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ABSTRACT

Many studies have documented large and persistent productivity differences across producers, even

within narrowly defined industries. This paper both extends and departs from the past literature,

which focused on technological explanations for these differences, by proposing that demand-side

features also play a role in creating the observed productivity variation. The specific mechanism

investigated here is the effect of spatial substitutability in the product market. When producers are

densely clustered in a market, it is easier for consumers to switch between suppliers (making the

market in a certain sense more competitive). Relatively inefficient producers find it more difficult

to operate profitably as a result. Substitutability increases truncate the productivity distribution from

below, resulting in higher minimum and average productivity levels as well as less productivity

dispersion. The paper presents a model that makes this process explicit and empirically tests it using

data from U.S. ready-mixed concrete plants, taking advantage of geographic variation in

substitutability created by the industry’s high transport costs. The results support the model’s

predictions and appear robust. Markets with high demand density for ready-mixed concrete – and

thus high concrete plant densities – have higher lower-bound and average productivity levels and

exhibit less productivity dispersion among their producers.
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I. Introduction 

Recent empirical work has left little doubt about the magnitude of plant-level 

productivity variation: it is enormous.  This heterogeneity is also persistent.  Perhaps 

surprisingly, much of the variation cannot be explained by differences between (even narrowly 

defined) industries.  Studies reviewed in Bartelsman and Doms (2000), for example, have found 

85th-to-15th total factor productivity percentile ratios between 2:1 and 4:1 within various four-

digit SIC industries.  A theoretical literature has arisen attempting to explain the sources of such 

diversity.  The great majority of this research focuses on technological (i.e., supply-side) 

explanations, such as management influences, capital vintage effects, and R & D efforts.1 

While supply-side effects are most certainly important, this paper focuses instead on the 

influence of the demand (i.e., output market) side.  Specifically, it explores how product market 

characteristics can allow such large productivity differences (perhaps arising in part because of 

supply-side factors) to persist in long-run equilibrium.  Key to the story is the ability of 

consumers to substitute the output of one supplier for another.  The more difficult it is for 

consumers to switch between competing suppliers, the greater the productivity dispersion that 

can be sustained. 

The role of the demand market, and substitutability specifically, in creating the large 

observed productivity differences becomes apparent when one considers how such wide 

efficiency variations can exist in equilibrium.  If consumers were unencumbered by substitution 

barriers, production would be reallocated to a select few highly productive plants.  Those plants 

who could produce output at lower cost than industry rivals would be able to grab additional 

market share by undercutting their opponents’ prices without sacrificing profitability. 

Such output and productivity patterns are not usually observed in the data, however.  

Virtually all industries, and indeed even markets within industries, exhibit widely varying 

producer productivity levels within them.  Barriers to substitution across producers (i.e., various 

forms of product differentiation—be they spatial, physical, or brand-driven) can allow less 

productive plants to survive and even thrive in long-run equilibrium.  Decreases in impediments 

to substitution, on the other hand, make it more difficult for low-productivity plants to profitably 

operate, truncating the equilibrium productivity distribution from below.  The testable premise of 

                                                 
1 Just a sampling includes Jovanovic (1982) and Ericson and Pakes (1995).  See Bartelsman and Doms (2000) for a 
review of this literature. 
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this notion is that in markets where it is easy for industry consumers to switch suppliers, 

productivity distributions should exhibit higher minima, less dispersion, and higher central 

tendency than those in low-substitutability markets. 

I test this mechanism within a single four-digit SIC industry, ready-mixed concrete (SIC 

3273), and focus on a particular component of substitutability, spatial differentiation created by 

transport costs.  The purpose of the paper, however, is not to give the final word on transport 

costs and productivity in a particular industry.  Instead, I hope to show through a detailed case 

study how transport costs as well as other substitutability factors might impact productivity 

variation and levels throughout the economy. 

The primary advantage of an industry case study is that it helps control for the influence 

of technology differences on productivity heterogeneity, isolating the demand-side impacts of 

interest.  Additionally, focusing on an industry with a (relatively) physically homogeneous 

output that is subject to substantial transport costs clarifies the exercise of formally posing and 

testing the intuitive hypothesis above.  The high transport costs imply the industry is actually a 

collection of quasi-independent geographic markets, all potentially subject to idiosyncratic 

demand movements.  I take advantage of this across-market variation in the empirical tests.  

Ready-mixed concrete’s homogeneity serves to isolate the source of product substitutability: 

since producers’ outputs are physically comparable, transport-cost-driven spatial differentiation 

is what matters.  The sharp focus on spatial substitutability is useful because it is arguably more 

easily measured than physical or brand-driven product differentiation.  Spatial effects on 

productivity are also topics of specific interest to a considerable body of research.2 

I model and empirically test a spatial competitive structure where increases in demand 

density (demand per unit area) in local markets truncate the producer productivity distribution 

from below.  This implies dense markets will have higher minimum and average productivity 

levels and less productivity dispersion than low-density markets.  Further, producers in higher-

                                                 
2 To see if the results of this case study hold more broadly, I investigate in Syverson (2004) how across-industry 
differences in measurable output substitutability factors are correlated with industries’ plant-level productivity 
distribution moments.  I find that manufacturing industries with lower transport costs, less physical product 
differentiation, and/or lower advertising intensities (all plausibly indicators of greater substitutability) do indeed tend 
to have less dispersed productivity distributions with higher averages than industries with more segmented output 
markets.  In exchange for its broader focus, that study gives up some of the ability to control for the productivity 
effects of technological differences that the present empirical approach enjoys. 
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density markets will be larger on average and each serve a greater number of customers.3 

Figures 1 and 2 offer preliminary evidence for this mechanism.  They show kernel 

probability density estimates of the total factor productivity and size distributions for my sample 

of concrete plants.  (The distributions are expressed in terms of deviations from the average 

across all plants in a given year.)  Two distributions are plotted in each figure.  These correspond 

to producers that are located in markets either above or below the median demand density level 

in my sample.  (The former set of producers numbers roughly 8500, while the latter 4800.  I 

precisely describe how plant productivity and size are measured and define markets and demand 

density below.)  If the intuition above is correct, we should expect that the productivity 

distribution in high-density markets looks like a truncated version of the low-density 

distribution.  This pattern is evident in Figure 1.  At low productivity levels, the distribution of 

the high-density-market plants consistently has less weight than the low-density-market 

distribution.  At high productivity levels, this pattern is reversed.4  These visual patterns are 

confirmed by the computed means; the average of the high-density distribution is 0.051 log 

points greater (s.e. = 0.006) than that of the low-density distribution.  While the comparative 

dispersion of the two distributions is more difficult to see in the figure, the prediction above 

holds in this regard as well.  The standard deviation of the distribution of plants in high-density 

markets is 0.340, as compared to 0.375 for low-density producers (an F-test for equality of 

variance is easily rejected).  Figure 2 shows that the predicted positive correlation between 

average plant size and density is also present in my sample, and indeed even more stark.  The 

average-sized high-density-market plant is 0.454 log points (s.e. = 0.019) larger than the average 

producer in a low-density market.  The implications of these two figures will be tested in more 

                                                 
3 The mechanism through which these effects operate will be explained in detail below, but can be summarized as 
follows.  A denser market requires more producers in a given area to serve it.  Substitutability is greater in markets 
where producers are densely packed, because concrete buyers have access to more alternative producers.  High 
substitutability corresponds with greater competitive pressures, forcing low-performing producers out of business.  
This truncates the long-run equilibrium plant-level productivity distribution from below and leads to the stated 
implications regarding the producer productivity and size distributions. 
4 Of course, the high-density distribution will not be an exact truncation of its low-density counterpart because of 
inherent randomness in the data (e.g., measurement error), and because I am pooling across markets with different 
truncation points.   Interestingly, still, two features match attributes of a truncated distribution.  As can be seen, the 
modes of the two TFP distributions are very close to each other.  Furthermore, the quantiles of the high-density 
markets distribution are outside the 95 percent confidence interval of quantiles of the low-density distribution, except 
at very high TFP levels (above the 95th percentile).  Left-truncated distributions of course become more similar 
closer to their right tails. 
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detail and with greater rigor below, but they are suggestive prima facie evidence in support of 

the link between substitutability and producer-level productivity and size distributions. 

Besides extending the work explaining productivity (and size) differences within 

industries, this paper touches on other related topics.  One is the rich and lengthy literature on the 

relationship between competition and productivity.5  Conceptually, product substitutability and 

“competitiveness” are quite similar.  Markets with greater substitutability are more competitive 

in the sense that their higher cross-price elasticities more greatly reward (punish) relatively low- 

(high-) cost producers in terms of market share.  Hence the paper’s implied positive link between 

substitutability and average productivity levels supports the literature’s common (though not 

unanimous) notion that competition breeds efficiency.6 

A point of contact with a separate literature arises from the model’s combined 

implications for productivity and size.  A curious between-producer form of scale economies is 

implied: producers in denser markets will be both larger and more efficient on average, even if 

there are no internal scale economies in production.  The observed scale effect is instead the 

product of selective survivorship; less productive establishments are eliminated when markets 

become denser.  Observably, this competition-driven selection process looks very much like the 

spatial agglomeration mechanisms discussed in the urban and trade literatures—producers in 

dense markets are more efficient.  Interestingly, however, this process is distinct in that it does 

not rely on technological properties or externalities (such as internal increasing returns, 

Marshallian thick labor market effects, information spillovers, etc.) typically appealed to in the 

literature. 

The paper is organized as follows.  In the next section, I construct a theoretical 

framework that formalizes the intuitive premise above.  The data used to test the theory’s 

implications is then discussed in Section III.  I test the model in Section IV and check the results 

                                                 
5 This literature is much too large to cite comprehensively.  Recent examples include Aghion and Howitt (1992), 
Nickell (1996), Melitz (2003), Raith (2003), and Schmitz (2004). 
6 One can remain agnostic about the specific source of productivity gains when competition is intensified.  One 
branch of the competition-productivity literature focuses on “slack” or X-efficiency.  That is, competition-spurred 
productivity growth occurs because producers are forced to take costly action to become more efficient, as in Raith 
(2003) for example.  However, in the mechanism modeled here, productivity growth is instead achieved by selection 
across establishments with fixed productivity levels; less efficient producers are pushed out of the market.  Both 
mechanisms are influenced by market competitiveness in theory, and both are likely to play a role in reality.  
Measuring the relative size of the contribution of each to determining productivity differences is beyond the scope of 
this paper, however. 
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for robustness in the following section.  Section VI concludes. 

 

II. Model 

To formalize the story linking demand density, output substitutability, and the market 

productivity and size distributions, I construct a theoretical framework that incorporates 

consumers choosing among spatially differentiated products sold by heterogeneous-cost 

suppliers.  The model offers testable implications regarding how the primary exogenous factor of 

interest, demand density, affects the (endogenously determined) equilibrium productivity and 

output distributions. 

The framework extends the work of Salop (1979) to allow for heterogeneous producer 

costs.  The model also adds asymmetric information among producers regarding their production 

costs, largely as an analytical convenience in constructing an equilibrium, but this is not 

necessary to obtain the tested empirical implications.  Because I am concerned here with 

differences in productivity distributions across markets rather than intertemporal fluctuations 

within them, dynamics are not a primary concern.  Thus I model a simple two-stage 

entry/production decision meant to capture long-run differences in outcomes across markets.  

While simple, the model shows in a straightforward manner how differences in spatial 

substitutability (arising from demand density variation) affect the shape of producer productivity 

and size distributions in markets. 

 

A. Market Structure 

A continuum of consumers is evenly distributed around a circle of unit circumference 

with a density of D consumers per unit length.  Consumers have an inelastic demand for one 

indivisible unit of ready-mixed concrete, and will purchase if the price is less than their 

reservation value.  The price faced by consumers is equal to the factory-door price set by the 

producer plus a transport cost that increases linearly in the distance from supplier to consumer.  

That is, p′ = p + tx, where p′ is the price paid by the consumer, x is the length of the arc between 

the plant and the customer, and t parameterizes transport costs.  I assume for simplicity that 

reservation values are high enough to ensure that all consumers purchase in equilibrium.  Thus 

the total quantity of concrete sold in the market is D.  Demand density D is the exogenous 

variable of focus; I draw testable empirical implications from its effect on the equilibrium. 
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The supply side of the market is determined in a two-stage, simultaneous entry game.  In 

the first stage, a large number of ex-ante identical potential entrants consider whether to attempt 

to gain entry access into the market.  To do so, they must pay a sunk setup cost s, which is 

identical for all entrants.  All producers choosing to pay s receive an idiosyncratic marginal cost 

draw ci from a common distribution g(c) with support [0, cu], where cu is an arbitrary upper 

bound.  The setup cost can be interpreted as resources spent drawing up a business plan, making 

initial inquiries into production possibilities, and other pre-production activities that would give 

a producer insight into its costs of production.7  Those paying s learn their own cost draw but do 

not observe the cost draws of others. 

In the second stage, those who have learned their costs decide whether to commence 

production, given the expected number and marginal costs of competitors.8  Those choosing to 

produce pay a common fixed production cost f (which is also assumed to be irretrievable should 

production commence, say because of the irreversibility of investment, or because it captures the 

value of forgone alternative uses of the productive resources), are then placed randomly at 

evenly spaced locations on the circle (hence every location is identical in expectation), and set 

their factory-door price p.  Consumers make their purchases given the resulting set of transport-

inclusive prices. 

                                                 
7 There is good reason to believe that producers sink resources into making entry decisions before learning their 
type.  Substantial empirical evidence (e.g., Dunne, Roberts, and Samuelson 1989; Baily, Hulten, and Campbell 1992; 
and Foster, Haltiwanger, and Krizan 2002) indicates that young plants have higher failure (exit) rates than 
incumbents.  This suggests that entering producers do not typically know very well their own position vis-à-vis their 
competitors with regard to profitability components such as cost types.  (The present model abstracts from this early-
production period and instead has high-cost firms dropping out of the market before commencing operations.) 
8 The assumption that producers decide whether to operate without knowing their competitors’ cost draws allows 
demand density’s impact on the equilibrium productivity distribution to be obtained analytically.  Given the spatial 
setup of the model, competition is “local” when producers’ costs are common knowledge; that is, neighbors have a 
greater impact on optimal strategies than do market producers further away.  While one can solve for optimal 
strategies in the common-knowledge construct (I show how to do this in the earlier version of this paper; see 
Syverson 2001), this requires computational simulations to solve the model, and it is furthermore not obvious what 
the equilibrium concept—necessary to pin down the number of producers—should be in such simulations.   An 
asymmetric information setup transforms the pricing game into something similar to those commonly found in 
heterogeneous-producer monopolistic competition models, where a producer plays against an “industry average” (in 
this case, the other entrants’ expected price).  Thus competition is no longer local (at least in the strategic sense—
obviously, neighbors’ prices in this model affect realized outcomes more so than do the prices of more distant 
competitors), and simulations are no longer necessary to determine the equilibrium distribution of producer 
cost/productivity levels.  I would further argue that assuming producers have private information about their costs 
may be realistic; data-gathering empirical economists know well how famously possessive firms are about their cost 
data.  Below I conduct computational robustness checks to see if the obtained results hold up qualitatively to 
deviations from the present assumptions about cost information. 
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While the realized market shares and profits of this entry game are stochastic and depend 

upon particular producer cost and location realizations, one can analytically determine the 

distribution of the equilibrium set of producers.  I show below that the key testable implication 

of the model—the link between demand density and selection-driven truncation of the ex-ante 

productivity distribution—holds regardless of the particular set of cost and location realizations. 

 Truncation occurs before sales and profits are realized because high-cost producers have lower 

expected profits.  I also show, by computationally simulating a modified version of the model, 

that the key qualitative results of the benchmark model are robust to changes in the specified 

information and timing structure. 

To solve for the model’s equilibrium, consider first the decision of whether or not to 

commence operations for a would-be producer that has already learned its cost draw.  The 

producer will operate in the market if it expects to earn positive profits from doing so.  Since 

prospective entrants do not know others’ cost draws, potential competitors are equivalent in 

expectation.  They must therefore decide whether to operate based on the profits resulting from 

competing in a market against an expected number of n competitors charging the same expected 

price. 

Because 1) all consumers purchase in equilibrium, and 2) an assumption on the 

parameters that will be discussed in detail below, there will be between each pair of producers a 

consumer indifferent to purchasing from either.9  The particular location of this consumer 

depends, of course, on the prices of the two plants and transport costs.  For any two neighboring 

plants i and j (which are a distance 1/n apart, where n is the equilibrium number of producers in 

the market), the indifferent consumer is located at a distance xi,j from i, where xi,j solves 







 −+=+ jijjii x

n
tptxp ,,

1 ,     (1) 

and pi and pj are the factory-door prices set by producers i and j, respectively.  This equation can 

be solved to recover xi,j explicitly.  The total quantity sold by a producer between rivals j on one 

side and k on the other is then (xi,j + xi,k)D, where xi,k is similarly defined. 

                                                 
9 Restricting parameter values to ensure an indifferent consumer between each pair of producers greatly simplifies 
analysis of the equilibrium.  It eliminates from producers’ optimal pricing decisions the possibility that a realized 
price difference between neighboring producers is so large that some producers would capture all of their neighbors’ 
customers—on both sides.  (The demand discontinuity inherent to linear transport costs [see Salop 1979] ensures 
that no producer will ever have zero customers on one side and positive sales on the other.) 
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However, because producers do not know their rivals’ costs or prices when making entry 

decisions, E(xi,j) = E(xi,k): 

( ) ( ) ( ) ( )






+

−
===

n
E

t
ppE

xExExE i
ikiji

1
2
1

2,, .     (2) 

E(p) is the expected price charged by other entrants, and E(1/n) is the expected reciprocal of the 

number of producers, taking equilibrium strategies as given.  The expected profit of a producer 

setting its factory-door price equal to pi is then 

( ) ( )( ) ( ) ( ) fDcp
n

E
t

ppE
fDcpxEE ii

i
iiii −−














+

−
=−−=

12π .     (3) 

Maximizing this expression with respect to pi yields the producer’s optimal price given its 

expectations about the equilibrium market outcome: 

( ) 





++=

n
EtpEcp ii

1
22

1
2
1 .     (4) 

Not surprisingly, the optimal price increases in the producer’s own realized cost, its expectation 

of its competitors’ prices, and the expectation of n-1.  This expression can also be used to 

compute rivals’ expected prices in terms of the expected cost draw among equilibrium 

producers: 

( ) ( ) 





+=

n
tEcEpE 1 .     (5) 

Substituting (4) and (5) back into (3) yields markups as well as maximized expected 

market share and profits in terms of parameters, the producer’s own cost, the expected cost of its 

rivals, and the expected (reciprocal of the) number of producers in the market: 

( ) iii c
n

EtcEcp
2
11

22
1

−





+=−      (6a) 

( ) ( ) ii c
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EcE
t

xE
2
11

2
12 −






+=      (6b) 

( ) ( ) fc
n

tEcE
t

DE ii −







−






+=

2
12

4
π      (6c). 

Clearly, price-cost markups and expected market shares are declining in ci.  Thus assuming a 

large enough cu, there will be cost draws that imply negative expected profits from operations.  

Therefore a critical cost draw c* exists such that entrants drawing ci > c* choose not to 
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produce.10  This cutoff cost draw can be solved for by setting (6c) equal to zero: 

( ) ( )
D
tf

n
tEcEcE i

412*0 −





+=⇒=π .     (7) 

Note that E(c), the average cost draw among equilibrium producers, is itself an increasing 

function of c*, since the latter determines a truncation point of g(c).  That is, 

( ) ( )
( )∫≡

*

0 *

c

dc
cG
cgccE .     (8) 

Substituting (7) back into (6c) yields operating profits (conditional on ci ≤ c*) as a 

function of parameters, the endogenously determined c*, and the producer’s own cost: 

( ) f
D
tfcc

t
DccE iii −








+−=≤

2
4*

4
*|π      (9) 

Note that it is possible that some producers with ci ≤ c* deciding to commence 

production may make negative profits ex-post—specifically, those relatively high-cost (but still 

below c*) producers who enter only to find themselves next to competitors with lower-than-

expected costs.  However, because f is sunk, they are willing to remain in the market as long as 

they are selling positive quantities.  Positive sales can be assured by assumptions on the model’s 

parameters that I discuss in the appendix.  These same assumptions ensure that there will be an 

indifferent consumer between any producer pair in equilibrium.  As mentioned previously, this 

greatly simplifies the analysis. 

What, then, determines c*?  To see this, consider the potential entrant’s choice of 

whether to pay the sunk cost s in order to receive a cost draw ci.  The expected value of entry, Ve, 

(common to all producers since they are ex-ante identical) is equal to expected operating profits 

before knowing one’s own cost draw minus the sunk entry cost.  I impose a free entry condition: 

the (expected) number of entrants adjusts to set Ve to zero.  That is, 

( ) 04*
4

*

0

2

=−











−








+−= ∫ sdccgf

D
tfcc

t
DV

c
e .     (10) 

The equilibrium c* is the value that solves this expression given parameters D, t, f, s, and the ex-

                                                 
10 While some costs ci > c* imply positive expected profits due to the quadratic form of (6c), such cost levels would 
also imply (nonsensical) negative markups and expected quantities sold. 
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ante productivity distribution g(c).11 

 

B. The Comparative Statics of Shifts in Demand Density 

Cutoff Cost Level c*.  The comparative static of primary interest is the sign of dc*/dD; in other 

words, how do differences in demand density across markets affect the shape of equilibrium 

productivity distributions?  Using the implicit function theorem, 

*

*

c
V

D
V

dD
dc

e

e

∂
∂

∂
∂−

= ,     (11) 

where the numerator, 

( )∫ 
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D
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V ,     (12a) 

simplifies to 
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This expression is positive because c* ≥ c throughout the region of integration. 

The demoninator of the implicit function theorem is given by 
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Simplifying gives 

( ) 04*
2*

*

0

>
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
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
+−=

∂
∂

∫
ce

dccg
D
tfcc

t
D

c
V ,      (13b) 

because the first term in (13a) equals zero; allowing in a formerly marginally unprofitable 

producer by slightly increasing c* has no impact on the value of entry. 

Therefore dc*/dD < 0; the upper bound of the producers’ cost distribution decreases in 

                                                 
11 The equilibrium c* is unique.  The logic is as follows.  From (6c),expected profits conditional upon ci are 
decreasing in ci and strictly increasing in E(1/n).  For any given E(1/n), the expected value of entry Ve for an entry 
policy x (that is, where entrants commit to commence production upon receiving any marginal cost draw ci ≤ x) is 
maximized at x = c*, where c* is defined as in (7).  Since Ve is monotonic in E(1/n), the unique equilibrium c* is 
simply the value of this maximizing entry policy when E(1/n) is such that Ve = 0.  Interested readers can find formal 
existence and uniqueness proofs of similarly-styled equilibria—albeit with different assumptions regarding specifics 
of the demand and supply structures—in Asplund and Nocke (2003) and Melitz (2003). 
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demand density.  High-cost (low-productivity) producers aren’t profitable in dense markets.  

This is in accordance with the intuitive story forwarded in the introduction. 

 Two impacts of an increase in demand density (which is exogenous in the model, and as I 

will argue, empirically as well) are at work.  The direct effect is through the increased sales and 

profits for any fixed number of market producers.  This increase in potential profits in isolation 

would raise the expected value of entry.  To preserve the equilibrium condition that Ve equals 

zero, E(1/n) must fall in order to lower expected profits conditional upon ci; see (6c).  The 

additional entry decreases the average distance between producers, increasing substitutability 

and making it harder for high-cost producers to hold customers.  Buyers formerly stuck with an 

inefficient supplier may now have a lower-cost option.  In equilibrium, this raises the bar for 

successful entry into the market, yielding the cost/productivity truncation result.12 

 This progressive truncation of the cost distribution from above, coupled with the fact that 

measured productivity levels should be inversely related to costs, imply that average and 

minimum productivity levels (average and maximum costs) of producers in denser markets 

should be higher (lower) than in less dense markets.  Also, assuming some additional regularities 

in the distribution, productivity dispersion should be lower in denser markets.  These are the 

primary empirical implications I test below. 

 

Firm Size.  Increases in demand density induce entry, but do the number of producers grow at a 

proporational rate to the growth in market demand?  In other words, what happens to average 

firm size as density rises?  While the fact that the number of producers enters the model through 

the expectation of its reciprocal (and expectations are not commutative) precludes an analytical 

derivation of the elasticity of E(n) with respect to D, the model still offers some guidance along 

these lines.  As is evident in (6a), markups increase with E(1/n).  Thus the average markup falls 

in D because of the entry a rise in D induces.  But since the expected value of entry in 

equilibrium is always zero, it must be that producers in dense markets—who have to cover the 

same sunk entry costs as producers in low-density markets—make up for the lower markup by 

selling more concrete on average.  Therefore, we should expect average firm size to rise with 

                                                 
12 One can show that, not surprisingly, a decrease in transport costs t implies a shift in c* in the same direction as an 
increase in D.  Both serve through different mechanisms to increase substitutability. 
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demand density.13  I test this implication in the empirical work below. 

 

C. Robustness of Comparative Statics 

 As stated above, the advantage of the current setup is that it allows analytical derivation 

of the empirically tested comparative statics.  However, to do so it assumes away repricing and 

further entry after producers’ sales are realized.  It is conceivable that in reality, producers’ 

prices would become common knowledge at this point, allowing producers’ actual costs to be 

inferred.  This would identify market locations “ripe” for new entry (i.e., those among relatively 

high-cost producers).  There may be other potential producers hoping to take advantage of this 

identified weakness.  And since these new entrants could identify the best location before 

entering, they could possibly be less efficient than the marginal entrant above.  The current 

model rules out this instance because the final decision is made before prices (and therefore 

producer costs which can be inferred from them) are revealed. 

 To see how allowing ex-post entry affects the comparative statics derived above, I 

conduct a simple exercise that considers a stark case where, once all prices are realized, a new 

potential entrant can observe these and then choose the best location in which to enter the 

market.14  In Syverson (2001) I show that when all producers’ costs are known, operating profits 

for a producer with cost draw ci equal 
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where si,j is the (i,j)-th element of a weighting matrix S.  This matrix, whose computation and 

properties are discussed in detail in Syverson (2001), captures the influence of competitors’ costs 

on a producer’s optimal price as well as the resulting market shares and profits. 

I can use this expression to compute the highest cost draw ci that an “ex-post” entrant 

choosing to enter at a specific location i could have and still earn nonnegative operating profits.  

Notice from the second term in the brakets in (14) that a producer’s profits depend on a weighted 

                                                 
13 The result that the number of producers grows less than proportionately to the size of the market has been found 
empirically in other industries by Bresnahan and Reiss (1991) and Campbell and Hopenhayn (2002). 
14 Here I assume that incumbents can reset their prices optimally against the entrant and each other.  I also preserve 
the assumption of equal spacing of producers after the entrant begins operations for tractability.  More precisely 
speaking, then, the new entrant is picking its neighbors rather than a specific location on the circle. 
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sum of its competitors’ cost levels.  Therefore the best location to enter for any new producer 

(regardless of its own cost draw) is that location i where this term is highest—i.e., where its 

closest competitors have the highest costs in the market.  Setting (14) equal to zero and solving 

for ci at this weakest-competitor location yields the highest cost level an ex-post entrant could 

have and still earn nonnegative operating profits.  In some sense, this value is a conservative 

estimate—an upper bound—of the marginal costs that would be observed empirically, because it 

allows the ex-post entrant to locate next to the weakest competitors after identifying their 

location.  It is additionally conservative because this analysis ignores whether such ex-post entry 

would even be profitable in expectation once the sunk entry cost s is figured in. 

I compute two versions of this upper-bound cost by simulating the model repeatedly.  

Details of the simulation process are in the appendix.  For a fixed demand density level and 

parameter set, 1000 market equilibria are determined as outlined above; potential producers draw 

costs from a common distribution, decide whether to produce, and (if so) set their prices 

according to the optimal behavior exposited in the model.  Then the ex-post upper bound ci is 

computed for each equilibrium using (14).  The maximum and average of these upper bounds 

across the 1000 trials are then computed.  As a check on the intuition given above regarding the 

relative growth of n with respect to D, I also compute the average producer size in the simulated 

outcomes.  This simulation process is repeated over a range of demand density values. 

The results of this exercise are shown in Figure 3.  It plots for a range of demand density 

levels the maximum and average upper-bound marginal costs, the average producer size, and for 

comparison the c* implied by the model.  As can be seen, the negative relationship between 

demand density and the highest cost in the market remains.  Furthermore, the simulations imply 

that, as supposed above, higher demand density leads to larger producers on average. 

While simple, these simulation exercises do suggest that the basic insights of the model 

should remain in the presence of any (virtually inevitable) deviations between the mechanisms in 

the model and those existing in reality. 

 

III. Data and Measurement Issues 

A. Producer Productivity and Size 

 Computing producer-level productivity and size distribution moments are key to testing 

the model.  I do so using data from U.S. ready-mixed concrete (SIC 3273) plants in the 1982, 

 
 

13



1987, and 1992 Census of Manufactures (CM).15  The CM microdata contain a wealth of 

information on plants’ production activities.  Importantly here, they also contain the state and 

county in which establishments are located, allowing me to place producers into defined 

geographic markets. 

 Each year of the quinquennial CM contains information on each of the roughly 5200 

ready-mixed plants operating in the United States.  However, very small plants (typically with 

fewer than five employees)—called Administrative Record (AR) establishments—have imputed 

data for most production variables.  These AR plants amount to roughly one third all 

establishments, though their small size implies they compose a much smaller share of 

employment and output.  Because of their imputed data, I exclude these plants from the main 

sample.  However, I do observe their location, so I can count the total number of market 

producers for use when needed. 

   I augment the standard CM data with the accompanying CM Product data files.  These 

auxiliary files contain information on the specific products (defined at the seven-digit SIC level) 

made by each establishment.  This information includes the total value of shipments by product 

for each plant, and when measurable, product output in physical units.  This physical output 

measure is available for almost all non-AR ready-mixed concrete plants (indeed, the industry is 

unusual in that it only contains a single seven-digit product).  Thus I can measure producers’ 

ready-mixed shipments either in dollars or cubic yards.16 

This product data is valuable from a measurement standpoint.  It allows me to use a 

physical output measure rather than relying on deflated revenue as most plant-level studies must 

do because of the dearth of plant-level price indices.  Deflated-revenue output measures pose 

problems when prices vary across plants for reasons other than output quality (differences in 

                                                 
15 In most of the empirical work, I do not distinguish between plants and firms.  Most ready-mixed concrete plants in 
the U.S. during my sample period were single-unit firms (although this fraction has been falling over time).  For 
example, 3749 firms controlled the 5319 ready-mixed plants operating in 1987.  In earlier versions, I tested the 
empirical results for sensitivity to the prevalence of multi-plant firms (along with other technological factors that 
may vary across markets), and there were not large differences—see Syverson (2001).  Moreover, productivity still 
varies across plants in multi-unit firms, and the selection mechanism exposited here can also be applied to determine 
which plants within a firm survive in equilibrium. 
16 In addition to AR plants, I also exclude those few plants who earn less than half of their revenue from ready-mixed 
concrete.  (While plants’ industry classifications are typically based on the product that comprises the their largest 
share of revenue, some that were classified as ready-mixed did not earn the majority of their revenue through ready-
mixed sales.)  However, most ready-mixed producers are quite specialized; the average revenue share of ready-
mixed across all plants in my sample is 95.5 percent. 
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demand conditions across plants, say), because productivity measures then embody within-

industry price variation.  That is, plants with higher (lower) than average prices will appear to be 

more (less) productive than they really are.  As I argue above, the geographic segmentation 

present in the ready-mixed industry all but ensures that within-industry demand variation 

exists.17 

I measure productivity using a standard total factor productivity index.  Plant TFP is 

computed as the log of its physical output minus a weighted sum of its logged labor, capital, 

materials, and energy inputs.  That is,  

itetitmtitktitltitit emklqTFP αααα −−−−= ,     (15) 

where the weights αj are the input elasticities of input j∈{l, k, m, e}.  While inputs are plant-

specific, I use the industry-level input cost shares as my measure of the corresponding input 

elastiticies.18  These cost shares are computed using reported industry-level labor, materials, and 

energy expenditures from the CM.  Capital expenditures are constructed as the reported industry 

equipment and building stocks multiplied by their respective capital rental rates in ready-mixed 

concrete’s corresponding two-digit industry.19 

Labor inputs are measured as the sum of production worker hours (reported directly in 

the CM microdata) and an imputed value for non-production worker hours.  This imputation uses 

the method of Davis and Haltiwanger (1991), who multiply the number of non-production 

                                                 
17 I check below the robustness of the empirical results to the use of revenue-based output and find that some results 
do change from the physical-output-based benchmark, likely due to the nature of intra-industry price variation.  
Readers may notice that one can construct unit prices using the product-specific revenue and physical output data.  I 
do so and explore the connection between product substitutability, costs, and prices in Syverson (2002). 
18 Two potentially important assumptions are implicit in this index.  First is the assumption of constant returns to 
scale.  If the scale elasticity were instead different from one, each of the input elasticities αj should be multiplied by 
the scale elasticity.  Below, I test the results for robustness to this assumption as well as estimate the scale elasticity 
directly in an industry production function (and, in fact, find evidence for constant returns).  The second assumption 
is that all industry producers share the same production function—hence the use of industry-level cost shares.  While 
this is a common assumption in similar studies, one might be concerned in particular that many producers mine 
intermediate materials (gravel and stone aggregate, specifically) on the factory site.  Plants that do so will have quite 
different factor cost shares than those purchasing these materials from off-site producers.  While I do not directly 
observe plants’ sources of intermediate materials, the vast majority of plants have materials’ revenue shares that are 
narrowly distributed around the industry average of roughly 65 percent.  Given that gravel and stone are major 
intermediate inputs (accounting for roughly 13 percent of revenues), the narrow distribution suggests on-site mining 
is the exception rather than the rule. 
19 Capital rental rates are from unpublished data constructed by the Bureau of Labor Statistics for use in computing 
their Multifactor Productivity series.  Formulas, related methodology, and data sources are described in U.S. Bureau 
of Labor Statistics (1983) and Harper, Berndt, and Wood (1989). 
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workers at the plant by the average annual hours of non-production employees in the 

corresponding two-digit industry (computed from Current Population Survey data).  Equipment 

and building capital stocks are plants’ reported book values of each capital type deflated by the 

book-to-real value ratio for the corresponding three-digit industry.  (These industry-level 

equipment and structures stocks are from published Bureau of Economic Analysis data.)  Any 

reported machinery or building rentals by the plant are inflated to stocks by dividing by the type-

specific rental cost from Bureau of Labor Statistics data (see footnote 20).  The total productive 

capital stock kit is then computed by summing the equipment and structures stocks.  Materials 

and energy inputs are simply plants’ reported expenditures on each divided by their respective 

industry-level deflators from the National Bureau of Economic Research Productivity 

Database.20 

  

B. Local Markets in the Ready-Mixed Concrete Industry 

 The empirical test of the above model works off variations in demand density across 

geographic markets.  This of course raises the issue of how to suitably define markets within the 

industry.  I use the Bureau of Economic Analysis’s Component Economic Area (CEA) as my 

market definition.  CEAs are collections of counties usually—but not always—centered on 

Metropolitan Statistical Areas (MSAs).  Counties are selected for inclusion in a given CEA 

based upon their MSA status, worker commuting patterns, and newspaper circulation patterns, 

subject to the condition that CEAs must contain only contiguous counties.  The selection criteria 

ensure that counties in a given CEA are economically intertwined.  This classification process 

groups the roughly 3200 U.S. counties into 348 markets that are mutually exclusive and 

exhaustive of the land mass of the United States.21 

                                                 
20 The fact that plants can produce multiple products—though most do not, as discussed above—poses another 
productivity measurement issue.  Inputs are reported on an establishment-wide rather than product-specific basis.  
Thus the TFP value for multi-product concrete plants must impute the share of inputs allocated to ready-mixed 
production.  I do so by dividing reported ready-mixed output by its share of total establishment sales.  This 
adjustment method in effect assumes inputs are used proportionately to each product’s revenue share.  For example, 
a plant producing 1000 cubic yards of ready-mixed concrete accounting for 80 percent of its revenues will have the 
same TFP as a completely specialized plant producing 1250 cubic yards with same measured inputs.  Without 
adjusting the first plant’s output, it would appear less productive because the inputs it uses to make its other products 
would instead be attributed entirely to ready-mixed production.  Again, the impact of any mismeasurement induced 
by this approximation is minimized by the fact that industry plants produce ready-mixed concrete almost 
exclusively. 
21 See U. S. Bureau of Economic Analysis (1995) for more detailed information about CEA creation. 
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The CEA-based market is a compromise between conflicting requirements.  The model 

assumes that concrete markets are isolated geographic units; plants in one market competitively 

interact only with other plants in the same local market.  Interactions with ready-mixed 

producers in other markets are assumed away.  While there are bound to be some cross-CEA 

concrete sales in reality, the high transport costs of the industry make this unlikely.  Detailed 

industry-level shipments data from the 1977 Commodity Transportation Survey support this.  

Ready-mixed plants shipped 94.4 percent (by weight) of their total output less than 100 miles.  

Discussions with industry managers also offer anecdotal evidence along these lines; stated 

maximum ideal delivery distances were between 30- and 45-minute drives from the plant.  CEAs 

are large enough to minimize cross-market shipments.  (An additional factor minimizing cross-

market shipments is that most CEA boundaries are in outlying parts of urban areas and are thus 

less likely to be near areas heavily populated with concrete plants.)  CEAs are also not required 

to adhere to state boundaries, which would sometimes place unwarranted market boundaries in 

economically interconnected areas.  Of course, I do not want to make markets so large that there 

is very little competitive interaction between many of the included establishments.  Plants placed 

in too large a market may not all respond to the same market forces—either external or the 

actions of industry competitors.  CEAs are a suitable compromise to resolve the tension between 

isolating markets yet ensuring the producers within them are interconnected. 

 

C. Demand Density 

 The key exogenous variable in the model is demand density.  To measure this 

empirically, I use the log of the number of construction-sector workers per square mile in the 

CEA-year market.  Construction sector employment is obtained from County Business Patterns 

data aggregated at the CEA level.22  Land areas are from the City and County Data Book. 

Construction sector employment is a suitable demand measure because the sector buys 

                                                 
22 County Business Patterns data occasionally have missing observations due to data disclosure regulations.  This is a 
small matter in the case of the construction sector (SICs 15-17), however.  The sector’s ubiquity and abundance of 
small firms allows full disclosure of total employment in nearly all counties (employment data is withheld in roughly 
1.5 percent of the county-year observations in my sample).  I impute employment when missing by multiplying the 
number of establishments in each of nine employment ranges (which are always reported) by the midpoint of their 
respective employment ranges, and summing the result.  The impact of using imputes is likely to be even less than 
their proportion indicates, as the typically small nondisclosure counties are less likely to contain non-AR ready-
mixed plants. 
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most of the ready-mixed concrete industry’s output (97.2 percent, according to the 1987 

Benchmark Input-Output tables).  I also contend that this measure is empirically exogenous to 

the nature of competition among local ready-mixed concrete plants.  This is because construction 

projects require output from a wide array of industries, so the cost share of ready-mixed alone is 

small.  Looking at 1987 again, ready-mixed concrete accounted for only 2.0 percent of the 

construction sector’s costs.  Therefore a shock to the competitiveness of the local ready-mixed 

industry (that lowers average concrete prices, say) is unlikely to spur a construction boom.  Thus 

causation travels from construction demand to concrete competitiveness and not in the reverse 

direction. 

  

IV. Benchmark Empirical Results 

To recap the discussion of Section II, the model implies that higher demand densities 

should result in the following: 

• Less productivity dispersion among local producers. 

• A higher average productivity level. 

• A higher minimum productivity level. 

• Larger average plant size in terms of units sold. 

I compute six market-level measures to test these implications.  These measures have 

been selected to account for specific measurement concerns.  I measure productivity dispersion 

using the interquartile TFP range among producers in each CEA-year market.  I use this ordinal 

dispersion measure to minimize the influence of spurious outliers.23  The central tendency of the 

local productivity distribution is measured in two ways.  One is the median TFP level in the 

market.  Again, an ordinal measure is used to minimize measurement error.  The second is a 

weighted-average TFP in the market.  The weights are producers’ output market shares (among 

only those plants in my sample—AR plants are excluded since I observe neither their output nor 

productivity level).  This measure is more vulnerable to the influence of outliers, of course, but it 

captures productivity growth resulting from density-driven market share reallocations.  As a 

measure of the market’s minimum productivity level, which outliers affect above all other 

                                                 
23 It is not uncommon for reporting and transcription error create nonsensical observations in producer-level 
microdata.  Additionally, since many of my markets have a small number of plants, this increases the vulnerability of 
traditionally calculated moments to outlier effects. 
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moments, I use the 10th-percentile TFP plant in the local market.  While for many markets this is 

the minimum productivity level, its use does avoid some of the more questionable bottom-end 

productivity levels in large markets. 

Two measures of average plant size are used: the average logged output (measured in 

cubic yards) among market plants, and the market’s producer-to-demand ratio.  This is simply 

the number of market plants divided by total construction sector employment in the CEA-year.  

Since the total number of plants includes those with imputed data that are otherwise excluded 

from the other measures above, this latter size measure captures any influence from these smaller 

producers. 

The use of Component Economic Areas to define geographic markets offers a potential 

number of 1044 observations (348 CEAs x 3 CM years).  In the benchmark results, I use only the 

665 CEA-year observations with at least five plants for which I observe TFP, in order to improve 

moment-measurement accuracy.  I will test the results for robustness to this cutoff. 

 The empirical specification used to test for the impact of demand density on moments of 

the local productivity and size distributions is 

itcitcitdit BXdensy εββ +++= ,0 .     (16) 

The dependent variable (one of the six measures discussed above) in CEA i, year t is a function 

of local demand density densit, a vector Xc,it of other influences on the moments, and an CEA-

year-specific error term.  I estimate three versions of this general model.  A simple bivariate 

regression of the dependent variable on demand density characterizes the nature of the 

correlation between these variables.  I then estimate a specification where Xc,it contains year 

fixed effects.  Finally, the model is estimated with Xc,it including not only year dummies but also 

a number of local demand influences. 

 The local demand controls in Xc,it include an assortment of variables that plausibly shift, 

directly or indirectly, the demand structure of the local ready-mixed concrete market through 

channels other than the spatial substitutability influence of demand density.24  These include 

                                                 
24 Of course, omission of these other influences will not necessary bias the demand density results in the sparser 
specifications if they are orthogonal to my demand density measure.  It seems possible, however, that some of these 
control variables independently influence both local ready-mixed market structure and the overall level of 
construction activity (which is a key element of the demand density measure).  Due to data limitations, some of these 
measures are CEA-specific but not CEA-year-specific.  In these cases, I have attempted to use values gathered as 
close to the middle of the sample period as possible. 
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demographics of the CEA: the percentage of the population that is nonwhite, the fraction over 25 

years old, the proportion with at least a bachelor’s degree, and the number of marriages per 1000 

population.  Each of these variables is aggregated from values in the 1988 City and County Data 

Book.  The race and the marriage variables constructed from 1984 data, while the others are 

from the 1980 population census.  I also include variables conceivably correlated with concrete 

demand specifically.  These are the fraction of households owning at least two automobiles, the 

fraction of housing units that are owner-occupied, the median value of owner-occupied housing, 

and median household income (also from 1980 and 1984).  The output-weighted average ready-

mixed specialization ratio (i.e., the fraction of plant revenue from ready-mixed) is also included 

to control for any systematic differences in specialization across markets.  Finally, I add the 

growth rate of local construction employment over the previous five years to control for short-

term effects (for example, a temporary boom might allow relatively inefficient producers to 

operate for a short while). 

Panel A of Table 1 shows summary statistics of key regression variables.  It is readily 

apparent that there are nontrivial differences in productivity moments and average plant sizes 

across local markets.  For example, the standard deviation across markets in median productivity 

levels is roughly 12 percent.  It is 19 percent for output-weighted average TFP, and over 50 

percent for the 10th-percentile productivity level.  There is also variation in the amount of within-

market productivity dispersion.  The standard deviation of the interquartile productivity range is 

half of its mean of 0.274.25  The standard deviation of average plant size (in terms of total cubic 

yards shipped) is over 70 percent.  Panel B reports the distribution of the number of producers 

across all markets and for those in the sample. 

The benchmark regression results are presented in Table 2.  Panel A of the table shows, 

for each specification and dependent variable, the estimated demand density coefficients and 

heteroskedasticity-robust standard errors.  Columns 1 through 3 of the table correspond to the 

specifications discussed above.  I do not report covariate estimates in the interest of parsimony; 

Panel B instead summarizes the nature of the covariate coefficients. 

The results support the predictions of the model.  Productivity dispersion declines with 

density.  The median productivity, the quantity-weighted average productivity, and the 10th-

                                                 
25 An interquartile range of 0.274 in log-level TFP within a market implies that the 75th-percentile productivity plant 
can produce roughly 30 percent more output than the 25th-percentile plant with equal amounts of measured inputs. 
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percentile (“minimum”) productivity levels are all higher in denser markets.  The producer-to-

demand ratio falls, and average plant output climbs with demand density.  The coefficients are of 

the expected sign and statistically significant for every dependent variable in each of model’s 

specifications.  Beyond statistical significance, the estimates imply what are in my opinion 

nontrivial economic impacts.  Controlling for other influences on demand, a one-standard-

deviation increase in logged demand density implies a decrease in expected dispersion by 

approximately 0.042 log points—roughly one-seventh of the mean dispersion and over one-

fourth of its standard deviation (see Table 1).  The same density increase corresponds to about a 

2.2 percent, 2.3 percent, and 9.4 percent increases in median, output-weighted average, and 10th-

percentile TFP levels, respectively.  Given that demand density ranges several orders of 

magnitude across the markets in my sample, these imply noticeable differences in productivity 

levels when comparing very dense urban markets to their rural counterparts.  The plant size 

effects implied by the regressions are quite large.  For example, an average-sized plant in a 

market that is one standard deviation denser than another sells 30 percent more cubic yards of 

ready-mixed concrete than its counterpart in the lower density market. 

As can be seen in the column 3, Adding market demand controls to the regression does 

change some of the coefficients’ magnitudes.  The estimated downward effect on dispersion and 

the upward impact on the lower-bound TFP level become even greater when local demand 

conditions are accounted for.  On the other hand, density’s estimated impact on the central 

tendency of the productivity distribution diminishes.  The plant size effects are also of lower 

magnitude, but the differences are relatively small. 

In the fourth column, I report the results of a specification where an additional control of 

special interest has been added to the Xc,it vector.  Ciccone and Hall (1996) explored the effect of 

market density on productivity levels.  While in some ways similar in spirit to this study, their 

research employs a much more top-down approach, using highly aggregated production data.  As 

such, they investigate productivity effects averaged across many industries rather than in specific 

sectors, and they are unable to examine differences in productivity dispersion.  Further, they use 

an overall employment density measure to capture agglomeration effects of unspecified 

origin(s).  This is in contrast to my industry-specific demand density measure which embodies a 

specific mechanism through which market density acts.  (Indeed, it is possible that the 

mechanisms modeled and tested here are in part driving Ciccone and Hall’s results.)  To see if 
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the present findings can be distinguished from their results, though, I estimate a specification that 

includes a measure of local employment density (using 1986 civilian employment numbers from 

the City and County Data Book) constructed in a similar manner to theirs. 

The results indicate that the inclusion of overall density does not affect the estimated 

effects of demand density on the dispersion or lower bound of the local productivity distribution, 

or on the measures of plant size.  However, demand density’s influence on the median and 

output-weighted average productivity levels becomes small and insignificant.  Clearly then the 

impacts of demand density and overall density on average productivity levels are closely related 

observationally.  This may be because the impact of demand density (more precisely, the 

component independent of overall thick-market effects) is on productivity dispersion rather than 

levels.  Alternatively, it may be that the demand density mechanism posited here is in part 

driving the Ciccone-Hall results, and that an overall market density measure captures the causal 

influence of demand density.  Regardless of the specific mechanism, it is clear that ready-mixed 

producers in denser markets are more productive on average. 

Interestingly, it seems that the transport-cost-driven substitutability mechanism I exposit 

explains only a modest portion of the differences in local productivity distribution moments 

across markets.  The R2 for the bivariate regressions in the benchmark specification indicate that 

demand density differences alone account for roughly 2 percent of the across-market variation in 

productivity dispersion.  The ability of density to explain median productivity levels is 

stronger—6 percent—but still moderate.  These values are somewhat surprising, given the 

perceived level of homogeneity in ready-mixed output.  I will return to this issue below.  Density 

differences do, however, explain a considerable portion of the variation in average plant sizes 

across markets. 

 

V. Robustness Checks 

 The benchmark results are consistent with the predictions of the model.  Here I conduct 

several checks to see if those results are robust to various empirical modeling assumptions made 

above.  To keep things from becoming too cluttered, I only report results for the bivariate and 

full-demand control models (corresponding to the specifications columns 1 and 3 of Table 2, 

Panel A).  The bivariate and full-control results of these checks are respectively presented in 

Tables 3 and 4.  I show for comparison the benchmark estimates in column 1 of each table.  A 
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key to the different specifications is in Table 5. 

 

A. Minimum Number of Establishments 

For inclusion in my benchmark sample, I require that a market has at least five ready-

mixed producers with non-imputed productivity and output data.  Here I check to see if changing 

this exclusion criterion affects the results.  Columns 2 and 3 of Tables 3 and 4 show the demand 

density coefficients obtained when the cutoff levels for the minimum number of plants are 

instead (respectively) 2 and 10.  Obviously, the number of market-year observations is larger in 

the former case (974 markets meet the looser requirement) and smaller in the latter (343 

markets).  Under either alternative exclusion condition, the results largely coincide with the 

benchmark results.  There is very little difference—qualitatively or quantitatively—between the 

benchmark estimates and those from the 2-plant-minimum sample.  There are a few noticeable 

differences in the 10-plant-minimum case.  The density coefficients in the productivity-moment 

bivariate regressions in Table 3 are smaller in magnitude than their benchmark counterparts, but 

they all remain statistically significant.  In the model with demand controls included, however, 

all become insignificant except for the coefficient in the 10th-percentile productivity level 

regression (all do retain the expected sign).26  Density’s estimated effect on plant size is not 

affected in either specification using the large-market sample.  Thus the results on balance 

largely echo the benchmark findings. 

 

B. Capital Measurement 

I exclude Administrative Record (AR) establishments from my sample to obtain TFP 

measures only for plants without imputed production data.  There is one exception to this 

imputation exclusion, however: even among non-AR producers, capital stocks are imputed for 

those not in the Annual Survey of Manufactures (ASM) panel corresponding to that CM year 

                                                 
26 The smaller and less precise demand density coefficients in the large-market sample could result simply because 
the sample is smaller and has less density variation, or alternatively because density’s impact is nonlinear.  To 
investigate this further, I estimated a specification (using the benchmark 5-minimum-plant cutoff) that included both 
demand density and its square.  The quadratic density term was small and insignificant in the dispersion and lower-
bound productivity regressions, but negative and significant in both the median and output-weighted average TFP 
regressions.  Thus it seems that the impact of density on the central tendency of the productivity distribution fades 
somewhat in high-density markets.  Since these markets also tend to have more producers, this may explain why I 
found a smaller density impact when focusing on these markets.  These results are available from the author. 
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(these panels run for five-year periods and span a single CM).  ASM plants comprise roughly 

one-third of my sample.  Since a plant’s probability of being selected for inclusion in the ASM 

panel increases with size, smaller concrete plants are more likely to have imputed capital stocks. 

 Since less dense markets tend to have smaller plants—as shown above—TFP measurement error 

may cause productivity dispersion to be spuriously larger in low-density markets. 

 This potential problem is mitigated by the fact that capital cost shares are rather small in 

the industry (around 6.5 percent), so any spurious TFP variation due to incorrectly measured 

capital stocks will be small relative to the amount of measurement error.  Still, to verify that 

capital imputations are not driving my results (particularly for productivity dispersion), I rerun 

the productivity-moment regressions using producers’ labor productivity levels (the log of 

physical output per worker-hour) rather than TFP.  I also include the market’s output-weighted 

mean logged capital-labor ratio to account for differences in average capital intensity across 

markets (measurement error should be smaller for these averaged capital figures).  The results, 

which support the benchmark findings, are shown in column 4 of Tables 3 and 4.  Density 

coefficients are of the expected sign, and significantly so, for each of the productivity moments 

in both specifications.  (The sizes of the coefficients are not directly comparable to the 

benchmarks because the dependent variables are different.)  The impact of imputed capital 

stocks on TFP measures does not seem to be important to the qualitative features of the results.27 

 

C. Output Measure 

As discussed above, I measure output in physical units (cubic yards of ready-mixed 

concrete) to keep plant-level price variation out of my productivity measures.  However, 

revenue-based output measures are appropriate in some instances, such as when prices embody 

quality differences.28 

                                                 
27 Variable capital utilization poses another possible form of capital measurement error.  If utilization differs 
substantially across producers, capital stocks do not accurately measure the amount of capital services used in 
production.  To assess the influence of variable capital utilization on my results, I re-estimated the empirical model 
using plant productivity levels from an index suggested by Basu and Kimball (1997).  This procedure uses hours per 
worker as a proxy for capital intensity by assuming that production is Leontief in value added and materials.  The 
results of this exercise, available from the author, are not substantially different from the benchmark results. 

28 Abbott (1992) discusses this issue in considerable detail.  While ready-mixed concrete is much more 
homogeneous than many manufactured goods, there is some scope for differentiation.  By changing ingredient ratios 
and using admixtures, producers can achieve variation in the physical and aesthetic properties of ready-mixed 
concrete.  If plants differ in the proportions with which they produce these various product types, and type-specific 
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While I cannot test for quality effects directly, I can see if the results are affected by the 

output measure.  The results obtained when total plant revenue (deflated to 1987 dollars) is used 

in place of physical output to compute TFP are presented in column 5 of Tables 3 and 4.  

Consider first the results from the bivariate specification in Table 3.  The signs and statistical 

significance of the benchmark results are preserved, and the magnitudes of the effects on 

productivity dispersion and average plant size are virtually unchanged.29  However, density’s 

estimated impact on the median, output-weighted average, and 10th-percentile TFP levels is 

smaller.  These central tendency and lower-bound results are weaker still in the specification that 

includes demand controls.  The estimates in the median and output-weighted mean productivity 

regressions are virtually zero and insignificant (indeed, for the first time a coefficient—in the 

output-weighted mean TFP regression—does not have the expected sign, albeit insignificantly).  

The productivity dispersion and average plant size (where size is now measured in deflated 

revenue) coefficients remain very close to their benchmark counterparts. 

The weakened estimated influence of density on the central tendency and lower bound of 

the productivity distribution is interesting and worth a brief discussion.  Given that physical 

productivity grows but revenue productivity remains constant in density, average prices must be 

lower in dense markets.30  If prices reflect quality differences, then average quality is lower in 

denser markets.  This seems counterintuitive.  Furthermore, plants in denser markets would 

expectedly be more likely to be specialized—some would focus on production of low-quality 

ready-mixed while others in high-quality—which should induce a positive correlation between 

revenue-based TFP dispersion and density.  Yet I find the opposite.  Thus on two levels, the 

results seem unlikely to be driven by product quality variation.  An alternative, and in my 

opinion more likely explanation for the outcomes here is that prices decline in density because 

both costs and markups are lower in denser markets (the markup effect is due to the higher 

demand elasticities created by greater substitutability).  This would make average revenue-based 

productivity measures less responsive to density changes, as found here.  It is also consistent 

                                                                                                                                                             
prices reflect differences in material and production costs, quality differences will be reflected in plant revenues. 
29 In this specification, I measure average plant output as the log of total revenue per plant.  Unlike the benchmark 
case, where I compute average plant output for only those plants for which I have production data, all producers are 
counted in the revenue-based size measure.  Total plant sales are one of the few non-imputed variables in AR data.  
30 I show this is the case directly using computed unit prices in Syverson (2003). 
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with the unchanged productivity dispersion result, because cost-based price dispersion (and 

therefore revenue-based TFP dispersion) would be negatively related to density. 

 

D. Scale (Dis)Economies 

The TFP measures used above assume constant returns to scale in the plant-level 

production technology.  Here I see how the benchmark results are affected by departures from 

this assumption.  Column 6 of Tables 3 and 4 show the results obtained when the assumed scale 

elasticity is 0.9 instead of one (that is, all input elasticities in (15) are multiplied by this value).  

As can be seen, the qualitative features of the benchmark estimates are preserved.  The demand 

density coefficients are of the expected sign and statistically significant for every productivity 

moment.  In fact, the estimated effects of demand density on the central tendency and lower 

bounds of market productivity distributions are larger than the benchmark. 

 Column 7 of the tables show the corresponding estimates when the scale elasticity is 1.1. 

 The lower-bound and dispersion of productivity effects remain similar to the benchmark.  Here, 

however, the magnitude and statistical significance of density’s impact on the median and 

output-weighted mean productivity levels have fallen to near zero.  A careful consideration of 

how the TFP index is calculated and the cross-sectional features of the industry provide a likely 

explanation for these results.  As the assumed scale elasticity grows, increases in output that 

coincide with input growth are attributed increasingly to scale economies rather size-neutral 

productivity gains.  Thus if larger industry plants tend to be more efficient because of an external 

selection mechanism like the impact of greater output substitutability in denser markets, 

assuming economies of scale in the TFP measure will attribute this size-productivity correlation 

to scale effects instead.  This lowers the productivity estimates of larger establishments relative 

to smaller ones, shrinking the demand density coefficient and possibly even creating a negative 

correlation if the assumed scale elasticity is sufficiently large.31  Notice that this would result 

even if the industry technology’s true internal scale elasticity was one. 

 The upshot, then, is that the estimated effects of demand density on productivity 

dispersion and average plant size appear robust to the assumed scale elasticity of the industry’s 

technology, but the impact on the average productivity level is more sensitive to the assumed 

                                                 
31 This mechanism operating in the other direction likely explains the larger estimated density coefficients in the 
average productivity level regressions when the assumed scale elasticity is 0.9. 
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degree of returns to scale.  If the technology exhibits diseconomies of scale, the connection 

strengthens beyond that found in the benchmark.  Increasing returns to scale, on the other hand, 

weaken it.  I show below, however, that the benchmark assumption of constant returns to scale 

seems justified. 

 

E. Production Function Estimation 

Index-number methods are a computationally simple way to compute TFP levels, but 

they have their own well known set of shortcomings.  An alternative methodology is to back out 

producer TFP levels as the residuals of an estimated production function.  However, the naive 

procedure of simply regressing output on a functional form of inputs using ordinary least squares 

could lead to biased production function and TFP estimates due to the “transmission bias” of 

productivity levels affecting input choices (first pointed out by Marschak and Andrews 1944).  

Much of the recent literature has tried to circumvent this endogeneity problem through the use of 

semiparametric methods (originally proposed by Olley and Pakes 1996, and modified by 

Levinsohn and Petrin 2003).  Unfortunately, as discussed extensively in Syverson (2001), 

industries with local demand markets such as ready-mixed concrete are a particularly poor fit for 

such methods.  So I instead take advantage of the local nature of the industry to identify 

instrumental variables for use in obtaining consistent production function and TFP estimates.  I 

have already argued that local demand—as measured by the size of the concrete sector in the 

market—is both relevant to the amount of ready-mixed concrete produced in the market and 

exogenous to shifts in concrete plants’ productivity levels.  Therefore, measures of local demand 

(construction sector employees—here in levels rather than in a density measure) should be 

correlated with concrete plants’ inputs but orthogonal to movements in their productivity levels, 

making them good instruments for endogenous inputs in the production function.32  

To estimate plant TFP levels, I estimate the following production function for the ready-

mixed plants in my sample: 

                                                 
32 Shea (1993) discusses how input-output patterns in production can be used to identify industry-level demand 
shifters.  I extend this insight for use with microdata by measuring and matching local downstream demand to 
upstream producers in the same market.  In application, rather than use local construction employment in my 
instruments, I use the component that is orthogonal to overall local employment (obtained as the residuals of a 
regression of construction on overall employment in all market-year observations).  This is because market-level 
productivity shocks common to local producers in all industries could lead to ready-mixed plants’ productivity levels 
being correlated with local construction activity, despite concrete’s small cost share in construction. 
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ititxitmultmulttmoit xdq ωγγδβγ +++++= , ,  where itetitmtitktitltit emklx αααα +++= . 

As with the TFP index in (15), output and inputs are measured in logs and the input 

elasticities αjt are measured as the industry-level cost shares.  The production function includes a 

year effect δt as well as a multi-plant dummy dmult,it that captures any effect of operating as part 

of a multiple-establishment firm.  A cost-share-weighted sum of logged labor, capital, materials, 

and energy inputs comprise the producer’s composite input xit.  Thus γx is the scale elasticity of 

the industry technology.33  A CEA fixed productivity effect βm is included because, as discussed 

above, the model implies an across-market form of increasing returns: plants are both larger and 

more productive on average in denser markets.  However, this is driven by selection rather than 

any internal scale economies within plants.  So as not to confound this across-market “scale 

elasticity” with my internal returns to scale estimate, then, I identify γx using only within-market 

variation.  I do include these fixed effects in producers’ TFP levels, though, because I want to 

measure those systematic across-market differences in average productivity levels.  Hence the 

TFP estimate for a producer is equal to the sum of the estimates of its corresponding market 

effect βm and its plant-year-specific residual ωit.  Given the “transmission bias” described above, 

I instrument for the plant composite input xit using the current value, three lags, and one lead of 

the local construction sector activity measure discussed above.34 

Table A.1 shows the estimated parameters of the production function.  The first-stage 

relevance statistics indicate that local construction activity is germane to concrete plants’ hiring 

of inputs, even after removing the influence of overall local economic activity.  The F-test for 

joint significance of the instruments (the three lags, present, and one lead of local construction 

activity) soundly rejects the null of irrelevance.  Higher downstream demand increases input use, 

as one would expect; the sum of the instrument coefficients in the first-stage regression is 

positive and significant.  As for the production function estimates, the scale elasticity γx is 

precisely estimated and statistically indistinguishable from one.  Thus is appears that assumption 

                                                 
33 I discuss in Syverson (2001) why a composite input is used rather than including each input in the production 
function separately. 
34 This lag/lead pattern was chosen based on two considerations.  The first is my prior belief about the extent of 
management decision horizons, both forward- and backward-looking.  The second consideration is Buse’s (1992) 
demonstration that superfluous instruments in an instrument set lead to estimation biases.  Notice that the 
instruments are not plant specific, but rather vary across markets and years.  Given the market fixed effects in 
production, identification comes off of plants’ responses to shifts in market demand over time. 
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above of constant (internal) returns to scale is justified. 

Given that the benchmark results were obtained imposing a scale elasticity very close to 

the value estimated in the production function, it is not surprising that the results using estimated 

productivity levels closely match those obtained with a TFP index above.  In fact, the estimated 

and index TFP series have a correlation of 0.984.  The productivity and size moment regression 

results are shown in Column 8 of Tables 3 and 4.  There is no substantial differentiation between 

the estimated-TFP and benchmark results in the bivariate regressions.  In the specifications that 

include demand controls, density’s implied effects on measures of the central tendency of TFP 

are slightly smaller than in the benchmark case.  As a result, these estimates become marginally 

insignificant (both have p-values below 0.06).  Excepting this, the estimated-TFP results mirror 

the benchmark results. 

 

F. Using Intertemporally-Averaged Productivity Estimates 

The steady-state model employed earlier implies long-run, cross-sectional differences in 

local productivity and size distributions across markets of varying densities.  My empirical tests 

use cross-sectional panels at five-year intervals and control for short-term density changes in 

order to isolate long-term impact of demand density.  As a further check against any 

confounding effect of short-run fluctuations, I estimate the demand density regressions using the 

average productivity level of each producer during the sample.  That is, I compute the plant’s 

TFP index in each of the years I observe it and use their average when computing moments of 

the local productivity distribution.  Thus in this case there is only one cross-section of markets 

rather than three.  All explanatory variables, including demand density, are averaged over time 

as well (they are weighted by the number of plants observed in each CEA-year market). 

 The results of these exercises can be found in column 9 of the tables of robustness 

checks.  As can be seen, the benchmark findings are not unduly influenced by short term 

fluctuations.  The demand density coefficients retain their expected signs and significance.  

Furthermore, their magnitudes closely correspond to the benchmark, with the exception of the 

smaller estimates in the average plant output regressions. 

 

G. Density or Size? 

 The intuitive argument sketched in the introduction implies that market density 
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specifically, rather than just market size, drives the truncation of the productivity distribution.  

While they are very likely to be correlated, density has a direct impact on spatial substitutability 

while size alone does not.  I test whether the size-density distinction holds empirically with a 

specification that includes both demand density and demand size (logged construction 

employment in the local market).  The results are shown in column 10 of Tables 3 and 4. 

 The demand density coefficients retain their expected signs in all cases, and are 

statistically significant in all cases, excepting the output-weighted average productivity 

regression including demand controls.  Their magnitudes do decline somewhat (except for those 

in the productivity dispersion regressions, which rise insignificantly); the drops are most 

noticeable in the average size regressions.  As for the coefficients on market size (not shown), 

they are significant in every bivariate-model case excepting the dispersion regression.  However, 

once the other demand controls are included, the median and output-weighted means TFP size 

coefficients also lose their significance.  This is perhaps not surprising given several components 

of Xc,it are controls for shifts in demand. 

 Thus demand density has a separately identifiable influence on the local productivity and 

size distributions from that of market size alone.  The same cannot always be said of market size. 

 This supports the mechanism exposited in the model.  Still, the two effects do overlap some, as 

most of the estimated density effects become smaller in magnitude when size is included in the 

productivity and size moment regressions. 

  

VI. Conclusion 

This paper has modeled and offered supporting evidence for a mechanism where a 

demand-side market characteristic—product substitutability, specifically—affects the shape of 

the equilibrium distribution of producers’ productivity levels.  The essence of the mechanism is 

that heightened competition (created by greater spatial substitution possibilities) in denser 

markets makes it harder for inefficient producers to profitably operate.  This truncates the lower 

end of the market productivity distribution, leading to increases in its lower bound and central 

tendency and decreases in the amount of within-market dispersion.  It further implies that 

producers are larger on average in denser markets.  In a case study of the ready-mixed concrete 

industry, I find robust empirical support for each of these features. 

These findings of this case study have several implications.  Most directly, they suggest 
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that spatial substitution barriers may account for some of the persistent within-industry 

productivity dispersion documented by other studies.  More broadly, the paper’s findings suggest 

that other factors that limit product substitutability, such as physical product differentiation, also 

support the persistent productivity differences observed in most industries.  Syverson (2004) 

extends the work of this paper (with some loss in the ability to control for technological 

differences across producers) to explore these impacts at the industry level. 

The results also support the notion that competition spurs efficiency in production.  This 

is a comfortable concept for many economists (although a substantial portion of the long and rich 

literature on the topic focuses on conditions in which competition may not be efficiency-

inducing).  Still, there has been a relative dearth in empirical studies that have been able to 

carefully measure the productivity response to exogenous differences in market competitiveness. 

 This paper has hopefully reduced that comparative scarcity. 

The paper further shows how local competition in markets where transport costs are 

important creates an agglomeration effect (i.e., producers are more efficient in denser markets) 

that does not appeal to the technological externalities often discussed in the literature.  Lowering 

transport costs thus boosts productivity in two ways.  Fewer resources are spent on moving 

goods around, of course, but competition also increases within spatially differentiated industries, 

reallocating market shares to more efficient producers.  This mechanism has implications 

ranging from the urban to trade literatures, and may be an interesting area for further research. 

Still, the empirical evidence also suggests that much work remains to be done to 

completely characterize the nature and sources of persistent productivity differences across 

producers.  Even in the “controlled” environment of an industry case study, observable 

substitutability factors still only account for a small fraction of the observed across-market 

variance of productivity moments.  The supply-side factors that have been a primary focus of the 

literature to this point doubtlessly account for some of this.  Perhaps as well, though, the results 

above suggest a significant role for unmeasured (and in many cases, unmeasurable) product 

differentiation—subtle variations in product attributes, subjective product differentiation like 

brand effects, and dissimilarities in bundled goods—in explaining why we see such stark 

efficiency differences across plants. 
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Appendix 
 

A. Ensuring All Producers Sell Positive Quantities 

To ensure that all entrants choosing to commence production sell positive quantities, the ex-post realized 

sales for any producer i in the area of the market between itself and its neighbor j must be greater than zero.  That is, 

in a market where n firms have entered and the producer pair have set prices pi and pj, 
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This condition must hold for every pair (i, j) of producers. 

Using the optimal pricing equation (4), we can rewrite this in terms of the cost difference between 

producers i and j. 
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Note that this condition will always be met if it holds when cj – ci equals the maximum possible difference bewteen 

producers; that is, when ci = c* and cj = 0.  In this case, (A.1b) can be rewritten as 

n
tc 2* < .     (A.2) 

From the condition that the marginal producer expects to earn zero operating profits, as embodied in 

equation (7), it must be that 
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This can be used along with (A.2) to show that 
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because 1/n is a convex function. 

Therefore, (A.4) shows that to ensure that all producers sell positive quantities, 
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Solving explicitly for E(c), which is itself a fuction of c*, in terms of parameters depends of course on the particular 

cost distribution g(c).  But notice that dc*/df is negative: 
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which simplifies to 
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and thus dc*/df < 0 by applying the implicit function theorem to (10).  This means that dE(c)/df < 0 as well.  Since 

 
 



the left-hand-side of (A.5) decreases in f and the right-hand-side increases, sufficiently large values of f (for fixed 

values of the other parameters) will ensure that the condtion holds. 

 

B. Computing Upper-Bound Costs for “Ex-Post” Entrants 

I computationally simulate a version of the model where an “ex-post” entrant is allowed to enter the market 

after having observed rivals’ cost levels.  The first step involves solving the equilibrium from the benchmark 

asymmetric information model to determine c* and E(1/n) for the market.  For simplicity, marginal costs are 

assumed to be uniformly distributed on [0,1], t = 0.1, s = 0.01, and f = 1.  (This value of f is large enough to ensure 

that, for the range of density levels used in these simulations, all equilibrium producers sell positive quantities.  See 

Section A of this appendix, above.)  The equilibrium solution provides the number of producers that commence 

production (i.e., the number of cost draws taken), which is equal to the smallest integer that is greater than the 

equilibrium value of [E(1/n)]-1.  It also pins down the upper bound of the uniform distribution over which producers’ 

costs are drawn. 

The equilibrium producers are placed randomly around the circle, and then for each location between 

market producers, (14) is set equal to zero and inverted to solve for ci .  (Note that this equation assumes incumbents 

can optimally reprice against the new entrant and the other incumbents. )  The highest of these values in the market 

is the largest possible cost level of an ex-post entrant supportable by the market structure.  This process is repeated 

1000 times at the same density level (but with different producer cost draws), and the average and maximum upper-

bound cost across these 1000 trials are computed. 

The entire simulation is then repeated for several demand density values D.  While this ex-post scenario is 

not a formal equilibrium, it seems likely that adding more complicated strategic interactions would not result in 

different implications regarding the nature of the productivity truncation, particularly since this exercise makes the 

conservative assumptions mentioned in the text. 
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Figure 1. Total Factor Productivity Kernel Density Estimates, Plants in Markets above and below Median Demand Density 
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Figure 2. Output (Logged Shipments in Cubic Yards) Kernel Density Estimates, Plants in Markets above and below Median Density 
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Figure 3. Simulated Upper-Bound Marginal Costs of “Ex-Post” Entrants and Average Producer Size vs. Demand Density 
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Table 1. Descriptive Statistics 
 
A. Productivity and Size Moments and Demand Density 
 

Variable Mean Std. Dev. Skewness 
75th-25th 

Percentile 
Range 

90th-10th 
Percentile 

Range 

TFP Dispersion (Interquartile Range) 0.275 0.147 1.332 0.164 0.353 
Median TFP 4.557 0.122 -0.028 0.133 0.278 

Output-Weighted Average TFP 4.599 0.177 1.627 0.183 0.360 
10th Percentile TFP 4.169 0.450 -6.114 0.293 0.611 

ln(Plants per Demand Unit) -6.447 0.703 -0.078 0.978 1.827 
ln(Average Plant Output) 10.637 0.543 0.086 0.752 1.343 

Demand Density [ln(constr. emp./mi2)] 0.495 1.439 0.050 1.700 3.691 
Demand Density—All 1044 U.S. Markets 0.317 1.407 0.066 1.534 3.548 

exp(Demand Density) 4.801 11.233 6.009 3.269 10.777 
ln(Number of Construction Employees) 9.229 1.035 0.401 1.547 2.690 

Plant-level TFP (N = 10,613) 4.559 0.354 -1.655 0.277 0.637 
 
 
B. Number of Producers by Market 
 

Market Set Variable Mean Min 25%ile Median 75%ile Max 

Number of Plants 15.0 1 6 10 18 102 All Markets w/One or 
More Plants (N=1031) Number w/TFP Data 10.3 1 3 7 12 79 

Number of Plants 20.6 5 10 14 25 102 Estimating Sample 
Number w/TFP Data 14.5 5 7 10 17 79 

 
This table shows descriptive statistics for key variables.  Figures are across 665 market-year 
observations unless otherwise stated.  See text for details. 
 
 
 

 
 



Table 2. Main Regression Results—Local Productivity and Size Moments 
 
A. Demand Density Coefficients 
 

Dependent Variable Regression Statistic Model 
[1] 

Model 
[2] 

Model 
[3] 

Model 
[4] 

R2 0.018 0.036 0.092 0.092 
TFP Dispersion 

(Interquartile Range) Demand Density Coef. 
(Standard Error) 

-0.014* 
(0.004) 

-0.015* 
(0.004) 

-0.029* 
(0.008) 

-0.031* 
(0.010) 

R2 0.059 0.289 0.321 0.322 
Median TFP Demand Density Coef. 

(Standard Error) 
0.021* 
(0.003) 

0.018* 
(0.003) 

0.012* 
(0.005) 

0.008 
(0.006) 

R2 0.045 0.125 0.162 0.162 
Output-Weighted 

Average TFP 
Demand Density Coef. 

(Standard Error) 
0.026* 
(0.004) 

0.024* 
(0.004) 

0.016* 
(0.008) 

0.012 
(0.010) 

R2 0.033 0.033 0.058 0.059 
10th Percentile TFP Demand Density Coef. 

(Standard Error) 
0.057* 
(0.010) 

0.056* 
(0.010) 

0.065* 
(0.019) 

0.056* 
(0.022) 

R2 0.570 0.584 0.708 0.711 
Producer-to-Demand 

Ratio 
Demand Density Coef. 

(Standard Error) 
-0.369* 
(0.015) 

-0.363* 
(0.015) 

-0.313* 
(0.022) 

-0.278* 
(0.030) 

R2 0.334 0.376 0.557 0.563 
Average Plant 

Output 
Demand Density Coef. 

(Standard Error) 
0.218* 
(0.012) 

0.211* 
(0.012) 

0.184* 
(0.017) 

0.142* 
(0.023) 

Year Dummies  No Yes Yes Yes 
Demand Controls  No No Yes Yes (+CH)

 
This panel shows the estimated coefficients on demand density when various moments of the 
local productivity and size distributions are regressed on demand density and, when applicable, a 
set of demand controls.  Specifications are by column and dependent variables by row.  The 
sample consists of 665 region-year observations with at least five plants for which I have non-
imputed production data.  “+CH” indicates that Ciccone-Hall measure of overall density was 
included in controls (see text for details).  Reported standard errors are robust to 
heteroskedasticity, and an asterisk denotes significance at the 5 percent level. 

 
 



Table 2 (continued). Main Regression Results—Local Productivity and Size Moments 
 
B. Significance of Demand Controls 
 

Dependent Variable Negative and Significant Positive and Significant 

TFP Dispersion 
(Interquartile Range) 

1982, 1987, Married, College, 
Auto2, Spec MedIncome 

   
Median TFP 1982, 1987, Nonwhite, Occupied MedIncome 

   
Output-Weighted 

Average TFP 1982, 1987, Black MedIncome 

   
10th Percentile TFP None Married, College 

   
Producer-to-Demand 

Ratio 
Married, Nonwhite, College, 

MedIncome, Growth 1982, Over25, Spec 

   

Average Plant Output 1982, Over25 1987, Married, College, 
MedHouse, Growth 

 
This panel shows, by dependent variable, the significance of the demand controls included in the 
specification corresponding to column 3 in panel A.  All demand controls are included in each 
regression, so those not reported were statistically insignificant. 
 
Key to Demand Controls: 
1982—Year dummy 
1987—Year dummy 
Married—Fraction of population that is married 
Nonwhite—Fraction of population that is non-white 
College—Fraction of population with college education 
Over25—Fraction of population over 25 years old 
MedIncome—Logged median household income 
Auto2—Fraction of households with at least two cars 
Occupied—Fraction of owner-occupied housing units 
MedHouse—Logged value of median home 
Growth—Demand growth over past 5 years (log change in construction sector employees) 
Spec—Output-weighted average revenue share of ready-mixed concrete among concrete plants  
 

 
 



Table 3. Robustness Checks—Bivariate Specification (Only Demand Density and a Constant Included in Regressions) 
 
Dependent 
Variable            [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

R2 0.018          0.026 0.016 0.018 0.020 0.015 0.011 0.019 0.018 0.019
TFP 

Dispersion Demand Density 
(s.e.) 

-0.014* 
(0.004) 

-0.026* 
(0.006) 

-0.011* 
(0.005) 

-0.016*
(0.008) 

-0.012* 
(0.003) 

-0.012* 
(0.004) 

-0.011* 
(0.004) 

-0.014* 
(0.004) 

-0.014* 
(0.005) 

-0.016* 
(0.006) 

R2 0.059          

          

          

       

     

       

     

0.036 0.021 0.359 0.034 0.167 0.003 0.050 0.074 0.072
Median 

TFP Demand Density 
(s.e.) 

0.021* 
(0.003) 

0.021* 
(0.003) 

0.011* 
(0.004) 

0.072* 
(0.007) 

0.013* 
(0.003) 

0.040* 
(0.003) 

0.005 
(0.003) 

0.017* 
(0.003) 

0.021* 
(0.004) 

0.015* 
(0.004) 

R2 0.045 0.038 0.009 0.413 0.028 0.113 0.004 0.034 0.037 0.056
Qty-Wt. 
Average 

TFP 

Demand Density 
(s.e.) 

0.026* 
(0.004) 

0.027* 
(0.004) 

0.012* 
(0.005) 

0.080* 
(0.006) 

0.014* 
(0.003) 

0.044* 
(0.004) 

0.008 
(0.004) 

0.022* 
(0.004) 

0.021* 
(0.005) 

0.016* 
(0.006) 

R2 0.033 0.024 0.028 0.142 0.054 0.052 0.015 0.028 0.071 0.040
10th 

Percentile 
TFP 

Demand Density 
(s.e.) 

0.057* 
(0.010) 

0.046* 
(0.008) 

0.027* 
(0.008) 

0.120* 
(0.013) 

0.027* 
(0.004) 

0.070* 
(0.009) 

0.038* 
(0.010) 

0.053* 
(0.010) 

0.064* 
(0.014) 

0.032* 
(0.013) 

R2 0.570 0.510 0.576 0.207 0.713
Producer-

to-Demand 
Ratio 

Demand Density 
(s.e.) 

-0.369* 
(0.015) 

-0.361* 
(0.012) 

-0.365* 
(0.023) 

-0.320* -0.212* 
(0.033) (0.016) 

R2 0.334 0.269 0.311 0.353 0.222 0.467
Average 

Plant 
Output 

Demand Density 
(s.e.) 

0.218* 
(0.012) 

0.211* 
(0.011) 

0.206* 
(0.017) 

0.227*
(0.013) 

0.182* 0.098* 
(0.020) (0.015) 

 
This table shows results from robustness tests on the results presented in Table 2.  See Table 5 for the key to specifications (by 
column).  Heteroskedasticity-robust standard errors are reported.  Average plant output is revenue-based in specification 5. 

 
 



Table 4. Robustness Checks—Year Effects and Demand Controls Included 
 
Dependent 
Variable            [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

R2 0.092          0.065 0.103 0.044 0.083 0.062 0.088 0.093 0.072 0.090
TFP 

Dispersion Demand Density 
(s.e.) 

-0.029* 
(0.008) 

-0.034* 
(0.009) 

-0.008 
(0.008) 

-0.031* 
(0.012) 

-0.021* 
(0.005) 

-0.024* 
(0.008) 

-0.028* 
(0.009) 

-0.033* 
(0.009) 

-0.017* 
(0.007) 

-0.029* 
(0.009) 

R2 0.321          

          

          

       

     

          

     

0.181 0.429 0.414 0.386 0.393 0.252 0.110 0.151 0.337
Median 

TFP Demand Density 
(s.e.) 

0.012* 
(0.005) 

0.017* 
(0.005) 

0.006 
(0.007) 

0.054* 
(0.011) 

0.002 
(0.004) 

0.028* 
(0.005) 

0.000 
(0.006) 

0.009 
(0.005) 

0.013* 
(0.005) 

0.010* 
(0.005) 

R2 0.162 0.133 0.165 0.469 0.311 0.249 0.120 0.078 0.107 0.168
Qty-Wt. 
Average 

TFP 

Demand Density 
(s.e.) 

0.016* 
(0.008) 

0.023* 
(0.006) 

0.013 
(0.011) 

0.056* 
(0.009) 

-0.004 
(0.005) 

0.032* 
(0.008) 

-0.000 
(0.008) 

0.014 
(0.008) 

0.016* 
(0.006) 

0.011 
(0.008) 

R2 0.058 0.051 0.110 0.176 0.154 0.076 0.041 0.066 0.121 0.063
10th 

Percentile 
TFP 

Demand Density 
(s.e.) 

0.065* 
(0.019) 

0.058* 
(0.013) 

0.033* 
(0.014) 

0.116* 
(0.020) 

0.019* 
(0.007) 

0.079* 
(0.017) 

0.048* 
(0.021) 

0.062* 
(0.019) 

0.063* 
(0.017) 

0.049* 
(0.020) 

R2 0.708 0.630 0.779 0.237 0.769
Producer-

to-Demand 
Ratio 

Demand Density 
(s.e.) 

-0.313* 
(0.022) 

-0.324* 
(0.018) 

-0.294* 
(0.025) 

-0.361* -0.242* 
(0.037) (0.019) 

R2 0.557 0.478 0.633 0.609 0.487 0.610
Average 

Plant 
Output 

Demand Density 
(s.e.) 

0.184* 
(0.017) 

0.199* 
(0.016) 

0.163* 
(0.026) 

0.200*
(0.017) 

0.107* 0.129* 
(0.022) (0.017) 

 
This table shows results from robustness tests on the results presented in Table 2.  See Table 5 for the key to specifications (by 
column).  Heteroskedasticity-robust standard errors are reported.  Average plant output is revenue-based in specification 5. 
 

 
 



Table 5. Robustness Checks—Key to Specifications 
 
[1] Benchmark (from Table 2) 
[2] Minimum number of plants in market-year cell with TFP data is 2 rather than 5, N = 974 
[3] Minimum number of plants in market-year cell with TFP data is 10 rather than 5, N = 343 
[4] Labor productivity (logged output per worker-hour) instead of TFP, market K/L controls 
[5] Revenue-based TFP measure 
[6] Assumed scale elasticity of 0.9 
[7] Assumed scale elasticity of 1.1 
[8] Estimated TFP from production function 
[9] Single cross section using average TFP and density measures, N = 312 
[10] Market size control included 
 
 
 
 
 
 
 
 
 

Table A.1. Production Function Regression Results 
 

 First Stage Second Stage 

N 
F-Statistic for 

Demand 
Instruments 

Sum of Demand 
Instrument 

Coefficients 
δ1982 δ1987 γmult γx R2 

10,613 35.2 
(p < 0.001) 

1.025 
(0.115) 

-0.115 
(0.010)

-0.079 
(0.012)

0.070 
(0.010)

0.996 
(0.029) 0.902 

 
Production Function Coefficients: 
δ1982—1982 year fixed effect 

δ1982—1987 year fixed effect  
γmult—Multi-plant firm effect 
γx—Scale elasticity 
 
Reported standard errors are robust and clustered by CEA (local market) 

 
 


