + bo, (14)

where
B=M,+6M,A, b=35Ma+5Mp°.

The simplicity of the form of the solution for (VC(#), VE()) did not depend at all on
the distribution of entry costs. This fact generalizes to the model with multiple locations,
and enables us to use realistic joint distributions of entry costs into the multiple locations of
that model without increasing the computational burden of the estimator significantly.

On the other hand, those solutions can become somewhat more complex when the dis-
tribution of exit fees is not exponential. The property of the distribution of exit fees that
enables the use of the matrix inversion is that E[@|¢ > ¢o] is linear in ¢, (the exponential is a
special case of this). Though this linearity assumption may be a good first approximation for
the distribution of sell off values we would like to be able to generalize (at least for robustness
analysis). If we use any other form for F%(-) and repeat the logic in the last subsection, then
after substituting our consistent estimates for their theoretical counterparts, the fixed point
analogous to equation (10) becomes

~

VC(0) = M {m +6 [(1 - §7) x VC(0)] + 8 [5* x E[gle > VC(©O)]]},

where (1 — §%) x VC(0) is the vector formed by multiplying each 1 — j*(n,z) with the
corresponding VC(0)(n, z), while 5 x E[¢|¢ > VC(8)] is the vector formed by multiplying ;
each element of 5*(n, z) by the corresponding E[¢|¢ > VC(0)(n, z)]. This equation system
is contraction mapping, and therefore is easy to solve, if the derivative of E[¢|¢ > z]| with
respect to z is less than or equal to one everywhere (actually, < 1/ will do). This will be
true if the distribution F?(-) is log-concave (see Heckman and Honore (1990), Proposition
1) an assumption satisfied by most of the distributions used in empirical work (normal,
logistic, extreme value, gamma, beta, Weibull, and so on).

Once we have (VC(0), VE(6)), we can form consistent estimates of the probability of exit
and of entry conditional on 6 as (1 — F*(VC(0)|0)) and F*(VE(6)|0)), respectively. The
second stage of the algorithm fits these probabilities to the exit and entry rates observed in
the data. We come back to a more detailed discussion of the properties of estimators which
do this in section 3 below. For now all we want to note is that the computational complexity

10To see this let T'(z) be the operator that produces the right hand side of this equation when VC =z
and let ||z|| denote the maximum element of the vector x. Then since M, is a Markov matrix, ||T(z1) —
T(x2)|] <Ol [(1 —p*) x (x1 — 22)]4+0 [B* X (E[P|¢ > z1] — E[¢|¢ > z2])] |- Under the log concave conditions
|E[¢|¢ > x1] — E[d|¢ > 2]| < |21 — 22| which, given that 0 < §* < 1, proves the result.
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of these estimators is comparable to that of estimators for the simplest static entry/exit
models (and these models are neither dynamic nor do they allow for any heterogeneity).

We want to conclude this section by reminding the reader of an implication of our as-
sumptions that may be problematic in particular applications. Our model assumes that the
sample paths emanating from a given (n, z) have: (i) a distribution which does not depend
on other features of the firms’ environment and (ii) realizations which are independent of
one another. It is for this reason that the average of these realizations converges to the
continuation and entry values of interest. If, for example, we were working with panel data,
and there was a national regulation which influenced the realizations of z’s in all markets in
a particular period, the average of realized continuation values across these markets in that
period would not converge to the continuation values which determined sell off decisions.
Of course if we observed repeated changes in regulations, and the process generating those
changes were ergodic, then our averages would be consistent.

2.3 Multiple Locations and Random €£.

We generalize to allow for multiple entry locations and a random number of potential en-
trants. Allowing for multiple locations changes the entry model from a binomial to a multi-
nomial model with the mutually exclusive and exhaustive outcomes being: enter in location
1, enter in location 2, ..., or not enter at all. Allowing for a random number of potential
entrants changes the model for observations on entry from a standard multinomial model
into a mixture of multinomials where we mix over the the number of potential entrants (or
the size of the sample) for the multinomial draws. However, all the other aspects of the
two-step estimation strategy remain intact, so the reader who is not interested in the details
can skip this subsection and move directly to the section discussing alternative estimators.

We detail a model with two locations and a random number of potential entrants (the
extension to a finite number of entry locations is straightforward). To keep matters as simple
as possible we maintain all of Assumption 1 (with obvious differences in notation to allow
for two locations) except 1.2 (which deals with the sunk costs of entry and exit).

Assumption 2 Instead of assumption 1.2 we assume

e the number of potential entrants in each period is an independent random draw from
the distribution {p(E|0)}5_, for a finite &,

e potential entrants can enter in only one of the two locations and have entry cost (K1, k2)
in the first and second locations respectively, where the vector (k1, ko) is a draw from
the distribution

Pri{ki <ri and ks <13} = F"(r1,72/6)
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which is independent over time and across agents, and

e once in a particular location, the entrant cannot switch locations, but can exit to receive
an exit fee of ¢ which is an i.i.d. drawn from FP(-0) if the incumbent was in the first
location and an i.i.d. draw from F{(-|0) if the incumbent was in the second location.

Since x; and ko are draws on the entry costs of the same agent in alternative locations, the
fact that our assumptions allow the two entry costs to be freely correlated adds realism to
the model (see below).

We begin with the incumbent’s problem. Letting [ index the different locations and mak-
ing obvious notational changes, the Bellman equation for an incumbent in the two location
model is

Vilni, noy, 2;0,0) = mazx {m(ni, n_y, 2) + 66, m(ny, n_y, z) + 0V Ci(ny, n_y, 2;0) },

where
VCi(m,n_i,z;0) =

Z // V(nl+€l—$l, n_j+e_;—r_, Z,a (b,)p(dqsl)pC,l(ela €1, Ty, T T, 1, &5 X1 = 1)p(z'|z),
2 ser,e_1,T_1,T

and
c,l _
P (e e,z v gln,nog, 2, x =1)

provides the type [ incumbent’s perceived probability of (e;, e_;, z;,z_;) conditional on that
incumbent continuing.

Just as in the model with a single location, the incumbent views all its competitors
in a particular location as identical. Consequently, in equilibrium it perceives a binomial
distribution of exitors from each location, with the binomial probability determined by the
fraction of draws on the exit fee that are larger than the location’s continuation value. More
formally, in equilibrium

P (e, e, @, oo, meg, 2z, 0 = 1) =
pc’l(ela e—l|nl7 n_y, 2, X1 = 1)bl(xl7 ny — 1|7’Ll, n_i, Z)b—l(m—la n_ing, n—y, 2)7
where
b7 (, rlng, g, 2,0) = (3) B {VCi(ny, oy, 2,0)| 07" [1 = FP {VCi(ni,ny, 2,0)| 03]

17



an analogous definition holds for b_;(x_;,n_4|n;, n_4, z), and the perceived entry probabilities,
i.e. p(es, e y|ny,n_g, 2, x; = 1), must equal the equilibrium entry probabilities defined below.

Since entrants become incumbents at the beginning of the period after entry and have
exit perceptions that are consistent with equilibrium behavior,

VEl(nla n_ip,z; 0) =

Z ~/¢’ ‘/l(nl‘i‘el_l'l, n_jte —Ty, ZI) ¢,)p(d¢l)bf(xla nl‘na 2y e)bil(xfla nfl|na 2 9)pe,l(e|n’ 2 X? = 1)p(zl|z)a
e,r,z’
where n = (ny,ny) and
pt(eln, z, x¢ = 1)

provides the equilibrium distribution of the number of entrants conditional on the potential
entrant entering in location (.

The only behavioral difference in the more general model is that now a potential entrant
will enter into location [ if and only if it is a better alternative than both not entering at all,
and entering into location —/, i.e. iff

SVE|(ny,n_y,2,0) >k, and SVE/(n,n_y,2,0)—k >06VE (n_y,n,2,0) — k. (15)

Using this fact, we find the equilibrium entry distribution in two steps: we first find the
equilibrium entry distribution conditional on a particular number of potential entrants (on
E), and then integrate out over the distribution of potential entrants given in Assumption
2.

To any potential entrant, the remaining potential entrants draw from the same distri-
bution of entry fees. Consequently, the probability of (e;, e_;) entrants conditional on E is
determined by the multinomial probabilities induced by the decision rule above. That is if

mo = Pr{k; > 0V E;(ny,ng,-) and Ky > §V Ey(ng,ny,-)}, (16)
my = Pr{r, < 0VEy(ni,ns,-) and kg > SV Ey(ng,ny,-) — VE(n,ng,-) + K1}, and
meo = PT{K/Q S 5VE2(TL2, ny, ) and K1 > 5VE1(’I’L1, o, ) — 5VE2(7’LQ, n, ) + K;Q},

i.e. (mg, my, mg) are the probabilities of a potential entrant not entering, entering in location
1, and entering in location 2, respectively, then a potential entrant who conditions on ' — 1
other potential entrants and enters in location [ will set

P e ecin, z,x§ = 1, E) = m(e; — 1, e_y, E — 1;mg, my, mo),
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where m(ry,re, ;3 mg, M1, my) is the multinomial probability of cell sizes (r — r; — 79,71, 72)
given cell probabilities of mg, mi, my and a sample size (number of potential entrants) of r,
i.e.

r!

T—T1—T2, 7 T1, T2
mO my my,

m(rlﬂ“m T mOamlam2) = (7. —r = T2)|r1|7«2|

provided e, + e_; < E (otherwise m(-) = 0).
Integrating out over the distribution of E, we obtain equilibrium perceptions as

EP(E| 0)

l e 11

pe, (€l7 e—l‘na X1 = 1) = m(el - 17 €1, IDES 1, mo, My, m?)—-

LR Su BP(E )
The incumbent’s perceived entry probabilities are given by

e e, ng, 2, x0 = 1) = pleeln, 2,0) = > m(ey, ey, By mg, my, my) P(E| ).

E>(ejte—p)

The adjustments to the estimation procedure required for the generalized model are also
straightforward. Our first stage estimates of continuation and entry values are obtained
by conditioning on the set of periods that have a particular value of (n,ns, z), computing
weighted sample averages of the realized entry and continuation values from the two locations
at each such state, and then applying the matrix inversion formula to simplify the calculation
of entry and exit values in terms of the data and #. Estimators of # are derived by fitting the
entry and exit rates from the different locations predicted by these continuation and entry
values and different values of 6 to the entry and exit rates in the data.

Consistent estimates of an incumbent’s and an entrant’s perceived transition probabilities
from state (n;, n_;, 2) to state (nj,n’,, 2') are given by

l l
“rc,l N ZtET(nlﬂLl,z) (n' — xt)1[(nl,t+1,"—l,t+1,2t+1):("§,n'_,,Z’)]

nl,n_l,z),(n',n’_ azl) - I _ l
( b=t EtET(nl,n_l,z) (n xt)

and
l
“re,l N 1 EtGT(nl,nfz,z) 6t1[("1,t+1,n—l,t+1,zt+1):(n§ n’_2")]
bl —i bl ,7 ! b ! - l )
(nen—p.2).(mpn_;.7') #T(nl’ n—t, Z) ZtET(nl,n_l,z) €t
1 % is a potential entrant’s perceived probability that there are E — 1 other potential entrants.
E
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As before these numbers are not equal to the empirical frequency of transition from state
(nl: n—i, Z) to state (n;’ TILI, Z,) or to #T(nla n-, Z)il ZteT(nl,n_l,z) 1[(nz,t+1,n—z,t+1,2t+1):(n;,n’_l,Z’)]a
but rather to a weighted average of these transitions. The weights, which account for the fact
that the incumbent (potential entrant) computes continuation values conditional on contin-
uing (entering), can be shown to equal [1 — (z!/ny)]/[1 — 5" (na, n_y, 2)] and et /[¢' (ng, n_y, 2)],
where él(nl, n_y,z) = #T(n,n_1,2) " Xiermn_,,») €' Appendix 1 derives the formula for
the entry weights.

Two final points about the model with multiple locations. First, as in the single location
model, given the matrix inversion formula for continuation values, the computational burden
of obtaining estimates for the parameters of this model is minimal. There is, however, the
burden of obtaining the Markov transition matrix and computing its inverse, which grows
polynomially in the number of distinct states (and this increases in the number of locations).
As we will show in our Monte Carlo examples below, given the simplicity of the rest of the
estimation procedure, this “setup” time can easily become the dominant computational
burden, and it will be excessive if we increase the number of locations enough.

Second, and probably more important, though our estimators remain consistent when
we increase the number of entry locations (or, for that matter, the number of states per
location), their small sample properties will change. In particular, both the small sample bias
and variance of our estimator will depend on the variances of the nonparametric component
(a point we come back to in greater detail presently). For a given sized data set the larger
the number of distinct states (locations times states per location), the fewer the number of
observations per state, and the larger the variance in the first stage estimates is likely to be.
As a result, as we increase the number of states for a given sized sample we may have to
worry more about small sample biases (as well as larger variances). It is for this reason that
we report on a reasonably extensive Monte Carlo study of just how these estimators perform
below. As we will see, the small sample biases are predictably more noticeable in some of
the alternative estimators analyzed than in others.

12Using this expression for the weights the two formula are, respectively

1 [1 = (z}/m1)]
#T (ny,n_y, 2) Z 1 —m® (e, ny,

2)] 1[(nl,t+17n—l,i+1’zi+1):(n;’nl_l’zl)]
teT(ni,n1,z)

and

1 eé 1

- -t It n1.

#T (ng,n_y, 2 Z Al (P2, 141,104 1,2041)=(ng,nl,2)]
( L Ls ) teT(ny,n_y,z) [6 (Nl, _l’z)]
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3 Alternative Two-Step Estimators.

The ideas discussed above can be combined and/or modified in different ways to obtain
alternative estimators. This section will discuss several of these alternatives. Throughout
we will assume that the number of observations at each of a finite set of (n, z) states grows
without bound with sample size. As noted our modeling assumptions insure this would occur
if the data came from a single long time series. It would also occur if our data consisted of
a panel of different markets (or industries) with initial conditions restricted in a way that
insures sufficient visits to a small number of states. Either set of conditions insure that all
estimators to be introduced here are /n-consistent and asymptotically normal (or CAN).

The alternative estimators will have both different computational burdens and different
distributions (large as well as small sample, though as we shall see this is a case where
the properties of their small sample distributions are likely to be particularly important
for applied work). After categorizing the alternative estimators and providing an informal
theoretical discussion of their properties, we provide rather extensive Monte Carlo results on
how they perform in two examples: a single and a two location example.

Two general points should be kept in mind while considering the alternatives. All our
estimators are semi-parametric estimators with the properties that

e the nonparametric components (the Markov transition matrices and exit and entry
probabilities needed to compute VC and V' E) enter the objective function in a non-
linear way, and

e the variance of the parametric component (of §) depends on the variance of the first
stage nonparametric estimates.

The nonlinearity of the objective function in the first stage estimation errors implies that
our parameter estimates are likely to be biased in small samples. Since, as we will see, in some
samples the average number of observations per (n, z) “cell” can be as small as two or three,
this small sample bias can be noticeable. That bias will differ (sometimes dramatically) with
the extent of the nonlinearity induced by the form of the objective function, and since there
are a number of alternative objective functions to choose from, one might want to take this
into account in choosing among them®3.

It is possible to use standard semi-parametric formula to obtain the asymptotic variance
of our parameter estimates, but there is little reason to focus on those formula here. This
is because we have a complete model and the computational burden of obtaining estimates

13 An alternative would be to develop small sample bias corrections, a route we do not consider here. Also
throughout we ignore the problem of developing tests of our model, even though it clearly is possible to
develop such tests.
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from that model is minimal. Thus it is relatively easy to obtain estimates of standard errors
from a parametric bootstrap!*. The fact that the asymptotic variances of the parameter
estimates do depend on the variance of the nonparametric component (that the estimator
is not “adaptive”) follows from the fact that the derivative of the objective function with
respect to the estimates of V'C and V'E do not have a conditional expectation of zero.

Alternative CAN estimators can be obtained by varying each of the three different major
components of the algorithm. We consider “natural” suggestions for each of these com-
ponents. Estimator can be obtained by combining any suggestion for each of the three
components. We consider all possibilities in the Monte Carlo examples. Here is a listing of
the components and our suggestions for each.

1. The objective function used in the second stage. In this context we consider

(a) the pseudo log-likelihood function, which in the single location model would be
formed by summing

(e, €0]0) = (ny — 3,) log F*{VC(0)[0} + m,og [1 — F*{VC,(6)[0}]

+ erlog FR{VE,(0)(0} + (£ — e,) log [1 — F*{VE,(0)|0}]
over t, and

(b) a method of moment estimators that minimizes a norm in the difference between
the data on the state specific entry and exit rates and the entry and exit rates
predicted by the model for different values of # (and so might be called a pseudo
minimum yx? estimator), and

(c) a method of moment estimators that minimizes a norm in the (average over all
states) of the difference between the actual entry and exit rates and the en-
trants/exits predicted by the model for different values of 6'°.

2. The estimation of the transition probabilities between states. In this context we con-
sider

14Since we have estimates of continuation and entry values conditional on (n, 2), we can use our estimates
of 6 and p(z'|z) to generate independent samples of size equal to our sample size. To obtain the parametric
bootstrap we simply estimate 6 from each of these pseudo random samples and take the variance of those
estimates.

15Tn our Monte Carlo examples the number of parameters equals the number of location specific entry and
exit rates so that these moments will just identify the parameters. If there were more parameters we would
have to add covariances between the prediction errors and the value of the state variables to identify the
model.
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(a) using the empirical Markov matrix (as above), and

(b) computing estimates of the entry and exit probabilities at each location at each
(n,z), and then using the binomial (or multinomial) formula to generate the
Markov matrix these probabilities imply. We call the estimates obtained in this
way the “structural” transition matrix.

3. The computation of first stage continuation and entry values conditional on the esti-
mated transition probabilities. In this context we consider

(a) using the discounted sum of future profits given by the formula above, and

(b) using a single agent dynamic programming nested fixed point algorithm; i.e. we
substitute the profit function and estimates of the transition probabilities into
the contraction mapping defining a single agent’s value function (equation 1) and
compute it for each different 6 (see below for details).

Finally note that given any one of these estimators we could always iterate on to a multi-
stage estimator. The second stage uses the first stage parameter estimates to compute entry
and exit values which are used in conjunction with the first stage estimates are to compute
entry and exit probabilities, which, in turn, are used to compute structural transition prob-
abilities analogous to those in (2b). The new estimates of transition probabilities are then
used to produce new first stage estimates of continuation and entry values either using the
matrix inversion in (3a) or the nested fixed point in (3b). Indeed the estimator in Aguirre-
gabiria and Mira (2003) noted in our introduction is, in our terminology, a pseudo maximum
likelihood estimator as in (1a) that uses the structural transition matrices in (2b) and the
nested fixed point to compute entry and continuation values as in (3b), and they favor a
multi-step version of their estimator which iterates in this way'6. We should note that there
is no guarantee that the iterations improve the estimates or that they will converge to any-
thing (we come back to both these points below), or, if they do converge, they converge to
something that is consistent with our assumptions on the choice of equilibrium.

3.1 Comments on the Alternative Estimators.
Alternative Objective Functions.

We already noted that the variance of all of our estimators will be determines, in part, by the
variance of the first step estimators of VC(-) and VE(-). As a result the pseudo maximum

16 Aguirregabiria and Mira require i.i.d. extreme value distributions for both the entry fees and the sell off
values (as in Rust,1987). This assumption implies that the entry costs for the same agent in different locations
are independent and have full support (i.e. they will be large negative numbers with some probability).
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likelihood estimator will not be asymptotically efficient even under standard regularity con-
ditions. In addition if there is a lower bound on the distribution of entry fees that must be
estimated (and depending on the profit function such a bound might be required to insure
that the Markov chain generated by the model is finite, see assumption 1.2), one of the
parameters to be estimated defines a point of support of the likelihood (which invalidates
the regularity conditions required for the efficiency of the maximum likelihood estimators
for multinomials even if the continuation and entry values were computed without error).

So the usual limiting arguments in favor of maximum likelihood do not apply here.
Moreover there are two arguments which should lead us to worry about the small sample
properties of the pseudo maximum likelihood estimator. First the sensitivity of the pseudo
maximum likelihood estimator to the estimation error in the continuation and exit values is
determined by the derivative of the log of the probabilities of exit and entry with respect
to these values; i.e. by one over the true probabilities. When those probabilities are small,
and they often are in entry/exit data sets, that derivative will be very large and maximum
likelihood will tend to produce estimators with poor finite sample performance.

Second, and conceptually quite distinct, since the pseudo likelihood’s probabilities are
not the true probabilities (they are conditioned on estimated and not the true entry and exit
values), events can occur which the pseudo likelihood assigns zero probability to (for any
f € ©), even though the same events must have nonzero probability in the true likelihood
(else they could not occur). If only one such event occurs the pseudo likelihood will be
undefined (the log-likelihood is negative infinity for all #), and the estimation procedure will
break down. Our examples below illustrate that this is likely to happen even in relatively
simple models.

Moving to the “pseudo minimum x2” objective function in (1b) it, like the log-likelihood,
is also likely to have problems with nonlinearities in its objective function. To see this, let
s index states, F*(f) = F*(VE,(f)) index estimated entry probabilities, and note that the
first order condition for the entry parameters in the the pseudo minimum y? estimator is a
weighted average of

ac(s) — 0N 20 =
0.06) ~ F2 N+ 17 0) - BER OV B 0) - Fron P,

where F integrates over sampling variance of the estimates of the entry and exit values. At
0 = 6, the true value of 6, the expectation of the first term in the last equation is zero.
However since F(-) is a nonlinear function of the first stage estimation error, and F*(-) and
oF" ()

g~ are constructed from the same estimates of VE (and hence are correlated), both of
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the last two terms have a nonzero expectation. As a result a value of 8 = 6, should not be
expected to produce a minimum to the first order conditions (at least in finite samples).
The fact that our first stage estimates of entry values contain errors implies that an
analogue to the bias caused by the first of the last two terms will be present in all method
of moments estimators based on the difference between the observed and our estimates of
the entry rates. However the bias caused by the last term is a result of the fact that pseudo

minimum x? is using an “instrument” (i.e. %) which is correlated with the error in the
estimate of the probability. Thus if we replaced oF ga(ﬂ) in the top equation with any known

function of the observed state variables, the last term would have expectation zero for all #
and s. Consequently it would average out across states and tend not to produce a problem
in our estimators'”. The simpler method of moment’s estimator in (1c) is a special case in
which the “instrument” becomes “one” for all observations, and hence it has one less “bias”
term then the pseudo minimum x? estimator in (1b).

Empirical vs Structural Transition Matrices.

The empirical transition matrices are computed as described above. We obtain the structural
transition matrix as follows. First compute maximum likelihood estimates of the the entry
and exit probabilities for each state. In the simple case of a fixed number of potential entrants
these are given by the average fraction entering and exiting at that state or by

ZtET(n,z) €t
ZtET(n,z) £

n,2 x A

 Yier(ng T

Then use the the binomial formula

pxln, z,x = 1) = by(z,n — 1|n, 2) (271) 92(n, 2)° [L = gu(n, 2)]" 77,

and X
pleln, 2) = be(e, Eln, 2) = (£) Ge(n, 2)° [1 = Ge(n, 2)]°°,

together with the Markov process generating z, to compute the probabilities of (' = n —
x +e,2') given (n,z) from the point of view of an incumbent. Analogous expressions are
used to compute transition probabilities from the point of view of a potential entrant.

In finite samples use of the structural transition matrix is likely to generate two problems.
First the transitions estimated from the binomial formula will take us to states not observed

"The argument here is very similar to the argument against using non-linear least squares to estimate
regression functions when the regression function itself is simulated with a finite number of simulation draws;
see Laffont, Ossard and Vuong, 1995.
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in the data. To compute the first stage estimates of VC(-) and V E(-) we will then have to
impute the entry and exit rates from those states (since we do not observe transitions from
these states), and the imputation errors will affect our estimators'®. Second, to go from the
binomial probabilities to the probabilities needed for the transitions from n to n' requires
the computation of a convolution of probability distributions, and then the inversion of a
larger Markov matrix (or integration over a larger number of future states if we use the fixed
point in 3b). This increases the computational burden of the estimator, and the increase is
likely to be larger the larger the number of state variables in the model.

Discounted Sample Paths vs. Nested Fixed Points for VC(-) and VE(-).

The sample path calculation is explained above. The nested fixed point algorithm finds its
estimates of continuation values by computing the contraction mapping

A

V(n, z;¢,0) = max {71'(71, z;0) + 9o, m(n, z;0) + 5VAC’(n, z; 9)}
where

VC(n,20)= 3 [Vin+e—a,2,6)p(dslo)ple, aln, =, x = Dp(<']2),

e,r,2’

and p(-) refers to estimated probabilities.

At least in cases where the matrix inversion formula in (9) is available, the nested fixed
point calculation will increase the computational burden of the estimator. When we use the
matrix inversion the inversion itself is only done once. When we use the nested fixed point
the fixed point calculation needs to be done every time we evaluate a different vector of the
parameters determining sell off values or profits in the search algorithm®.

The extra computational burden of the fixed point grows exponentially in the number
of state variables (or locations)?* making it harder to use in more complex problems, and
will increase in the number of parameters to be estimated (as this will typically require the
estimation algorithm to do more function evaluations in its search procedure). The extra

18There may be a similar problem for the empirical transition matrix but it is much less severe. If we
follow a single time series there is the issue of whether the last observation is an observation which has been
visited before. If it has we have estimates of all required transitions. If not we need to impute estimates of
the transitions from this last state. If we have a panel of firms then we might have to impute transitions for
the last states of each panel member.

19Tf we assume the sell off value distributes i.i.d. type II extreme value as in Aguirregabiria and Mira,
2003, the integral over ¢ has an analytic form which makes each calculation of the fixed point easier.

20 Actually as the product of two exponentials; one for the number of points which need to be evaluated
in the fixed point calculation, and one for computing the future value at each point
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burden will also be compounded when we use it in combination with the structural transition
matrix, as this will require us to calculate the fixed points at more states.

If there is an advantage of the nested fixed point it is that the structure it provides might
lead to more precise first stage estimate of the continuation and entry values. We examine
this possibility below.

4 Monte Carlo.

The Monte Carlo results are designed to give the reader a sense of both the computational
burden and the distributions associated with the various estimators. We begin with a single
location example and then move to two locations.

Throughout we focus on estimating the distribution of entry fees and sell-off values, as
these are the parameters that cannot be estimated from static models of markets. Note
that this choice minimizes the increase in computational burden in moving from the matrix
inversion to the fixed point (from 3a to 3b above), as were we also to estimate parameters of
the profit function, the fixed point would have to be evaluated many more times than it will
be evaluate in the results presented below (while the matrix inversion only occurs once).

In both examples we have done all calculations for six sample designs, all of which are
panels. We consider varying the time dimension (“T”) between T=5 and T=15, and the
number of markets or the cross sectional dimension (our “C”) between C=250, C=500, and
C=1000. Much of the earlier work on entry was on relatively isolated markets (see Bresnahan
and Reiss, 1987, and Mazzeo, 2002). The number of relatively isolated markets in South
Dakota is 250, which explains our smallest sample size, and the support of our z variable was
chosen to give us the approximate range of population sizes in the South Dakota markets.

We report a selection of the results that seem sufficient to convey the problems that
can arise in using these techniques. The reported standard errors are computed from the
distribution of estimators over independent Monte Carlo data sets.

4.1 The Single Location Example.

Our single location example uses a Cournot model with linear demand to determine output
and profits conditional on (n, z). Changes in z shift the demand curve over time; they play
the role of population size in Bresnahan and Reiss (1987). Appropriate choice of parameter
values gives us the following single period profit function

ZQ

m(n,z) = QW,

27



and we assume that z = log[Z] is the second order Markov process

241 = 2t + Git1

where g, the growth rate, is a first order Markov process (this generates persistence in growth
rates, a phenomena typically observed for the populations of small towns). Thus the state
variables for the dynamic problem are (n, g, 2).

We assume that the density of the distribution of entry fees is given by

f(k=7)=d*(r —1/a)exp|—a(r —1/a)] (17)

for r € (1/a, 00). This is a unimodal distribution with positive density only at points r > 1/a
and a mode at 2/a. Note that a defines a boundary of the support for k. The existence
of this boundary insures that there will be no entry when there are a sufficient number of
incumbents. The sell-off value is distributed exponentially with parameter o.

An actual equilibrium of the model for values of a = .3 and ¢ = .75 was computed
using a variant of the algorithm presented in Pakes and McGuire (1994) (the variant simply
shuts down the investment decision in that model). State variable z was allowed to take
on 45 values at .05 increments and we allowed three growth rates (.05,0,—.05)%. The
maximum number of firms for our parameterization was nineteen, and this implies that the
“cardinality” of the state space, or the number of distinct (n, g, z) vectors possible, is about
two thousand seven hundred. The “data” was obtained by using the computed equilibrium
policies to simulate sample paths. The same data was used for all estimators.

4.1.1 Results from the Single Location Model.

Table 1 provides the results. The first panel of the table is a “pivot” table which defines
the estimators in the different columns. The first row of that panel specifies the objective
function (OF) used. If OF = 0 we fit the mean (over all observations) of the entry and exit
probabilities predicted by the model to the data, if OF = 1 we use the pseudo likelihood,
and if OF = 2 we minimize the sum of squares of the difference between the empirical and
the estimates of the state specific entry probabilities weighted by the inverse of the number
of times that the data visited that state. The PR row of the pivot table indicates which first
stage probabilities are used in estimation. If PR = 1 we used “structural” transition proba-
bilities (we estimate entry and exit probabilities and use them and the binomial formula to

2'When g; = .05, gi41 = .05 with probability .75 and g;11 = 0 with probability .25. The transition
probabilities when g; = —.05 are analogous, and when g; = 0, g1 = 0 with probability .5 and moves to
each of the alternatives with probability .25. At corners of the permissible z values, the probability of moving
out of Z is set to zero and its probability is added to the next closest number.
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compute transition probabilities), whereas if PR = 0 we used the empirical transition prob-
abilities (or M in the notation above). The VF row indicates how the first stage estimates
of (VC(-),VE(-)) are computed. If VF =1 then (VC(-),VE(-)) are computed via a nested
fixed point, whereas if V F' = 0 these values are found by a single matrix inversion at the
beginning of each run.

Panel A provides the results when C=1000 and T=15. These results are reassuring since
they indicate that, at least in the one location model, with a big enough sample all estimators
“work” reasonably well (though there is some indication in this panel that pseudo maximum
likelihood does worse than the other estimators)?. Panel B provides estimates from our
smallest sample and at that sample size we learn more about the estimators’ performance.

All the estimates of a in panel B seem to have an upward bias and the bias appears
larger in the OF=1 (or pseudo mle) estimators. On the other hand the OF=0 estimates of
o are ‘“right on”, and the OF=1 estimates are close, but the OF=2 estimates of o can be
problematic. Note also that though there may be a bias problem in some of the estimators,
even at our smallest sample size, the parameter estimates are quite precise (the exception
here is the OF=2 estimate of o which sometimes is not well estimated). Moreover as Panel
C shows, once we increase the size of the data set the bias problem disappears rather rapidly.

An upward bias in a implies a downward bias in the estimate of 1/a. For the OF=1
estimator or pseudo mle estimator the estimate of 1/a has to be lower than the lowest esti-
mated entry value at which some potential entrant entered. In small samples the minimum
estimated entry value will tend to be lower than the minimum true entry value, and will
tend to make @ > a. One can use a second order expansion to look at the small sample bias
in the OF = 0 estimator of a and show that it depends on the derivative of the density of
a at the points which generate entry. In almost all of these observations this derivative is
positive, and that accounts for the positive deviations in those estimators.

No matter the sample size the OF = 0 (or simple method of moments) estimators had
both smaller biases and smaller variances then those of either the pseudo mle (OF = 1),
or the pseudo minimum x? (or OF = 2) estimators. Moreover this was true for all sample
designs. For intuition on why this occurs compare the row labeled #(n, g, z), which provides

22 As noted if we use structural probabilities we will need estimates of entry and exit probabilities at points
not observed in the data. Here is how we obtain them. Assume that for a given z we only observe behavior
from [n1(2),n2(2)]. Then: (i) if n € [1,n1(2)] the probability of entry is equal to the probability of entry
in state n;(z) and the probability of exit is zero; if n € [n2(z), maz] the entry probability is set to zero,
and the exit probability is set to that at ny(z); and (iii) if there is a hole inside the set [n1(2),ns(z)] the
exit probability is set equal to the closest observed exit probability below it, and the entry probability is set
to the closest observed entry probability above it. If we use empirical probabilities and we sometimes get
to terminal conditions which are not visited prior to the terminal period, and hence do not have empirical
estimates of transition probabilities. For these transitions we take the average transition probabilities for
the cells nearest to the terminal cell weighted by the number of times these cells were observed.
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the number of states ever visited in the run (423 when T=5 and 629 when T=15), to the
number of observations (or C' x T', 1250 when T=5 and 3750 when T=15). That is when
T=5 we are constructing the rows of the empirical transition probabilities which determine
the Markov transition matrix, and thus through the inverse formula the continuation and
entry values, with three observed transitions (on average). As a result one might expect
the estimates of continuation and entry values to contain nontrivial sampling error, and as
explained in the last section that error is likely to have much larger impacts on the pseudo
maximum likelihood and the pseudo minimum y? estimators than on the OF=0 estimator.

What is striking is just how well the OF=0 estimator does with this number of obser-
vations. At T=15 there is an average of six observed transitions per state visited and that
seems to be enough to “nail” the parameters, and with three transitions per state (at T=5)
we do reasonably well. Of course, each observed transition averages over all sample points
reached from the state it transited to, so each observed transition is implicitly averaging
over all sample paths from the point transited to.

The differences in the distributions generated by the alternative OF = 0 estimators are
small. However there are large differences in their computational burdens. When we use
structural probabilities (PR=1) we have to compute either a matrix inverse or a fixed point
with four to six times the number of states (compare the #(n, g, z) row, which is the number
of states when PR=0, and the #p row, which is the number when PR=1). In the case of the
matrix inverse (i.e. VF = 0) this causes an increase in compute time of factors between 4
and 7, and once we go to the nested fixed point calculation the computational burden of the
structural probabilities increases further, to between 6 and 10 times the compute time for
the empirical probabilities?®. The one positive surprise in the estimates from the structural
probabilities is the fact that the imputation of entry and exit rates at the points not actually
visited does not seem to cause a noticeable bias in the estimates. This is true even though
the imputed states are well over eighty percent of the total number of states . The nested
fixed point times are always larger than the matrix inverse times, but the difference is much
more noticeable when we use structural probabilities.

The Monte Carlo results from the model with one entry location are pretty clear. The
method of moments estimators that fit the average entry and exit rates from the various states
(the OF = 0 estimators) have both better distributions and impose less of a computational
burden. There is not much difference in the distributions of the OF = 0 estimators, and
since the computational burden of the PR = 1 estimator is so much larger, there is a clear
preference for estimators that set OF = PF = 0 estimator. There is very little difference in
either performance or in computational burden between the simplest estimator, the estimator
with OF = PR = VF = 0, and the estimator which uses OF = PR = 0 but the nested

ZThese ratios are much worse for the OF=1 and the OF=2 estimators (up to a factor of 15).
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fixed point for calculating values (V F = 1).

As noted, were we doing a more complex problem or estimating more parameters, we
would see more of a computational preference for the OF = PR = VF = 0 over the
OF = PR = 0 but VF =1 estimator. On the other hand, there does seem to be a slight
improvement in the statistical performance of the estimator with VF = 1 over VF = 0 in the
smallest sample (panel B), and this held up in the limited number of runs we did with smaller
sample sizes then those presented here. So it is probably the case that the choice between
the OF = PR=VF =0 and the OF = PR = 0 but VF = 1 estimators depends on the
characteristics of the problem and the sample being analyzed. The other important point
to note is that neither of these two estimators is particularly computationally burdensome;
the compute time with our smallest sample size averaged about ten seconds, and it was only
about a half a minute on our largest sample. I.e. the framework should enable researchers
to analyze much more complex problems and/or engage in a quite bit of robustness analysis.

4.2 The Two Location Example.

Our two location example is in the spirit of Mazzeo(2002) who estimates a model of com-
petition among vertically differentiated (i.e. high and low quality) motels. The demand
curve is derived from a discrete choice model. If the consumer consumes one of the goods
marketed, it can choose either the low or high quality good. Consumers’ are differentiated by
their price coefficient (meant to mimic their marginal utility of income), and the inverse of
that coefficient (which should be increasing in income) distributes exponentially. The model
generates demand for the low and high quality options, respectively, as

b _\P2—P1
Q=M (e Mo —e Awl)

and .
Q= M (e 5,

provided £2=8t > &L (otherwise, @1 = 0).

Each of the (n1,n2) firms choose a quantity to market in their location, and prices adjust
to the (unique) Cournot equilibrium price vector. The profit of firm ¢ manufacturing product
k are computed “offline” as

Thi = (Dk — Ck)qri — €L,

where ¢ is the marginal cost of product k, py is its equilibrium price, and c}: is its fixed cost.
We set g—f > g—f, as this guarantees positive equilibrium quantities.
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We now list the assumptions on entry and exit. There is a uniform distribution of the
number of potential entrants with P(F) = 1/4 for E € [0,1,2,3] in each period. When a
potential entrant appears it receives an independent draw on k = (K1, ko) from F*(-,-| 6)
and can enter in at most one of the markets. Since x; and ks reflect differences in a given
individual’s cost of building the high and the low quality motel in a particular market, we
allow them to be correlated. Indeed we make the reasonable assumption that the cost to
a given individual of building the high quality motel in a given market is larger than that
individual’s cost of building the low quality motel in the same market, i.e. we assume

Ko > k1 with probability one.

In particular the cost of entry into the low quality product distributes as does the entry
cost in the one location model (see equation 17) with parameter a; while the cost of entry
into the high quality product is given by

Ko =Ki1+T7T

where the distribution of r is given by equation (17) with parameter a;?. Thus there are

two entry parameters to estimate (a;,aq). Exit fees are distributed i.i.d. exponential with
parameters (o7, 03) in the two locations. Computation of the equilibrium and generation of
the data used for estimation is done in a manner analogous to how it was done for the single
location example.

4.2.1 Results from the Two Location Example.

The Monte Carlo results for large samples are split between table 2 (for the OF=1 or pseudo
mle estimators) and table 3 (for the OF=0 and OF=2 estimators). There is a “start” row
in the pivot table for the some of the two location runs; when start=1 we start the search
from the OF = PR =V F = 0 estimator®.

Table 2 summarizes results on pseudo mle estimates from panels with 7" = 15 and C' =
5000. Given this amount of data, the table is designed to tell us whether pseudo mle “works”
at all?®. The answer is pseudo mle does not work. We labeled a search starting from a
certain point “unsuccessful” when the Nelder-Mead search algorithm in Matlab could not
find a positive value for the likelihood. When there was an unsuccessful initial condition for

24 Actually we use a discretized version of the density in equation (17) for the r distribution.

251t is straightforward to find a zero to the first order condition in the OF = 0 runs, so we did not try
alternative starting values for them.

26Gince with this much data Monte Carlo repetitions take quite a bit of computer time, and we knew the
answer with a relatively small number of repetitions, we stopped this run at R = 14.
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a given data set, we tried another initial condition, and continued until we started the search
at ten different randomly selected points none of which resulted in a positive likelihood. At
that point we called the search on the data set unsuccessful, and moved to the next data set.
The sub-panel labeled “success rate” provides the fraction of the time when this subroutine
recorded a “success”. The pseudo mle does not work most of the time.

The reason for the zero pseudo likelihood is that the first stage is producing a VE 1(-) >
V'E,(-) for candidate parameter values when there is in fact entry in location 2. Since the cost
of entry in location 2 is always higher than in location 1, if our estimated entry values were
true, entry in location 1 would never happen (hence the zero likelihood). The reason it does
happen is because VE;(-) < VEy(-); i.e. the disturbances in the first stage estimates have
reversed the order of the two entry values. Since the pseudo likelihood does not recognize
the possibilities generated by first stage estimation error, it can record a probability of zero
for events which do happen. Note that all this has to do is happen once among the estimates
of the entry values for all the states visited for the pseudo mle to fail.

Since the precision of the first stage estimates at a point are a function of the number of
times that point was visited, we thought we might improve the performance of the pseudo
likelihood estimators if we trimmed points which were visited infrequently. The “success
sub-panel” presents success ratios when we trimmed the one-half of the states visited which
were visited the least number of times (“trim=.5 states”), and when we trimmed all states
that were visited less than ten times (“trim=10 visits”). Trimming does improve our success
rate, but it is still noticeably below one. The next panel provides the estimates from the
trimmed run with the highest success rate. It is clear that the trimming is both biasing the
estimates and causing their variance to go up (in some cases dramatically). We conclude
that one should not be using pseudo mle, at least not without some auxiliary procedure
that ameliorates the problems caused by imprecise first stage estimates of entry values.
Consequently we do not present them in what follows?".

Table 3 provides the estimators obtained from OF=0 and OF=2 when T = 15 and
C = 1000. The striking point from this table is that when we use OF = 2 (we use the pseudo
minimum x? estimator) the estimates of o can be very different from their true values, and
even when they are not so different their variances are markedly higher than those of the
OF=0 estimators. In the two location model there are less incumbents in each state (since
they are now split between two locations). The actual outcomes for each transition behave
like a multinomial with n; draws, and with n; smaller they have more variance. As a result,
even with relatively large samples, the preliminary estimators of continuation and entry
values can be quite noisy. That noise, when combined with the accentuation of the error

2"Though we did compute them (with results similar to those presented above). We note that when you
iterate on the pseudo mle estimators they only get worse, as the iterated success rate can only go down.
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that results from the functional form of the objective function in the OF=2 estimators(see
the discussion in section 3.2)?®) makes those estimators problematic. As one might expect
these problems only get worse with smaller samples, so we focus the rest of the discussion
on the OF=0 estimates.

On the other hand, with this sample size all the OF = 0 estimators do fairly well. The
estimates of o that use structural probabilities (i.e. OF=0, but PR=1) do seem to have
larger mean square error, which likely corresponds to the fact that they have to impute en-
try and exit rates for about 85% of the states they compute entry and continuation values for
(compare #(n, g, z) to #p for these columns). More striking, however, is the rather stark dif-
ferences in the computational burdens of the alternative OF=0 estimators. Estimates which
use structural probabilities and VF=0 are fifteen times as computationally burdensome as
estimates which use empirical probabilities and VF=0, and estimates that use the fixed point
combined (VF=1) with the structural probabilities are twenty times more computationally
burdensome. On the other hand the estimates which use the empirical probabilities and
value function iterations are only about 10% more burdensome then those that use the ma-
trix inversion and the empirical probabilities (though, as noted, this would increase were we
also estimating profit function parameters).

Table 4 provides the estimates from smaller samples. Since the number of incumbents
per transition is about a third of what it was in a similar sized sample in the one-location
model (on average, there are around 6 incumbents in the one-location example and around
2 incumbents in each location in the two-location case), we should not be surprised when we
see larger small sample biases and larger standard errors than in Table 1. However, just as
in that table, as we increase either the length of the panel or the size of its cross sectional
dimension, these biases and standard errors go down rather rapidly.

Comparing the various OF = ( estimators we see that in the (T = 5,C = 250) samples
the estimators that use structural probabilities (PR=1) do better on the a’s but much worse
on the o’s. As we increase sample size the problem with the empirical probability’s estimates
of the a’s disappears rather rapidly, much more rapidly than the problems with the structural
probability’s estimates of the o’s. Since the problem when using the empirical probabilities is
in the precision of the first stage estimates, and the problem in the structural probabilities is
compounded by the fact that it has to impute entry and exit rates for about 85% of the states
it uses, this result should have been expected. On the other hand it implies that even at (7" =
5,C = 500) it is pretty clear that we prefer estimators based on empirical probabilities, and
this conclusion is reinforced at larger sample sizes. Moreover the computational burden of the

28We note that the results on the OF=2 estimator were not due to a few outliers. That is the actual
Monte Carlo distribution of the OF=2 estimators did not contain a single or a few estimators that drove the
variance results.
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estimators which use structural probabilities is ten or more times that of the corresponding
estimators which use the empirical probabilities.

Comparing the two estimators which use OF = PR = (0 we find that in the smallest two
samples it is clear that we prefer the estimator which does the matrix inversion (VF = 0) to
the estimator which uses the nested fixed point (VF = 1). However by the time we get to
a sample size of C' = 500 and 7" = 15, when both estimators are doing reasonably well, the
nested fixed point estimator seems to have marginally better performance. Once again the
V F =1 estimator is only minimally more burdensome then the V' F' = 0 estimator, a finding
which is likely to change were we estimating more parameters or a more complex model.

We tried to improve the estimates from the smallest sample by iterating on them. The
iterated estimators used the OF = 0 but PR = V F = 1 estimators to construct the exit and
entry probabilities those estimates implied. Given these probabilities we use the OF = 0 but
PR = VF =1 estimation algorithm to obtain the iterated values of § 2. Table 5 provides
results from iterating in this way one to four times.

Comparing the (0,1,1) column in Table 4 to the first iteration estimator in Table 5 we see
that for our smallest sample size the estimates of the a’s worsen but the estimates of the o’s
improve. Iterating the second time moves us approximately back to the (0,1, 1) estimators
for the a’'s but now the estimators of the o’s get much worse. When we move to the third
and fourth iterations we find that the estimators seem to oscillate, and the oscillations seem
to be of increasing magnitude, moving us farther away from the truth. When we look at
the slightly larger sample with C' = 500 and 7" = 5 there are no apparent advantages from
iterating at all.

Since the iterations need not converge, perhaps the oscillations should not be a surprise.
More fundamentally, since we are no longer holding the transition probabilities fixed, we can
no longer rule out multiple equilibria for a given value of the parameter vector. As a result
it is possible for the algorithm to find a value for the parameter vector that optimizes the
objective function for a different equilibrium than the one that generated the data. Moreover,
the computational burden of the iterated estimators is huge: even the single iteration makes
them twenty times more burdensome then the OR = PR = VI = 0 estimators, and when
we iterate five times they are over one hundred times more burdensome. There seems not
to be any argument for iterating at all.

Indeed if there is any argument for using anything but the simplest estimator it is only for
our smallest sample sizes and then only if the researcher is interested in particular parameters
more than others. On the other hand, even with moderate sample sizes the simple estimators

29That is we constructed the implied structural probabilities, and then used the fixed point to get the
continuation values generated by these structural transition probabilities and different values of 8 to minimize
the OF=0 objective function.
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both perform reasonably well and have a minimal computational burden: under a half a
minute for the smallest sample size and just over a minute for the largest sample.

4.3 Monte Carlo: Summary and Extensions.

The results from our Monte Carlo experiments are unusually clear cut. We prefer estimators
based on (i) the simplest objective functions (moments that multiply state specific differences
between observed and empirical entry and exit rates and a deterministic function of the
state), (ii) the empirical transition matrix, and, if available, (iii) the matrix inversion. What
is striking is that estimators with these properties not only seem to have better small sample
distributions, they are also the least computationally burdensome.

There is one further advantage of these estimators. In Monte Carlo work the computa-
tional burden associated with estimating on repeated samples induces researchers (including
us) to stick with relatively simple estimation problems. The hope, however, is that the es-
timators can be used in empirical work that analyzes more complex environments, in our
case environments in which there are more state variables (more locations or more states per
location), and perhaps more unknown parameters.

The computational burden associated with an increase in the number of state variables
depends on how the number of first stage estimates of the discounted continuation and entry
values increases in the number of state variables. In models that use empirical transition
probabilities this grows as does the size of the recurrent class, which in I.O. models tends to
be linearly in the number of state variables (see Pakes and McGuire, 2001). If we were forced
to use structural transition probabilities the number of states would grow exponentially in
the number of state variables.

The increased computational burden associated with estimating more parameters equals
the increase in the number of times we have to evaluate the objective function at different
f in larger dimensional searches times the computational burden of doing each evaluation.
When we use the nested fixed point algorithm, each time we evaluate the objective function
we need to compute a fixed point, while all we need to do with the matrix inversion is
multiply a known inverse times a known function of the parameters.

All this bodes well for future empirical research as it implies that the effective limitation
on analyzing entry and exit fees should now be much more closely associated with what the
data can support than what can be computed. However, there is at least one more issue of
importance to empirical work, and it may well be more important.

In empirical work we typically worry about the specification of the model estimated as
much as about distributional or computational properties conditional on the chosen model.
The light computational burden of the estimators presented here should facilitate robustness
analysis with respect to many aspects of our model’s specification (the importance of different
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observed state variables, the number of locations needed, etc). However, as noted earlier,
there is at least one aspect of the specification, the possible presence of serially correlated
unobserved state variables, that the estimators presented here can not accommodate. We
noted above that since our estimates of entry and continuation values are approximations to
the average entry and continuation values actually earned, there was some reason to believe
that provided incumbents and potential entrants were not systematically biased in their
evaluations, our estimators of entry and exit costs should not be too far off the mark even if
there was a misspecification of this sort.

To illustrate we conclude with a Monte Carlo investigation of the sensitivity of the param-
eter estimates to the presence of serially correlated unobserved state variables. We proceed
as follows. First we compute the equilibrium of a model that has four serially correlated
state variables. We then use the equilibrium policies to simulate data from industries in
which these four state variables determined behavior. We then “pretend” that this data was
generated from a model with only three state variables, and use our estimators assuming
that the misspecified three state variable model generated this data.

The details are as follows. The equilibrium model is our two location model except that
now we assume that the whole distribution of entry and exit fees is shifted up and down over
time with local market conditions that the estimator does not control for. In particular, we
assume that the distributions of entry and exit fees are subjected to a simultaneous serially
correlated shock which takes on three values: a positive (negative) shock which increases
(decreases) both entry and exit fees by 25%, and zero. The positive (negative) shock is
followed by the same value with probability .75 and returns to zero with probability .25,
while a value of zero is followed by a zero with probability .5 and moves to each of the other
values with probability .25.

In this specification the possible values of the shocks have large impacts on entry and
exit behavior. A positive shock yields exit rates which increase by about 40% in one market
and 50% in the other, and going from a positive to a negative shock doubles the exit rates
and cuts the entry rate to 1/4 to 1/5 of its original value. The average value of the shock
is zero, however, so we can interpret what the misspecified model estimates as the average
value of the entry and exit fees.

Table 6 presents the results from fifty repetitions of the estimator on a very large sample.
They are striking: the serially correlated unobserved state variable results in asymptotic
biases in the parameter estimates of at most one or two per cent. There is some intuition
for this result. It is clear that if the continuation values were obtained as the average over
realized sample paths of the discounted value of returns for continuing conditional on the
three states (i.e. on our “observed” states) even the misspecified model would produce a
“true” average of the continuation values. Here we are defining the true average conditional
on the observed states to be the true value conditional on the four states (on the unobserved
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as well as the observed state) averaged over the limiting distribution of the unobserved state
conditional on the observed states.

We still, however, should not expect to get consistent parameter estimates. What the
(misspecified) objective function fits is the average fraction of exitors from the observed
states to the probability of obtaining an exit fee greater than our estimate of the average
continuation value from those states. In fact the average probability of exit from the observed
states is an average over the average probability of exit from the unobserved states conditional
on the observed states. Since the probability of exit is itself a nonlinear function of the
continuation value conditional on the unobserved states, when we average over it we do not
get the probability of the exit fee being greater than the average continuation value. As a
result even if we do have the “true” average continuation values, the model should deliver
inconsistent parameter estimates. Apparently, however, with our specification the extent
of the asymptotic bias in the misspecified estimators is small (and we have tried several
more runs than those reported in table 6 always getting this same result). We leave an
investigation of why this is the case in our example, and when it is likely to be true in other
examples, for future research.

5 Conclusions.

This paper provided estimators for the parameters of discrete dynamic games that are easy
to use, and then examined their properties. The estimators rely on assumptions which insure
that there is a unique equilibrium associated with the given data generating process. Given
those assumptions, it is shown that one can obtain consistent estimates of entry and contin-
uation values by simply accumulating the discounted value of net returns actually earned by
the entrants who entered at particular states, and the discounted value of net returns actually
earned by incumbents who continued from those states. If the conditional expectation of
the exit fee, conditional on the exit fee being greater than the continuation value, is linear in
the continuation value (as it is in the exponential case), then these discounted values can be
consistently estimated up to a parameter to be estimated from a matrix inversion which need
only be done once at the beginning of the estimation run (a result which does not depend
on the distribution of entry costs). This makes the computational burden of the estimator
similar to the burden of estimating a multinomial model in probabilities which are known
functions of the data. For richer distributions of exit fees our estimator is a nested fixed
point estimator, but the fixed point is a contraction mapping and need not be computed
when we vary the entry fee distribution.

Given these ideas, a number of alternative estimators for our semi-parametric model
suggested themselves. A theoretical discussion showed that the fact that the multinomial
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probabilities that go into the various objective functions being minimized in the estima-
tion algorithms are not known functions of the data and parameter vector, but rather semi-
parametric estimates of those functions, affects the distributions of the alternative estimators
in different ways. Moreover, the computational burdens of the alternatives also varied (some-
times markedly). As a result, Monte Carlo examples were designed to push the investigation
of the computational and distributional properties of the estimators further.

The results from the Monte Carlo examples showed that the simplest estimators also
tended to have the preferred distributions. Moreover, those estimators performed quite well
in reasonably sized samples, and had minimal computational burdens. The hope is that now
the effective barrier to the empirical analysis of these problems can be shifted from being
the computational burden of obtaining the estimates, to the richness of the data available
to support the analysis.
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Table 1: One Location.

Pivot Table*

OF 0 0 0 0 1 1 1 1 2 2 2 2

PR 0 0 1 1 0 0 1 1 0 0 1 1

VF 0 1 0 1 0 1 0 1 0 1 0 1

Panel A: T=15, C=1000, R=100.
a=.3 0.30 | 0.30 | 0.30 | 0.30 | 0.33 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30
SD(a) 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00
o=.75 0.7510.75 | 0.75 | 0.75 | 0.74 | 0.72 | 0.74 | 0.74 | 0.76 | 0.75 | 0.75 | 0.75
SD(o) 0.01|0.01 | 0.01 | 0.01 |0.01|0.02|0.01 | 001 |0.01]0.01]0.01| 0.01
t(total) 32.1 | 35.6 | 84.7 | 130.0 | 36.6 | 62.9 | 89.2 | 415.9 | 32.8 | 56.3 | 93.0 | 405.4
Panel B: T=5, C=250, R=100
a=.3 0.36 | 0.36 | 0.37 | 0.37 | 0.41 | 0.37 | 0.38 | 0.37 | 0.36 | 0.36 | 0.37 | 0.37
SD(a) 0.03 | 0.03 | 0.03 | 0.03 | 0.05| 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03
o=.75 0.77 1 0.74 | 0.75 | 0.74 | 0.74 | 0.70 | 0.73 | 0.70 | 1.04 | 0.81 | 0.81 | 0.77
SD(o) 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.60 | 0.36 | 0.06 | 0.05
t(setup) 94 | 94 | 656 | 656 | 94 | 94 | 656 | 656 | 94 | 94 | 65.6 | 65.6
t(search) | 0.0 | 1.5 | 0.1 | 41.3 | 0.3 | 86 | 0.3 | 2234 | 0.2 | 9.3 | 6.0 | 241.5
t(total) 94 | 10.9 | 65.7 | 106.9 | 9.7 | 18.0 | 65.9 | 289.0 | 9.6 | 18.7 | 71.6 | 307.2
#(n,g,z) | 423 | 423 | 423 | 423 | 423 | 423 | 423 | 423 | 423 | 423 | 423 | 423
#D 464 | 464 | 2597 | 2597 | 464 | 464 | 2597 | 2597 | 464 | 464 | 2597 | 2597
Panel C: T=15, C=250, R=100.

a=.3 0.32 032|032 | 0.32 | 034|032 | 0.33 | 0.32 | 0.31 | 0.32 | 0.32 | 0.32
SD(a) 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01| 0.01 | 0.010 |0.01|0.020.01 | 0.01
o=.75 0.7510.75 | 0.75 | 0.74 | 0.74 | 0.72 | 0.74 | 0.72 | 0.83 | 0.91 | 0.77 | 0.75
SD(o) 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.36 | 0.86 | 0.03 | 0.02
t(setup) | 19.2 | 19.2 | 74 74 192192 T4 74 192192 | T4 74

t(search) | 0.0 | 24 | 0.1 | 423 | 0.9 | 158 | 1.0 |265.2| 04 | 15.2| 6.8 | 271.0
t(total) 19.3 | 21.6 | 74.1 | 116.3 | 20.1 | 35.1 | 75.0 | 339.2 | 19.6 | 34.4 | 80.8 | 345.0
#(n,g,2z) | 629 | 629 | 629 | 629 | 629 | 629 | 629 | 629 | 629 | 629 | 629 | 629
#p 638 | 638 | 2691 | 2691 | 638 | 638 | 2691 | 2691 | 638 | 638 | 2691 | 2691

* Legend. OF=O0bjective Function. OF = 0,1,2 = MOM fitting average entry and exit rates,
MLE, MOM fitting state specific entry and exit rates. PR=Estimates of Probabilities. PR =
0,1 = empirical probabilities, structural probabilities. VF=value function. VF = 0,1 = matrix
inversion, nested fixed point. #(n, g, z) is the number of states visited, while #p is the number of
states for which we must compute probabilities when PR = 1. C and T are the cross sectional and

time dimensions of the panel and R is the number of monte carlo repetitions.
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Table 2: Two Locations, Pseudo MLE.

Pivot Table*

PR 0 0 0 1 1 1
VF 0 1 1 0 1 1
Start 0 0 1 0 0 1

T=15, C=5000. “Success” Rate.

pseudo mle | 0/14 | 4/14 | 4/14 | 0/14 | 4/14 | 5/14
trim=.5 states | 6/14 | 8/14 | 11/14 | 13/14 | 10/14 | 11/14

trim=10 visits | 5/14 | 5/14 | 11/14 | 9/14 | 9/14 | 13/14
Estimates from Best Trim.

al=.3 0.37 | 0.35 | 0.34 | 0.30 | 0.30 | 0.30
sd(al) 0.05 | 0.03 | 0.06 | 0.01 | 0.01 | 0.02
a2=.3 0.35 | 0.34 | 037 | 0.32 | 0.31 | 0.33
sd(a2) 0.05 | 0.04 | 0.07 | 0.03 | 0.02 | 0.11
ol=1 1.17 | 0.96 | 0.85 | 1.11 | 1.10 | 1.07
SD(o1) 0.26 | 0.22 | 0.24 | 0.29 | 0.29 | 0.26
02=.5 0.51 | 0.54 | 0.40 | 0.51 | 0.57 | 0.53
SD(02) 0.08 | 0.13 | 0.11 | 0.09 | 0.15 | 0.14

* Legend. See the footnote to Table 1.
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Table 3: Two Locations.

Pivot Table*

OF 0 0 0 0 2 2 2 2 2 2 2 2
PR 0 0 1 1 0 0 0 0 1 1 1 1
VF 0 1 0 1 0 0 1 1 0 0 1 1
Start 0 0 0 0 0 1 0 1 0 1 0 1

T=15, C=1000, R=>50.

al=.3 0.30 030|029 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.21 | 0.21 | 0.27 | 0.27
SD(al) 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |0.02| 0.11 | 0.11 | 0.05 | 0.05
a2=.3 0.30 | 0.30 | 0.30 | 0.30 | 0.27 | 0.27 | 0.28 | 0.28 | 4.42 | 9.29 | 4.29 | 4.28
SD(a2) 0.02 | 0.02 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 | 0.02 | 19.36 | 27.22 | 19.74 | 19.74
ol=1 1.02 | 1.00 | 1.06 | 1.02 | 16.09 | 16.33 | 1.36 | 1.47 | 21.72 | 31.52 | 1.75 | 1.93
SD(o1) 0.09 | 0.07 | 0.10 | 0.07 | 31.13 | 26.22 | 0.83 | 2.44 | 33.02 | 36.22 | 3.20 | 3.61
02=.5 0.51 | 0.50 | 0.52 | 0.50 | 10.71 | 11.46 | 0.87 | 0.62 | 11.78 | 19.34 | 0.64 | 1.26
SD(02) 0.03 | 0.03 | 0.04 | 0.03 | 24.38 | 20.72 | 1.79 | 0.38 | 26.47 | 28.23 | 0.16 | 2.86
t(setup) 47 47 | 920 | 920 47 47 47 47 920 920 920 920
t(search) 22 27 177 | 385 146 125 | 199 | 121 | 950 933 | 3527 | 2653
t(total) 69 75 11096 | 1305 | 193 173 | 246 | 168 | 1870 | 1853 | 4446 | 3573
#(n,g,2z) | 595 | 595 | 595 | 595 | 595 995 | 595 | 595 | 595 995 595 595
#D 602 | 602 | 3463 | 3463 | 602 602 | 602 | 602 | 3463 | 3463 | 3463 | 3463

* Legend. See the footnote to Table 1. Start=1 indicates that the starting values for this estimator
are the estimates for the simplest model (OF=PR=VF=0).
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Table 4: Two Locations.

Pivot Table*

OF 0 0 0 ] 0 0] 0 0
PR 0 0 1 1 0] 0 | 1 1
VF 0 1 0 1 0| 1 1
Data T=5, C=250, R=100 T=>5, C=500, R=100
al=23 041 ] 0.40 | 0.28 | 0.28 || 0.34 [ 0.34 | 0.29 | 0.29
SD(al) | 0.16 | 0.14 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.03
a2=.3 0.49 | 0.49 | 0.31 | 0.31 | 0.39 | 0.39 | 0.30 | 0.30
SD(a2) || 0.19 | 0.18 | 0.07 | 0.07 | 0.08 | 0.08 | 0.05 | 0.04
ol=1 1.29 | 1.99 | 255 | 2.27 | 1.09 | 1.14 | 1.82 | 1.68
SD(c1) | 1.82| 2.72 | 3.10 | 2.11 | 0.41 | 1.18 | 0.76 | 1.18
02=5 0.57 | 2.96 | 1.11 | 1.45 | 0.61 | 0.77 | 0.75 | 0.65

SD(02) 0.24 | 10.89 | 0.81 | 4.66 || 0.39 | 2.46 | 0.28 | 0.27
t(setup) 14 14 350 | 350 21 21 | 477 | 477
t(search) 10 13 101 | 249 12 15 112 | 250
t(total) 24 26 451 | 599 33 36 | 589 | 727
#(n,g,2) || 322 | 322 322 | 322 || 403 | 403 | 403 | 403

#D 347 | 347 | 2638 | 2638 || 427 | 427 | 2837 | 2837
Data T=15, C=250, R=100 T=15, C=500, R=100
al=.3 034 0.34 | 0.28 | 0.28 || 0.32 | 0.32 | 0.29 | 0.29
SD(al) 0.03 | 0.03 | 0.03 | 0.02 || 0.02 | 0.02 | 0.02 | 0.02
a2=.3 0.35 | 0.35 | 0.31 | 0.31 || 0.32 | 0.32 | 0.31 | 0.31
SD(a2) 0.04 | 0.04 | 0.05 | 0.05 || 0.03 | 0.03 | 0.03 | 0.03
ol=1 1.09 | 1.08 | 1.33 | 1.15 || 1.05 | 1.01 | 1.17 | 1.07
SD(o1) 0.35 | 0.77 | 0.38 | 0.28 || 0.10 | 0.08 | 0.18 | 0.10
02=.5 0.54 | 0.51 | 0.61 | 0.55 || 0.51 | 0.50 | 0.55 | 0.52

SD(02) | 0.09 | 0.06 | 0.14 | 0.08 | 0.05 | 0.05 | 0.06 | 0.04
t(setup) | 27 | 27 | 532 | 532 | 36 | 36 | 667 | 667
t(search) | 14 | 17 | 126 | 268 | 18 | 22 | 148 | 303
t(total) 40 | 44 | 658 | 799 || 53 | 57 | 816 | 970
#(n,g,2) || 463 | 463 | 463 | 463 || 529 | 529 | 529 | 529
#p 470 | 470 | 2938 | 2938 || 536 | 536 | 3128 | 3128

* Legend. See the footnotes to Tables 1 and 3.
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Table 5: Iterated From OF=0, PR =1, VF = 1.

Pivot Table*

Tteration 1 ‘ 2 ‘ 3 ‘ 4
Estimates T=5, C=250, R=50
al=.3 0.21 | 0.28 | 0.15 | 0.26
SD(al) 0.04 | 0.03 | 0.04 | 0.04
a2=.3 0.38 | 0.29 | 0.39 | 0.30
SD(a2) 0.24 | 0.06 | 0.41 | 0.08
ol=1 1.13 | 7.21 | 1.43 | 7.53
SD(o1) 0.31 | 8.26 | 0.97 | 5.97
02=.5 0.54 | 2.563 | 0.62 | 5.46
SD(02) 0.14 | 244 | 0.21 | 8.07
time setup 351 | 351 | 349 352
time search 183 | 286 | 204 326
time cumulative 1088 | 1725 | 2278 | 2956
Estimates T=5, C=500, R=50

al=.3 0.26 | 0.28 | 0.19 | 0.25
SD(al) 0.03 | 0.03 | 0.05 | 0.03
a2=.3 0.33 | 0.31 | 0.33 | 0.33
SD(a2) 0.13 | 0.05 | 0.23 | 0.07
ol= 1.08 | 3.75 | 1.81 | 7.50
SD(o1) 0.19 | 3.15 | 2.01 | 5.38
02=.5 0.54 | 1.93 | 0.64 | 4.58
SD(02) 0.12 | 2.22 | 0.20 | 5.27
time setup 468 | 467 | 466 468
time search 202 | 334 | 256 406
time cumulative 1360 | 2161 | 2883 | 3757

* Legend. See the footnotes to Tables 1 and 3.
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Table 6: “Misspecified” Model.

Pivot Table*

OF 0] 0] 070
PR oo | 1] 1
VF o[ 1|0 | 1
Data || T—=15, C=5000, R=50
al=3 | 0.31]0.31 | 0.30 | 0.30
SD(al) || 0.00 | 0.00 | 0.00 | 0.00
a2=.3 | 0.31 | 0.31 | 0.30 | 0.30
SD(a2) || 0.01 | 0.01 | 0.01 | 0.01
ol=1 || 1.02 | 1.01 | 1.03 | 1.02
SD(s1) || 0.03 | 0.03 | 0.03 | 0.03
02=5 | 0.50 | 0.50 | 0.51 | 0.50
SD(c2) | 0.01 | 0.01 | 0.02 | 0.01

* Legend. See the footnotes to Tables 1 and 3.
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Appendix 1. Entry Weights With a Random Number
of Potential Entrants.

We go directly to the the model with two entry locations. The result for a single entry location is
a special case (e_; =0,m_; =0).

Proposition. In the model with two locations,

pe’l(elae—llnlan—laz’Xle = 1’9) = we’lp(elae—llnlan—laz)a

where
€l €]

él(ﬂl,ﬂ_l,Z) B ZE ml(nlan—laz)EP(E| 9)’

and is consistently estimated by substituting

el _

w

&= #T(n;,n_y,z) " Z el for Zml(nl,n_l,z)EP(E| )
teT(n;,n_g,2) E

in the above formula. Recall that

p(elae—l‘nlan—laz) = Z m(elae—laE; mOamlamQ)P(E| 9)
E>(ei+e_1)

Proof. From the text,

Ep(E| 0
P epe—tlnnoz,xf =1,0)= Y m(e—1,e,E— 1;m0,m1,m2)#]!5|)9)
E>(ei+e_y) p
1 E-1)'x FKE e _
> e ;i (B 0).

e P —— mO
S BB 0) 2=, (B e~ el — Dl
Multiply both the numerator and denominator of this equation by e; x m; and note that since

1 . ..
er X (e, — 1)1 = ¢l and m;'™" x m; = m;’, the equation is is equal to

€l E! E—ei—e_i e e
m ST En(El ) m m;'m_,'p(E| 0
m Y Ep(E] 0) EZ+ (B e —e_)l(e — el vm_ (B} )

— weal Z m(el,efl,E;m07m17m2)p(E| 0)
E>(ej+e_y)

= we’lp(el’ 6_l|nl, n_i, Z)a
as desired. &
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